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Abstract. Existence of a cointegration relationship between two time series in the time
domain imposes restrictions on the series zero-frequency behaviour in terms of their
squared coherence, phase and gain, in the frequency domain. I derive these restrictions by
studying cross-spectral properties of a cointegrated bivariate system. Specifically, I
demonstrate that if two difference stationary series, Xt and Yt, are cointegrated with a
cointegrating vector ½1 b� and thus share a common stochastic trend, then at the zero
frequency, the squared coherence of ð1� LÞXt and ð1� LÞYt will equal one, their phase
will equal zero, and their gain will equal jbj.

Keywords. Common stochastic trend; cointegration; frequency domain analysis; cross-
spectrum; zero-frequency.

1. INTRODUCTION

Since the introduction of cointegration and common trend analysis in econo-
metrics and statistics by Engle and Granger (1987) and Stock and Watson (1988),
integration and cointegration tests have by now become an essential part of
applied econometricians’ and macroeconomists’ standard tool kit. These tests are
routinely applied to economic time series because the notion of cointegration has
a natural economic interpretation: existence of a cointegration relationship
between two variables indicates that the series ‘move together’ in the long run,
and so they share common stochastic trend, although, in the short run, the series
may diverge from each other. Since many economic theories make these kinds of
long-run and short-run differential predictions about economic time series
co-movements, many economic models (and particularly macroeconomic models)
lend themselves naturally to co-integration testing (Engle and Granger, 1987).

The cointegration property is a long-run property and, therefore, in frequency
domain, it refers to the zero-frequency relationship of the time series. Therefore,
there is a frequency-domain equivalent of the time-domain cointegration
property. Specifically, existence of a cointegration relationship between two time
series in the time domain imposes restrictions on the series zero-frequency
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behaviour in terms of their cross-spectral measures in the frequency domain. The
purpose of this paper is to use a bivariate setting to derive these frequency-domain
restrictions in terms of the time series’ squared coherence, phase and gain–the
measures practitioners typically consider when studying cross-spectral properties
of time series.

Squared coherence is analogous to the square of the correlation coefficient and
measures the degree to which one series can be represented as a linear function of
the other. Phase measures the phase difference or the timing (i.e., lead or lag)
between the frequency components of the two series. Gain indicates how much the
spectrum of one series has been amplified to approximate the corresponding
frequency component of the other. It is essentially the regression coefficient of one
series on another at frequency x. Thus, the squared coherence, phase, and gain
are frequency-domain equivalents of correlation coefficient, time-delay (lag), and
regression coefficient, respectively, and, therefore, they have a natural interpret-
ation in terms of the standard time domain regression analysis.

The paper proceeds as follows. Cross-spectral properties of a cointegrated
bivariate system are derived by beginning with two non-stationary time series that
are cointegrated with a cointegration vector ½1 b�. Then using standard Fourier
Transform methods and matrix algebra, frequency domain properties of the
series’ co-movement are derived in terms of their squared coherence, phase and
gain. Specifically, it is shown that the squared coherence between such series, after
differencing, will equal one, their phase will equal zero, while their gain will equal
jbj. The paper ends with a brief conclusion in Section 3.

2. CROSS-SPECTRAL PROPERTIES OF A COINTEGRATED BIVARIATE SYSTEM

Let the time series of Xt and Yt be difference stationary. Thus, let Xt � Ið1Þ and
Yt � Ið1Þ, so that they can be written as

Xt ¼ Xt�1 þ ut and Yt ¼ Yt�1 þ vt

respectively, where ut � Ið0Þ, and vt � Ið0Þ. Moreover, let us assume that Xt and Yt
are cointegrated with the cointegration vector ½1 b�, so that they satisfy

Yt ¼ bXt þ lt

where lt � Ið0Þ. Then Xt and Yt processes share a common stochastic trend and,
therefore, can be written in a matrix notation

Xt

Yt

� �
¼ Tt þ xt

bTt þ yt

� �
ð1Þ

where Tt is the common stochastic trend with the property ð1 � LÞTt ¼
zt; zt � iidð0; r2

zÞ is a white noise process, xt � Ið0Þ, and yt � Ið0Þ. Applying
difference operator D ¼ ð1 � LÞ to (1) yields a bivariate stationary process
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ð1 � LÞXt

ð1 � LÞYt

� �
¼ zt þ ð1 � LÞxt

bzt þ ð1 � LÞyt

� �
ð2Þ

with the spectral matrix

fðxÞ ¼ fDX fDXDY

fDYDX fDY

� �
ð3Þ

The diagonal elements of the fðxÞ matrix are the spectral density functions of
ð1 � LÞXt and ð1 � LÞYt, defined by

fDX ¼ 1

2p

Z 1

�1
cDX ðsÞe�isxds ð4aÞ

and

fDY ¼ 1

2p

Z 1

�1
cDY ðsÞe�isxds ð4bÞ

where cDX ðsÞ and cDY ðsÞ are the autocovariance functions of ð1 � LÞXt and
ð1 � LÞYt, defined by

cDX ðsÞ ¼ E DXtþs � lDXð Þ DXt � lDXð Þ½ � ð5aÞ

and

cDY ðsÞ ¼ E DYtþs � lDYð Þ DYt � lDYð Þ½ � ð5bÞ

respectively, where lDX and lDY denote the means of ð1 � LÞXt and ð1 � LÞYt,
respectively. The off-diagonal elements of the fðxÞ matrix are the cross spectral
density functions of ð1 � LÞXt and ð1 � LÞYt, defined by

fDXDY ¼ 1

2p

Z 1

�1
cDXDY ðsÞe�isxds ð6aÞ

and

fDYDX ¼ 1

2p

Z 1

�1
cDYDX ðsÞe�isxds ð6bÞ

where cDXDY ðsÞ and cDYDX ðsÞ are the cross covariance functions of ð1 � LÞXt and
ð1 � LÞYt, and ð1 � LÞYt and ð1 � LÞXt, defined by

cDXDY ðsÞ ¼ E DXtþs � lDXð Þ DYt � lDYð Þ½ � ð7aÞ

and

cDYDX ðsÞ ¼ E DYtþs � lDYð Þ DXt � lDXð Þ½ � ð7bÞ

respectively.
To compute the elements of the fðxÞ matrix, first the autocovariance-

crosscovariance matrix of (2) has to be computed. It is given by
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cðsÞ ¼
cDX ðsÞ cDXDY ðsÞ

cDYDX ðsÞ cDY ðsÞ

" #

¼ E
ztþs þ Dxtþs

bztþs þ Dytþs

" #
zt þ Dxt bzt þ Dyt½ �

¼ E
ðztþs þ DxtþsÞðzt þ DxtÞ ðztþs þ DxtþsÞðbzt þ DytÞ

ðbztþs þ DytþsÞðzt þ DxtÞ ðbztþs þ DytþsÞðbzt þ DytÞ

" #

¼
czðsÞ þ c1ðsÞ þ cz1ðsÞ þ c1zðsÞ bczðsÞ þ bc1zðsÞ þ cz2ðsÞ þ c12ðsÞ

bczðsÞ þ c2zðsÞ þ bcz1ðsÞ þ c21ðsÞ b2czðsÞ þ c2ðsÞ þ bcz2ðsÞ þ bc2zðsÞ

" #

ð8Þ

where subscripts 1 and 2 denote Dx and Dy, respectively, for notational simplicity,
the diagonal elements of the last matrix in (8) are the autocovaraiance
functions, cDX ðsÞ and cDY ðsÞ, and the off-diagonal elements are the cross cova-
riance functions, cDXDY ðsÞ and cDYDX ðsÞ, respectively, as defined in (5a)–(5b) and
(7a)–(7b).

Applying the Fourier transform to both sides of (8), multiplying through by
1=ð2pÞ, and using spectrum and cross-spectrum definitions provided by (4a)–(4b)
and (6a)–(6b), gives the spectral matrix

fðxÞ

¼
fzðxÞþ f1ðxÞþ fz1ðxÞþ f1zðxÞ bfzðxÞþ bf1zðxÞþ fz2ðxÞþ f12ðxÞ
bfzðxÞþ f2zðxÞþ bfz1ðxÞþ f21ðxÞ b2fzðxÞþ f2ðxÞþ bfz2ðxÞþ bf2zðxÞ

� �
ð9Þ

which can be rewritten as

fðxÞ ¼
fzðxÞ bfzðxÞ
bfzðxÞ b2fzðxÞ

� �

þ
f1ðxÞ þ fz1ðxÞ þ f1zðxÞ bf1zðxÞ þ fz2ðxÞ þ f12ðxÞ
f2zðxÞ þ bfz1ðxÞ þ f21ðxÞ f2ðxÞ þ bfz2ðxÞ þ bf2zðxÞ

� �
ð10Þ

The cross-spectrum terms in (10) can be written in Cartesian form because the
spectral matrix fðxÞ is, in general, a complex-valued function. Thus, for example,
we can write

fmnðxÞ ¼ cmnðxÞ � iqmnðxÞ ð11Þ

where cmnðxÞ denotes the cospectral function of m and n, and qmnðxÞ denotes the
quadrature spectral function of m and n. Therefore, using Priestley’s (1981, p. 668,
Equation 9.1.53) result that fmnðxÞ ¼ fnmðxÞ, (10) can be rewritten as
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fðxÞ ¼
fzðxÞ bfzðxÞ
bfzðxÞ b2fzðxÞ

� �

þ f1ðxÞ þ fz1ðxÞ þ fz1ðxÞ bf1zðxÞ þ fz2ðxÞ þ f12ðxÞ
f2zðxÞ þ bfz1ðxÞ þ f21ðxÞ f2ðxÞ þ bfz2ðxÞ þ bfz2ðxÞ

" #
ð12Þ

where bar denotes complex conjugate. Combining (12) with Cartesian represen-
tation of fz1ðxÞ and fz2ðxÞ,

fz1ðxÞ ¼ cz1ðxÞ � iqz1ðxÞ ð13aÞ

and

fz2ðxÞ ¼ cz2ðxÞ � iqz2ðxÞ ð13bÞ

yields

fðxÞ ¼
fzðxÞ bfzðxÞ
bfzðxÞ b2fzðxÞ

� �

þ
f1ðxÞ þ 2cz1ðxÞ bf1zðxÞ þ fz2ðxÞ þ f12ðxÞ
f2zðxÞ þ bfz1ðxÞ þ f21ðxÞ f2ðxÞ þ 2bcz2ðxÞ

� �
ð14Þ

Now, consider the value of the spectral matrix fðxÞ at frequency x ¼ 0, which
using (3) and (14) can be written as

fð0Þ ¼
fDX ð0Þ fDXDY ð0Þ
fDYDX ð0Þ fDY ð0Þ

� �
¼

fzð0Þ bfzð0Þ
bfzð0Þ b2fzð0Þ

� �

þ
f1ð0Þ þ 2cz1ð0Þ bf1zð0Þ þ fz2ð0Þ þ f12ð0Þ
f2zð0Þ þ bfz1ð0Þ þ f21ð0Þ f2ð0Þ þ 2bcz2ð0Þ

� �
ð15Þ

Recall that zt is a white noise process and, therefore, its theoretical spectrum is flat
and equals fzðxÞ ¼ r2

z=ð2pÞ for all frequencies �p � x � p. In addition, Dx and
Dy are Ið�1Þ; therefore, their zero-frequency spectral density, cross spectral
density and cospectral density functions equal zero. Thus, every element of the
second matrix of the right-hand side of (15) vanishes; therefore, the spectral
matrix, evaluated at frequency x ¼ 0, becomes

fð0Þ ¼
fDX ð0Þ fDXDY ð0Þ
fDYDX ð0Þ fDY ð0Þ

" #
¼

r2
z

2p
br2

z

2p
br2

z

2p
b2r2

z

2p

2
664

3
775 ð16Þ

To see the implications of this result for the behaviour of the theoretical
squared coherence, phase and gain, recall from polar representation of fðxÞ that

K2
DXDY ðxÞ ¼ jfDXDY ðxÞj2½fDX ðxÞfDY ðxÞ��1 ð17Þ

UDXDY ðxÞ ¼ arctan � Im½fDXDY ðxÞ�
Re½fDXDY ðxÞ�

� 

ð18Þ
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and

CDXDY ðxÞ ¼ jfDXDY ðxÞj fDX ðxÞ½ ��1 ð19Þ
where Im½fDXDY ðxÞ� and Re½fDXDY ðxÞ� denote the imaginary and real parts of
fDXDY ðxÞ; and K2

DXDY ðxÞ, UDXDY ðxÞ and CDXDY ðxÞ denote the squared coherence,
phase and the gain of ð1 � LÞXt and ð1 � LÞYt, respectively (Jenkins and Watts,
1968). Then, using the matrix (16), along with the definitions of squared
coherence, phase and gain provided in (17)–(19), at the zero frequency, the
following equalities hold.

For the squared coherence of ð1 � LÞXt and ð1 � LÞYt, (16) and (17) imply that,
at the frequency x ¼ 0,

K2
DXDY ð0Þ ¼

br2
z

2p

����
����
2

r2
z

2p
b2r2

z

2p

� ��1

¼ 1 ð20Þ

To determine the phase of ð1 � LÞXt and ð1 � LÞYt, note that from the Cartesian
representation of fDXDY ðxÞ

fDXDY ðxÞ ¼ cDXDY ðxÞ � iqDXDY ðxÞ ð21Þ

However, from (16) at the zero frequency

fDXDY ð0Þ ¼
br2

z

2p
ð22Þ

Rewrite (21) for x ¼ 0,

fDXDY ð0Þ ¼ cDXDY ð0Þ � iqDXDY ð0Þ ð23Þ

and compare the resulting equation (23) to (22). The equality of the two equations
requires that their right-hand sides be equal. However, for a complex number to
equal a real number, it is necessary that the imaginary part of the complex number
be zero. In other words, for the equality of (22) and (23), it is necessary that at the
frequency x ¼ 0, the cospectrum of ð1 � LÞXt and ð1 � LÞYt satisfy

cDXDY ð0Þ ¼ Re½fDXDY ð0Þ� ¼
br2

z

2p
ð24Þ

and the quadrature spectrum of ð1 � LÞXt and ð1 � LÞYt satisfy

qDXDY ð0Þ ¼ Im½fDXDY ð0Þ� ¼ 0 ð25Þ

Substituting (24) and (25) into the definition of phase (18) for the frequency x ¼ 0
gives

UDXDY ð0Þ ¼ arctan � Im½fDXDY ð0Þ�
Re½fDXDY ð0Þ�

� 

¼ arctanð0Þ ¼ 0 ð26Þ

Finally, to determine the gain of ð1 � LÞXt and ð1 � LÞYt, combining (16) and
(19) and evaluating the result for the frequency x ¼ 0 yields

CDXDY ð0Þ ¼
br2

z

2p

����
���� r2

z

2p

� ��1

¼ jbj ð27Þ

338 D. LEVY

� Blackwell Publishers Ltd 2002



where b is the coefficient that measures the extent of the long-run relationship
between Xt and Yt. That is, b is the coefficient in the cointegration relationship,
Yt ¼ bXt þ lt, where lt � Ið0Þ.

Equations (20), (26) and (27) establish the main result of this paper: if two
difference stationary series, Xt and Yt, are cointegrated with the cointegrating
vector ½1 b�, then the zero frequency squared coherence, phase and gain of
ð1 � LÞXt and ð1 � LÞYt will equal one, zero and jbj, respectively. This is a
generalization of Levy (2000) who only focuses on the behaviour of squared
coherence and gain, and only for the case b¼)1.

3. CONCLUSION

The cointegration property is a long-run property and, therefore, in frequency
domain, it refers to the zero-frequency relationship of the time series. Therefore,
there is a frequency-domain equivalent of the time-domain cointegration property:
existence of a cointegration relationship between two time series in the time
domain imposes restrictions on the series zero-frequency behaviour in terms of
their squared coherence, phase and gain in the frequency domain. This paper
derives these frequency-domain restrictions in a bivariate setting. Specifically, it
demonstrates that if two difference stationary series, Xt and Yt, are cointegrated
with the cointegrating vector ½1 b�, then the zero frequency squared coherence,
phase and gain of ð1 � LÞXt and ð1 � LÞYt will equal one, zero and jbj, respectively.

It is well known that the standard time series cointegration tests have a lowpower.
The results derived in this paper suggest that itmaybe useful to test for cointegration
in frequency domain. Further work should examine limiting null distributions and
finite sample properties of such tests, so as to assess their practical usefulness.
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