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Abstract 
 
 

I propose a method of endogenous calibration of nonlinear stochastic equilibrium models, 

by taking advantage of spectral properties of economic data. Model parameters are 

determined by minimizing a distance metric specified in frequency domain. Several weight 

functions are discussed and their usefulness is assessed. Both univariate and multivariate 

settings are considered. Models' statistical testing strategies are discussed. 
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1. Introduction 

Non Linear-Quadratic (LQ) models are often used in studying optimal decision-

making under uncertainty, but they are hard to solve because the method of stochastic 

calculus of variation (Kushner, 1965a, 1965b) leads to nonlinear stochastic difference 

equations. A widely used solution method (Kydland and Prescott, 1982) replaces the non-

LQ model with its LQ approximation. The model is then calibrated and used to generate 

time series, which are compared to actual data. To calibrate, most studies “import” some 

parameters from other studies, while others are found by matching second moments of 

actual and simulated data. 

Parameter importation from other studies, however, can bias the results because 

their econometric identification relies on different population moment conditions. I, 

therefore, determine these parameters endogenously, by minimizing a distance metric 

specified in frequency domain. Macroeconomic time series exhibit a remarkably uniform 

and typical frequency domain behavior (Granger, 1966; Levy and Dezhbakhsh, 2003a, 

2003b) and the proposed method takes advantage of it. The existing studies are limited to 

cyclical frequencies. I can focus on any frequency, which makes this method more general, 

and potentially more useful. 

 
 

2. The Method 

Consider a typical rational expectations stochastic equilibrium model, where the 

goal is to 
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where U is the utility function, G is a vector of constraints,  is a vector of choice 

variables,  is a vector of exogenous variables, η  is a vector of stochastic shocks, Θ  and 

 are vectors of utility and production function parameters, and R is the discount factor. 
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Suppose that the model is solved by some method and its solution is given by 
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where  is the “fundamental” parameters’ vector. At this stage, the standard 

calibration technique proceeds by simulating the model, and for this one needs to know Φ . 

Typically the problem is solved by importing the value of Φ  from other studies. 

},,{ RΘΨΦ =

I propose to estimate Φ  using a distance metric specified in frequency domain. Let 

Y1t and Y2t denote actual and simulated univariate time series, respectively, and let 
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be their corresponding spectral densities, where 0 ≤ω ≤ π  is frequency measuring number 

of cycles per period, and γ1(s) and ),(2 Φsγ  are their auto-covariance functions given by 
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where µ1 and µ2  are the means of Y1t and Y2t, respectively. In (4), f2 depends on Φ  

because the simulated series and their auto-covariance (6) depend on the model’s parameter 

values. 

Now, consider the following metric, a distance function in frequency domain, 
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where λ(ω)  is a weight function, ξ > 0, 0 ≤ω1 ≤ π , 0 ≤ω2 ≤ π , and ω1 < ω2. I set ξ =1 

although ξ = 2 could also be considered. 

The spectrum decomposes a series variance by frequency. That is,  
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The metric , therefore, measures the distance between the variances of the 

actual and simulated series at each frequency. 

)(Φd

I propose to combine the standard calibration approach with a statistical estimation 

method, which is based on minimizing the frequency-weighted spectral density differential 

as given in (7). In other words, I suggest estimating the “deep” parameters’ vector Φ , by 

minimizing . The goal is to find model parameter values, which yield the best 

possible match between the spectral densities of the actual and model-generated time series. 

)(Φd

 
 

3. The Weight Function 

The function λ(ω)  determines the weight attached to each frequency. The shape of 

the weight function depends on the goals of the researcher. For example, the frequency 

interval [ω1,ω2 ] does not have to necessarily coincide with the entire frequency band [0,π ] , 

which is what most practitioners of spectral analysis would typically consider. Under the 

current formulation, the interval [ω1,ω2 ] can be a subset of the interval [0,π ] . Moreover, 

[ω1,ω2 ] can consist of more than one non-overlapping sub-intervals of [0,π ] . This 

formulation introduces flexibility into the estimation methodology and makes the proposed 

approach more general. Below I describe some practically useful forms of the weight 

function. 

Following Levy (1994) and Levy and Chen (1994), I divide the frequency interval 

into three bands: the long run, the business cycle, and the short-run. Business cycles are 

defined as 12–32 quarter (or 3–8 year) cycles. Therefore, 0.20 ≤ω ≤ 0.52 corresponds to 

business cycle frequencies when quarterly data are used. The frequencies ω ≤ 0.20 

correspond to the long run, while the frequencies ω ≥ 0.52 correspond to the short-run. 

 
3.1. Uniform Weighting 

If we assign an equal weight to each frequency, then λ(ω) =1 n  for each ω, where n 

is the number of Fourier frequencies. Such a weight structure is behind the ordinary time-

domain Gaussian regression analysis where all frequencies are implicitly assigned the same 

weight. Then (7) collapses into the standard metric used in the existing literature, namely 
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the gap between the variances of the actual and simulated series, 

. Thus, the standard distance metric is a particular case of the 

metric I propose.  

)(Var)(Var)( 21 tt YYd −=Φ

 
3.2. Focusing on the Long Run 

If we want to generate time series, which mimic the low frequency behavior of the 

actual data, then λ(ω)  may be set so that we assign a high weight to low frequencies and a 

low weight (or a zero weight) to high frequencies. For example, we may set 
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3.3. Focusing on Business Cycles 

If we want the generated series to mimic the cyclical behavior of the data, then we 

can set 
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3.4. Focusing on Seasonality 

The estimation method I propose lends itself naturally to a study of seasonality. 

Define ωsk  as seasonal frequencies where ⎣ ⎦2/,...,2,1 Nk = , ωs = 2π N , N is the number 

of observations taken in a one-year period, and ⎣ ⎦2/N  is the largest integer less than N 2 . 

Thus, with monthly data, the exact seasonal frequencies are 2πk 12, with , 

which capture the deterministic component of seasonal fluctuations. 

k = 1,2,...,6

To allow deterministic as well as non-deterministic (stationary) seasonality as in 

Carpenter and Levy (1998), one needs to consider these seasonal components along with 

their neighboring frequency bands,  
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where δ measures the width of the band. 
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3.5. Proportional Weighting 

A potentially useful weight structure can be formed by requiring that each 

frequency be given a weight proportional to its contribution to the series’ total variance. 

Thus, we can set  
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where 0 ≤ω ≤ π , and the denominator equals the total variance of Y1t. This could be a 

useful choice if the goal is to explore the general fit of the model at all frequencies. 

 
 

4. Multivariate Extension 

A multivariate extension of equations (3) and (4) are given by the matrix equations 
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where  and  are the spectral density matrices of the actual and 

simulated vector time series  and , and  and  are their s

)(1
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covariance matrices, respectively. 

The diagonal elements of (12) and (13) are the spectral densities while the off-

diagonal elements are the cross-spectral densities. Moreover, a multivariate extension of the 

distance metric (7) can be introduced by defining 
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where )(ωΛ  is a weight matrix, and ⊗ is an element by element multiplication operator. 

Because  is a matrix, we can proceed by minimizing . The weight matrix )(ΦD )](tr[ ΦD
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can be redefined accordingly. 

For example, a multivariate version of (11) will take the form 

 

(15)  ( ) ( ) ωω
π

π

ωω dee ii ∫−

−− ∅= 11)( FFΛ

 

where  is an element by element division operator. Other weight functions discussed 

above could be generalized similarly. Such a multivariate extension can also accommodate 

a co-integration analysis as discussed by Levy (2000, 2002). 

∅

 
 

5. Sampling Distribution of the Model Parameters and Testing the Model’s Fit 

To study the model parameters properties, we can examine their small sample 

distributions by repeatedly drawing the random variables driving the exogenous stochastic 

processes of the model with the same hyper-parameters. For model testing, we compare the 

data and the model spectra. Given Y1 and Y2, let  and  be their 

estimated spectra. Then, the statistic 
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where ),()()( 21 Φωωωφ ii efef −−= . 

Under H0 : φ(ω) =1, assuming that Y1 and Y2 follow the same distribution, a 

confidence interval may be formed around the ratio of the spectra using the fact that the 

ratio 
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