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Abstract

We propose the concept of level r consensus as a useful property of a preference

profile which considerably enhances the stability of social choice. This concept involves

a weakening of unanimity, the most extreme form of consensus. It is shown that if a

preference profile exhibits level r consensus around a given preference relation, there

exists a Condorcet winner. In addition, if the number of individuals is odd the majority

relation coincides with the preference relation around which there is such consensus and

consequently it is transitive. Furthermore, if the level of consensus is sufficiently strong,

the Condorcet winner is chosen by all the scoring rules. Level r consensus therefore

ensures the Condorcet consistency of all scoring rules, thus eliminating the tension

between decision rules inspired by ranking-based utilitarianism and the majority rule.
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1 Introduction

A major goal of social choice theory is to search for reasonable ways of aggregating individ-

ual preferences into a social preference relation. Arrow’s [1] impossibility theorem brought

a serious challenge to such aspiration by showing that any social welfare function defined

over an unrestricted domain, that satisfies the unanimity and the independence of irrele-

vant alternatives axioms must be dictatorial. Unanimity is a weak property requiring that

if all individuals share a particular preference relation, this common relation must be the

social preference relation. Unanimity is such a weak and sensible requirement that its vi-

olation would render any preference aggregation rule unacceptable. As a result, the search

for reasonable preference aggregation rules has focused on domain restrictions and on the

weakening of the independence axiom.

Among the many attempts to find reasonable aggregation rules, one can identify four ap-

proaches which can be considered as unanimity geared. The best-known approach is based on

a unanimity idea that is not about a particular preference relation, but about the pattern of

preferences. Alternative forms of domain restrictions, notably single-peakedness of preference

relations, impose this type of weakened, implicit unanimity. In the latter case for instance,

given any three alternatives, there is a unanimous agreement that a particular alternative is

never the worst alternative among the three (see Sen [24]). The second approach looks for a

unanimously supported metric-based compromise. It postulates an agreed-upon metric on

the set of preference relations and, given a preference profile, seeks a social preference rela-

tion that is closest to it, namely one that minimizes the sum of its distances to the individual

preference relations in the profile. Baigent [3], Kemeny [10], Nitzan [15], and Nurmi [17, 18]

adopt this approach. The third approach also applies a plausible metric on the set of all

possible preference profiles, but seeks a social choice rule that yields an outcome which is

as close as possible to be unanimously preferred. In other words, the distance between the

given preference profile and a profile where the chosen alternative is unanimously supported

is minimized. See Campbell and Nitzan [4], Farkas and Nitzan [5], Lerer and Nitzan [12],

Nitzan [14], Nitzan [16] for instances of this approach. Finally, the fourth approach is a
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probabilistic one. It postulates the existence of a unanimously supported true social prefer-

ence relation and assumes that the preference profile is a noisy sample of it. Specifically, it

assumes that the probability that any individual’s ranking of any two alternatives coincides

with the true ranking is higher than 1/2, and looks for a maximum-likelihood estimator that

delivers a preference relation that maximizes the probability of having induced the realized

preference profile. See Young [25] for a representative of this approach.

In the present paper we propose a new unanimity-inspired approach which is based on

strengthening the unanimity requirement. The reason why the unanimity axiom is very

weak is that it “bites” only in those rare instances of extreme preference homogeneity where

individual preference relations are identical. In this paper, we replace the notion of full

homogeneity of preferences by a new and weaker one which we refer to as consensus. Ac-

cording to this notion, a preference profile may exhibit consensus around some preference

relation even if not all individuals share the same preference and even if some of them have

opposite preferences. In order for consensus around some preference relation ≻0 to exist it is

necessary that whenever a subset of preferences are more similar to ≻0 than another disjoint

subset of the same size, there are more individuals with preferences in the former than in the

latter.1 Clearly, looking for consensus around some preference relation is more challenging

when preferences are heterogeneous than in the extreme event of unanimous preferences.

While there is a natural consensus around a unanimous preference relation, there may still

be some kind of consensus around some preference relation, even in cases of heterogeneous

preferences. The proposed approach looks for preference aggregation rules that select a social

preference relation around which such consensus exists.

Several levels of consensus are defined, one more stringent than the other. Consensus of

level 1 is more difficult to achieve than consensus of level 2, and so on, and all of them are

achieved when there is unanimity about the preference relation. The least demanding level

of consensus is level K!/2, where K is the number of alternatives over which preferences

1Several other attempts have been made to formalize and measure consensus. See, for example, Garćıa-

Lapresta and Pérez-Román [9].
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are defined. The definition of consensus rests on a given metric on the set of preferences

and thus different metrics induce different notions of consensus. Our results suggest that

when applying the inversion metric, the existence of consensus of level r, for some r ≤ K!/2,

considerably enhances the stability of social choice. Specifically, it implies the existence of

a Condorcet winner and, if the number of individuals is odd, the transitivity of the induced

majority relation, which turns out to be the one around which consensus exists. Furthermore,

the existence of a sufficiently strong level of consensus, namely for r ≤ (K − 1)!, ensures the

selection of the same Condorcet winning alternative by the majority rule and by all scoring

rules. In that sense, it eliminates the tension between the majority rule and decision rules

inspired by ranking-based utilitarianism.

2 Definitions

Let A = {a1, . . . , aK} be a set of K > 2 alternatives and let N = {1, . . . , n} be a set of

individuals. Also, let R be the set of binary relations on A, and P be the subset of complete,

transitive and antisymmetric binary relations on A. We will refer to the elements of P as

preference relations or simply as preferences. A preference profile or simply a profile is a list

π = (≻1, . . . ,≻n) of preference relations on A such that for each i ∈ N , ≻i is the preference

relation of individual i. We denote by Pn the set of preference profiles.

Let π = (≻1, . . . ,≻n) be a preference profile. For each preference relation ≻∈ P ,

µπ(≻) = |{i ∈ N :≻i=≻}| is the number of individuals whose preference relation is ≻. More

generally, for any subset C ⊆ P of preference relations, µπ(C) = |{i ∈ N :≻i∈ C}| is the

number of individuals whose preference relations are in C.

An aggregation rule is a function f : Pn → R that assigns to each preference profile a

social binary relation. An aggregation rule is a Social Welfare Function if its range is the

subset of transitive binary relations on A.

A well-known social welfare function is the Borda function. In order to define it, consider a

preference profile π = (≻1, . . . ,≻n). For each individual i = 1, . . . , n and for each alternative
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a ∈ A, let Si(a) = |{a′ ∈ A : a ≻i a
′}| be the number of alternatives that are ranked below

a according to i’s preferences. The Borda function associates with π the binary relation Bπ

given by

aBπb ⇔
n∑

i=1

Si(a) ≥
n∑

i=1

Si(b).

An important example of an aggregation rule is the Majority rule, which we define next.

Let a, a′ ∈ A be two alternatives. Denote by C(a → a′) = {≻∈ P : a ≻ a′} the set

of preference relations according to which a is strictly preferred to a′. The majority rule

assigns to each preference profile π ∈ P the binary relation Mπ on A defined by

aMπa
′ ⇔ µπ(C(a → a′)) ≥ µπ(C(a′ → a)).

It is well known that the majority rule does not deliver a transitive binary relation for

each preference profile, and thus it is not a social welfare function. Moreover, the binary

relation that the majority rule assigns to a profile may not even have a maximal element.

An alternative a ∈ A is a Condorcet winner for a profile π, if it is a maximal element of Mπ.

Namely, if aMπb for every alternative b ∈ A.

Let d : P2 → IR be a metric on P . That is, for every ≻,≻′,≻′′∈ P , d satisfies

• d(≻,≻′) ≥ 0

• d(≻,≻′) = 0 ⇔ ≻=≻′

• d(≻,≻′) = d(≻′,≻)

• d(≻,≻′′) ≤ d(≻,≻′) + d(≻′,≻′′)

For most of our results we will use the inversion metric, which is defined as follows:2

d(≻,≻′) is the minimum number of pairwise adjacent transpositions needed to obtain ≻′

from ≻. Alternatively, d(≻,≻′) is the number of pairs of alternatives in A that are ranked

differently by ≻ and ≻′. Formally, the inversion metric is defined by

d(≻,≻′) =
|(≻ \ ≻′) ∪ (≻′ \ ≻)|

2
.

2See Kemeny and Snell [11] for a characterization of this metric.
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A metric defined on P allows us to determine which one of any two preference relations is

closer to a third one. We are interested in extending this kind of comparison to equal-sized

sets of preferences as well. The following definition identifies circumstances where a given

set of preferences C ⊆ P is closer to ≻0 than an alternative set C ′ ⊆ P .

Definition 1 Let C and C ′ be two disjoint nonempty subsets of P with the same cardinality,

and let ≻0∈ P be a preference relation on A. We say that C is at least as close to ≻0 as C ′,

denoted by C ≥≻0
C ′, if there is a one-to-one function φ : C → C ′ such that for all ≻∈ C,

d(≻,≻0) ≤ d(φ(≻),≻0). We also say that C is closer than C ′ to ≻0, denoted by C >≻0
C ′,

if there is a one to one function φ : C → C ′ such that for all ≻∈ C, d(≻,≻0) ≤ d(φ(≻),≻0),

with strict inequality for at least one ≻∈ C.

In other words, C is at least as close as C ′ to some given preference relation ≻0∈ P if

each preference relation ≻′ in C ′ can be paired with a preference relation ≻ in C that is at

least as close to ≻0, according to d, as ≻′ is. C is closer than C ′ to ≻0 if it is at least as

close to it as C ′ and it is not the case that C ′ is at least as close to ≻0 as C.

An alternative way to check whether C ≥≻0
C ′ is as follows. Let d(C,≻0) be the list of

distances (d(≻,≻0))≻∈C arranged in a non-decreasing order. Similarly, let d(C ′,≻0) be the

list (d(≻,≻0))≻∈C′ also arranged in a non-decreasing order. Then C ≥≻0
C ′ ⇔ d(C,≻0) ≤

d(C ′,≻0).

Example 1 Let the set of alternatives be A = {a, b, c}. The set P contains six preference

relations, given by

≻1 = a, b, c ≻2 = a, c, b

≻3 = b, a, c ≻4 = c, a, b

≻5 = b, c, a ≻6 = c, b, a

There are ten ways to partition P into two subsets with three preference relations each. One

such partition is C1 = {≻1,≻2,≻3} and C1 = {≻4,≻5,≻6}. Consider the preference relation
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≻1. It can be checked that the distances of each preference relation in P to ≻1, according

to the inversion metric, are given by

d(≻1,≻1) = 0

d(≻2,≻1) = d(≻3,≻1) = 1

d(≻4,≻1) = d(≻5,≻1) = 2

d(≻6,≻1) = 3

It can also be checked that C1 >≻1
C1. Indeed, d(≻1,≻1) < d(≻4,≻1), d(≻2,≻1) < d(≻5,≻1)

and d(≻3,≻1) < d(≻6,≻1). Alternatively, d(C1,≻1) = (0, 1, 1) and d(C1,≻1) = (2, 2, 3).

Therefore d(C1,≻1)< d(C1,≻1), which implies that C1 >≻1
C1.

Note that any two disjoint, equal-sized subsets of preference relations contain at most

K!/2 elements each. Taking this into account and based on the “at least as close to ≻0”

relation defined above, we can now define the concept of consensus.

Definition 2 Let r ∈ {1, 2, . . . K!/2}, and let ≻0∈ P . A preference profile π ∈ Pn exhibits

consensus of level r around ≻0 if

1. for all disjoint subsets C,C ′ of P with cardinality r, C ≥≻0
C ′ ⇒ µπ(C) ≥ µπ(C

′)

2. there are disjoint subsets C,C ′ of P with cardinality r, such that C >≻0
C ′ and

µπ(C) > µπ(C
′).

In words, given 1 ≤ r ≤ K!/2, a preference profile π exhibits consensus of level r around

some preference relation ≻0, if whenever a subset C of r preference relations is at least as

close to ≻0 as another disjoint subset C ′ of r preference relations, the number of preference

relations in π that belong to C is at least as large as the number of preference relations in π

that belong to C ′, and in particular there exist two such subsets such that C is closer to ≻0

than C ′ and the number of preferences in C is greater than the number of preferences in C ′.
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Example 2 Consider the set P of preference relations from Example 1. There are ten

different ways to partition P into two subsets, C,C, of cardinality 3. We have already seen

that

C1 = {≻1,≻2,≻3} >≻1
{≻4,≻5,≻6} = C1.

Similarly, it can be checked that

C2 = {≻1,≻2,≻4} >≻1
{≻3,≻5,≻6} = C2

C3 = {≻1,≻3,≻4} >≻1
{≻2,≻5,≻6} = C3

C4 = {≻1,≻2,≻5} >≻1
{≻3,≻4,≻6} = C4

C5 = {≻1,≻3,≻5} >≻1
{≻2,≻4,≻6} = C5

Also, for the remaining five partitions {C,C}, we have that neither C ≥≻1
C nor C ≥≻1

C.

Let π be a preference profile containing 3 copies of ≻1, one copy of ≻3, one copy of ≻4 and

2 copies of ≻5. It can be checked that µπ(Ci) > µπ(Ci) for i = 1, 2, 3, 4, 5. Consequently, we

conclude that the profile π exhibits consensus of level 3 around ≻1. On the other hand, π

does not exhibit consensus of level 2 around ≻1. To see this, note that although {≻2,≻4}

is closer than {≻5,≻6} to ≻1 (indeed, d(≻2,≻1) = 1 < 2 = d(≻5,≻1) and d(≻4,≻1) = 2 <

3 = d(≻6,≻1)), we have that µπ({≻2,≻4}) = 1 < 2 = µπ({≻5,≻6}).

To clarify the concept of consensus, let’s consider the case of r = 1. In this case, a

preference profile π exhibits consensus of level 1 around some preference relation ≻0, if for

any two preference relations ≻ and ≻′, whenever ≻ is at least as close as ≻′ to ≻0, there are

at least as many individuals in the profile whose preferences are given by ≻ than those whose

preferences are given by ≻′. That is, no matter which two preferences are chosen, there are

at least as many individuals with the one that is closer to ≻0 than those with the other

one. Note that if there is unanimity of preferences, there is also consensus of level 1 around

the unanimous preference relation. In general, π exhibits consensus of level r around some

preference relation ≻0, if no matter which two disjoint subsets of r preferences we choose,
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if one of them is at least as close to ≻0 as the other, then π also contains at least as many

individuals whose preferences are in this subset than in the other one.

In the next section we will show that consensus of level r implies consensus of level r+1.

Therefore, consensus of level 1 is the most difficult to achieve. Nevertheless, there are known

models that induce consensus of level 1. For instance Mallows’s [13] φ model is one of them.

According to this model, there is a “true” social preference relation ≻0 and each individual’s

preference is an unbiased estimate of it. Under certain assumptions about the individual

preference generation, the probability that a given individual’s preference relation is ≻∈ P

is given by P (≻) = Ce−λd(≻,≻0) for some λ > 0 and where d is the inversion metric and C

is a normalizing constant. If the preference profile is distributed according to P , namely

µπ/n = P , then it exhibits consensus of level 1 around ≻0. Indeed, for any ≻,≻′∈ P ,

d(≻,≻0) ≤ d(≻′,≻0) ⇒ P (≻) ≥ P (≻′) ⇒ µπ(≻) ≥ µπ(≻
′). To put it another way, if

individuals’ preferences are distributed according to Mallows’s model, the profile will exhibit

consensus of level 1 around some preference relation.

3 Consensus and Majority Rule

In this section we show some striking implications of the existence of consensus around some

preference relation. But before turning to this task, we first show that there is a hierarchy

in the levels of consensus: they are ordered by strength, the strongest being consensus of

level 1 and the weakest consensus of level K!/2. Example 2 shows that this hierarchy may

be strict.

Proposition 1 Let r be an integer between 1 and K!/2− 1. If π ∈ Pn exhibits consensus

of level r around ≻0, then it exhibits consensus of level r + 1 as well around ≻0.

Proof : Assume π ∈ Pn exhibits consensus of level r around ≻0. We need to show that

conditions 1, and 2 in Definition 2 are satisfied.
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1. Let C = {≻1, . . . ,≻r+1} and C ′ = {≻′

1, . . . ,≻
′

r+1} be two disjoint subsets of P with

cardinality r + 1 such that C ≥≻0
C ′. Then, there is a one-to-one function ϕ : C → C ′ such

that d(≻i,≻0) ≤ d(ϕ(≻i),≻0) for all i = 1, . . . , r + 1. Assume, without loss of generality,

that ϕ(≻i) =≻′

i for all i = 1, . . . , r + 1. We need to show that µπ(C) ≥ µπ(C
′).

Assume by contradiction that

µπ(C) < µπ(C
′) (1)

Then, there must be two preference relations ≻i∈ C and ≻′

i∈ C ′ such that µπ(≻i) < µπ(≻
′

i).

Assume without loss of generality that these two preferences are ≻r+1 and ≻′

r+1. Namely

that

µπ(≻r+1) < µπ(≻
′

r+1). (2)

Assume also without loss of generality that

µπ(≻1)− µπ(≻
′

1) ≥ µπ(≻i)− µπ(≻
′

i) ∀i = 1, . . . , r. (3)

Consider the subsets C−1 = {≻2, . . . ,≻r+1} and C ′

−1 = {≻′

2, . . . ,≻
′

r+1}. Since C ∩ C ′ = ∅,

and since C is at least as close as C ′ to ≻0, we have that C−1 ∩C ′

−1 = ∅, and C−1 is at least

as close as C ′

−1 to ≻0 as well. Since π exhibits consensus of order r around ≻0, we must have

µπ(C−1) ≥ µπ(C
′

−1). (4)

Since µπ(C−1) =
∑r+1

k=2 µπ(≻k) and µπ(C
′

−1) =
∑r+1

k=2 µπ(≻
′

k), there must be some k =

2, . . . , r + 1 such that µπ(≻k) ≥ µπ(≻
′

k). Further, given (2) this k cannot be r + 1. As a

result, using (3)

µπ(≻1)− µπ(≻
′

1) ≥ 0. (5)

But then, using (4) and (5)

µπ(C) = µπ(C−1) + µπ(≻1) ≥ µπ(C
′

−1) + µπ(≻
′

1) = µπ(C
′)

which contradicts (1).

2. We need to show that there are two disjoint subsets D,D′ ∈ P with cardinality

r + 1, such that D >≻0
D′ and µπ(D) > µπ(D

′). Since π exhibits consensus of level r
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around ≻0, there are two disjoint subsets C = {≻1, . . . ,≻r} and C ′ = {≻′

1, . . . ,≻
′

r} such

that C >≻0
C ′ and µπ(C) > µπ(C

′). In particular, there is a one-to-one function ϕ : C → C ′

such that d(≻i,≻0) ≤ d(ϕ(≻i),≻0) for i = 1, . . . , r, with strict inequality for at least one

i ∈ {1, . . . , r}. Without loss of generality assume that ϕ(≻i) =≻′

i. Let ≻r+1 and ≻′

r+1

two preference relations not in C nor in C ′, and assume without loss of generality that

d(≻r+1,≻0) ≤ d(≻′

r+1,≻0). We will show that D = C ∪ {≻r+1} and D′ = C ′ ∪ {≻′

r+1} are

the two subsets we are looking for. By construction, D >≻0
D′. Therefore it remains to be

shown that µπ(D) > µπ(D
′). Assume by contradiction that

r+1∑

i=1

µπ(≻i) ≤
r+1∑

i=1

µπ(≻
′

i). (6)

Note that for j = 1, . . . , r, (D\{≻j}) ≥≻0
(D′ \{≻′

j}). Therefore, since π exhibits consensus

of level r around ≻0,

r+1∑

i=1

i 6=j

µπ(≻i) ≥
r+1∑

i=1

i 6=j

µπ(≻
′

i) j = 1, . . . , r. (7)

Consequently, it follows from (6) and (7) that

µπ(≻j) ≤ µπ(≻
′

j) j = 1, . . . r, (8)

which implies that
r∑

i=1

µπ(≻i) ≤
r∑

i=1

µπ(≻
′

i).

This contradicts the fact that µπ(C) > µπ(C
′). Therefore, we conclude that µπ(D) > µπ(D

′)

and the proof is complete. ✷

Proposition 1 implies that if a profile exhibits consensus of any level around a given

preference relation then it also exhibits consensus of level K!/2 around that relation. For

that reason, whenever a profile exhibits consensus of level K!/2 around a preference relation

we will simply say that it exhibits consensus around it.

We now turn to the implications of consensus on the outcomes of the majority rule. The

next theorem shows that despite not being a social welfare function, if a profile with an
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odd number of agents exhibits any possible level of consensus with respect to the inversion

metric, the majority rule associates with it a transitive binary relation. In fact, in that case

the preference relation associated with majority rule is the only one around which there is

consensus.

Theorem 1 Let ≻0∈ P be a preference relation and let a1 be the alternative that is ranked

first according to ≻0. Let π ∈ Pn be a preference profile that exhibits consensus of level

r ∈ {1, . . . , K!/2} around ≻0 with respect to the inversion metric. Then, a1 is a Condorcet

winner. Furthermore, if n is odd ≻0 is the unique preference relation in P around which

there is consensus, and Mπ, the binary relation assigned by the majority rule to π, coincides

with ≻0.

Proof : Let π ∈ Pn be a preference profile that exhibits consensus of level r ∈ {1, . . . , K!/2}

around ≻0 with respect to the inversion metric. By Proposition 1, π exhibits consensus of

level K!/2. Let a, b ∈ A be two alternatives. We will show first that a ≻0 b ⇒ aMπb. This

will immediately imply that a1 is a Condorcet winner. So assume that a ≻0 b. Partition P

into the two sets C(a → b) and C(b → a). These sets contain K!/2 elements each. Consider

the one-to-one function ϕ : C(a → b) → C(b → a) defined as follows: for each ≻∈ C(a → b),

let ϕ(≻) ∈ P be the preference relation that is obtained from ≻ by switching a and b in the

ranking. Consequently, since a ≻0 b, d(≻,≻0) < d(φ(≻),≻0) for all ≻∈ C(a → b), where d

is the inversion metric. In other words, according to the inversion metric, C(a → b) is closer

to ≻0 than C(b → a) is. Since there is consensus of level K!/2 around ≻0, this implies that

µπ(C(a → b)) ≥ µπ(C(b → a)), which means that aMπb. This shows that the alternative

that is ranked first according to ≻0 is a Condorcet winner. When n is odd and a 6= b, aMπb

means that µπ(C(a → b)) > µπ(C(b → a)). It follows that a ≻0 b since otherwise, by the

previous argument we would have that µπ(C(b → a)) ≥ µπ(C(a → b)). This shows that

when n is odd, ≻0= Mπ and, consequently, that ≻0 is the only preference relation around

which there is consensus. For if π exhibited consensus around ≻1 as well, we would have

≻1= Mπ =≻0. ✷
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Theorem 1 shows that, under the inversion metric, if a profile with an odd number of

individuals exhibits consensus of any level around ≻0, then ≻0 coincides with the binary

relation assigned to π by the majority rule. In this sense we can say that majority rule is

rationalizable by consensus.

It is clear that not every preference profile exhibits consensus around some preference

relation. For instance, a profile containing one copy of each of the K! preference relations

on A does not exhibit consensus around any of them. On the other hand, the proof of

Theorem 1 shows that if there is consensus around ≻0, then a ≻0 b implies that aMπb. This

suggests a way to look for preference relations around which there is consensus. One should

check preference relations ≻ that are close to the binary relation associated with majority

rule in the sense that a ≻ b implies that aMπb.

The next example shows that if n is even, there can be consensus around more than one

preference relation.

Example 3 Let P be again the set of preference relations from Example 1 and consider the

preference profile π = (≻1,≻2). It can be checked that π exhibits consensus of level 3 around

both ≻1 and ≻2. Indeed, every partition {C,C ′} of P into two sets of cardinality 3 such

that C ≥≻1
C ′ satisfies that ≻1∈ C, and consequently µπ(C) ≥ 1 ≥ µπ(C

′). Furthermore

there are partitions {C,C ′} such that µπ(C) = 2 > 0 = µπ(C
′). One such partition is

{{≻1,≻2,≻3}, {≻4,≻5,≻6}}. This shows that π exhibits consensus of level 3 around ≻1. A

similar argument shows that it also exhibits consensus of level 3 around ≻2.

The next example shows that the fact that a preference profile π exhibits consensus of

level K!/2 around some preference relation does not imply that the Borda function will

assign this preference relation to π.

Example 4 We have seen in Example 2 that profile π exhibits consensus of level 3 around

≻1. Consistent with Theorem 1, the majority rule applied to π yields ≻1. In contrast, it

can be verified that the preference relation assigned by the Borda function is ≻3, whose

top-ranked alternative is not even a Condorcet winner.
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4 Consensus and Scoring Rules

Sometimes one is not interested in the social preference relation but only in its maximal

elements. In that case, instead of focusing on social welfare functions one should concentrate

on social choice rules. A social choice rule is a function g : Pn → 2A that assigns to each

preference profile a set of chosen alternatives.

A special class of social choice rules consists of scoring rules, also known as positional

voting rules. Each scoring rule is characterized by a list S = {S1, S2, · · · , SK} of K non-

negative scores with S1 ≥ S2 ≥ · · · ≥ SK and S1 > SK . Given a preference profile π = (≻1

, . . . ,≻n), each individual i = 1, . . . , n assigns Sk points, for k = 1, . . . , K, to the alternative

that is ranked k-th in his preference relation, ≻i. That is, each agent assigns S1 points

to his most preferred alternative, S2 points to the second best alternative and so on. The

scoring rule associated with the sores in S, denoted by VS, chooses the alternatives with the

maximum total score.

Many social choice rules are instances of scoring rules. For example, the plurality rule

is the scoring rule associated with the scores (1, 0, . . . , 0). The inverse plurality rule is the

scoring rule associated with (1, . . . , 1, 0). More generally, for 1 ≤ t ≤ K − 1, the t-approval

voting method, denoted Vt, is the scoring rule associated with St = (1, . . . , 1
︸ ︷︷ ︸

t

, 0, . . . , 0
︸ ︷︷ ︸

K−t

). Lastly,

the Borda social choice rule is the scoring rule associated with SB = (K − 1, K − 2, . . . , 0).

The t approval voting rules, for t = 1, . . . , K − 1, play a central role in the theory of

scoring rules since any list of scores S = {S1, S2, · · · , SK} can be written as a non-negative

linear combination S =
∑K−1

t=1 αtSt of the K − 1 approval voting scores. Based on this fact,

Saari [21] showed that if all approval voting methods choose alternative a, then this same

alternative is chosen by all the scoring methods. Formally, if a ∈ Vt(π) for t = 1, . . . , K − 1,

then a ∈ VS(π) for all scores S.

The next theorem establishes that the existence of r consensus, for r ≤ (K − 1)!, guar-

antees the invariance of the chosen alternative across all scoring rules.

Theorem 2 Suppose that r ≤ (K − 1)!. Also, let π ∈ Pn be a preference profile, ≻0∈ P
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a preference relation, and a ∈ A the alternative that is ranked first according to ≻0. If π

exhibits consensus of level r around ≻0 according to the inversion metric, then a ∈ VS for

all scoring rules VS.

Proof : Let S be a list of scores. Given that S can be written as a non-negative linear

combination of the K − 1 t-approval voting scores St, it is enough to show that a ∈ Vt(π)

for t = 1, . . . , K − 1.

Fix t ∈ {1, . . . , K−1}, and let b ∈ A\{a}. Denote by C(a
t
→ b) the set of preference rela-

tions in P such that a ranks t-th or above, and b ranks strictly below the t-th place. Similarly,

denote by C(b
t
→ a) the set of preference relations in P such that b ranks t-th or above, and a

ranks strictly below the t-th place. Since b is a fixed but otherwise arbitrary alternative differ-

ent from a, in order to show that a ∈ Vt(π) we must show that µπ(C(a
t
→ b)) ≥ µπ(C(b

t
→ a)).

By definition, C(a
t
→ b) ∩ C(b

t
→ a) = ∅. Furthermore, these two sets have equal cardinality,

which we denote by c. Therefore, in order to show that µπ(C(a
t
→ b)) ≥ µπ(C(b

t
→ a)) it is

enough to show that π exhibits consensus of level c around ≻0 and that C(a
t
→ b) is closer

than C(b
t
→ a) to ≻0.

Note that there are
(
K−2
t−1

)
ways to partition the K alternatives into two subsets, one

containing t alternatives, one being a, and the other containing K − t alternatives, one of

them being b. Therefore the cardinality of C(a
t
→ b) (and similarly of C(b

t
→ a)) is

c =

(
K − 2

t− 1

)

t!(K − t)!

=
(K − 2)!

(K − t− 1)!(t− 1)!
t!(K − t)!

= (K − 1)!
t(K − t)

K − 1

But since t(K−t)
K−1

≥ 1 if and only if (t− 1)(K − 1− t) ≥ 0 and since 1 ≤ t ≤ K − 1 we have

that t(K−t)
K−1

≥ 1. Therefore c ≥ (K − 1)! ≥ r. Consequently, since π exhibits consensus of

level r around ≻0, Proposition 1 implies that π exhibits consensus of level c around ≻0 as

well.
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In order to show that C(a
t
→ b) >≻0

C(b
t
→ a), let Mi(a

t
→ b), for each i = 1, . . . , t, be the

set of preference relations such that alternative a is ranked i-th and alternative b is ranked

strictly below the t-th place. Similarly, let Mi(b
t
→ a) be the set of preference relations such

that alternative b is ranked ith and alternative a is ranked strictly below the t-th place. Let

φ : Mi(a
t
→ b) → Mi(b

t
→ a) be the one-to-one function that maps each preference relation

≻∈ Mi(a
t
→ b) into the preference relation that is obtained from ≻ by switching alternatives

a and b in the preference ranking. Clearly, since a is ranked first in ≻0, we have that

d(≻,≻0) < d(φ(≻),≻0) for all ≻∈ Mi(a
t
→ b). Noting that C(a

t
→ b) = ∪t

i=1Mi(a
t
→ b) and

C(b
t
→ a) = ∪t

i=1Mi(b
t
→ a), we conclude that C(a

t
→ b) >≻0

C(b
t
→ a). ✷

For a given preference profile, different scoring rules may result in the selection of any

of the K alternatives (see, for instance, Fishburn [8], Saari [19, 20, 23]). It is also possible

that an alternative, and even a Condorcet winning alternative, will not be selected by any

scoring rule (see, Fishburn [6, 7] and Saari [22]). These findings are balanced by the results

of Baharad and Nitzan [2] and Saari [21] that specify necessary and sufficient conditions

for the selection of the same alternative by all scoring rules. Theorem 2 shows that level

r consensus is another sufficient condition for the selection of the same Condorcet winning

alternative by all scoring rules. We have seen in Example 4 that even if the majority rule

yields a transitive preference relation and even if there is consensus of level K!/2 around it,

a scoring rule may not select the Condorcet winner. The following result shows, however,

that level r consensus for r ≤ (K − 1)! is a sufficient condition for all scoring rules to be

Condorcet consistent.

Corollary 1 Let ≻0∈ P be a preference relation and a ∈ A the alternative that is ranked

highest according to ≻0. If π exhibits consensus of level r ≤ (K − 1)! around ≻0 according

to the inversion metric, then a is a Condorcet winner and it is chosen by all scoring rules.

Proof : By Theorem 2, a is chosen by all scoring rules. By Theorem 1, a is a Condorcet

winner. ✷
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5 Concluding Remarks

In this paper we have proposed the concept of level r consensus and showed that its existence

in its mildest form has significant implications. It ensures stability of one of the most

extensively studied aggregation rules, namely the simple majority rule. Specifically, we

show that under the inversion metric, when a preference profile with an odd number of

agents exhibits level r consensus around a given preference relation, this preference relation

is the one assigned by the majority rule to that profile which furthermore turns out to be

transitive. The corresponding social choice function therefore selects the Condorcet winning

alternative. Additionally, if the level of consensus is strong enough (r ≤ (K − 1)!), this

chosen alternative is also the choice of all scoring rules. In other words, not only does the

existence of r consensus ensure stability under simple majority, it also ensures the Condorcet

consistency of all scoring rules. That is, it eliminates the tension between the simple majority

rule and the scoring rules (in particular, the Borda rule). The existence of r consensus thus

simultaneously resolves two of the major problems in social choice theory.

The two unanimity geared metric approaches mentioned in the introduction, the ones

used in Farkas and Nitzan [5] and in Kemeny [10] respectively, are different from our level

r consensus approach. Whereas the latter is based on a new preference domain restriction,

the former two approaches do not impose any domain restriction; in fact one of their notable

advantages is that they can be applied to any given preference profile. Interestingly, the

simple majority rule is rationalized by the level r consensus approach, provided that one

applies the inversion metric. This is in contrast to the outcome obtained under the two

alternative metric approaches. Indeed, under the first one, for any given preference profile,

the application of the inversion metric results in the rationalization of the Borda rule, and

under the second one, the application of the inversion metric need not result in either the

simple majority rule nor the Borda rule. However, as mentioned above, if a preference profile

exhibits consensus of any level r, then there exists a Condorcet winner which is selected by

Kemeny’s rule (see Nurmi [17]), and if the consensus is sufficiently strong, the Borda rule is

also Condorcet consistent.
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[9] Garćıa-Lapresta, J. L., and Pérez-Román, D. Measuring consensus in weak

orders. In Consensual Processes. Springer, 2011, pp. 213–234.

[10] Kemeny, J. G. Mathematics without numbers. Daedalus 88, 4 (1959), 577–591.

[11] Kemeny, J. G., and Snell, J. L. Mathematical models in the social sciences, vol. 9.

Ginn Boston, 1962.

[12] Lerer, E., and Nitzan, S. Some general results on the metric rationalization for

social decision rules. Journal of Economic Theory 37, 1 (1985), 191–201.

18



[13] Mallows, C. L. Non-null ranking models. i. Biometrika (1957), 114–130.

[14] Nitzan, S. Some measures of closeness to unanimity and their implications. Theory

and Decision 13, 2 (1981), 129–138.

[15] Nitzan, S. More on the preservation of preference proximity and anonymous social

choice. The Quarterly Journal of Economics (1989), 187–190.

[16] Nitzan, S. Collective preference and choice. Cambridge University Press, 2009.

[17] Nurmi, H. Voting procedures under uncertainty. Springer, 2002.

[18] Nurmi, H. A comparison of some distance-based choice rules in ranking environments.

Theory and Decision 57, 1 (2004), 5–24.

[19] Saari, D. G. The ultimate of chaos resulting from weighted voting systems. Advances

in Applied Mathematics 5, 3 (1984), 286–308.

[20] Saari, D. G. A dictionary for voting paradoxes. Journal of Economic Theory 48, 2

(1989), 443–475.

[21] Saari, D. G. Explaining all three-alternative voting outcomes. Journal of Economic

Theory 87, 2 (1999), 313–355.

[22] Saari, D. G. Mathematical structure of voting paradoxes. Economic Theory 15, 1

(2000), 1–53.

[23] Saari, D. G. Chaotic elections!: A mathematician looks at voting. American Mathe-

matical Soc., 2001.

[24] Sen, A. Collective Choice and Social Welfare. Holden Day, 1970.

[25] Young, H. P. Condorcet’s theory of voting. American Political Science Review 82,

04 (1988), 1231–1244.

19


