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a b s t r a c t

The U.S. prewar output series exhibit smaller shock-persistence than postwar-series. Some studies
suggest this may be due to linear interpolation used to generate missing prewar data. Monte Carlo
simulations that support this view generate large standard-errors, making such inference imprecise.
We assess analytically the effect of linear interpolation on a nonstationary process. We find that
interpolation indeed reduces shock-persistence, but the interpolated series can still exhibit greater
shock-persistence than a pure random walk. Moreover, linear interpolation makes the series periodi-
cally nonstationary, with parameters of the data generating process and the length of the interpolation
time-segments affecting shock-persistence in conflicting ways.
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1. Introduction

Most prewar U.S. data including output, CPI, etc. were ob-
erved only in benchmark years, several years apart. The missing
bservations were usually reconstructed by linear interpolation
f the benchmark observations, sometimes padded with a serially
orrelated term (See, e.g., Friedman and Schwartz, 1982; Romer,
989; Balke and Gordon, 1989; Johnston and Williamson, 2018).
nterpolation was also used to construct many historical series for
he UK (Measuring Worth, 2022).1

∗ Corresponding author at: Department of Economics, Bar-Ilan University,
amat-Gan 5290002, Israel.

E-mail address: Daniel.Levy@biu.ac.il (D. Levy).
1 The use of interpolation is not limited to the prewar data. For example,
evy and Chen (1994) employ the method of linear interpolation to construct
uarterly values of the US postwar capital stock and capital stock depreciation
eries using the series’ annual observations. Levy et al. (2020) apply linear
nterpolation to weekly retail scanner price data during the 1989-1997 period,
o determine the values of missing observations.
 Z
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165-1765/© 2022 Elsevier B.V. All rights reserved.
Studies find that US prewar output data is less shock-
persistent than the U.S. postwar output data.2 US prewar-data
also has different shock-persistence properties than other coun-
tries’ prewar data (Cogley, 1990).

Stock and Watson (1986) suggest that this difference could
be due to linear interpolation of missing values for the prewar
data. Although, as Romer (1989) notes, much of our knowledge of
the macroeconomy during the prewar periods is based on these
interpolated data, the effect of interpolation on shock-persistence
has been rarely examined.3 An exception is Jaeger (1990) who
assesses the effect of linear interpolation using Monte Carlo sim-
ulations for a random-walk with MA(1) errors. He generates a

2 Examples include DeLong and Summers (1988), Campbell and Mankiw
1987), Stock and Watson (1986), Cecchetti and Lam (1994), Murray and Nelson
2000), and Charles and Darné (2010), among others.
3 Interpolation, however, has consequences for other issues as well, including
ating of business cycles (Charles et al., 2014), classification of the 19th century
nflation (Kaufmann, 2020), transmission of monetary policy in the EU (Ehrmann,
000), data periodicity (Franses, 2013), and chaotic dynamics (Orlando and
imatore, 2018).

https://doi.org/10.1016/j.econlet.2022.110386
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0-observation time series, ‘‘original series’’, and a corresponding
‘interpolated series’’, where the 10th, 20th, 30th, 40th and 50th
bservations are generated by the above data generating process
DGP), and the rest are linearly interpolated. He then calculates
he variance-ratio measure of shock-persistence for the ‘‘original’’
nd ‘‘interpolated series’’ over 500-replications, where variance-
atio is defined as the ratio of the variance of the series’ s-period
rowth (long variance) to the variance of the series’ 1-period
rowth (short variance), and finds that linear interpolation indeed
educes shock-persistence.

While Jaeger’s experiments are well-designed, his estimates
re very imprecise. For example, 2-SE confidence-bounds around
is variance-ratio estimates fall within (0, 2+) or even (0, 3+),
aking it impossible to infer whether or not the ratio is less than
(stationary) or larger than 1 (non-stationary). Thus, one cannot

nfer from these results that interpolation necessarily reduces
hock-persistence.
We examine analytically the effect of interpolation on the

hock-persistence of a non-stationary series. The advantage of
nalytical approach is that it can identify interpolation effects
hat are distinct and not diluted by sampling-variation, which is
he hallmark of simulations. We assume the same DGP as Jaeger
1990)—a random-walk with MA(1) errors, for parsimony and
omparability. We first derive the variance-ratio of the original,
on-interpolated series, and then develop a linear interpolation
odel for the series with a general benchmark cycle, replacing all
on-benchmark data points with their linearly interpolated val-
es and a moving average padding. We then derive the variance-
atio for the interpolated series and compare it to the vairance
atio of the original series to ascertain the effect of interpolation
n shock-persistence.
Our results provide analytical support for Jaeger’s (1990)

onte Carlo findings. Additionally, we uncover a few other
nterpolation-caused effects. Although interpolation reduces
hock-persistence, interpolated series may still exhibit
igh shock-persistence with variance-ratios greater than 1. Also,
inear interpolation makes the series periodically non-stationary,
ith parameters of the DGP and the length of the interpolated
ime segments affecting shock-persistence in conflicting ways.

We proceed as follows. In Section 2, we present the DGP and
erive its shock-persistence measure analytically. In Section 3, we
evelop the interpolation model for this DGP and analytically de-
ive the corresponding shock-persistence measures. In Section 4,
e compare the results for non-interpolated and interpolated
eries. Section 5 concludes.

. Shock-persistence of a random-walk with MA(1) errors

Following Jaeger (1990), we assume a random-walk with
A(1) errors and no-drift:

T = YT−1 + UT , and UT = εT − θεT−1,

where εT ∼ iid
(
0, σ 2

ε

)
is white noise, and |θ | < 1 for invertibility.

As Jaeger (1990) notes, this setup captures the main features of
the interpolation procedure, as described by Romer (1986, 1989).
The model is also parsimonious: it is simple, yet it can capture
the dynamics of many macroeconomic time series, and thus it
and similar models are frequently employed in macroeconomic
time series analysis (e.g., Nelson and Plosser, 1982; Campbell and
Mankiw, 1987; Cochrane, 1988; Cogley, 1990, etc.).

To measure shock-persistence, we follow Jaeger (1990) and
others (Cochrane, 1988; Cogley, 1990; Leung, 1992; Levy and
Dezhbakhsh, 2003, etc.) by using variance-ratio measure which
is defined as VY = σ 2

s,Y/sσ
2
1,Y , where σ 2

s,Y = var (YT − YT−s)

is the variance of the series’ s-period growth—‘‘long-variance’’,
2

and σ 2
1,Y = var (YT − YT−1) is the variance of the series’ 1-

period growth—‘‘short-variance’’. The short variance for the above
process is

σ 2
1,Y = var (YT − YT−1)

= var (UT )

= γ0

where γ0 =
(
1 + θ2

)
σ 2
ε .

The long variance for this process is given by

σ 2
s,Y = var (YT − YT−s)

= var

⎛⎝ s−1∑
j=0

UT−j

⎞⎠
=

s−1∑
j=0

var
(
UT−j

)
+ 2

s−2∑
j=0

s−2∑
i=j

cov
(
UT−j,UT−i−1

)
= sγ0 + 2(s − 1)γ1 + 2(s − 2)γ2 + 2(s − 3)γ3 + · · · + 2γs−1

= sγ0 + 2(s − 1)γ1

= s
(
1 + θ2

)
σ 2
ε − 2(s − 1)θσ 2

ε

where γ0 is given above, γ1 = −θσ 2
ε , and γj = 0 for j ≥ 2.

The variance-ratio for the original, non-interpolated random
walk with MA(1) series, is therefore

VY =
σ 2
s,Y

sσ 2
1,Y

=
s
(
1 + θ2

)
σ 2
ε − 2(s − 1)θσ 2

ε

s
(
1 + θ2

)
σ 2
ε

= 1 +
2(1 − s)θ
s
(
1 + θ2

) (1)

3. Shock-persistence of interpolated random-walk with MA(1)
errors

To model interpolated series, we divide the original time series
YT into segments of equal length s, drop all but one observation
within each segment, and reconstruct the ‘‘missing’’ observations
by linearly interpolating the remaining observations. To facilitate
the conversion, rewrite YT as yt,i, where t = 0, 1, 2, . . . and
i = 1, 2, . . . , s, where s ≥ 2. Then, Y1 = y0,1, Y2 = y0,2, . . . ,
Ys = y0,s, Ys+1 = y1,1, . . . , Yst+i = yt,i.

In this notation, each period t contains s sub-periods. For
example, t and i could denote years and quarters with s =

4 (e.g., if quarterly observations are obtained by interpolating
annual observations), or decades and years within decades, with
s = 10 (e.g. if annual observations are obtained by interpolating
decennial benchmark observations). We thus rewrite the series
as

yt,i = yt,i−1 + ut,i with ut,i = εt,i − θεt,i−1, (2)

and

yt,s = yt,s−1 + ut,s with ut,s = εt,s − θεt,s−1 (3)

for i = 1, 2, . . . , s, where εt,i ∼ iid
(
0, σ 2

ε

)
corresponds to εT the

same way that yt,i corresponds to YT .
Now suppose that in each sub-period only one data-point is

observable: the benchmark observation pertaining to the end of
the period yt,s. The remaining s − 1 ‘‘missing’’ observations are
generated using a segmented linear interpolation. In addition, to
account for deviations from trend, the series is padded by adding
a moving average component. Here we follow Jaeger (1990) by
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dding the MA(1) part of the original series εt,i − θεt,i−1 for
padding. Thus,

xt,i =
i
s
yt,s +

s − i
s

yt−1,s +
(
εt,i − θεt,i−1

)
ψ (i ̸= s) (4)

where xt,i is the interpolated series, and ψ (g) is an indicator
function which equals 1 if g is true and 0 otherwise, to ensure that
MA padding is applied only to the interpolated observations.4

Lagging (4) one-period, we obtain

xt,i−1 =
i − 1
s

yt,s +
s − i + 1

s
yt−1,s +

(
εt,i−1 − θεt,i−2

)
ψ (i ̸= 1) .

(5)

ne-period difference of the interpolated series equals

t,i − xt,i−1 =
1
s

(
yt,s − yt−1,s

)
+

(
εt,i − θεt,i−1

)
ψ (i ̸= s)

−
(
εt,i−1 − θεt,i−2

)
ψ (i ̸= 1)

=
1
s

[(
εt,1 − θεt−1,s

)
+

(
εt,2 − θεt,1

)
+

(
εt,3 − θεt,2

)
+ · · · +

(
εt,s−1 − θεt,s−2

)
+

(
εt,s − θεt,s−1

)]
+

[(
εt,i − θεt,i−1

)
ψ (i ̸= s)

]
−

[(
εt,i−1 − θεt,i−2

)
ψ (i ̸= 1)

]
Therefore, the short-variance of the interpolated series σ 2

1,x, as
hown in the Appendix, equals:
2
1,x = var

(
xt,i − xt,i−1

)
=

(
σ 2
ε

s2

) [
s
(
1 + θ2

)
(2s − 1)+ 2θ

(
s2 − 3s + 1

)] (6)

To compute the long-variance of the interpolated series σ 2
s,x,

e start with s-period lag

t−1,s = yt−2,s +

s∑
j=1

ut−1,j. (7)

hen, the interpolated series equals

t,i =
i
s
yt,s +

s − i
s

yt−1,s +
(
εt,i − θεt,i−1

)
ψ (i ̸= s)

=
i
s

⎛⎝yt−1,s +

s∑
j=1

ut,j

⎞⎠ +
s − i
s

yt−1,s

+
(
εt,i − θεt,i−1

)
ψ (i ̸= s)

= yt−1,s +
i
s

s∑
j=1

ut,j +
(
εt,i − θεt,i−1

)
ψ (i ̸= s)

Using (7), xt,i equals

t,i = yt−2,s +

s∑
j=1

ut−1,j +
i
s

s∑
j=1

ut,j +
(
εt,i − θεt,i−1

)
ψ (i ̸= s) (8)

agging (8), we obtain

t−1,i = yt−2,s +
i
s

s∑
j=1

ut−1,j +
(
εt−1,i − θεt−1,i−1

)
ψ (i ̸= s) (9)

4 In benchmark periods, the original and the interpolated series coincide by
onstruction. i.e., in (4), x = y when i = s.
t,i t,i

3

Using (8) and (9), the long difference of the interpolated series
quals

t,i − xt−1,i =

(
s − i
s

) s∑
j=1

ut−1,j +

(
i
s

) s∑
j=1

ut,j

+
(
εt,i − θεt,i−1 − εt−1,i + θεt−1,i−1

)
ψ (i ̸= s)

=

(
s − i
s

) [(
εt−1,1 − θεt−2,s

)
+

(
εt−1,2 − θεt−1,1

)
+

(
εt−1,3 − θεt−1,2

)
+ · · ·

+
(
εt−1,s−1 − θεt−1,s−2

)
+

(
εt−1,s − θεt−1,s−1

)]
+

(
i
s

) [(
εt,1 − θεt−1,s

)
+

(
εt,2 − θεt,1

)
+

(
εt,3 − θεt,2

)
+ · · ·

+
(
εt,s−1 − θεt,s−2

)
+

(
εt,s − θεt,s−1

)]
+

(
εt,i − θεt,i−1 − εt−1,i + θεt−1,i−1

)
ψ (i ̸= s)

Therefore, the long variance of the interpolated series σ 2
s,x =

var
(
xt,i − xt−1,i

)
, as shown in the Appendix, equals

σ 2
s,x =

(
σ 2
ε

s2

)[(
1 + θ2

3

) [(
2s3 + 6s2 − 8s + 3

)
+ 3 (2s − 4)+ 3(s + 1)

] ]
−

(
θ

3

)(
σ 2
ε

s2

) [(
4s3 − 3s2 + 2s − 3

)
+ 6 (2s − 4)+ 3(s + 1)]

=

(
σ 2
ε

s2

)(
1 + θ2

3

) (
2s3 + 6s2 + s − 6

)
−

(
σ 2
ε

s2

)(
θ

3

) (
4s3 − 3s2 + 17s − 24

)
(10)

hus, the variance-ratio for the interpolated series, using (6) and
10) and k = s, is given by

x =
σ 2
s,x

sσ 2
1,x

=

(
σ2
ε

s2

)(
1+θ2

3

) (
2s3 + 6s2 + s − 6

)
−

(
σ2
ε

s2

) (
θ
3

) (
4s3 − 3s2 + 17s − 24

)
s
(
σ2
ε

s2

) [
s
(
1 + θ2

)
(2s − 1)+ 2θ

(
s2 − 3s + 1

)]
=

(
1 + θ2

) (
2s3 + 6s2 + s − 6

)
− θ

(
4s3 − 3s2 + 17s − 24

)
3s2

(
1 + θ2

)
(2s − 1)+ 6sθ

(
s2 − 3s + 1

) (11)

. Shock-persistence comparisons for original and interpo-
ated series

A variance-ratio VY = σ 2
s,Y/sσ

2
1,Y smaller than 1, suggests that

the long-run component of the series as measured by σ 2
s,Y , is

stable relative to year-to-year changes as measured by σ 2
1,Y .

Shock-persistence for the original series is given by Eq. (1),
where s

(
1 + θ2

)
> 0 because s ≥ 2 and −1 < θ < 1. The size

of VY therefore depends on the sign of θ : if θ < 0, then VY > 1,
and if θ > 0, then VY < 1. For a random-walk with white noise
errors (θ = 0) and no-drift, the variance ratio equals 1 as Eq. (1)
shows. See Table 1 and Fig. 1.

Shock-persistence measure for the interpolated series, given
by Eq. (11), depends on the MA parameter θ and on the in-
terpolation segment length s which in this case also represents
the time-length of the long-difference. To identify the impact of
interpolation, we examine how shock-persistence varies with the
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Fig. 1. Effects of changing the values of θ and s on the variance-ratio of the original series.
otes:
he figure shows the values of the variance-ratio of the original series Vy given in Eq. (1), for values of θ between −0.99 and 0.99, and for values of s between 3

and 30. The DGP is random walk with MA(1) errors with parameter θ and the length of the long-difference for the variance-ratio s.
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two parameters θ and s, by numerically evaluating the variance-
ratio of both the original and the interpolated series for various
values of the parameters.

Table 1 exhibits the results. Several observations are note-
worthy. First, variance-ratio of the original random-walk exhibits
significant variation with respect to θ and s, varying from 0.03 (no
hock-persistence), to 1.97 (significant shock-persistence). For all
alues of s, variance-ratio declines as θ increases. The decline
s steeper for larger values of s. This directional consistency,
however, is not reciprocal. For negative values of θ , variance-
ratio increases with s, but for positive values of θ , variance-ratio
decreases with s. If θ equals 0, then the variance-ratio is 1 for all
values of s.

Second, the interpolated series has a smaller variance-ratio
than the original series for each parameter value, confirming
that interpolation reduces shock-persistence. This finding pro-
vides analytical support for Jaeger’s (1990) simulation estimates
which, as noted, had little inferential value due to large standard
errors of these estimates. Jaeger’s simulations results reported in
Table 1 (last column), and their comparable counterparts from
our theoretical work reported in column 4, highlights this point.

Third, while interpolation reduces the shock-persistence of
a nonstationary series, the interpolated series may still exhibit
significant shock-persistence. Thus, a low shock-persistence can-
not be automatically attributed to interpolation. Indeed, Leung
(1992) finds that the persistence differences between US and
UK, which Jaeger uses to corroborate his findings, hold only for
the particular UK output series that Jaeger used (NNP series).
Alternative UK series (GDP at market price or factor cost) are
similar in terms of shock-persistence to the interpolated prewar
US output series. Thus, a low shock-persistence is not a sole
artifact of interpolation.

Fig. 1 displays the pattern of variance-ratio of the original
series as data generating parameter θ and interpolation segment
s change. As the figure shows, the variance-ratio may increase
or decrease beyond the reference point of 1 as θ varies, if the
series is a pure random-walk. The changes are more pronounced
at higher values of s but more variable with respect to s at
lower values of s. We also observe a prominent symmetry in the
f

4

behavior of the variance-ratio for positive and negative values of
θ , as s increases.

Fig. 2 displays the pattern of variance-ratio of the interpolated
series as we vary the DGP parameter θ and the interpolation
segment s. Here we find that when θ < 0, there are smaller
hanges in variance-ratio away from the reference point of 1
han when θ > 0. Moreover, for positive values of θ , variance-
atio drops sharply with s at low values of s, then it remains
teady as s increases. There is no symmetry in the behavior the
ariance ratio of the interpolated series. This is a further indica-
ion of the nonuniformity in the effect of linear interpolation on
onstationary series. These patterns reinforce our conclusion that
nterpolation affects data in complicated ways that go beyond
imple rules.
Fig. 3 shows the difference between the variance ratios of the

riginal and interpolated series Vy−Vx as we vary the parameters
and s. The difference is higher for negative values of θ than for
ositive values of θ . Further, the effect of increase in s is relatively
harp for lower values of s.
Fourth, as we show in the Appendix, the variance-ratio for the

nterpolated series exhibits periodic nonstationarity as the un-
erlying moments are conditional on observation index i.5 Using
terated expectation, we removed this conditionality, and thus
liminated the dependency on individual i’s. However, the pres-
nce of s in the shock-persistence measures we derive highlights
his point.

In closing, we note a subtle statistical point. The variations
nd changes in the variance ratio parameter due to change in
odel parameters or interpolation length that we alluded to

n the above discussions refer to the actual parameters derived
rom the DGP or its interpolated form. The sampling variation
nd uncertainty that comes with any inference about variance
atio parameter would depend on sample size and method of
stimation and must not be confounded with the above theoret-
cal results that are derived by changing the underlying model
arameters.

5 Dezhbakhsh and Levy (1994) derive the variance, the covariance, and the
utocorrelation functions of linearly interpolated trend-stationary series, and
ind that they all vary with i, which they term ‘‘periodic variation’’.
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Table 1
Values of the variance-ratio for the original (non-interpolated) and interpolated series, for different values of θ and
s.

Notes
The table reports the variance-ratio measures of shock-persistence of the original and interpolated series for different
values of θ between −0.99 and 0.99, and for selected values of s between 5 and 30. The DGP is random walk with
MA(1) error with parameter θ and the length of the long-difference for the variance-ratio s. The figures in the table
were computed using Eqs. (1) and (11), for the original and for the interpolated series, respectively. The source of
the figures presented in the last column is Jaeger (1990), p. 336, Table 2, column labeled k = 10. The shaded cells
indicate comparable figures.
Fig. 2. Effects of changing the values of θ and s on the variance-ratio of the interpolated series.
otes:
he figure shows the values of the variance-ratio of the interpolated series Vx given in Eq. (11). See the notes underneath Fig. 1 for more details.
5
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Fig. 3. The difference between the values of the variance ratio of the original and interpolated series, for different values of θ and s.
Notes:
The figure shows the difference between the values of the variance-ratio of the original and interpolated series Vy − Vx . See the notes underneath Fig. 1 for more

details.
5. Concluding remarks

Stock and Watson (1986) suggest that linear interpolation of
prewar U.S. macroeconomic series is the likely cause of the shock-
persistence difference between these series and most European
prewar or similar U.S. postwar series. Jaeger’s (1990) simulation
results is a rare confirmation of this assertion, but the large
variations in his simulation-based persistence measures detracts
from its inference value. We derive analytically the impact of
interpolation on shock-persistence in Jaeger’s model, and also go
further to uncover a few additional interpolation-caused effects.

Our findings are as follows. First, linear interpolation reduces
the shock-persistence of a random-walk with MA(1) errors, con-
firming Stock and Watson’s (1986) conjecture and Jaeger’s (1990)
simulation results. Second, however, the interpolated random-
walk series, may still exhibit significant shock persistence, with
variance-ratio attaining values greater than 1, suggesting that
interpolation is not synonymous with low shock persistence.
Third, linear interpolation introduces periodic non-stationarity
in a series. Fourth, the effect of linear interpolation on shock-
persistence depends on the parameters of the underlying DGP as
well as on the interpolation segment length.

Overall, our results suggest that using a simple rule to describe
the effect of interpolation on shock-persistence would be an
overreach even in a simple model such as Jaeger’s (1990). That
is because the determinants of this effect, which include the
DGP parameters, the length of the interpolation segment, and the
periodic nonstationarity that interpolation introduces, interact in
complex ways. An important implication of this finding is that
alternative causes of the difference in the persistence estimates
for the U.S. prewar and postwar data merits further investigation.

We suspect that the results we report here are specific to
the particular model we study and thus any statements about
their generalizability should be made with caution. It is, therefore,
important that future work examines the implications of linear
interpolation for more general classes of models, and for both
stationary and non-stationary series.
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