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Abstract

This paper clari�es the empirical source of the debate on the e¤ect of technology shocks

on hours worked. We �nd that the contrasting conclusions from levels and di¤erenced VAR

speci�cations can be explained by a small, but important, low frequency co-movement between

hours worked and labour productivity growth, which is allowed for in the levels speci�cation

but is implicitly set to zero in the di¤erenced VAR. Our theoretical analysis shows that, even

when the root of hours is very close to one and the low frequency co-movement is quite small,

assuming away or explicitly removing the low frequency component can have large implications

for the long-run identifying restrictions, giving rise to biases large enough to account for the

empirical di¤erence between the two speci�cations.
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1 Introduction and Motivation

An ongoing debate exists regarding the empirical e¤ect of technology shocks on production inputs,

such as hours worked. Most standard real business cycle models start with the premise that business

cycles result from unexpected changes in production technologies. This has the implication that

hours worked and other inputs to production should rise following a positive technology shock. On

the other hand, models with frictions, such as sticky prices, often predict an initial fall in hours

worked following a productivity shock.1

As technology shocks are di¢ cult to measure,2 they are commonly speci�ed (Gali, 1999, for

example) as structural shocks in vector autoregressive (VAR) models that are identi�ed via the long-

run (LR) restriction that only technology shocks have a permanent e¤ect on labour productivity.

This identi�cation scheme, an implication of many modern macroeconomic models, has been widely

employed in recent years. However, despite its common acceptance, the qualitative results have

proven quite sensitive to other aspects of the VAR speci�cation, particularly whether hours worked

are speci�ed in levels or di¤erences.

Specifying the VAR in the di¤erence of both hours worked and labour productivity, Gali (1999)

and Shea (1999) �nd that hours worked initially fall following a positive technology shock, a �nding

which gives support to models with frictions embedded. Other papers have reached similar conclu-

sions (see, for example, Francis and Ramey, 2005; Francis, Owyang and Theodorou, 2003; Basu,

Fernald and Kimball, 2006) and this has spurred a line of research aimed at developing general

equilibrium models (Gali and Rabanal, 2004) or alternative �nite-horizon identi�cation schemes

(Uhlig, 2004; Francis, Owyang and Roush; 2005) that can account for this empirical �nding. How-

ever, maintaining the long-run identi�cation restriction but allowing hours worked to enter the

1However, Chang, Hornstein, and Sarte (2008) show that once inventories are allowed for the dynamics in both

models become more complicated and it is no longer so simple to distinguish between �exible and sticky price models

based on the response of hours worked.
2Alexopoulos (2006) and Shea (1999) provide measurements of technological progress based on technology publi-

cations and patent data respectively.
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model in levels, Christiano, Eichenbaum and Vigfusson (2003, 2006) instead provided support for

the prediction of standard RBC models, with hours worked rising immediately after a positive pro-

ductivity shock. Chang and Hong (2006) reach similar conclusions using data on industry�s total

factor productivity despite specifying hours in �rst di¤erences.

Figure 1 plots the estimated impulse response functions (IRFs) based on the levels and di¤er-

enced speci�cations with quarterly U.S. data for the period 1948Q2 - 2005Q3.3 The di¤erence in

the impulse response functions are quite striking. Standard unit root and stationarity tests on hours

worked, neither of which reject their respective null hypothesis, provide little guidance regarding

this speci�cation choice (Christiano, Eichenbaum and Vigfusson, 2006).4

These contradicting results have generated substantial interest in the e¤ect of misspecifying

hours worked. Chari, Kehoe and McGrattan (2008) and Christiano, Eichenbaum and Vigfusson

(2003, 2006) argue that the di¤erenced VAR is misspeci�ed if hours worked are stationary, which

is typically implied by the standard RBC models. Chari, Kehoe and McGrattan (2008) and Chris-

tiano, Eichenbaum and Vigfusson (2003) investigate the e¤ect of over-di¤erenced hours on the

impulse response analysis and suggest pre-testing and encompassing testing procedures for select-

ing the stochastic speci�cation for hours worked. Pesavento and Rossi (2005) adopt an agnostic

approach that is robust to the degree of persistence in hours worked.

While the levels speci�cation is immune to the aforementioned problems, the �nite-lag levels

VAR can still be misspeci�ed if the underlying theoretical model implies a dynamic process with an

in�nite lag structure (Chari, Kehoe and McGrattan, 2008; Christiano, Eichenbaum and Vigfusson,

2006; Ravenna, 2007). Furthermore, as noticed by Chari, Kehoe and McGrattan (2008) and Chris-

tiano, Eichenbaum and Vigfusson (2006), among others, the levels speci�cation tends to produce

IRFs with large sampling variability that are nearly uninformative for distinguishing between com-

3U.S. data on labour productivity, hours worked in the non-farm business sector and population over the age of

16 from DRI Basic Economics (the mnemonics are LBOUT, LBMN and P16, respectively).
4Using a multivariate Bayesian posterior odds procedure, Christiano, Eichenbaum and Vigfusson (2003) �nd

evidence in favor of the levels speci�cation.
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peting economic theories. Gospodinov (2008) shows that the large sampling uncertainty associated

with the IRFs in the levels speci�cation arises from a weak instrument problem when the largest

root of hours worked is near the nonstationary boundary. Similarly, Pesavento and Rossi (2006)

demonstrate that the impulse response functions from both the levels and di¤erenced VAR speci�-

cations may be unreliable when the root in hours worked is close to one. In particular, the impulse

response functions can be severely biased with con�dence intervals that have poor coverage.

Nevertheless, despite the voluminous recent literature on the e¤ects of technology shock on hours

worked, there is still little understanding of how such large quantitative and qualitative di¤erences

in the impulse responses can be generated. While the literature attributed these discrepancies to

potential biases in both VAR speci�cations, it is not clear that such biases are large enough in

practice to explain such highly divergent results especially in the short run. In fact, we �nd that

it is nearly impossible to explain these di¤erences based solely on the behavior of hours worked

itself and that these di¤erences cannot be justi�ed solely by small deviations of the largest root

of hours worked from unity. As we show later, the seemingly con�icting evidence from the levels

and di¤erenced speci�cations identi�ed with LR restrictions can only be reconciled when these

deviations from the exact unit root are accompanied by small low frequency co-movements between

labour productivity growth and hours worked. We show that this low frequency co-movement drives

a wedge between the levels and di¤erenced speci�cations with a profound impact on their impulse

response functions.

This situation arises when restrictions on the matrix of LR multipliers, which includes low

frequency information, are used to identify technology shocks. While the levels speci�cation explic-

itly estimates and incorporates this low frequency co-movement in the computation of the impulse

response functions, the di¤erenced speci�cation imposes this element to be zero. It is important

to emphasize that this component could be arbitrarily small and could accompany a largest root

arbitrarily close to one, yet still produce substantial di¤erences in the impulse responses from the
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two speci�cations. Therefore, our results also suggest that a pre-testing procedure for a unit root

will be ine¤ective in selecting a model that approximates well the true IRF when hours worked

are close to a unit root process. In this case, the pre-testing procedure would favor the di¤erenced

speci�cation, which rules out the above mentioned low frequency correlation, with high probability.

This could in turn result in highly misleading IRF estimates.

Another way to look at the problem is to note that the di¤erenced speci�cation ignores possible

low frequency co-movements between labour productivity and hours worked. Figure 2 plots de-

meaned hours worked and detrended labour productivity and shows that the two series appear to be

inversely related. On a more intuitive level, if hours worked are a highly persistent, but stationary,

process, it is possible that labour productivity inherits some small low frequency component from

hours without inducing any observable changes in its time series properties.

We show in our analytical section that this inverse relationship should be translated into low

frequency co-movement between labour productivity growth and hours worked, provided that hours

worked are stationary. While this co-movement is hard to detect by visual inspection of the dy-

namics of labour productivity growth, Figure 3 reveals that the Hodrick-Prescott (HP) trend5 of

labour productivity growth and hours worked exhibit some similarities and suggest that labour

productivity growth may inherit its small low frequency trend component from hours worked.

Fernald (2007) also highlights the sensitivity of the results to low frequency correlation between

labour productivity growth and hours worked and concentrates on the observed low frequency

correlation that is due to a similar high-low-high pattern in productivity growth (arising from

structural breaks in productivity) and hours per person. Thus, our �ndings support those of

Fernald (2007) in identifying low frequency correlations as the key to understanding the con�icting

results from the levels and di¤erenced speci�cations. However, our analysis di¤ers from that of

Fernald (2007) in a subtle, but fundamentally important, way. In order to generate (with nontrivial

probability) di¤erences in the two speci�cations of a similar magnitude to those found in practice,

5Throughout the paper, the value of the smoothing parameter for the HP �lter is set to 1,600.
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we �nd it necessary to include this low frequency co-movement in the true generating process.

Such a low frequency co-movement may be plausible if technological changes have long-lasting

e¤ects on the underlying structure of the labour market. For example, technological improvements

give rise to greater e¢ ciency in household production, leading to increased female labour market

participation. Likewise, technological innovations e¤ecting regional transportation or labour search

costs, may also have lasting impacts on labour markets. Synthetic simulated series from the RBC

model that we brie�y consider in Section 3.2 also result in low frequency co-movements similar to

those observed in the empirical data.

On the other hand, Fernald (2007) and Francis and Ramey (2006) provide some convincing

arguments for why the structural breaks in productivity and hours may have disparate causes. In

their analysis, they therefore treat the concurrent nature of the structural breaks in the two series

as coincidental. While such a chance occurrence cannot be ruled out in the historical data, in

our calibrated simulations we �nd it nearly impossible to replicate the di¤erences between the two

speci�cations without treating this small low frequency correlation as a real characteristic of the

underlying data generating process. Furthermore, when this low frequency component is real, we

�nd that removing or arti�cially restricting it to zero, as in the di¤erence speci�cation, may lead to

substantial biases in the impulse response function, whereas Fernald (2007) comes to the opposite

conclusion under the assumption that this correlation is coincidental in nature.

The rest of the paper is organized as follows. In Section 2, we formalize this intuition and present

a theoretical model that helps us to identify the possible source of the low frequency correlations

and derive the implications for the impulse responses identi�ed with long run restrictions. Section

3 presents the results from a Monte Carlo simulation experiment. Section 4 discusses the main

implications of our analysis for empirical work and Section 5 concludes.
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2 Analytical Framework for Understanding the Debate

Our analytical framework and econometric speci�cation is designed to mimic some of the salient

features of the data and the implications of the theoretical macroeconomic (in particular, RBC)

models. First, we specify labour productivity as an exact unit root process. The RBC model

imposes a unit root on technology and the data provide strong empirical support for this assumption.

Hours worked exhibit a highly persistent, near-unit root behavior, although the standard RBC

model implies that they are a stationary process. Since an exact unit root cannot be ruled out

as an empirical possibility, we do not take a stand on this issue and consider both the stationary

and unit root cases. However, these di¤erent speci�cations (stationary or nonstationary) either

allow for or restrict the low frequency co-movement between hours worked and labour productivity

growth. It turns out that this has profound implications for the impulse response functions.

If hours worked are assumed stationary, the matrix of largest roots of the labour productivity

growth and hours worked can contain a non-zero upper o¤-diagonal element, whose magnitude de-

pends on the closeness of the root of hours worked to one. This, typically fairly small, o¤-diagonal

element can produce substantial di¤erences in the shapes and the impact values of the impulse

response functions from models that incorporate (levels speci�cation) and ignore (di¤erenced spec-

i�cation) this component.

Alternatively, in the case of an exact unit root for hours worked, the matrix of largest roots

specializes to the identity matrix. In this case, there can be no low frequency co-movement between

hours work and labour productivity growth, ruling this out as an explanation for the di¤erence

between the two sets of impulse response functions. It is important to note, however, that this

explanation is ruled out only in the case of an exact unit root. Our results suggest that this small

low frequency co-movement can continue to induce large discrepancies between the IRFs of the

di¤erence and level VARs, even when the largest root is arbitrarily close to and indistinguishable
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from unity.6

In order to complete the model, we need to adopt an identi�cation scheme that allows us

to recover the structural parameters and shocks. We follow the literature and impose the long-

run identifying restriction that only shocks to technology can have a permanent e¤ect on labour

productivity. In addition, we assume that the structural shocks are orthogonal. In the next

subsections, we formalize this analytical framework and work out its implications for the impulse

response functions based on levels and di¤erenced speci�cations.

2.1 Reduced-form model

Consider the reduced form of a bivariate vector autoregressive process eyt = (lt; ht)0 of order p+ 1
	(L)(I � �L)eyt = ut; (1)

where	(L) = I�
Pp
i=1	iL

i =

"
 11(L)  12(L)

 21(L)  22(L)

#
; E(utjut�1; ut�2; :::) = 0, E(utu0tjut�1; ut�2; :::) =

� and the matrix � is expressed in terms of its eigenvalue decomposition as � = V �1�V , where

� =

"
1 0

0 �

#
contains the largest roots of the system and V =

"
1 �
0 1

#
is a matrix of cor-

responding eigenvectors.7 Simple algebra yields � =

"
1 �

0 �

#
, where � = � (1� �), is the

parameter that determines the low frequency co-movement between the variables and � denotes

the largest root of hours worked. This parameterization, which arises directly from the eigenvalue

decomposition of �, allows for a small (�) impact of ht on lt, provided that � is not exactly equal

to one. Note that in the exact unit root case, � collapses to the identity matrix.8 The other o¤

diagonal element ofV; and therefore of �, is set to zero to rule out the possibility of feedback from

the level of productivity to hours worked, as this would imply that hours is I (2) when � = 1 and

6This argument can also be formalized in the local-unity setting that we consider in Section 2.4. In this setting,

the o¤-diagonal element must itself be vanishing (i.e. local-to-zero), but nonetheless has a critical, non-vanishing,

impact on the impulse response functions.
7Pesavento and Rossi (2006) use a similar decomposition but they impose diagonality on �. In Pesavento and

Rossi (2006), the eigenvectors represent possible cointegration relationships.
8The persistence in ht could also be modelled as local to unity �T = 1� c=T for a �xed constant c � 0. We will

discuss this parameterization in Section 2.4.
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I (1) when � < 1:

It is convenient to rewrite model (1) in Blanchard and Quah�s (1989) framework by imposing the

exact unit root on productivity so that 4lt is a stationary process. In this case, let yt = (4lt; ht)0

and A(L) = 	(L)

"
1  (1� �)L
0 1� �L

#
: Then, the reduced form VAR model is given by

A(L)yt = ut (2)

yt = A1yt�1 + :::+Ap+1yt�p�1 + ut:

The non-zero o¤-diagonal element  (1� �)L allows a small low frequency component of hours

worked to enter labour productivity growth. When the low frequency component is removed from

either hours worked (Francis and Ramey, 2005, and Gali and Rabanal, 2004) or labour productivity

growth (Fernald, 2007), this coe¢ cient is driven to zero and the estimated IRF resembles the IRF

computed from the di¤erenced speci�cation. The above parameterization of � can be used to

explain this result.

2.2 Structural VAR

We denote the structural shocks (technology and non-technology shocks, respectively), by "t =

("zt ; "
d
t )
0, which are assumed to be orthogonal with variances �21 and �

2
2, respectively, and relate

them to the reduced form shocks by "t = B0ut, where B0 =

"
1 �b(0)12

�b(0)21 1

#
. Pre-multiplying

both sides of (2) by the matrix B0 yields the structural VAR model

B(L)yt = "t;

where B(L) = B0A(L).

The matrix of long-run multipliers in the SVAR for yt is

B(I) =

24  11(1)� b
(0)
12  21(1) (1� �)

�
[ 11(1) +  12(1)]� b

(0)
12 [ 21(1) +  22(1)]

�
 21(1)� b

(0)
21  11(1) (1� �)

�
[ 21(1) +  22(1)]� b

(0)
21 [ 11(1) +  12(1)]

� 35 :
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Imposing the restriction that non-technology shocks have no permanent e¤ect on labour produc-

tivity renders the matrix B(I) lower triangular.9 For � < 1, this LR restriction translates into the

restriction b(0)12 = [ 11(1) +  12(1)]=[ 21(1) +  22(1)]:

Suppose now that one assumes � = 1 and let 4eyt = (4lt;4ht)0: Then, the reduced form

specializes to

	(L)4 eyt = ut (3)

and the structural form is given by

B0	(L)4 eyt = "t

with a long-run multiplier matrix

B(I) =

"
 11(1)� b

(0)
12  21(1)  12(1)� b

(0)
12  22(1)

 21(1)� b
(0)
21  11(1)  22(1)� b

(0)
21  12(1)

#
:

Note that the LR restriction implies that b(0)12 =  12(1)= 22(1) and even if the upper right element

of � is non-zero, the di¤erenced VAR would ignore any information contained in the levels and

implicitly set this element equal to zero.

Once the structural parameter b(0)12 is obtained (by plugging consistent estimates of the ele-

ments of 	(I) from the reduced form estimation), the remaining parameters can be recovered from

B0E(utu
0
t)B

0
0 = E("t"

0
t) or

b
(0)
21 =

b
(0)
12 �22 � �12
b
(0)
12 �12 � �11

;

�21 = �11 � 2b
(0)
12 �12 +

h
b
(0)
12

i2
�22

and

�22 = �22 � 2b
(0)
21 �12 +

h
b
(0)
21

i2
�11;

where �ij is the [ij]th element of �. These parameters can be used consequently for impulse

response analysis and variance decomposition.

9An alternative formulation of the restriction is that C(I) is lower triangular, where C(L) = B(L)�1 describes the

moving average representation yt = C(L)"t. Simple matrix algebra shows that the two restrictions are equivalent.
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2.3 Implications for impulse response analysis

The impulse response functions of hours worked to a shock in technology can be computed either

from the levels speci�cation (Blanchard and Quah, 1989; Christiano, Eichenbaum and Vigfusson,

2006; among others) or the di¤erenced speci�cation (Gali, 1999; Francis and Ramey, 2005). The

levels approach will explicitly take into account and estimate a possible non-zero upper o¤-diagonal

element in � but it su¤ers from some statistical problems when hours worked are highly persis-

tent (Gospodinov, 2008). On the other hand, the di¤erenced approach will produce valid and

asymptotically well-behaved IRF estimates in the exact unit root case but it ignores any possible

low frequency co-movement between hours and labour productivity growth when hours worked is

stationary. It can therefore give rise to highly misleading IRFs even for very small deviations from

the unit root assumption on hours.

Since b(0)12 = [ 11(1) +  12(1)]=[ 21(1) +  22(1)] and b
(0)
12 =  12(1)= 22(1) can produce very

di¤erent values of b(0)12 the IRFs from these two approaches can be vastly di¤erent. In fact, because

the value of  does not depend on �, these di¤erences can remain large even for (�� 1) arbitrarily

close, but not equal, to zero. For simplicity, take the �rst-order model where 	(L) = I. In this case,

the two restrictions set the value of b(0)12 to  and 0, respectively, implying two very di¤erent values

for b(0)21 , which, in turn, directly determines the impulse response function, since in the �rst-order

model

�
(l)
hz =

@ht+l
@"zt

=
h
�lB�10

i
21
=

b
(0)
21 �

l

1� b(0)12 b
(0)
21

: (4)

As it is clear from (4) ; the impact e¤ect at l = 0 does not depend on the value of � as �0 = 1, but

only on the values of b(0)21 and b
(0)
12 , which themselves depend on 	(1) and . Focusing the debate on

the distance of � from one is therefore misleading, provided that � is not precisely equal to one.

To visualize the di¤erences in the IRFs from the levels and di¤erenced speci�cations when � is

not diagonal, it is instructive to consider the following simpli�ed example. Suppose that the true

data generating process is a �rst-order VAR with � = 0:98;  = �1 (which implies an o¤-diagonal
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element � = �(1 � �) = 0:02) and � =

 
1 �0:2

�0:2 0:8

!
: From the above formulas, it can be

easily inferred that the true values of the parameters that enter the IRF are b(0)12 = 1; b
(0)
21 = 0:75

and �21 = 1:4, whereas the di¤erenced approach uses values of b(0)12 = 0; b
(0)
21 = �0:2 and �21 = 1.

The IRFs based on the levels (true) and di¤erenced speci�cations are plotted in Figure 4.

Figure 4 clearly illustrates the large di¤erences in the IRFs from the two speci�cations that

are generated by the presence of a small o¤-diagonal element �. Interestingly, the di¤erences

between the IRFs do not necessarily disappear as � gets closer to one and � approaches zero.

As our analytical framework suggests, they can remain substantial even for values of � � 1 and

� = �(1 � �) arbitrarily close, but not equal, to zero. This is because, provided that � < 1,

the size of this discrepancy depends on the co-movement through the parameter , rather than

through either � or �. At a more intuitive level, the reason that the short-horizon IRFs can be

highly sensitive to even small low frequency co-movements accompanying small deviations of � from

one, is that they are identi�ed o¤ of long-run identi�cation restrictions, which depend entirely on

the zero frequency properties of the data. As reported below, a similar sensitivity does not arise

when short-run identi�cation restrictions are employed.

2.4 An alternative parameterization

The fact that our framework suggests potentially large IRF discrepancies even for values of � quite

close to one is practically relevant, precisely because this is the case in which unit root tests have

the greatest di¢ culty detecting stationarity. The low power of the unit root test arises in this

case because, in small sample sizes, the resulting process for hours may behave more like a unit

root process than like a stationary series. This concept has been formalized in the econometrics

literature by the near unit root or local-to-unity model, in which � = 1� c=T for c � 0 is modelled

as a function of the sample size (T ), which shrinks towards unity in larger samples (Phillips, 1987;

Chan, 1988). Naturally, this dependence on the sample size is not understood as a literal description
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of the data, but rather as a devise to approximate the behavior of highly persistent processes in

small samples. What makes this modelling device particularly relevant, is that, for small values

of the local-to-unity parameter c, it describes a class of alternatives to � = 1 against which unit

root tests have no consistent power. Intuitively, c = T (1� �) can be interpreted as measuring the

distance of the root from one relative to the sample size. Small values of c correspond to cases in

which T is relatively small and � is relatively close to one, so that unit root tests have low power

and the di¤erence speci�cation is likely to be employed when computing IRFs.

An alternative parameterization of the model in (1) is therefore obtained by modeling the

largest root in hours as a local-to-unity process with � = 1 � c=T with c � 0. Then, it follows

that � =

"
1 0

0 1� c=T

#
, V =

"
1 �
0 1

#
and �T =

"
1 �c=T
0 1� c=T

#
. In �nite samples, as long

as c > 0, no matter how small, the co-movement between hours and productivity is di¤erent than

zero, although arbitrary small. The reduced form for yt = (4lt; ht)0 is now

A(L)yt = ut

with A(L) = 	(L)

"
1  (c=T )L

0 (1� L) + (c=T )L

#
: In the unit root case, c = 0 and �T collapses to

the identity matrix, the variables are not cointegrated and there is no feedback from hours to

productivity growth. Thus, the impact of ht�1 on4lt is local-to-zero and vanishing at rate T�1=2; 10

capturing the notion that the low frequency co-movement between hours and productivity must

be small if the root of hours is close to unity. Writing the model in the local-to-unity form is

also intuitively appealing since the low frequency correlation between ht�1 and 4lt is bound to

disappear asymptotically, so that hours do not a¤ect productivity growth in the long run.

Under the local-to-unity parameterization, the matrix of long-run multipliers becomes

B(I) =

24  11(1)� b
(0)
12  21(1) c=T

�
[ 11(1) +  12(1)]� b

(0)
12 [ 21(1) +  22(1)]

�
 21(1)� b

(0)
21  11(1) c=T

�
[ 21(1) +  22(1)]� b

(0)
21 [ 11(1) +  12(1)]

� 35
and the restriction that non-technology shocks have no permanent e¤ect on labour productivity

yields b(0)12 = [ 11(1) +  12(1)]=[ 21(1) +  22(1)] for c > 0. Note, that when c = 0, the model

10The level of h a¤ects 4lt through the term (c=T )ht�1 which is Op(T�1=2) since T�1=2ht�1 = Op(1).
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again specializes to the di¤erence VAR speci�cation in (3), for which the LR speci�cation implies

b
(0)
12 =  12(1)= 22(1). As a result, the analysis of the shapes of the impulse response functions

under the di¤erent speci�cations in Section 2.3 remains unchanged. This con�rms the �nding that

substantial di¤erences in IRFs can arise, even within this class of models, for which unit root tests

are not powerful enough to detect that hours worked is stationary. Thus the �nding that hours

worked is indistinguishable from a unit root process does not guarantee that the true IRF will be

close to IRF from the di¤erence speci�cation.

3 Monte Carlo Experiment

3.1 Model calibrated to US data

To demonstrate the di¤erences in the IRF estimators with a non-diagonal �; we conduct a small

Monte Carlo experiment. 10,000 samples for yt = (lt; ht)0 are generated from the VAR(2) model"
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, and the parameter

values are calibrated to match the empirical shape of the IRF of hours worked to a technology

shock.11 The lag order of the VAR is assumed known. In addition to the IRF estimates from the

levels and di¤erenced speci�cations, we consider the IRF estimates from a levels speci�cation with

HP detrended productivity growth, as in Fernald (2007).

Figures 5 to 8 show simulation results for the IRFs under four di¤erent parameter combinations

for � and , all of which lie in a range of values that is potentially consistent with the actual

data. The three panels of each �gure correspond to the di¤erent model speci�cations: a VAR in

productivity growth and hours, a VAR in productivity growth and di¤erenced hours and a VAR in

HP detrended productivity growth and hours. For each model we show the true IRF (solid line),

11Note that while the numbers for the short-run dynamics are chosen to match the empirical values estimated from

a VAR in levels, in our simulations we also impose � = 1 and therefore allow both speci�cations (levels and �rst

di¤erences) to be the true DGP.
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the median Monte Carlo IRF estimate (long dashes), and the 95% Monte Carlo con�dence bands

(short dashes).

In Figure 5 we consider a stationary but persistent process for hours (� = 0:95), while allowing

a small low frequency component of hours worked to enter labour productivity growth (� = 0:04).

As shown in the �gure, the VAR in levels (left graph) estimates an IRF that is close, on average,

to the true IRF, except for a small bias (see Gospodinov, 2008, for an explanation). On the other

hand, the VAR with hours in �rst di¤erences (middle graph) incorrectly estimates a negative initial

impact of the technology shock even though the true impact is positive. These results are in

agreement with our discussion in the analytical section.

In Figure 6, we increase the largest root of hours worked from � = 0:95 to � = 0:97 and also

substantially decrease value of the o¤-diagonal element from � = 0:04 to � = 0:015. Nevertheless,

despite these changes, the IRFs shown in the two �gures are strikingly similar. This underlines the

ability of even a very small low frequency co-movement to drive a qualitatively important wedge

between the level and di¤erence IRFs. Likewise, it illustrates that the largest root need not be far

from one for this e¤ect to be important.

The right panels of Figures 5 and 6 are also interesting. When the HP �lter is used to remove

the low frequency component from labour productivity growth (Fernald, 2007), the estimated IRF

resembles the IRF computed from the di¤erenced speci�cation. The graphs clearly demonstrate

that the removal of the low frequency component, by either di¤erencing or HP �ltering, eliminates

the possibility of any low frequency co-movements between the transformed series and this has a

profound in�uence on the IRFs.12

12After removing the low frequency component, the nature of the IRF changes and it is not completely justi�able

to compare the IRFs from the transformed and the original processes. Nevertheless, we still report the IRFs on the

same graph to illustrate the economically large di¤erences created by a fairly small o¤-diagonal element. We also

considered the speci�cation when hours worked are HP-�ltered as in Francis and Ramey (2006). The behavior of the

IRF estimates in this model is similar to the case of HP-�ltered productivity growth. Here, we make no argument

as to whether the low frequency components should or should not be removed prior to the IRF analysis. Instead, we

provide an analytical framework for explaining and reconciling the con�icting results documented in the empirical

literature. We further discuss the implications of low frequency �ltering in the next section.
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Figure 7 presents the results for the exact unit root case. In this case the matrix of largest roots

becomes diagonal, eliminating the low frequency co-movement between hours and productivity

growth (� = 0). As expected, by removing this low frequency co-movement, we also eliminate

the main qualitative di¤erences between the median IRF response functions from the three models.

Despite some small biases, all median IRF estimates now correctly sign the impact of the technology

shock and come close to tracing out the true IRFs.

Nevertheless, there are still important di¤erences in performance among the three speci�cations.

Not surprisingly, the di¤erenced speci�cation is particularly accurate and produces an unbiased

estimator with tight con�dence intervals. The estimator from the levels speci�cation exhibits both

a modest bias that arises from the biased estimation of the largest root of hours and a very large

sample uncertainty (Gospodinov, 2008). The estimator from the speci�cation with HP �ltered

labour productivity growth performs similarly to the di¤erenced estimator, although it is slightly

biased and more dispersed.

In Figure 8 we maintain the assumption of a zero o¤-diagonal element (� = 0) and return to

a persistent but stationary speci�cation for hours worked (� = 0:95). The median IRFs from all

models are again quite similar, both to each other and to the true IRF. In this sense, the basic

message from Figures 7 and 8 is similar, despite the fact that hours are nonstationary in Figure

7 but stationary in Figure 8. However, there are still some substantive di¤erences. Most notably,

the accuracy of the levels IRF is clearly much improved, with smaller bias and considerably smaller

variance.

In summarizing the results from these four �gures, we note that large qualitative di¤erences

in median IRFs for the di¤erenced and levels VARs were observed only in Figures 5 and 6, in

which there is a small low frequency relationship between hours and labour productivity (� 6= 0).

Neither Figure 7 nor Figure 8 show qualitative di¤erences in the median IRFs from the levels and

di¤erenced speci�cations. Yet in Figure 7 hours have a unit root, whereas they are stationary in
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Figure 8. What the two �gures share in common is the absence of the low frequency co-movement

of Figures 5 and 6 (i.e. � = 0). Although the size of the unit root in hours worked has important

implications for the sampling distributions of the IRFs, these results suggest that it is the low

frequency co-movement that plays the critical role in driving the central qualitative di¤erences

between the level and di¤erence speci�cations.

To better assess the sensitivity of the levels and di¤erence speci�cations to di¤erent values of �

and �, in Figures 9 and 10 we plot the true and estimated responses for various degrees of persistence

and low frequency co-movement: Each line represents values for  = f�0:5;�0:2; 0; 0:2; 0:5g, which

correspond to di¤erent o¤-diagonal elements � depending on the value of � (recall that � = �(1�

�)). Once again, it is clear that, while the level speci�cation explicitly estimates and incorporates

the di¤erent values for � in the computation of the impulse response functions, the di¤erenced

speci�cation implicitly imposes this element to be zero. This leads to substantial deviations from

the true impulse response functions.

We also want to stress that the con�dence intervals reported in Figures 5-8 are Monte Carlo

con�dence intervals, which are infeasible since they utilize knowledge of the true data generating

process. The bias in the levels VAR and the misspeci�cation in the �rst di¤erence regressions result

in poor coverage of con�dence intervals constructed with standard procedures at medium and long

horizons (Pesavento and Rossi, 2006). This is not re�ected in our infeasible con�dence intervals.

At the same time, Figures 5-7 show very well how a wide range of di¤erent estimates for the IRF

are possible, and that the sampling uncertainty in the levels VAR is indeed larger. At the same

time, except for the cases in which either � is exactly one or � is exactly zero, the true impulse

response is never contained in the Monte Carlo con�dence bands for the VAR in �rst di¤erences.

Finally, the di¤erences reported in the IRFs for the various model speci�cations are expected

to arise only in the case of long-run identi�cation restrictions that are directly a¤ected by the

inclusion or the omission of the low frequency component. In order to verify this conjecture,

16



we estimate the IRFs from the di¤erent statistical models based on a short-run identi�cation

(Cholesky decomposition) scheme, with productivity growth ordered �rst and hours second. While

we recognize that imposing short-run restrictions may be rather ad hoc and may lack a solid

theoretical justi�cation, Christiano, Eichenbaum and Vigfusson (2006) demonstrate that the short-

run identi�cation scheme produces estimates with appealing statistical properties.13 The results

from the three models for � = 0:97 and � = 0:015 are presented in Figure 11. Unlike the long-

run identi�cation scheme (Figure 6), the IRF estimates for all speci�cations are very close to the

true IRF and fall inside the 95% Monte Carlo con�dence bands. This suggests that the short-run

identi�cation scheme is robust to the presence or absence of low frequency co-movements, which is

not the case with identifying restrictions that are based on long-run information.

3.2 RBC model

It is interesting to see if our main conclusions continue to hold if the data are simulated from a

dynamic general equilibrium model, in which the persistence and the low frequency co-movements

between the variables are implicitly determined. To investigate this, we follow Chari, Kehoe and

McGrattan (2008) and Christiano, Eichenbaum and Vigfusson (2006) by generating data from a

real business cycle model. The true impulse response functions implied from this structural model

are then compared to the estimated impulse responses from a �nite-order VAR model. In particular,

we use the two-shock CKM speci�cation described in Christiano, Eichenbaum and Vigfusson (2006)

as a data generating mechanism (see Christiano, Eichenbaum and Vigfusson, 2006, for details).

Several features of the RBC should be emphasized. First, the RBC model used for simulating

the data imposes a unit root on technology while hours worked implied by the model are stationary

but highly persistent. As a result, any low frequency co-movements in the model should arise from

13Our short-run identifying scheme is used only to illustrate the relative insensitivity of the IRFs to the low frequency

co-movement, when they are identi�ed by short-run restrictions. We do not advocate its use in practice since it has

no clear theoretical justi�cation. See Christiano, Eichenbaum and Vigfusson (2006) for a more sophisticated, model-

based, short-run identi�cation scheme.

17



the persistence of the variables and not from structural breaks. Second, the RBC model implies

a VARMA (in�nite-order VAR) structure for (4lt; ht)0 and �tting a �nite-order VAR model to

(4lt; ht)0 results in biased estimates of the impulse response functions (Chari, Kehoe and McGrat-

tan, 2008; Christiano, Eichenbaum and Vigfusson, 2006; Ravenna, 2007). Although there exist

methods for correcting this misspeci�cation bias (for instance, Christiano, Eichenbaum and Vig-

fusson, 2006), we do not pursue this avenue, since our primary focus in this paper is on the bias

that arises in the di¤erenced speci�cation from omitting a possible low frequency co-movement,

regardless of whether or not there is an additional source of bias due to lag truncation.

We generate 1,000 samples of 180 observations each and consider both the levels and di¤erenced

VAR speci�cations with four lags. Figure 12 displays time plots of a typical pair of synthetic

sequences of demeaned hours and detrended labour productivity generated from the simulated

RBC model.14 The co-movement of the series is similar to that shown in Figure 2 using the actual

data. Likewise, Figure 13 displays HP trends of the simulated labor productivity growth and hours

worked from the RBC model. The �gure again shows a similar low frequency co-movement to that

of the real data shown in Figure 3. Thus, the calibrated RBC model appears to produce a low

frequency co-movement, similar to the one found in the empirical data. In conjunction with the

lag truncation bias, this may help to explain why it produces the large discrepancies in the IRFs

of the di¤erenced and level speci�cations discussed below.

We now turn to the simulated IRFs. Again we consider structural VARs with hours in both

di¤erences and levels. Since hours worked is a highly persistent variable, it is tempting to subject

this variable to a unit root pre-test and depending on the outcome to model hours either in levels

or �rst di¤erences. Thus, we also report the results from this pre-testing procedure in which the

decision of modeling h in levels or �rst di¤erences is based on an ADF test with 4 lags at 5%

signi�cance level.

14To avoid cherry-picking, we used the last of the 1,000 synthetic series from our simulation. Comparison to other

draws indicated that it was not atypical.
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The results from the three speci�cations are presented in Figure 14. As reported elsewhere

(Christiano, Eichenbaum and Vigfusson, 2006, for example), the IRF estimates from the levels

VAR su¤er from an upward bias that is caused by approximating the true VARMA process by a

short-order VAR. Using an estimate of the long-run variance matrix as suggested by Christiano,

Eichenbaum and Vigfusson (2006) can substantially reduce this bias, although the sampling uncer-

tainty associated with the IRF estimates remains large.15 As in the previous simulation design, the

di¤erenced speci�cation reduces the sampling uncertainty but completely misses the true impulse

response due to the omission of important low frequency information. The true impulse response

falls entirely outside the 90% Monte Carlo con�dence bands obtained from the di¤erenced spec-

i�cation. Due to the relatively high persistence of hours worked, the pre-testing procedure has

di¢ culties rejecting the unit root null and leads to only small improvements over the di¤erenced

speci�cation. The estimates are slightly less biased and the con�dence bands are wider re�ecting

the uncertainty regarding the presence of a unit root in hours worked.

In summary, the simulated data from the RBC model show low frequency co-movements similar

to those found in the empirical data and produce IRFs in which the levels and di¤erence speci�ca-

tions give widely divergent conclusions. Therefore, although the lag-truncation bias also plays an

important role when the data is generated from a dynamic general equilibrium model, we nonethe-

less re-con�rm the central role of the low frequency co-movement in explaining the discrepancy

between the IRFs from level and di¤erence speci�cations.16

15Christiano, Eichenbaum and Vigfusson (2006) also �nd that this bias is substantially smaller after relaxing

the assumptions on the variance of the measurement error in the CKM speci�cation. In addition, they consider a

speci�cation with wage and price frictions for which the sampling uncertainty is much reduced.
16Further supporting this conclusion, some results with other speci�cations of the RBC model (available from the

authors upon request) do not seem to produce a negative low frequency co-movement between productivity and

hours and also result in smaller discrepancies between the estimated impulse response functions from the levels and

di¤erenced speci�cations.
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4 Discussion of Results

The analytical and numerical results presented above clearly suggest that some seemingly innocuous

transformations of the data can lead to vastly (qualitatively and quantitatively) di¤erent policy

recommendations. The main objective of this paper is to illustrate and identify the source of

these di¤erences. At the same time, several interesting observations and remarks emerge from our

analysis that highlight some potential pitfalls in empirical work with structural dynamic models,

when using highly persistent variables in conjunction with long-run identifying restrictions.

First, it is common practice in macroeconomics to remove low frequency components by applying

the HP �lter when focusing on business cycle frequencies. For example, Fernald (2007) argues that

the low frequency component is not important for business cycle analysis. The e¤ect of technology

shocks on hours worked is typically evaluated at business cycle frequency and it is reasonable

to assume that the removal of low frequency components will not a¤ect the conclusions. We

agree with this position, provided that the structural shocks are identi�ed using short- or medium-

run restrictions. Since most of the empirical research uses the long-run identifying scheme, our

results tend to suggest that the low frequency component a¤ects directly the long-run restrictions,

which in turn are used for identifying the business cycle. The low frequency component contains

long-run information that, while not directly relevant at business cycle frequencies, a¤ects in a

fundamental way the long-run restrictions. Therefore, omitting or explicitly removing this can

result in misspeci�cation of the long-run restriction and hence the business cycle component that

is of primary interest to the analysis. In contrast, the low frequency component does not seem to

matter for the short-run restrictions and the transformations applied to the data do not a¤ect the

impulse responses that they identify, as illustrated in our simulation section.

Although the analogy is not exact, the removal of low frequency components bears some simi-

larities to ignoring the long-run information contained in the error-correction term in cointegrated

models. The cointegration information does not directly a¤ect the business cycle analysis but is
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essential to the long-run equilibrium. If we use short-run restrictions, the cointegration information

can be left out without serious consequences. If the data are subjected to di¤erencing (�ltering)

prior to the analysis, the long-run information contained in the cointegrating relationship will be

lost and the long-run restriction will be misspeci�ed, which in turn will give rise to misleading

results.

Second, it is well known that a highly persistent linear process often exhibits dynamics that are

observationally equivalent to dynamics generated by a long memory, structural break or regime-

switching process. Therefore, it is di¢ cult to statistically distinguish between these processes in

�nite samples and commit to a particular speci�cation. In our context, it is hard to determine if

the low frequency component (for example, the U shape in hours worked) and co-movement are

spurious or not. Importantly, our results indicate that the cost of falsely removing the low frequency

component is larger than the cost of falsely keeping it.

Finally, pre-testing procedures that are used to determine which speci�cation is more appropri-

ate perform poorly, especially when the data are highly persistent. Our analysis suggest that large

di¤erences in the IRFs arise even when the largest root is arbitrarily close to one, in which case

the pre-testing procedure selects the di¤erenced speci�cation with probability approaching one.

Put another way, we �nd that, when identi�ed by LR restrictions, the IRFs from the di¤erence

speci�cation are not robust to small deviations of the largest root from unity, even when those

deviations are too small to be empirically detected.

5 Conclusion

This paper analyzes the source of the con�icting evidence on the e¤ect of technology shocks on

hours worked reported in several recent empirical studies. Chari, Kehoe and McGrattan (2008)

and Ravenna (2007) point out that structural VARs may su¤er from a lag truncation bias when the

true model has an in�nite lag order, as implied by standard real business cycle models. Likewise,
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other studies have shown that very di¤erent conclusions emerge from structural VARs depending

on whether hours worked is treated as a stationary (Christiano, Eichenbaum and Vigfusson 2003,

2006) or nonstationary (Gali, 1999; Francis and Ramey, 2005) variable. While we con�rm that both

the uncertainty regarding the persistence of hours worked and the bias due to lag truncation play an

important role in this debate, we argue that the large quantitative and qualitative di¤erences in the

IRFs documented in the literature can only arise in the presence of a low frequency co-movement

between productivity growth and hours worked. This low frequency co-movement drives a wedge

between the IRF estimates of the levels and di¤erenced VAR speci�cations, even when the largest

root of hours worked is arbitrarily close to one. This implies that pre-testing for a unit root in

hours worked may result in highly misleading IRF inference in the region in which the unit root

tests have di¢ culties rejecting the null hypothesis.

In so much as both studies point to the importance of a low frequency co-movement, our

results can also be viewed as supportive of Fernald (2007), who suggests an explanation based

on a common high-low-high pattern in both productivity growth and hours per person. On the

other hand, while Fernald (2007) interprets this co-movement as resulting coincidentally from a

similar, but unrelated, sequence of breaks in both series, we �nd that it is virtually impossible to

generate the observed di¤erences in impulse response functions without the inclusion of a genuine

low frequency co-movement in the true data generating process. This leads us to a substantially

di¤erent interpretation of the con�icting conclusions from the di¤erenced and levels speci�cations.

In Fernald�s (2007) framework, the levels speci�cation is misguided, since its long-run identi�cation

scheme incorrectly relies on misleading information from a spurious low-frequency co-movement.

By contrast, in our framework, it is the di¤erence speci�cation which is biased, since its long-run

identi�cation scheme incorrectly ignores the genuine information contained in a true low-frequency

co-movement.

While the levels VAR appears to provide a more reliable framework for analysis in this setup,
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it may also produce biased and highly variable IRF estimates, especially when the root in hours

worked is close or equal to one. Imposing additional restrictions on the model (see, for exam-

ple, Gospodinov, 2008) can lead to improved inference for the structural parameters and impulse

responses. More generally, our results underline and help to explain the potential sensitivity of long-

run identifying schemes to uncertainty regarding low frequency dynamics, even when identifying

business cycle frequency characteristics.
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Figure 1. Response of hours worked to a 1% positive technology shock, U.S. data 1948Q2 -

2005Q3. Top graph: hours worked in levels; Bottom graph: hours worked in �rst di¤erences.
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Figure 2. Detrended labour productivity and demeaned hours worked, U.S. data 1948Q2 - 2005Q3.
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Figure 3. HP trends of labour productivity growth (top graph) and hours worked (bottom graph),

U.S. data 1948Q2 - 2005Q3.
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Figure 4. Impulse response functions computed form the levels (true) and di¤erenced speci�ca-

tions.
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Figure 5. � = 0:95;  = �0:8; � = 0:04: Solid line: true IRF; long dashes: median Monte Carlo

IRF estimate; short dashes: 95% Monte Carlo con�dence bands.
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Figure 6. � = 0:97;  = �0:5; � = 0:015: Solid line: true IRF; long dashes: median Monte Carlo

IRF estimate; short dashes: 95% Monte Carlo con�dence bands.
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Figure 7. � = 1; � = 0: Solid line: true IRF; long dashes: median Monte Carlo IRF estimate;

short dashes: 95% Monte Carlo con�dence bands.
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Figure 8. � = 0:95;  = 0, � = 0: Solid line: true IRF; long dashes: median Monte Carlo IRF

estimate; short dashes: 95% Monte Carlo con�dence bands.
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Figure 9. � = 0:95;  = f�0:5;�0:2; 0; 0:2; 0:5g : Solid line: true IRF; short dashes: median Monte

Carlo IRF estimate.
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Figure 10. � = 0:90;  = f�0:5;�0:2; 0; 0:2; 0:5g : Solid line: true IRF; short dashes: median

Monte Carlo IRF estimate.
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Figure 11. Short-run (Cholesky) identi�cation scheme with � = 0:97;  = �0:5; � = 0:015 and

covariance between the shocks of 0.1. Solid line: true IRF; long dashes: median Monte Carlo IRF

estimate; short dashes: 95% Monte Carlo con�dence bands.
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Figure 12. Detrended labour productivity and demeaned hours worked; simulated data from the

CKM speci�cation of the RBC model (Christiano, Eichenbaum and Vigfusson, 2006).
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Figure 13. HP trends of labour productivity growth (top graph) and hours worked (bottom

graph), simulated data from the CKM speci�cation of the RBC model (Christiano, Eichenbaum

and Vigfusson, 2006).
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Figure 14. Monte Carlo IRF estimates and 95% con�dence bands from the levels (top graph),

di¤erenced (middle graph) and pre-test (bottom graph) VAR speci�cations on simulated data (1,000

samples of length 180) from the CKM speci�cation of the RBC model (Christiano, Eichenbaum

and Vigfusson, 2006).
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