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Abstract In many real-life scenarios, a group of agents needs to agree on a com-
mon action, e.g., on a location for a public facility, while there is some consistency
between their preferences, e.g., all preferences are derived from a common metric
space. The facility location problem models such scenarios and it is a well-studied
problem in social choice. We study mechanisms for facility location on unweighted
undirected graphs that are resistant to manipulations (strategy-proof, abstention-

proof, and false-name-proof ) by both individuals and coalitions on one hand and
anonymous and efficient (Pareto-optimal) on the other.

We define a new family of graphs, ZV -line graphs, and show a general facility
location mechanism for these graphs that satisfies all these desired properties. This
mechanism can also be computed in polynomial time and it can equivalently be
defined as the first Pareto-optimal location according to some predefined order.
Our main result, the ZV -line graphs family and the mechanism we present for
it, unifies all works in the literature of false-name-proof facility location on dis-
crete graphs including the preliminary (unpublished) works we are aware of. In
particular, we show mechanisms for all graphs of at most five vertices, discrete trees,
bicliques, and clique tree graphs.

Finally, we discuss some generalizations and limitations of our result for facil-
ity location problems on other structures: Weighted graphs, large discrete cycles,
infinite graphs; and for facility location problems concerning infinite societies.
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1 Introduction

Reaching an agreement could be hard. The seminal works of Gibbard [11] and Sat-
terthwaite [25] show that one cannot devise a general procedure for aggregating
the preferences of strategic agents to a single outcome, besides trivial procedures
that a-priori ignore all agents except one (that is, the outcome is based on the
preference of a predefined agent) or a-priori rule out all outcomes except two (that
is, regardless of the preferences of the agents, the outcome is one of two prede-
fined outcomes). The problem is that agents might act strategically aiming to get
an outcome that they prefer, so there might be scenarios in which for any pro-
file of actions (a possible agreement) at least one of the agents prefers changing
her action. Note that while we refer to a procedure and later to a mechanism, this
impossibility is not technical but conceptual. We identify a procedure with the
conceptual mapping induced by the procedure from the opinions of the agents to
an agreement, while the procedure itself could be complex and abstract, e.g., to
have several rounds or include a deliberation process between the agents (cheap-
talk). For simplicity of terms, we refer to the direct mechanism that implements
this mapping. That is, we think of an exogenous entity, the designer, who receives
as input the opinions of the agents and returns as output the aggregated decision.
This assumption does not hurt the generality, as according to the revelation prin-
ciple [20] any general procedure is equivalent (w.r.t. the properties we study) to
such a direct mechanism.

But in many natural scenarios, it is exogenously given that the preferences sat-
isfy some additional rationality property, i.e., the mechanism need not be defined
for any profile of preferences, giving rise to mechanisms that are not prone to the
above drawbacks. Two prominent examples are VCG mechanisms and generalized-

median mechanisms. VCG mechanisms [4, 24, 12, 29] are the mechanisms that are
resistant to manipulations like the ones described above for scenarios in which the
preferences of agents are quasi-linear with respect to money [16, Def. 3.b.7], and
monetary transfers are allowed (that is, the outcome space is closed under mone-
tary exchanges between the agents or between the agents and the designer). The
second example, Generalized-median mechanisms, does not include monetary trans-
fers and has more of an ordinal flavor. Generalized-median mechanisms [17] are
the mechanisms that are resistant to manipulations like above when it is known
that the preferences are single-peaked w.r.t. the real line [3]. That is, the outcomes
are locations on the real line, each agent has a unique optimal location, `‹, and
her preference over the locations to the right of `‹ is derived by the proximity to
`‹, and similarly for the locations to the left of `‹. For example, in the Euclidean
single-peaked case, the preferences for all agents are minimizing the distance to
their respective optimal locations.

The facility location problem

A natural generalization of the second scenario is the facility location problem. In
this problem, we are given a metric space over the outcomes (that is, a distance
function between outcomes) and it is assumed that the preference of each of the
agents is defined by the distance to her optimal outcome: An agent with an opti-
mal outcome `‹ prefers an outcome a over an outcome b if and only if a is closer to
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`‹ than b. For ease of presentation, throughout this paper, we assume that there
are finitely many agents and finitely many locations, and in Section 6.1 discuss
the extension to the infinite case. In the finite case, a natural way to represent
the common metric space is using a weighted undirected graph. That is, having
a vertex (location) for each outcome and weighted edges between vertices s.t. the
distance between any two locations is equal to the distance between the two re-
spective vertices (or generally to the length of the shortest path between them).
Roughly speaking, given such a graph one seeks to find a mechanism that on one
hand does not a-priori ignore some of the agents or rule out some of the locations,
and on the other hand, is resistant to manipulations of the agents. Facility loca-
tion problems and, moreover, facility location problems for complex combinatorial
structures model many real-life scenarios of group decision making in which it is
natural to assume some homogeneity between the preferences of different agents
(e.g., an additional rationality assumption). These examples include not only lo-
cating a common facility, like a school, a bus-stop, or a library, but also more
general agreement scenarios with a common metric, e.g., a partition of a com-
mon budget to several tasks, committee selection, or group decision making with
multi-dimensional criteria. Following the common facility problem, we sometimes
refer to the outcome of the mechanism as the facility. In this work, we look for
mechanisms that satisfy the following desired properties:

Anonymity: The mechanism should not a-priori ignore agents and, moreover, we
desire it to treat the agents equally in the following strong sense. The mechanism
should be a function of the agents’ votes (which we also refer to as ballots) but
not their identities. Formally, the outcome of the mechanism should be invariant
to any permutation of the ballots. In practice, most voting systems satisfy this
property by first accumulating the different (physical) ballots, thus losing the
agents’ identities, and next applying the mechanism on the identity-less ballots.

We would also like the mechanism to treat the locations in an a-priori fair
manner. Note that it is unreasonable to require that all locations are treated
equally (i.e., neutrality of the mechanism) due to the inherent asymmetry induced
by the graph. Instead, we require the following much weaker property of non-
imposition.

Citizen Sovereignty/Non-imposition [1, 19]: The mechanism should not a-priori
rule out a location, and each location should be the outcome of some profile.
Formally, the mapping to a facility location should be an onto function.

Furthermore, the mechanism should respect the preferences of the agents and
aim to optimize the aggregated welfare of the agents.

Pareto-optimality: The mechanism should not return a location ` if there exists
another location `1 s.t. switching from ` to `1 benefits one of the agents (move the
facility closer to her) while not hurting any of the other agents. In particular, if
there exists a unique location that is unanimously most-preferred by all agents,
then it must be the outcome. Note that any reasonable notion of aggregated welfare
optimization entails Pareto-optimality.



4 Ilan Nehama et al.

Strategy-proofness: An agent should not be able to change the outcome to a
location she strictly prefers by reporting a location different than her true location.

Abstention-proofness:1 An agent should not be able to change the outcome to a
location she strictly prefers by not casting a ballot.

False-name-proofness: An agent should not be able to change the outcome to a
location she strictly prefers by casting more than one ballot.

False-name-manipulations received less attention in the classic social choice lit-
erature since in most voting scenarios there exists a central authority that can
enforce a ‘one person, one vote’ principle (but cannot enforce participation or
truthful voting). In contrast, many of the voting and aggregation scenarios nowa-
days are run in a distributed manner on some network and include virtual identities
or avatars, which can be easily generated, so a manipulation of an agent pretending
to represent many voters is eminent.

Resistance to group manipulations: We also consider a generalization of the
above three properties dealing with manipulations of a coalition of agents. We
define the preference of a coalition as the unanimous preference of its members.
That is, a coalition C weakly prefers an outcome a over an outcome b if all the
agents in C weakly prefer a over b. Equivalently, C strictly prefers a over b if (i)

all the agents in C weakly prefer a over b (C weakly prefers a over b), and (ii)

at least one agent in C strictly prefers a over b (C does not weakly prefer b over
a). We require that a coalition should not be able to change the outcome to a
location it strictly prefers by its members casting untruthful ballots, abstaining,
or casting more than one ballot. We note that for onto mechanisms this property
entails Pareto-optimality. Nevertheless, we prefer to think of Pareto-optimality as
an efficiency requirement and not as a manipulation-resistance requirement.

Our contribution

Besides the work of Todo et al. [28], who characterized the false-name-proof mech-
anisms for facility location on the continuous line and on continuous trees, we are
not aware of other works characterizing false-name-proof mechanisms for facility
location on a graph. Moreover, as far as we know, a false-name-proof mechanism is
known to the community only for very few simple graphs, and the current knowl-
edge is still highly preliminary.2

In this paper, we define a family of unweighted undirected graphs, which we
name ZV -line graphs, and show a general mechanism for facility location over these
graphs that satisfies the desired properties. To the best of our knowledge, this is
the first work to show a general false-name-proof mechanism for a general family of
graphs. Our mechanism for the ZV -line graphs family unifies the few mechanisms
that are known and it induces mechanisms for many other graphs. The mechanism

1 In the voting literature (e.g., [5, 18, 10]) this property is also referred to as voluntary
participation and the no-show paradox. This property is also equivalent to individual-
rationality which takes the different point of view of mechanism design.

2 When starting to work on this problem, we initially devised mechanisms for few of the
examples we describe below - cycles, cliques, and the 2ˆn grid. We are not aware of any other
previously-known positive results besides these graphs or small perturbations of them.
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is Pareto-optimal and in particular, it satisfies citizen sovereignty and does not a-
priori rule out any location; It is anonymous, so in particular, no agent is ignored;
But on the other hand, it is resistant to all the above manipulations.

Roughly speaking, in a ZV -line graph there are two types of locations, Z-
locations and V -locations (and we also refer to them as Z-vertices and V -vertices),
and the facility is commonly (except if all agents unanimously agree differently)
located on a Z-location. For instance, the Z-locations could represent commercial
locations for locating a public mall, or the set of status-quo outcomes.

Below, we give a series of common elementary graphs that are ZV -line graphs
to demonstrate the richness and naturality of this family. The full formal definition
of ZV -line graphs is given in Section 3, and we describe more examples for ZV -
line graphs in Section 5. Consider the following family of graphs (which is a sub-
family of the ZV -line graphs family and captures the gist of our mechanism). Let
G “ 〈V, E〉 be a bipartite unweighted undirected graph with a vertex set V and an
edge set E. That is, there exists a partition of the vertices V “ V ẎZ s.t. there
are no edges between V -vertices and no edges between Z-vertices. We require that
(a) there exists a predefined order over the Z-vertices, which we refer to as a
left-to-right order, and that (b) any of the V -vertices is connected to a contiguous
sequence of Z-vertices. Similarly to the single-peaked consistency case [3], one can
think of this constraint as a homogeneity constraint over the preferences of agents,
i.e., as representing a restriction over the possible preference profiles, focusing on
scenarios where voters’ preferences are derived from some common structure.

Our mechanism for these graphs:

I The mechanism returns the leftmost Pareto-optimal Z-location if one exists.3

I If no location in Z is Pareto-optimal, then necessarily all agents voted for the
same location, and the mechanism returns this location.

For example, bicliques (full bipartite graphs) can be represented as a ZV -line graph
in which each V -vertex is connected to all the Z-vertices as follows (and we use
below © for Z-vertices and � for V -vertices):

� � � � � � �

© © © © © © ©

Fig. 1: Bicliques
Our mechanism for biclique graphs:

I If all agents voted unanimously for the same location, the mechanism returns
this location.

I If all agents voted for V -locations, the mechanism returns the leftmost Z-
location.

I Otherwise, the mechanism returns the leftmost Z-location that was voted for.

Notice that in this case, the order over the Z-locations is arbitrary (as well as the
choice of one of the sides to be the Z-locations) in the sense that it is not derived
from the graph but a parameter of the mechanism. For instance, the order might
represent the social norm of the society.

3 An outcome o P V is Pareto-optimal if there exists no location o1 P V s.t. switching the
outcome to be `1 benefits one of the agents while not hurting any of the other agents.
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A second example is the discrete line graph, which can be represented as a ZV -
line graph in which every two consecutive Z-vertices are connected by a unique
V -vertex,

� � � � � � �

© © © © © © © © © © © © ©.

� � � � � � �

Fig. 2: The line graph

In particular, we show mechanisms for facility location on the discrete line
that are strategy-proof, false-name-proof, anonymous, Pareto-optimal, and are far
from generalized-median mechanisms (for instance, in the common case the output
of the mechanism belongs to a subset consisting of only half of the locations).
This, in contrast to the characterization of these mechanisms for the continuous
line of Todo et al. [28, Thm. 2], who showed that generalized median mechanisms
are the strategy-proof, false-name-proof, anonymous, Pareto-optimal for the con-
tinuous line, and in contrast to the characterization of strategy-proof mechanisms
for the discrete line of Dokow et al. [7, Thm. 3.4]. In this work, Dokow et al.,
characterized the strategy-proof mechanisms for the discrete line as a superset of
generalized-median mechanisms. Hence, we get a strict subset of their character-
ization (and, moreover, a small fraction of their characterization) due to adding
the requirement of false-name-proofness.

Two elementary graphs that are generalizations of (the ZV -line graph repre-
sentation of) the discrete line graph are

� � �

© © © © © ©,

� � �

Fig. 3

in which every two consecutive Z-vertices are connected by two V -vertices, and
the 2ˆ n grid

� � � � � � �

� � � � � � �

Fig. 4: The 2ˆ n grid

which can be represented as a ZV -line graph in which every three consecutive
Z-vertices are connected by a unique V -vertex, i.e.,
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� � � �

© © © © © © ©,

� � �

Fig. 5: The 2ˆ n grid

A common property to all the above examples is their regularity. All the V -
vertices have the same degree and similarly all the Z-vertices have the same degree.
An example we encountered of a non-regular graph for which a mechanism exists

is
� �

� � �,

� � �

which can be represented as a non-regular bipartite ZV -line graph in the

following way:

�

© © © ©.

� � �

Fig. 6

In the definition of the ZV -line graphs family (Def. 4) we extend the above
family (and extend the mechanism accordingly) in two different ways: allowing
edges between the Z-vertices (under a similar connectivity constraint to the con-
straint we had on the neighborhood of the V -vertices), and replacing vertices by
a tree, a clique, or any other ZV -line graph. For example, the following ZV -line
graph is the outcome of taking a graph of the type of Fig. 3 and (a) adding an
edge between two consecutive Z-vertices and (b) replacing some of the vertices by
cliques or trees that are ZV -line graphs (See also Fig. 8 and the description next
to it).

� � � � �

� � � � � �

� � � � � �

� � � � � � �

© © © © ©

� � � � �

� � � � � � � �

Fig. 7

In particular, as we discuss in Section 5, the ZV -line graphs family includes
trees, cliques, block graphs [13], all connected graphs of at most five vertices (ex-
cept the cycle of five vertices), and all graphs for which (as far as we found) a false-
name-proof mechanism was known to the community. In Section 5, we also show
that for recursive sub-families like trees, cliques, or block graphs, a recursive simple
mechanism can be easily derived; that there are no group-manipulation-resistant,
Pareto-optimal, anonymous mechanisms for cycles of size larger than 5; and the
family of group-manipulation-resistant, Pareto-optimal, anonymous mechanisms
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for cycles of size five which is similar to the mechanism we present for ZV -line
graphs, although this graph is not a ZV -line graph.

Related work

Problems of facility location on discrete graphs were also studied by Dokow et al.
[7], who characterized the strategy-proof mechanisms for the discrete line and
discrete cycle. Other variants of the facility location problem were also considered
in the literature. For instance, Schummer and Vohra [26] considered the case of
continuous graphs, Lu et al. [14] and Lu et al. [15] studied variants in which several
facilities need to be located and scenarios in which an agent is located on several
locations, and Feldman et al. [9] studied the impact of constraining the input
language of the agents.

False-name-proofness was first introduced by Yokoo et al. [30, (based on a series
of previous conference papers)] in the framework of combinatorial auctions. In this
work, the authors showed that the VCG mechanism does not satisfy false-name-
proofness in the general case, and they proposed a property of the preferences
under which this mechanism becomes false-name-proof. A similar concept was
also studied in the framework of peer-to-peer systems by Douceur [8] under the
name Sybil attacks. Later, Conitzer [5] analyzed false-name-proof mechanisms in
voting scenarios, Todo et al. [27] characterized other false-name-proof mechanisms
for combinatorial auctions, and Todo et al. [28] characterized the false-name-proof
mechanisms for facility location on the continuous line and facility location on con-
tinuous trees. The proof techniques we use here are different than the techniques
used by Todo et al. [28] for continuous lines and trees. In their work, they essen-
tially note that any manipulation-resistant mechanism is in particular strategy-
proof, and using this insight they reduce the characterization problem to previous
characterizations of strategy-proof mechanisms. In our work, we do not use previ-
ous proofness characterizations but prove the properties directly. In a recent work,
Ono et al. [22] showed, in the framework of facility location on the discrete line, a
relation between false-name-proofness and the property of population monotonicity.

Approximate mechanism design

The characterization of manipulation-resistant mechanisms for facility location is
highly related to problems in Approximate mechanism design without money [23]. In
these problems, agents are characterized using cardinal utilities and the designer
seeks to find an outcome maximizing a desired target function (e.g., the sum of
utilities, the product of utilities, or the minimal utility). These works bound the
trade-of between the target function and manipulation-resistance. They bound
the loss to the target function due to manipulation-resistance constraints. Simi-
lar bounds were derived for false-name-proof facility location mechanisms on the
continuous line and continuous trees by Todo et al. [28], strategy-proof facility
location on the continuous cycle by Alon et al. [2], and for strategy-proof facility
location on the discrete cycle by Dokow et al. [7].

In this work, we do not analyze the approximation implications of the charac-
terization and in particular, we do not assume a specific cardinal representation
of the preference of agents. Yet, we claim that for most natural representations
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and target functions the approximation ratio is expected to be bad. For example,
recall the mechanism for biclique graphs (Fig. 1). In this mechanism, the facility
might be located on an ‘extremely’ left Z-location. Moreover, the facility might be
very far from the vast majority of the agents, resulting in a very bad approxima-
tion ratio for most reasonable target functions. This phenomenon is not specific
for biclique graphs. For most ZV -line graphs, due to the false-name-proof require-
ment, the mechanism might be located on a location extremely far from almost all
agents, resulting in a very bad approximation ratio (roughly, the number of agents
times the diameter of the graph) for most reasonable target functions.

2 Model

Consider a graph G “ 〈V, E〉 with a set of vertices V and a set of, neither weighted
nor directed, edges E Ď (V2), and we refer to the vertices v P V also as locations and
use the two terms interchangeably. The distance between two vertices v, u P V,
notated d (v, u), is the length of the shortest path connecting v and u, and the
distance between a vertex v P V and a set of vertices S Ď V, d (v, S), is defined
as the minimal distance between v and a vertex in S. For simplicity, we assume
the graph is connected, so the distances are finite, and in Section 6.1 discuss the
extension to unconnected graphs. We define B (v, d), the ball of radius d ě 0 around
a vertex v P V, to be the set of vertices of distance at most d from v,

B (v, d) “ {u P V | d (v, u) ď d} .

We say that two vertices are neighbors if there is an edge connecting them and
notate by N (v) the set of neighbors of a vertex v.

An instance of the facility location problem over G is comprised of n agents who
are located on vertices of V. Formally, we represent it by a location profile x P Vn

where xi is the location of Agent i. We also use the notations xC for the location
profile of the agents in a given coalition C Ď N and xC for the location profile of
the agents outside of the coalition C. Given an instance x, we would like to locate
a facility on a vertex of the graph while taking into account the preferences of the
agents over the locations. In this work, we assume the preference of an agent is
defined by her distance to the facility: An agent located on x P V strictly prefers the
facility being located on v P V over it being located on u P V iff d (x, v) ă d (x, u).

A general facility location mechanism (or shortly a mechanism) defines for any
location profile of any number of agents a location for the facility. We introduce
the notation V‹ “

⋃
tě0 V

t for the set of all profiles of a finite number of agents.
Hence, we represent the mechanism by a function F : V‹ Ñ V. We also think on
F as a voting procedure: Each agent votes for a location (and we also refer to his
vote as a ballot), and based on the ballots, F returns a location for the facility. We
say that a mechanism is anonymous if the outcome F (x) does not depend on the
identities of the agents, i.e., it can be defined as a function of the ballot tally, the
number of votes for each of the locations.
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Manipulation-resistance

A strategic agent might act untruthfully if she thinks it might cause the mechanism
to return a location she prefers (that is, a location closer to her). In this work, we
consider the following manipulation types: � Misreport: An agent might report
to the mechanism a location different from her true location; � False-name-vote:
An agent might pretend to be several agents and submit several (not necessarily
identical) ballots;4 � Abstention: An agent might choose not to participate in the
mechanism at all. A mechanism in which no agent benefits from these manipula-
tions, regardless to the ballots of the other agents, is said to be strategy-proof,
false-name-proof, and abstention-proof, respectively. We also consider a gener-
alization of these manipulations to manipulations of a coalition, and say a mecha-
nism is group-manipulation-resistant if no coalition can change the outcome, by
misreporting, false-name-voting, or abstaining, to a different location which they
unanimously agree is no worse than the original outcome (that is, when they vote
truthfully) and at least one agent in the coalition strictly prefers the new outcome
over the original outcome. Note that this is a rather strong manipulation-resistance
requirement. A coalition cannot find a deviation that is beneficial for one of its
members without hurting one of its other members, not even one in which different
agents use different types of individual deviations.

Definition 1 (Group-manipulation-resistance5) An anonymous mechanism F

is group-manipulation-resistant if there exists no coalition of agents C Ď {1, . . . , n},
a profile of locations x P Vn, and a set of ballots6 A P V‹ s.t. (i) all the agents in
C weakly prefer F (A,x´C), that is, the outcome when the agents outside of C do
not change their vote and the agents of C replace their ballots by A, over F (x)
and (ii) at least one agent in C strictly prefers F (A,x´C) over F (x).

We note that for C being a singleton, this definition coincides with resistance to
misreporting for |A| “ 1, with resistance to false-name-voting for |A|ą1, and with
resistance to abstention for A “ H.

The revelation principle

One could consider more general mechanisms in which the agents vote using more
abstract ballots, and define similar manipulation-resistance notions for the gen-
eral framework. Applying a simple direct revelation principle [20] shows that any
such general manipulation-resistant mechanism is equivalent to a manipulation-
resistant mechanism in our framework: The two mechanisms implement the same
mapping of the private preferences of the agents to a location for the facility, and
since the above properties are defined for the mapping they are invariant to this
transformation. That is, given some general mechanism M that maps abstract ac-
tions to a location for the facility and a behavior protocol D that maps types of
the agents (i.e., locations) to actions of M , if D satisfies the generalized desiderata,
then the direct mechanism M ˝D satisfies our desiderata.

4 A special case of false-name-voting which is considered in the literature is double-voting:
Casting the same (truthful) ballot several times to increase its impact.

5 For simplicity of notations, we give the formal definition for anonymous mechanisms.
6 Since F is an anonymous mechanisms, we define the deviation A as a set of ballots ignoring

identities.
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Efficiency

So far, we defined the desired manipulation-resistance properties of a mechanism.
On the other hand, we would also like the mechanism to respect the preferences
of the agents. We would like to avoid a scenario in which, after the mechanism
has been used, the agents can agree that a different location is preferable. Given
a location profile x P V‹, the set of Pareto-optimal locations, PO (x), is the set of
all locations which the agents cannot agree to rule out. Formally, given a location
profile x P V‹ and two locations v, u P V, we say that u Pareto-dominates v w.r.t. x

if (i) all agents weakly prefer u over v and (ii) at least one agent strictly prefers
u over v. We say that v is Pareto-optimal w.r.t. x (v P PO (x)) if it is not Pareto-
dominated by any other location in V. We say a mechanism is Pareto-optimal if
for any ballot profile (a location profile) x F (x) P PO (x). In particular, Pareto-
optimality entails unanimity, whenever all the agents unanimously vote for the
same location, the mechanism outputs this location; and citizen sovereignty, the
mechanism is onto and does not a-priori rule out any location.

Relaxing false-name-proofness

The false-name-proofness property might seem to be a too strong desired property
since we do not bound the number of false-name-ballots a manipulator might cast.
Addressing this concern, we show that assuming either abstention-proofness or
strategy-proofness, this property is equivalent to resistance to only one additional
false-name-ballot of the manipulator.

Let F‹ : V‹ Ñ V be a mechanism and x P V‹ a profile s.t. Agent i has a false-
name-manipulation in x. That is, there exists a multi-set A “ {a1, . . . , ak} Ď V s.t.
Agent i strictly prefers the outcome F (A,x´i) over the outcome F (xi,x´i). We
define the following sequence of (k ` 2) profiles:
– x(0)

“ 〈xi, x´i〉
– For t “ 1, . . . , k: x(t)

“ 〈xi, a1, . . . , at, x´i〉
– x(k`1)

“ 〈a1, . . . , at, x´i〉
Since Agent i strictly prefers the outcome F (A,x´i) over the outcome F (xi,x´i),
then necessarily
– Either there exists t P {1, . . . , k} s.t. Agent i strictly prefers the outcome

F
(
x(t)

)
over the outcome F

(
x(t´1)

)
, i.e., she can manipulate using one ad-

ditional false-name-ballot,
– or the following two statements hold

– Agent i strictly prefers the outcome F
(
x(k`1)

)
over the outcome F

(
x(k)

)
,

i.e., she can manipulate by abstaining; and

– Agent i strictly prefers the outcome F
(
x(k`1)

)
over the outcome F

(
x(k´1)

)
,

i.e., she can manipulate by misreporting her location.

3 Main Result

In this work, we define a family of graphs, ZV -line graphs, and present a simple
and general mechanism for this family. This family is defined by introducing a
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simple combinatorial structure: A partition of the locations into two types and a
connectivity constraint. One could think of the partition as representing a social
agreement or a social norm according to which the mechanism is defined, e.g., a
subset of status-quo locations or an a-priori priority hierarchy over the locations.
The connectivity constraint (as the graph in general) represents homogeneity over
the preferences of different agents, that is, a restriction over the possible preference
profiles, focusing on scenarios where the preferences share some common structure.
This allows us to construct a group-manipulation-resistant mechanism.

Definition 2 (ZV -ordered partitions)

Given an unweighted undirected connected graph G “ 〈V, E〉, we say that a
sequence of non-empty sets of vertices Z, V1, . . . , Vk Ď V (k ě 0) is a ZV -ordered
partition of G if the following hold.
1. (VizZ)X (VjzZ) “ H for i ‰ j.
2. The sequence is a cover of V,

Z Y V1 Y ¨ ¨ ¨ Y Vk “ V,

and Vi Ę Z for i “ 1, . . . , k.
3. For i “ 1, . . . , k Vi is a connected component of G.
4. For i “ 1, . . . , k, there is a unique vertex in Vi which is closest (in Vi) to Z. We

refer to it as the root of Vi and denote it by R (Vi),

R (Vi) “ argmin
vPVi

d (v, Z) .

5. All paths between vertices of Vi and vertices outside of Vi include the root
R (Vi) and intersect Z.

6. Z is equipped with a full linear order. For simplicity of description, we refer to
this order as an order from left to right.

We use the notions Vi-subgraphs, V -vertices, and Z-vertices (or Z-locations & Z-
locations)for the respective sets of vertices. Note that we do not require the sets of
Z-vertices and V -vertices to be disjoint, but from Condition 4 we see that for all i if
ViXZ ‰ H, it includes only one vertex, R (Vi). For example, in Figures 1,2,3,5,&6 in
the introduction: The Vi-subgraphs consist of single vertices (the � vertices), which
are also the roots of the respective subgraphs; The Z-vertices are not connected
to each other and are ordered on a horizontal line. In the last example in the
introduction, Fig. 7, there are 10 disjoint Vi-subgraphs and for two of them the
root is also a Z-vertex (See Figure 8a). One could also define a different ZV -ordered
partition of this graph in which instead of the Vi-subgraph V7 in Figure 8a, there
are two disjoint Vi-subgraphs (See Figure 8b).

Given a graph G “ 〈V, E〉 with a ZV -ordered partition V “ Z Y (V1 Ẏ ¨ ¨ ¨ ẎVk)
and mechanisms Fi : x P V ‹i Ñ Vi for i “ 1, . . . , k, we define the following mecha-
nism F‹ : V‹ Ñ V.

Definition 3 (F‹) Given a ballot profile (location reports of the agents) x P V‹,
I If all ballots belong to the same Vi-subgraph, return Fi (x).
I Otherwise, return the leftmost Pareto-optimal location in Z.

Note that F‹ is defined w.r.t. a given ZV -ordered partition, so when there are
several different ZV -ordered partitions for G, e.g., when G is a biclique, different
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(a)

(b)

Fig. 8

mechanisms could arise. It is also important to note that we do not assume that
the agents know the ZV -ordered partition of the graph, but they know the mech-
anism F‹. In other words, we see this structure as a combinatorial property of a
graph which derives the preferences of agents which could represent some homo-
geneity of the preferences or a social norm of giving priority to the Z-locations.

Note that F‹ satisfies the following desired properties:

F‹ is well-defined: Unless all ballots belong to the same Vi-subgraph, there exist
two locations that belong to two different Vi-subgraphs and a shortest path
between them s.t. all its vertices are in PO (x), so PO (x)X Z ‰ H.

F‹ runs in polynomial time: Finding PO (x) can be done in time |V|2 ¨ |N | by
iterating over all location pairs to find the Pareto-dominated locations.

Order representation of F‹: If F1, . . . , Fk can be defined as the first Pareto-
optimal location (in Vi) according to some order, then an equivalent way to
define F‹ is as the first Pareto-optimal location in the following order: First,
go over the Z-locations from left to right; Then, iterate over the Vi-subgraphs,
and for each Vi-subgraph go over its locations according to the order of Fi.

We define ZV -line graphs by introducing an additional connectivity constraint.

Definition 4 (ZV -line graphs)

An unweighted undirected connected graph G “ 〈V, E〉 is a ZV -line graph w.r.t.
V “ Z Y (V1 Ẏ ¨ ¨ ¨ ẎVk), if 〈Z, V1, . . . , Vk〉 is a ZV -ordered partition of G and

– k ą 0 and
(a) For any vertex z P Z, B (z, 1)X Z is a contiguous sequence of Z-vertices,
and for i “ 1, . . . , k
(b) B (R (Vi) , 1)X Z is a contiguous sequence of Z-vertices.

(c) The induced Vi-subgraph Gi “
〈
Vi, E X (Vi

2 )
〉

is a ZV -line graph.
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(d) R (Vi) is a Z-vertex of Gi (that is, a Z-vertex in the ZV -ordered partition
of Gi) and it is the leftmost Z-vertex of Gi.

– Or k “ 0 (i.e., V “ Z) and for any vertex z P V, B (z, 1) is a contiguous sequence
of Z-vertices (according to the order over Z).

We say that a graph G “ 〈V, E〉 is a ZV -line graph, if it is a ZV -line graph w.r.t.
some ZV -ordered partition of G.

For example, in Figures 1,2,3,5,&6 in the introduction:
– The Z-vertices are not connected to each other, so B (z, 1) X Z “ {z} for all
z P Z;

– For any Vi-subgraph, Vi is a singleton, so
〈
Vi, E X (Vi

2 )
〉

is the trivial ZV -line

graph which consists of a single vertex; and
– Each V -vertex is connected to a contiguous sequence of Z-vertices.

Note that bicliques (Fig. 1) are ZV -line graphs w.r.t. any order over the Z-vertices.
We note that the second case in Definition 4 (k “ 0) can be replaced by G

being the singleton graph.

Proposition 1 Let G “ 〈V, E〉 be a connected graph over V “ {1, . . . ,m} for m ą 1
s.t. G is a ZV -line graph w.r.t. Z “ V and k “ 0. Then G is also a ZV -line graph

w.r.t. Z “ {1, . . . ,m´ 1} and V1 “ {m}.

Proof G is a ZV -line graph w.r.t. Z “ V “ {1, . . . ,m} and k “ 0.
ðñ For v “ 1, . . . ,m: B (v, 1) “ {v}YN (v) is a contiguous sequence of vertices.

ðñ

{
For v “ 1, . . . ,m´ 1 : B (v, 1) is a contiguous sequence of vertices.
B (m, 1) “ {m}YN (m) is a contiguous sequence of vertices.

ùñ

{
For v “ 1, . . . ,m´ 1 : B (v, 1) is a contiguous sequence of vertices.
N (m) is a contiguous sequence of vertices.

ðñ G is a ZV -line graph w.r.t. Z “ {1, . . . ,m´ 1} and V1 “ {m}. [\

The case k “ 0 serves as a base step of the inductive definition of ZV -line
graphs. For this reason, we prefer to enrich it over defining the base step as only
the singleton graph. Two immediate examples of ZV -line graphs in the base case
are the line graph with the natural order (note this is a different representation as
a ZV -line graph than the one in Figure 2) and the clique graph with any order over
the vertices.7 It turns out that an equivalent definition of this case is a definition
as a composition of a line and cliques.

Proposition 2 Let G “ 〈V, E〉 be a connected graph over V “ {1, . . . ,m}. Then the

following four statements are equivalent

1. G is a ZV -line graph w.r.t. Z “ V “ {1, . . . ,m} and k “ 0.

2. For any vertex v P V and h “ maxB (v, 1), the projection of G on {v, . . . , h} is a

clique, i.e., for any v ď a ă b ď h (a, b) P E.

3. For any vertex v P V and ` “ minB (v, 1), the projection of G on {`, . . . , v} is a

clique, i.e., for any ` ď a ă b ď v (a, b) P E.

4. G can be represented as a ‘line of cliques.’ That is, there exists a sequence of

integer ranges {(at, bt)}rt“1 s.t.

at ă at`1 ď bt ă bt`1 t “ 1, . . . , r ´ 1 and

7 So the mechanism F‹ for the line graph returns the leftmost location that was voted for
and F‹ for the clique graph returns the first location that was voted for.
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for any 1 ď u ă v ď m (u, v) P E ðñ Dt P {1, . . . r} s.t. at ď u ă v ď bt.

Proof We show that (1) ñ (2) ñ (4) ñ (1). Showing that (1) ñ (3) ñ (4) is
symmetric.

1 ñ 2: Let v P V and v ď a ă b ď h. v is connected to h, and since B (v, 1) is a
contiguous sequence of vertices, v is also connected to b. Similarly, b is connected
to v, and since B (b, 1) is a contiguous sequence of vertices, it is also connected
to a.

2 ñ 4: We define two sequences {at}|V|
t“1 and {bt}|V|

t“1 by at “ t and bt “

maxN (t) (Since G is connected, N (t) ‰ H ) and get that for any 1 ď u ă v ď m:
– If (u, v) P E, then au “ u ă v ď maxN (u) “ bu.
– If Dt P {1, . . .m} s.t. at ď u ă v ď bt, then the projection of G on {at, . . . , bt} is

a clique and in particular (u, v) P E.
That is,

(u, v) P E ðñ Dt P {1, . . .m} s.t. at ď u ă v ď bt.

We note that we can omit without hurting this property from the sequences
pairs for which at ą bt and pairs that are included in other pairs (at1 ď at ă bt ď

bt1). Hence, we get that

@t

{
at ă at`1

bt ă bt`1

and since G is a connected graph also

@t at`1 ď bt.

4 ñ 1: Let v P V and u P B (v, 1). If u ă v, then there exists an index t P

{1, . . . r} s.t. at ď u ă v ă bt. Furthermore, v is connected to any vertex w P V s.t.
at ď u ď w ă v. Similarly, if u ą v, then v is connected to any vertex w P V s.t.
v ă w ď u. Hence, B (v, 1) “ {v}YN (v) is a contiguous sequence of vertices. [\

Given a ZV -line graph G “ 〈V, E〉, applying Def. 3 recursively on G and its Vi-
subgraphs (with the case V “ Z as the base of the recursion) defines a mechanism
F‹ : V‹ Ñ V. Our main result shows that this resulted mechanism satisfies the
desired properties.

Theorem 1 (Main result)

Let G “ 〈V, E〉 be a ZV -line graph (w.r.t. some ZV -ordered partition) and let

F‹ : V‹ Ñ V be the result of applying Definition. 3 recursively on G. Then F‹ is

an anonymous, Pareto-optimal, group-manipulation-resistant mechanism. That is, F‹
satisfies:

For any location profile x P Vn, a coalition of agents C, and a set of ballots A P V‹,

A is not a beneficial deviation for C.8

A special case of ZV -line graphs which we found interesting on their own merits
are the Bipartite ZV -line graphs.

Definition 5 (Bipartite ZV -line graphs)

A bipartite graph G “ 〈V “ L ẎR, E〉 (that is, E Ď L ˆ R) is a ZV -line graph
(w.r.t. Z “ L and V1 “ R), if � L is equipped with an order and � For any vertex
v P R N (v) is a contiguous sequence of vertices of L.

8 Since F‹ is onto, this property entails Pareto-optimality. Yet, we prefer to state explicitly
Pareto-optimality as a desired efficiency property.
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For bipartite ZV -line graphs, an immediate corollary of the main theorem:

Corollary 1

Let G “ 〈V “ L ẎR, E〉 be a bipartite ZV -line graph and let F‹ be the following

mechanism: I If all ballots are identical, return this location as the outcome.

I If one of the ballots is a location in L, return the leftmost location in

L that was voted for.

I Otherwise, return the leftmost location in L.
Then F‹ is an anonymous, Pareto-optimal, group-manipulation-resistant mechanism.

Note that the bipartiteness of the graph (and the existence of a ZV -ordered parti-
tion in general) is not a sufficient condition for group-manipulation-resistance of
F‹. For example, C6, the cycle of size 6, is a bipartite graph but there exists no
mechanism for C6 which satisfies the properties of the theorem (In Section 5.1, we
generalize this and show that for any n ą 5 there exists no anonymous Pareto-
optimal mechanism for Cn which is resistant even to manipulations a single agent).

Proof

0

1

2

3

4

5

Assume towards a contradiction that F is a Pareto-optimal, anony-
mous, group-manipulation-resistant mechanism for C6. We notate
the vertices of C6 by {0, 1, 2, 3, 4, 5}, and w.l.o.g. assume that for the
profile of six agents who vote for all six locations the outcome is 0.

For the profile 〈2, 4, 5〉: From resistance to false-name manip-
ulations of the first and last agents, the outcome must be either 0
or 4 (Since any of them can change the result to be 0 by adding
false-ballots). From the Pareto-optimality of F , the outcome cannot
be 0 which is Pareto-dominated by 4. Hence, the outcome for the profile 〈2, 4, 5〉
is 4.

Similarly, for the symmetric profile 〈1, 2, 4〉 the outcome must be 2. From
false-name-resistance the outcome for the profile 〈2, 4〉 must also be 2 (Otherwise,
the first agent will cast an additional false-ballot 1 to get the outcome to be 2).

But, the second agent in the profile 〈2, 4〉 (who is located on 4) can change
the outcome to be 4 that she strictly prefers by casting one additional false-ballot
5. So we get a contradiction. [\

v
1

z` zr

10

V “ {v}
Z “ {z`, zr}

We also note that the theorem does not hold for weighted
graphs. Consider the weighted graph on the right and a profile
in which Alice is located on zr and Bob is located on v. Then
the outcome of F‹ is zr, but Bob can move the facility to a
preferred location z` both (i) by misreporting z`; hence, F‹ is
not strategy-proof; and (ii) by false-name-voting z` besides his
truthful ballot, hence, F‹ is not false-name-proof.9

Last, we note that there exist simple mechanisms that satisfy subsets of the
properties of Thm. 1:
– The fixed mechanism, which always locates the facility on a pre-defined location

ignoring the votes of the agents, is trivially group-manipulation-resistant and
anonymous for any graph, but it is not onto and hence not Pareto-optimal.

9 The mechanism that returns the leftmost ballot according to the order z`´ v´ zr satisfies
the desiderata. Notice that this mechanism can be defined as F‹ w.r.t. a ZV -ordered partition
with Z “ {z`, v, zr} and k “ 0.
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– A dictatorship of the first agent, i.e., a mechanism that always locates the
facility on the location reported by the first agent, is not anonymous, but it is
group-manipulation-resistant for any graph.10

– The median mechanism, which minimizes the sum of distances between the
facility and the ballots, is an anonymous Pareto-optimal mechanism for any
graph. For some graphs, e.g., the discrete line, it also satisfies strategy-proofness
and abstention-proofness both against one manipulator and against a coalition,
but an agent can benefit by casting multiple identical ballots.

– Also the mean mechanism, which minimizes the sum of squares of the distances
between the facility and the ballots, is an anonymous Pareto-optimal mech-
anism for any graph, but it might not be strategy-proof or false-name-proof
even against one agent, e.g., for the discrete line graph (it is abstention-proof,
though).

4 Proof of Main Result (Thm. 1)

We prove a stronger result (Thm. 2) showing a general method to construct
from anonymous, Pareto-optimal, manipulation-resistant mechanisms for the Vi-
subgraphs, an anonymous, Pareto-optimal, manipulation-resistant mechanism F‹
for G. Theorem 1 is the outcome of applying Thm. 2 on the recursive steps of the
definition of F‹ (Def. 3).

Theorem 2

Let G “ 〈V, E〉 be a graph with a ZV -ordered partition V “ ZY (V1 Ẏ ¨ ¨ ¨ ẎVk) and

let Fi : V ‹i Ñ Vi be a sequence of mechanisms s.t. for i “ 1, . . . , k
– Fi is an anonymous Pareto-optimal mechanism;

– For an infinite number of τ P N, there exists a profile x P V ‹i in which there are

at least τ ballots for any location in Vi s.t. Fi (x) “ R (Vi); and

– Fi is a group-manipulation-resistant mechanism. I.e., for any profile of locations

x P V ‹i , a coalition of agents C, and a set of ballots A P V ‹i , A is not a beneficial

deviation for C in x.

Then for F‹ : V‹ Ñ V as defined in Definition 3, F‹ is an anonymous Pareto-optimal

mechanism and

(I) If G is a ZV -line graph w.r.t. V “ ZY (V1 Ẏ ¨ ¨ ¨ ẎVk), then also F‹ is a group-

manipulation-resistant mechanism.

(II) If for i “ 1, . . . , k R (Vi) P Z and the mechanism FZ : Z‹ Ñ Z that returns

the leftmost Pareto-optimal location (that is, the restriction of F‹ to Z‹) is a

group-manipulation-resistant mechanism, then also F‹ is a group-manipulation-

resistant mechanism.

Proof of Theorem 2

Since the mechanisms Fi and FZ are anonymous, F‹ is also an anonymous
mechanism.

Unless all ballots belong to the same Vi-subgraph, from the definition of F‹,
the outcome lies in Z and it is Pareto-optimal. If all agents belong to the same

10 While we did not formally define false-name-proofness for non-anonymous mechanisms,
assuming a false-name-ballot cannot be counted as the vote of the first agent, no agent can
benefit from casting additional ballots.
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Vi-subgraph, then all of them strictly prefer R (Vi) over any location outside of Vi,
so PO (x) Ď Vi. Furthermore, any location v P VizPO (x) is Pareto-dominated by
a location y P PO (x) Ď Vi. Hence, the Pareto-optimal set when considering only
the locations in Vi equals to the Pareto-optimal set when considering all locations.
Since the mechanisms Fi are Pareto-optimal mechanisms, we get that also F‹ is
a Pareto-optimal mechanism.

To prove the main part of the theorem, we assume towards a contradiction
that there exists a profile of locations (ballots) x P Vn, a coalition of agents C, and
a set of ballots A P V‹, s.t. the coalition C can cast A and change the outcome to
be F‹ (A,x´C) that it strictly prefers. That is, all the agents in C weakly prefer
F‹ (A,x´C) over F‹ (x) “ F‹ (xC ,x´C) and at least one agent in C, Agent i for
i P C, strictly prefers F‹ (A,x´C) over F‹ (x). F‹ (x) P PO (x) and in particular
the coalition of all agents does not strictly prefer F‹ (A,x´C) over F‹ (x). Hence,
there exists an Agent j, for j R C, who strictly prefers F‹ (x) over F‹ (A,x´C).

If F‹ (x) is not in Z: Then necessarily, all the locations in x and F‹ (x) belong
to the same Vi-subgraph, w.l.o.g. V1, so F‹ (x) “ F1 (x). Since F1 is resistant to
false-name manipulations of Agent i and since Agent i can achieve R (V1) by cast-
ing enough false ballots, we get that Agent i weakly prefers F‹ (x) over R (V1)
and hence Agent i strictly prefers F‹ (A,x´C) over R (V1). Since for any location
u outside of V1 it holds that d (xi,R (V1)) ă d (xi, u), we get that F‹ (A,x´C) P
V1z {R (V1)} Ď V1zZ. Hence, A Ď V1 and F‹ (A,x´C) “ F1 (A,x´C), in contra-
diction to the group-manipulation-resistance of F1.

Similarly, if F‹ (A,x´C) is not in Z: Then necessarily, F‹ (A,x´C) and all the lo-
cations in A and x´C belong to the same Vi-subgraph, w.l.o.g. V1, so F‹ (A,x´C)
“ F1 (A,x´C). Since F1 is resistant to false-name manipulations of Agent j and
since Agent j can achieve R (V1) by casting enough false ballots, we get that
Agent j weakly prefers F‹ (A,x´C) over R (V1) and strictly prefers F‹ (x) over
R (V1). Since for any location u outside of V1 it holds that d (xj ,R (V1)) ă d (xj , u),
we get that F‹ (x) P V1z {R (V1)} Ď V1zZ. Hence, x Ď V1 and F‹ (x) “ F1 (x), in
contradiction to the group-manipulation-resistance of F1.

If both F‹ (x) and F‹ (A,x´C) are in Z: We deal with this case using two different
argumentations for the two scenarios of the theorem.

(I) G is a ZV -line graph w.r.t. V “ Z Y (V1 Ẏ ¨ ¨ ¨ ẎVk):

First, we prove the following two auxiliary lemmas.

Lemma i For any v P V and d ě 0, B (v, d) X Z is a contiguous sequence of

Z-vertices.

Proof If d ă d (v, Z), B (v, d)XZ “ H. Henceforth, we assume that d ě d (v, Z).

First, we prove the lemma for vertices v P V s.t. d (v, Z) ď 1 (i.e., v P Z or
v is the root of some Vi-subgraph) by induction over d.

For d “ 0: B (v, 0)X Z is either the empty set (if v R Z) or {v} (if v P Z).

For d “ 1: B (v, 1) X Z is a contiguous sequence of Z-vertices by the definition
of ZV -line graphs.

For d ě 2: We note that if u P B (v, d) X Z, then there exists a path from v to
u of length at most d s.t. all the vertices of the path are either Z-vertices or
roots of Vi-subgraphs. Also, there are no edges between two vertices of distance
1 from Z. Hence,
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– If v P Z: B (v, d)X Z “

(
{v}Y

(⋃
uPN(v) s.t.
d(u,Z)ď1

B (u, d´ 1)

))
X Z

“ {v}Y

(⋃
uPN(v) s.t.
d(u,Z)ď1

B (u, d´ 1)X Z

)
,

and since for any location u P N (v) v P B (u, d´ 1)XZ and B (u, d´ 1)XZ
is a contiguous sequence of Z-vertices, also B (v, d) X Z is a contiguous
sequence of Z-vertices as the union of intersecting contiguous sequences of
Z-vertices.

– If v R Z: B (v, d)X Z “
(
{v}Y

(⋃
uPN(v)XZ B (u, d´ 1)

))
X Z

“
⋃

uPN(v)XZ B (u, d´ 1)X Z,

and since N (v) X Z is a contiguous sequence of Z-vertices and for any
u P N (v)XZ B (u, d´ 1)XZ is a contiguous sequence of Z-vertices, also
B (v, d)X Z is a contiguous sequence of Z-vertices.

Last, if v R Z and it is not a root of a Vi-subgraph, then d ě d (v, Z) ą 1. We
take u to be the root of v’s Vi-subgraph and since all paths from v to locations
in Z pass through u, we get that

B (v, d)X Z “ B (u, d´ d (v, u))X Z

which is a contiguous sequence of Z-vertices. [\

Lemma ii Let x be a location profile s.t. F‹ (x) P Z and let v P Z be a location

s.t. Agent i strictly prefers v over F‹ (x). Then F‹ (x) is to the left of v.

Proof If xi P Z, then xi P PO (x)X Z and by the definition of F‹, F‹ (x) is to
the left of xi. Since F‹ (x) R B (xi, d (xi, v))XZ and since B (xi, d (xi, v))XZ is
a contiguous sequence of Z-vertices that includes xi, we get that F‹ (x) is to
the left of B (xi, d (xi, v))X Z and in particular to the left of v.

If all the ballots in x belong to the same Vi-subgraph, w.l.o.g. V1, then
F‹ (x) P V1XZ, and hence F‹ (x) “ R (V1), and v P ZzV1. This in contradiction
to the fact that Agent i is located in V1 and she strictly prefers v over F‹ (x).

Last, if both former cases do not hold, i.e., xi R Z and there exists an
Agent k for which xk is not in the same Vi-subgraph as xi, then there exists a
location u P Z s.t. u is on a shortest path from xi to xk, u P Z, u P PO (x), and
d (xi, u)=d (xi, Z)ďd (xi, v) and so

u P B (xi, d (xi, u))X Z Ď B (xi, d (xi, v))X Z.

Both sets are contiguous sequences of Z-vertices, F‹ (x) is to the left of u (or
equal to it), andF‹ (x) R B (xi, d (xi, v))XZ. Hence,F‹ (x) is to the left of v. [\

By applying Lemma (ii) for the profile x and Agent i, we get that F‹ (x) is
to the left of F‹ (A,x´C); and by applying Lemma (ii) for the profile (A,x´C)
and Agent j, we get that F‹ (A,x´C) is to the left of F‹ (x). Hence, we get a
contradiction.

(II) R (Vi) P Z for i “ 1, . . . , k and
FZ is a group-manipulation-resistant mechanism:

Given a location profile y P V‹, we use the notation ŷ P Z‹ for the location
profile generated from y by replacing each ballot outside of Z with the root of



20 Ilan Nehama et al.

its Vi-subgraph. The preference of an agent whose location is in a Vi-subgraph
over the locations of Z is identical to the preference of an agent whose location
is R (Vi). Hence, for any profile y s.t. F‹ (y) P Z, F‹ (y) “ FZ (ŷ). Therefore,
for the profile x̂ P Zn the coalition C can, by casting Â, get an outcome

FZ

(
Â, x̂´C

)
“ F‹ (A,x´C) that it strictly prefers over FZ (x̂) “ F‹ (x), in

contradiction to the group-manipulation-resistance of FZ . [\

The same proof shows that also weaker notions of manipulation-resistance can
be lifted from the mechanisms for the Vi-subgraphs to the mechanism F‹, e.g.,
resistance against manipulations of only some coalitions and resistance against
only some manipulation types.

Theorem 3

Let G “ 〈V, E〉 be a graph with a ZV -ordered partition V “ ZY (V1 Ẏ ¨ ¨ ¨ ẎVk) and

let Fi : V ‹i Ñ Vi be a sequence of mechanisms s.t. for i “ 1, . . . , k

– Fi is an anonymous Pareto-optimal mechanism;

– For an infinite number of τ P N, there exists a profile x P V ‹i in which there are

at least τ ballots for any location in Vi s.t. Fi (x) “ R (Vi); and

– Fi is resistant against false-name-voting of any single agent.

Then for F‹ : V‹ Ñ V as defined in Definition 3, F‹ is an anonymous Pareto-optimal

mechanism and for any profile of locations x P V‹, a coalition of agents C, and a set

of ballots A P V‹

– If there exists a Vi-subgraph s.t.

{
F‹ (x) P VizZ
F‹ (A,x´c) R VizZ

or

{
F‹ (A,x´c) P VizZ
F‹ (x) R VizZ

,

then A is not a beneficial deviation for C in x.

– If there exists a Vi-subgraph s.t.

{
F‹ (A,x´c) P VizZ
F‹ (x) P VizZ

, then necessarily both x

and A are included in Vi and A is a beneficial deviation for C in x (under F‹)

iff A is a beneficial deviation for C in x under Fi.

– If

{
F‹ (A,x´c) P Z
F‹ (x) P Z

,

(I) If G is a ZV -line graph w.r.t. V “ Z Y (V1 Ẏ ¨ ¨ ¨ ẎVk), then A is not a

beneficial deviation for C in x.

(II) If for i “ 1, . . . , k R (Vi) P Z, then for the mechanism FZ : Z‹ Ñ Z

that returns the leftmost Pareto-optimal location (that is, the restriction of

F‹ to Z‹): If A is a beneficial deviation for C in x, then there exists a

beneficial deviation for C under FZ (in some profile x1 P Z‹).

5 Examples of ZV -line graphs

In this section, we study several graph families which we show are ZV -line graphs,
by that also illustrating the richness of the family of ZV -line graphs. We also
present the mechanisms for these graphs that are derived from our main result.
As we saw previously, cliques, lines, and bicliques are ZV -line graphs.

Claim For any n ě 1, the clique over n vertices,

Kn “ 〈V “ {1, . . . n} , E “ {(i, j) | i ‰ j}〉
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(that is, the graph over n vertices with an edge between any two vertices), is a
ZV -line graph w.r.t. the Z-vertices being all n vertices with any order over them.

Claim For any n ě 1, the discrete line of n vertices,

Pn “ 〈V “ {1, . . . n} , E “ {(i, i` 1) | i “ 1, . . . , n´ 1}〉 ,

is a ZV -line graph w.r.t. the following two ZV -ordered partitions (and others)
– w.r.t. the Z-vertices being all n vertices with the natural order over them; and
– w.r.t. the Z-vertices being the dn{2e odd-indexed vertices with the natural order

over them and each of the even-indexed vertices being a singleton Vi-subgraph.
(Note that these two ZV -ordered partitions result in two different mechanisms).

Claim For any n,m ě 1, the biclique over n and m vertices,

Km,n “ 〈V “ {1, . . . n} Ẏ {n` 1, . . . n`m} , E “ {(i, j) | i ď n ă j}〉

(that is, the graph with n vertices on one side, m vertices on the other side and
an edge between any two vertices of opposite sides), is a ZV -line graph w.r.t. Z-
vertices being the first n vertices with any order over them and each of the other
m vertices being a singleton Vi-subgraph.

Furthermore, the following three propositions show that also small perturbations
of cliques, the outcome of adding vertices or removing edges, are ZV -line graphs.

Proposition 3

Let G “ 〈V, E〉 be a graph with a vertex set V and an edge set E, and let V “

V ‹ ẎV (1)
ẎV (2)

Ẏ ¨ ¨ ¨ ẎV (k) (for k ě 1 and V ‹ ‰ H) be a partition of the vertex set

V s.t.

– The restriction of G to VzV ‹ is a clique. That is, for any two vertices v, u R

V ‹ (v, u) P E; and

– For any vertex v P V ‹, N (v) “ V (i) for some partition element V (i) (i P {1, . . . , k}).

Then G is a ZV -line graph.

Proof

We name the vertices of V ‹

V ‹ “
{
v1, v2, . . . , v|V ‹|

}
,

and claim that G is a ZV -line graph w.r.t. the singleton subgraphs Vi “ {vi} for i “

1, . . . , |V ‹|, Z “ VzV ‹ “
⋃k

i“1 V
(i), and an order over Z s.t. for i “ 1, . . . , k V (i)

is a contiguous sequence of vertices. Note that such an order exists since the sets
V (i) are disjoint.
˚ The sets Vi are disjoint, V “ ZYV1Y¨ ¨ ¨YV|V ‹|, and for i “ 1, . . . , |V ‹| Vi Ę Z.
˚ There are no edges between different Vi-subgraphs.
˚ Since the Vi-subgraphs are singletons, R (Vi) “ vi and the induced Vi-subgraphs

are ZV -line graphs.
˚ For any vertex z P Z, B (z, 1)X Z “ VzV ‹ “ Z.
˚ For i “ 1, . . . , |V ‹| B (R (Vi) , 1) X Z “ N (vi) which is a contiguous sequence

of Z-vertices by our choice of the order.
Hence, G is a ZV -line graph. [\
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Proposition 4 Let Knze be the outcome of removing one edge from a clique of size

n. I.e., Knze :“ 〈V, E〉 s.t. |V| “ n and there exist two vertices u, v P V s.t. (u, v) R E
and E Ẏ {e} “ (V2). Then G is a ZV -line graph.

Proof

We name the vertices V “ {v1, v2, . . . , vn} s.t. (v1, v2) R E. Then by choosing
V ‹ “ {v1}, V (1)

“{v2, . . . , vn} and applying Prop. 3 we get that Knze is a ZV -line
graph (w.r.t. Z “ {v2, . . . , vn} with any order over Z and V1 “ {v1}). [\

Generalizing Proposition 4, we get the following proposition.

Proposition 5 For 1 ă m ă n, let KnzKm be the outcome of removing a clique of

size m from the clique of size n. I.e.,

KnzKm :“ 〈V “ {1, . . . n} , E “ {(i, j) | i ‰ j} z {(i, j) | i, j ď m and i ‰ j}〉 .

Then G is a ZV -line graph.

Proof

We define V ‹ “ {v1, . . . , vm}, V (1)
“ {vm`1, . . . , vn}. We note that for any

vertex v P V ‹ N (v) “ V (1) and that the graph restricted to V (1) is a clique of
size (n´m). Hence, by applying Prop. 3 we get that KnzKm is a ZV -line graph
(w.r.t. Z “ {m` 1, . . . , n} with any order over Z and each of the other m vertices
being a singleton Vi-subgraph). [\

5.1 The discrete cycle over n vertices (Cn)

In this section, we characterize the discrete cycle graphs over n vertices, Cn, for
which a group-manipulation-resistant, anonymous, Pareto-optimal mechanism ex-
ists. In particular, we show that for a large enough cycle (n ě 6) there is no
anonymous Pareto-optimal mechanism that is resistant even to manipulations of
a single agent. On the other hand, we show that for smaller cycles one can construct
group-manipulation-resistant, anonymous, Pareto-optimal mechanisms.

C2, C3, C4: These three graphs are ZV -line graphs: C2 and C3 are cliques and
hence can be defined as ZV -line graphs with only Z-locations (and any order
over them), C4 is a (2, 2)-biclique and hence can be defined as a ZV -line graph
w.r.t. taking two non-adjacent locations to be the Z-vertices (and any order over
them) and two singleton Vi-subgraphs consisting of the other two locations. More-
over, these are the only group-manipulation-resistant, anonymous, Pareto-optimal
mechanisms for these graphs.

C5: It is not hard to verify that a mechanism which returns the first Pareto-optimal
location according to one of the following orders -

1

3 2

5 4
,

1

3 2

4 5
,

1

4 2

3 5

- is a group-manipulation-resistant mechanism. These three mechanisms are of
the template of Def. 3 with all locations being Z-locations, but these ZV -ordered
partitions do not satisfy the connectivity constraints of Def. 4 and the cycle of size
5 is not a ZV -line graph. It is a bit exhaustive but not hard to verify that these
mechanisms (and their rotations and reflections) are the only group-manipulation-
resistant, anonymous, Pareto-optimal mechanisms for C5.
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Cn for n ě 6:

Proposition 6 For n ě 6 there is no anonymous Pareto-optimal mechanism for Cn

which is resistant even to manipulations of a single agent.

Proof

The proof generalizes the proof for C6 which we showed on page 16. For sim-
plicity of notations we divide the proof into three cases:

I Cycles of even size n ě 6,
I Large cycles (Cn for n ě 6 except n “ 7, n “ 11, and n P {6, 8, 10, 12, 14, 16, 20}),
I and last C7 and C11.

Cn for even n ě 6:

0 1
2

n{21` n{2
2` n{2

Assume towards a contradiction that F

is a Pareto-optimal, anonymous, manipulation-
resistant mechanism for Cn. We notate the ver-
tices of Cn by {0, 1, 2, . . . , n´ 1}, and w.l.o.g. as-
sume that for the profile of n agents who vote for
all n locations the outcome is 0.

For the profile 〈2, 1 ` n{2, 2 ` n{2〉: From re-
sistance to false-name manipulations of the first and last agents, the outcome
must be either 0 or 4 (Since any of them can change the result to be 0
by adding false-ballots). From the Pareto-optimality of F , the outcome can-
not be 0 which is Pareto-dominated by 4. Hence, the outcome for the profile
〈2, 1 ` bn{2c , 2 ` bn{2c〉 is 4.

Similarly, for the profile 〈1, 2, 1 ` n{2〉 the outcome must be 2. From false-
name-resistance of F‹, the outcome for the profile 〈2, 1 ` n{2〉 must also be 2
(Otherwise, the first agent can cast an additional false-ballot 1 to get the outcome
to be 2).

But, the second agent in the profile 〈2, 1 ` n{2〉 (who is located on 1 ` n{2)
can change the outcome to be 4 which is closer to her by casting one additional
false-ballot 2` n{2. So we get a contradiction. [\

Cn for n ě 6 except n “ 7, n “ 11, and n P {6, 8, 10, 12, 14, 16, 20}:
0

⌈
n´2
3

⌉
n´

⌈
n´2
3

⌉
n´ dn{4e` 1

n´ 2 dn{4e` 2

F
(⌈ n´

2

3

⌉ , n

⌈́ n´
2

3

⌉)

P

[⌈ n´
2

3

⌉ ,
bn{

2c
]F (⌈

n
´
23 ⌉
,
n
´ dn
{4e
`

1 )

P
[n
´

2 dn
{4e
`

2,
n
´ dn
{4e
`

1]

Assume towards a contradiction
that F is a Pareto-optimal, anonymous,
manipulation-resistant mechanism for
Cn. We notate the vertices of Cn by
{0, 1, 2, 3, . . . , n´ 1}, and w.l.o.g. as-
sume that for the profile of n agents
who vote for all n locations the out-
come is 0.

For the profile
〈⌈

n´2
3

⌉
, n ´

⌈
n´2
3

⌉〉
:

From the Pareto-optimality of F , since(
n´

⌈
n´ 2

3

⌉)
´

⌈
n´ 2

3

⌉
ă
n

2
,

the outcome must be in
[⌈

n´2
3

⌉
, n´

⌈
n´2
3

⌉]
.

W.l.o.g. assume it is in
[⌈

n´2
3

⌉
, bn{2c

]
.
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Next, we consider the profile〈⌈
n´2
3

⌉
, n ´ dn{4e ` 1

〉
: From the Pareto-optimality of F , since

(n´ dn{4e` 1)´

⌈
n´ 2

3

⌉
ă
n

2
,

the outcome must be in
[⌈

n´2
3

⌉
, n´ dn{4e` 1

]
. Since the second agent in this pro-

file can change the result to be 0 by adding false-ballots, by false-name-proofness
the outcome must be in [n´ 2 dn{4e` 2, n´ dn{4e` 1]. Hence, the second agent in
the profile

〈⌈
n´2
3

⌉
, n ´

⌈
n´2
3

⌉〉
(who is located on n´

⌈
n´2
3

⌉
) can change the out-

come to be F
(⌈

n´2
3

⌉
, n´ dn{4e` 1

)
which is closer to her by changing her vote to

n´ dn{4e` 1. So we get a contradiction. [\

C7:

0

16

25

34

Assume towards a contradiction that F is a Pareto-optimal,
anonymous, manipulation-resistant mechanism for C7. We no-
tate the vertices of C7 by {0, 1, 2, 3, 4, 5, 6}, and w.l.o.g. assume
that for the profile of seven agents who vote for all seven loca-
tions the outcome is 0.

For the profile 〈2, 5〉: From resistance to false-name manip-
ulations of the first and last agents, the outcome must be 0,
3, or 4 (Since any of them can change the result to be 0 by
adding false-ballots). From the Pareto-optimality of F , the outcome cannot be 0
which is Pareto-dominated by 4. Hence, the outcome for the profile 〈2, 5〉 is either
3 or 4. W.l.o.g. assume it is 3. By strategy-proofness, also the outcome for the
profile 〈3, 5〉 must be 3 (Otherwise, the first agent in this profile has a beneficial
manipulation of voting 2).

Now, let us consider the profile 〈3, 6〉: From the Pareto-optimality of F , the
outcome cannot be 0 which is Pareto-dominated by 5. Since the second agent in
this profile can change the result to be 0 by adding false-ballots, by false-name-
proofness the outcome must be either 5 or 6. Hence, the second agent in the profile
〈3, 5〉 (who is located on 5) can change the outcome to be F (3, 6) which is closer
to her by changing her vote to 6. So we get a contradiction. [\

C11:

0
110

29

38

47

56

Assume towards a contradiction that F is a Pareto-
optimal, anonymous, manipulation-resistant mechanism for
C11. We notate the vertices of C11 by {0, 1, 2, 3, . . . , 10}, and
w.l.o.g. assume that for the profile of eleven agents who vote
for all eleven locations the outcome is 0.

For the profile 〈4, 7〉: From the Pareto-optimality of F ,
the outcome must lie in {4, 5, 6, 7} (The locations 0, 1, 2, and
3 are Pareto-dominated by 5. the locations 8, 9, and 10 are
Pareto-dominated by 6). W.l.o.g. we assume it is either 4 or 5.

For the profile 〈4, 9〉: From resistance to false-name ma-
nipulations of the first and last agents, the outcome must be 0, 7, or 8 (Since any
of them can change the result to be 0 by adding false-ballots). From the Pareto-
optimality of F , the outcome cannot be 0 which is Pareto-dominated by 7. Hence,
the outcome for the profile 〈4, 9〉 is either 7 or 8.
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Hence, the second agent in the profile 〈4, 7〉 (who is located on 7) can change
the outcome to be F (4, 9) which is closer to her by changing her vote to 9. So we
get a contradiction. [\

5.2 Recursive families of ZV -line graphs

Many graph families are defined using a recursive definition: That is, stating a
base case consisting of a small initial family of simple graphs and an inductive
step defining graphs in the family as a simple amalgamation of other (more basic)
graphs in the family (for example, condition (c) in the definition of ZV -line graphs,
Def. 4). Given a recursive family of ZV -line graphs, the mechanism F‹ of Thm. 1 is
a recursive (and hence commonly simple) mechanism that satisfies our desiderata.

Example (i): Rooted trees

A simple example of a recursive family of ZV -line graphs are rooted trees which
can be defined recursively as follows:

Base: A tree of height 0 is a single vertex (and it is also the root of the tree).
Step: A tree of height h ą 0 is comprised of a vertex (the root) which is connected

to the roots of a non-empty set of trees of maximal height (h´ 1).

¨ ¨ ¨h “ 0 h “ 1 h “ 2 h “ 3

Fig. 9: Trees of height 0, 1, 2, and 3.

The new vertex (the root) added in each step is notated by .

The roots of the sub-graphs of each step are notated by .
We can see that indeed these graphs are ZV -line graphs w.r.t. the only Z-

vertex being the root, by noticing that the recursive step of the definition satisfies
the recursive connectivity constraint of Definition 4. Hence, we get, as a corol-
lary of Thm. 1, that the mechanism that returns the lowest common ancestor of
the ballots is an anonymous, Pareto-optimal, group-manipulation-resistant mech-
anism. Noting that given a tree graph, it is a rooted graph w.r.t. the root being
any of the vertices, we get that any mechanism F that returns the lowest common
ancestor of the ballots w.r.t. some arbitrary root r, or equivalently

F (x) “ argmin
vPPO(x)

d (v, r) ,

is an anonymous, Pareto-optimal, group-manipulation-resistant mechanism. These
are also the mechanisms that Todo et al. [28] characterized as the false-name-proof,
anonymous, Pareto-optimal mechanisms for the continuous tree.
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Example (ii): A generalization of rooted trees

We show an anonymous, Pareto-optimal, group-manipulation-resistant mechanism
for the following family of rooted graphs (that is, 〈V, E , r〉 s.t. E Ď (V2) and r P V).

Definition 6 (F)

Base: 〈{v} , H, v〉 P F .
Step: For any k, ` ě 1: If {〈Vi, Ei, ri〉}ki“1 are graphs in F (and the Vi are

pairwise disjoint), then also the graph〈{
r̂j
}`
j“1

Ẏ

 k⋃̇
i“1

Vi

 ,

 k⋃̇
i“1

Ei

 Ẏ{(r̂j , ri)
}
i“1...k
j“1...`

, r̂1

〉

is in F . That is, adding a new layer of ` pre-roots, a biclique between the
pre-roots and the roots of the sub-graphs, and defining the new root to
be one of the pre-roots.

We’ll use the notation h (G) for the minimal number of steps needed to generate G
and call it the complexity of G.

h “ 0 h “ 1 h “ 2

Fig. 10: Graphs of complexity 0, 1, and 2.

The new pre-roots added in each step are notated by .

The roots of the sub-graphs of each step are notated by .

We note that the graphs of complexity h (G) “ 1 are the bicliques and that
by taking ` “ 1 in the recursive step of the definition we get the family of rooted
trees. Hence, both are sub-families of this family of graphs. We can see that indeed

these graphs are ZV -line graphs w.r.t. Z “
{
r̂j
}`
j“1

being the pre-roots with any

order over them and Vi “ Vi, by noticing that the recursive step of the definition
satisfies the recursive connectivity constraint of Definition 4.

Our mechanism for these graphs:

I Find the subgraph G1 of lowest complexity s.t. all ballots belong to G1.
I If there exists a ballot for a pre-root of G1, the mechanism returns the leftmost

pre-root of G1 that was voted for.
I Otherwise, the mechanism returns the leftmost pre-root of G1.
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Notice that the order over the pre-roots is arbitrary, so different mechanisms could
arise from different choices of orders (For instance, the order might represent the
social norm of the society).11

Example (iii): Block graphs

Our last example is connected block graphs [13].12

Definition 7 (Connected block graphs)

A connected graph G “ 〈V, E〉 is a block graph if the following equivalent
conditions hold:
– Every biconnected subgraph of G is a clique.13

– The intersection of any two connected subgraphs of G is either empty or con-
nected.

– For every four vertices u, v, w, x P V, the largest two of the three distance sums

d (u, v)` d (w, x) , d (u,w)` d (v, x) , and d (u, x)` d (v, w)

are equal.

In general, any connected graph G decomposes into a tree of biconnected com-
ponents called the block-cut tree of the graph. The block-cut tree of a graph G
is a tree T (G) which is defined in the following way. In T (G) there is a vertex
(component-vertex) for each maximal biconnected component of G and a vertex
(intersection-vertex) for each vertex in G which belongs to more than one maximal
biconnected component. There is an edge in T (G) between each component-vertex
and the intersection-vertices belonging to this component.

Hence, since for connected block graphs all maximal biconnected components
are cliques, a connected block graph G can be represented by its block-cut tree
T (G) s.t. each component-vertex is labeled by the size of the represented clique
and each intersection-vertex is labeled by the indices of the represented vertex in
the respective cliques. Moreover, any such labeled tree defines a (unique) block
graph.14

Given a block graph G, its block-cut tree T (G) induces a recursive structure
decomposing G to smaller block graphs. Our mechanism is defined w.r.t. a choice

11 In the version of this work which appeared on AAMAS [21, Claim 3.16]
we erroneously claimed that the mechanism F (x) “ argminvPPO(x) d (v, r),
that returns the Pareto-optimal location closest to the root and breaks ties
according to some predefined order is a group-manipulation-resistant mech-
anism. A counter-example for this claim is the following (2, 2)-biclique.

v1�v1 v2�v2

v3�v3 v4�v4

Assume F returns the Pareto-optimal location closest to v3 and
consider the profile 〈v1, v2, v4〉. Then the Pareto-optimal locations
are {v1, v2, v4} and the Pareto-optimal locations closest to v3 are
v1 and v2. Assume that the mechanism returns v1 (and the case of
v2 is symmetric). Then the agent located on v2 can manipulate by
changing her vote to v3 and changing the outcome to be v3 which is closer to her.
12 We thank Ayumi Igarashi for suggesting us this family as an example.
13 A graph is biconnected if it is a connected graph that is not broken into disconnected pieces

by deleting any single vertex (and its incident edges). An equivalent definition is that a graph
is biconnected if, for every pair of its vertices, it is possible to find two vertex-independent
paths connecting these two vertices.
14 This is the reason connected block graphs are also called clique trees.
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of an arbitrary root of T (G) and arbitrary orders for every clique over its vertices.
We can see to see that indeed these graphs are ZV -line graphs w.r.t. Z being the
vertices of the clique which is represented by the root of T (G) and the order over
them, by noticing hat the recursive step of the definition satisfies the recursive
connectivity constraint of Definition 4 (In each Vi-subgraph there is exactly one
vertex which is a Z-vertex of the original graph).

Our mechanism for a connected block graph G is:
I Find the component G1 which is represented by the lowest common ancestor

of the ballots.
I If one of the locations of G1 was voted for, the mechanism returns the first

location of G1 (according to the order) that was voted for.
I Otherwise, the mechanism returns the first location of G1.

An equivalent definition of this family of mechanisms is returning the closest
Pareto-optimal location to some arbitrary location v, breaking ties according to
an arbitrary fixed order.

5.3 Small graphs (at most five vertices)

In this section, we show that all connected graphs with at most five vertices ex-
cept C5, the cycle of five vertices, are ZV -line graphs. As we saw in Section 5.2
there is an anonymous, Pareto-optimal, group-manipulation-resistant mechanism
for C5. Therefore, we get that for all connected graphs with at most five vertices
there is an anonymous, Pareto-optimal, group-manipulation-resistant mechanism.
In Section 6.1 we show this gives us such mechanisms for unconnected graphs with
at most five vertices as well. Note this is no longer true for larger graphs since we
showed no such mechanism exists for C6, the cycle of six vertices.

The rest of this section is a list of all connected graphs with at most five vertices
with a schematic graph showing a respective ZV -ordered partition. We use the

figures for V -vertices and i for Z-vertices with indexes noting the order over
the Z-vertices.15 For some of the graphs, there are also other mechanisms arising
from other ZV -ordered partitions, but we chose to show only one or two ZV -
ordered partitions to prove the graph is a ZV -line graph. For any of these graphs
(except C5) we are unaware of anonymous, Pareto-optimal, group-manipulation-
resistant mechanisms that are not based on a representation of the graph as a
ZV -line graph.

Connected graphs with two vertices:

P2 (line):

1

2

Connected graphs with three vertices (2 graphs):

15 We base the naming of the graphs on https://www.graphclasses.org/smallgraphs.html.

https://www.graphclasses.org/smallgraphs.html
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P3 (line):

31

2

C3 (3-cycle)

K3 (3-Clique):

Connected graphs with four vertices (6 graphs):

1) K4 (4-Clique)/W3: 2) Diamond/K4ze:

(Prop. 4)

2

1 3

v

V1 “ {v}

or

(Prop. 3)

1

v1 2

v2

V1 “ {v1}
V2 “ {v2}

3) Paw/3-pan:

(Prop. 3)

1 2

3

v

V1 “ {v}

4) K2,2 ((2, 2)-biclique)

C4 (4-cycle):

1

v1 2

v2

V1 “ {v1}
V2 “ {v2}

5) P4 (line):

1

2 3

4

6) Claw

K1,3 ((1, 3)-biclique):

z

v1 v2

v3

V1 “ {v1}
V2 “ {v2}
V3 “ {v3}

Connected graphs with five vertices (21 graphs):

1) K5 (5-Clique) : 2) K5ze:

(Prop. 4)

2

1 v

4

3

V1 “ {v}

3) P3 Y 2K1 :

(Prop. 3)

1

4 3

2

v

V1 “ {v}
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4) Butter-

fly/Hourglass:

v2

v1

v4

v3

z

V1 “ {v1, v2, z}
V2 “ {v3, v4, z}

and

both induced
sub-graphs are K3.

5) Fork/Chair:

v2

z

v1

v3

v4

V1 “ {v1, z}
V2 “ {v2, z}
V3 “ {v3, v4}

and the three induced
sub-graphs are lines.

6) Co-fork/Co-

chair/Kite:

(Prop. 3)

1

2

v2

3

v1

V1 “ {v1}
V2 “ {v2}

7) Dart:

1

v1

2

3

v2

V1 “ {v1}
V2 “ {v2}

8) P5 (line):

2

1 5

4

3

9) House/P5 :

2

v1 1

v2

3

V1 “ {v1}
V2 “ {v2}

10) W4:

v2

1 v1

3

2

V1 “ {v1}
V2 “ {v2}

11) clawYK1 :

(Prop. 3)

4

3 2

1

v V1 “ {v}

12) P2 Y P3:

2

v2

3

v1

1

V1 “ {v1}
V2 “ {v2}

13) Gem/3-fan:

1

2 3

4

v

V1 “ {v}

14) K3 Y 2K1:

(Prop. 3)

1

v2 v3

2

v1

V1 “ {v1}
V2 “ {v2}
V3 “ {v3}

15) K1,4

((1, 4q)-biclique):

v1

v2 v3

v4

z

V1 “ {v1} V3 “ {v3}
V2 “ {v2} V4 “ {v4}
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16) K2,3

((2, 3q)-biclique):

2

1

3

v1 v2
V1 “ {v1}
V2 “ {v2}

17) 4-pan/banner/P :

1

v2

2

v1

v3

V1 “ {v1}
V2 “ {v2}
V3 “ {v3}

or

v2

2

v1

1

v3

V1 “ {v1}
V2 “ {v2, v3}

18) 4-pan:

(Prop. 3)

1

2

3

v1 v2

V1 “ {v1,, v2} and the
induced graph is a line.

19) Bull:

(Prop. 3)

1 2

3

v1 v2

V1 “ {v1}
V2 “ {v2}

20) Cricket/K1,4 ` e :

(Prop. 3)

v1 1 v2

2 3

V1 “ {v1}
V2 “ {v2}

21) C5 (5-Cycle):

C5 is not a ZV -line
graph (See Section. 5.1)

6 Summary & Future Work

In this work, we presented a new family of graphs, ZV -line graphs, and a generic,
anonymous, Pareto-optimal, group-manipulation-resistant mechanism for the fa-
cility location problem on these graphs (Thm. 1). To the best of our knowledge,
the (very few) false-name-proof mechanisms which were previously known, were
tailored for specific graphs and this work is the first to show a generic false-name-
proof mechanism for a large family, utilizing a broad graph property and unifying
all existence results which we are aware of. The construction of the mechanism
is recursive (Thm 2): We derive a mechanism for a given ZV -line graph from
mechanisms for its subgraphs (which might not be ZV -line graphs). Hence, it is
straightforward to derive from our construction general mechanisms for recursive
graph families (as exemplified in Section 5.2).

The mechanism F‹ we presented is not the only mechanism satisfying the
desired properties. Also taking any other order over the Z-locations s.t. the con-
straints of Def. 4 hold and defining F‹ accordingly will satisfy them. For instance,
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a mechanism that outputs at the second stage of Def. 3 the rightmost Pareto-
optimal Z-location instead of the leftmost, would also satisfy the desiderata. We
did not find any mechanism satisfying the desiderata which is not of this template.
Furthermore, unifying non-existence results we’ve found, we think that the ZV -
ordered partition to Z-locations and V -locations is a fundamental property of a
false-name-proof mechanism.

Conjecture 1

Let G “ 〈V, E〉 be a graph and let F : V‹ Ñ V be an anonymous, Pareto-optimal,
group-manipulation-resistant mechanism for G. Then there exists a sequence of
non-empty sets of vertices Z, V1, . . . , Vk Ď V s.t.
– V “ Z Y (V1 Ẏ ¨ ¨ ¨ ẎVk) is a ZV -ordered partition of G;
– For i “ 1, . . . , k: Whenever x P (Vi)

n, i.e., all locations are in Vi, also F (x) P Vi;
– F is the outcome of applying Def. 3 for the mechanisms Fi which are defined

by x P (Vi)
n Fi
ÞÑ F (x); and

– Either G is a ZV -line graph w.r.t. V “ Z Y (V1 Ẏ ¨ ¨ ¨ ẎVk)
or the induced graph on Z is C5 and for i “ 1, . . . , k R (Vi) P Z.

Consequentially, showing that a given graph does not have such ZV -ordered parti-
tion-structure could be an easy and efficient way to prove non-existence of an
anonymous, Pareto-optimal, group-manipulation-resistant mechanism.

The only non ZV -line graphs for which we found an anonymous, Pareto-

optimal, group-manipulation-resistant mechanism are the cycle of size 5
�

� �

� �

(See Section 5.1) and graphs derived from it by the second part of Thm. 2, e.g.,
� �

� �

� � � �.

� �

� �

Fig. 11
We conjecture that the cycle of size 5 is a representative extreme exception

and that except for very few small graphs, there are anonymous, Pareto-optimal,
group-manipulation-resistant graphs only for ZV -line graphs.

6.1 Relaxing the assumptions of the model

Three assumptions we had are connectivity of the graph, a finite number of agents,
and a finite number of locations. One could define mechanisms for unconnected
graphs, infinite graphs, or an infinite number of agents (both countable and un-
countable). The definitions of the desiderata are extended naturally to deal with
these scenarios (while constraining the profiles, manipulations, coalitions to be
measurable functions or sets).

For unconnected graphs, if each connected component is a ZV -line graph,
the following mechanism generalizes F‹ and it satisfies the desiderata:
I At the first stage, choose the first connected component according to some

predefined order s.t. at least one agent voted for a location in this component.
I At the second stage, run F‹ taking into account only ballots in the chosen

component.
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Note that, just like the mechanism for the connected case, also this mechanism
can be equivalently defined as the first Pareto-optimal location according to some
order over the locations: The concatenation of the respective orders of the different
components.

Recall that in Section 5.3 we saw that there exist anonymous, Pareto-optimal,
group-manipulation-resistant mechanisms for all connected graphs of up-to five
vertices. Hence, we get by the above insight anonymous, Pareto-optimal, group-
manipulation-resistant mechanisms for all graphs of up-to five vertices (both con-
nected and unconnected). This is no longer true for larger graphs since we showed
no such mechanism exists for the cycle of six vertices.

For the scenario of an infinite number of agents, we get that F‹ still satisfies
the desiderata (using the same proof).

For dealing with infinite graphs, we need to extend Def. 2 of ZV -ordered
partitions and add a requirement that the linear order over the Z-locations is
a well-order, that is, that the leftmost location is defined for any (measurable)
subset of Z-locations. Adding this assumption, our results are extended (using the
same proof) to show that F‹ satisfies the desiderata for infinite graphs as well
(with either finite or infinite number of agents). Note that without the well-order
assumption, F‹ might not be well-defined even when the number of agents is finite.
For instance, consider the following ZV -line graph

V “ {v1, v2} ; Z “ Z ; E “ V ˆ Z
v1�v1

¨ ¨ ¨© © © © © © ©¨ ¨ ¨ .

v2�v2

Fig. 12

Then for the profile {v1, v2} the leftmost Pareto-optimal Z-location is not defined.

6.2 Approximate Mechanism Design without Money

Last, an important continuation of this work is analyzing the implications for
approximate mechanism design without money [23]. That is, assuming the agents
are accurately represented by a cost function (e.g., the distance to the facil-
ity or a monotone function of the distance) and analyzing the implications of
manipulation-resistance on the approximability of the minimization problem of
natural social cost functions, e.g., the average cost (Harsanyi’s social welfare), the
geometric mean of the costs (Nash’s social welfare), or the maximal cost (Rawls’
criterion). For instance, assuming the conjecture above, one gets that whenever
there is a large disagreement in the population (i.e., the agents are dispersed
over many Vi-subgraphs) an extreme status-quo alternative must be chosen by
the mechanism, which results in a bad price of false-name-proofness (roughly, the
number of agents times the diameter of the graph). Nowadays, many aggregation
mechanisms are highly susceptible to double-voting and to false-name voting in
general (e.g., mechanisms over huge anonymous networks like the internet, but
also other scenarios in which vote frauds are known to be easy). We think that
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such results should open a discussion on the costs of these protocols (since the
benefits are clear).
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