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Abstract Level-1 consensus is arecently-introduced property of a preference-profile.
Intuitively, it means that there exists a preference relation which induces an ordering
of all other preferences such that frequent preferences are those that are more similar
to it. This is a desirable property, since it enhances the stability of social choice by
guaranteeing that there exists a Condorcet winner and it is elected by all scoring rules.
In this paper, we present an algorithm for checking whether a given preference profile
exhibits level-1 consensus. We apply this algorithm to a large number of preference
profiles, both real and randomly-generated, and find that level-1 consensus is very
improbable. We support these empirical findings theoretically, by showing that, under
the impartial culture assumption, the probability of level-1 consensus approaches zero
when the number of individuals approaches infinity. Motivated by these observations,
we show that the level-1 consensus property can be weakened while retaining its
stability implications. We call this weaker property Flexible Consensus. We show, both
empirically and theoretically, that it is considerably more probable than the original
level-1 consensus. In particular, under the impartial culture assumption, the probability
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for Flexible Consensus converges to a positive number when the number of individuals
approaches infinity.

1 Introduction

Recently, Mahajne et al. (2015) have proposed the concept of level-1 consensus of a
preference profile, showing that it considerably enhances the stability of social choice.
In particular, if a profile exhibits level-1 consensus around a given preference-relation
>0 with respect to the inversion metric, then:!

e There exists a Condorcet winner;

e The Condorcet winner is chosen by all scoring rules;

e With an odd number of individuals, the majority relation is transitive and coincides
with >q.

The current study starts by considering two questions:

(1) How can a profile be tested for level-1 consensus?
(2) How likely is it that level-1 consensus exists?

Questions of the former type have been recently studied with respect to various domain
restrictions. For example, Escoffier et al. (2008) provide an efficient way to check
whether a profile is single-peaked, Bredereck et al. (2013) provide an efficient way
to check whether a profile is single-crossing, and Barbera and Moreno (2011) ask
whether the satisfaction of their proposed fop monotonicity condition (a sufficient
condition for an extension of the median-voter theorem to hold) is easy to check. See
Elkind et al. (2016) for a survey of recent developments in algorithmic checking of
domain restrictions.

Questions of the latter type have been studied in the social choice literature with
respect to various domain restrictions that guarantee social stability, e.g., the existence
of Condorcet winners under the majority rule (Gehrlein 1981; Tsetlin et al. 2003) and
the likelihood of single-peaked preferences (Lackner and Lackner 2017).

Our answer to the first question is an efficient algorithm for determining whether
a preference-profile exhibits level-1 consensus. In case such a consensus exists, the
algorithm identifies a preference relation around which it occurs.

Our answer to the second question is that level-1 consensus is highly improbable.
We applied our algorithm on arecently-released dataset of 315 real-world profiles from
various sources (Mattei and Walsh 2013) and found that none of them exhibits level-
1-consensus. Moreover, experiments performed on thousands of profiles generated
randomly according to Mallows’ phi model (Mallows 1957) revealed that, for a wide
range of parameter settings, profiles exhibiting level-1 consensus were extremely rare.
As apartial explanation to these findings, we prove that under the standard probabilistic

! 1n fact, Mahajne et al. (2015) define a family of conditions called level-r consensus, where r is an integer
between 1 and K'!/2 and K is the number of alternatives . But for the sake of simplicity, in the present paper
we focus on level-1 consensus which is the strongest condition in this family.

Note that recently Poliakov (2016) proved that level-r consensus is equivalent to level-1 consensus whenever
r<(K -0
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setting of equally-probable preference relations, the probability of level-1 consensus
goes to zero when the number of individuals goes to infinity.

Motivated by these results, we found a way to weaken the level-1 consensus property
while keeping its stability properties. We call the weakened property Flexible Con-
sensus. In the above mentioned dataset, we found that 39 out of 315 profiles exhibit
Flexible Consensus. Flexible Consensus is also much more probable in the settings of
the randomly-generated profiles we tested. In particular, under the impartial-culture
assumption, the probability of Flexible Consensus is lower-bounded by a positive
constant even when the number of individuals goes to infinity.

2 Definitions

Let A = {ay,...,ax} be a set of K > 3 alternatives and N = {1,...,n} a set of
voters. We assume that each voter has a strict total order on the alternatives, i.e, for
each two different alternatives a and b, either the voter strictly prefers a to b or the
voter strictly prefers b to a. Let P be the subset of strict total orders on A. We will
refer to the elements of P as preference relations or simply as preferences.

A preference profile or simply a profile is alist 1 = (>1, ..., >,) of preference
relations on A. For eachi € N, >; is the preference relation of voter i. We denote by
‘P the set of all possible profiles.

Letw = (>1, ..., >,) be aprofile. For each preference =€ P, let u, (>) := |{i €
N :>;=>}| = the number of voters whose preference is >, which in this paper is
referred to as the frequency of >.

Definition 1 The inversion distance between two preferences >, >=', denoted d (>
,>"), is the number of pairs of alternatives that are ranked differently by the two
preferences, i.e, the number of sets {a, b} C A such that @ > b and b =" a or
vice-versa.

The inversion-distance is a metric on P (Kemeny and Snell 1962). It can vary between
0 and (12< ), the number of subsets of two alternatives.

For example, if there are three alternatives and a; > a3z > a; and a >" a3 >’ aj,
then d (>, =) = 3 since all three pairs of alternatives are ranked differently by > and
Y

The following definition is due to Mahajne et al. (2015).

Definition 2 Let =o€ P. A profile & € P" exhibits consensus of level-1 around =
if the following two conditions hold:

(1) For all pairs of preferences >, ='€ P, d(>, =9) < d(>', >¢) implies u,(>) >

M ().
(2) There is at least one pair >, >'€ P, such that d(>, =9) < d(>',>0) and

Ur (=) > ez ().

@ Springer
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3 Algorithm for detecting level-1 consensus

Algorithm 1 Detection of Level-1 Consensus
INPUT:

e Asetof K alternatives, A = {ay,...,ag}.
e A profile 7 containing n preference-relations on A (possibly with duplicates).

OUTPUT:

e If 7 exhibits level-1 consensus around some preference >, return >.
o Otherwise, return “no consensus”.

ALGORITHM:

Calculate the frequency . (>) of each preference >€ 7.

Define n’ = number of distinct preferences in 7.

If all frequencies are equal and n’ = K, return “no consensus; Condition 2 violated”.
Order the preferences by descending frequency: puz (>1) > puz(>2) = -+ = Uz ().
Set M := 5 (>1) to be the maximum frequency of a preference relation.

For j =1,2,...n" while iy (>;) = M:

Check if Condition 1 is satisfied for 7 and =j (see Algorithm 2). If it is, then return =

7. Return “no consensus; Condition 1 is violated for all candidates”.

AR ol e

Algorithm 2 Check if Condition 1 is satisfied
INPUT:

e A profile = containing n preference-relations on A (possibly with duplicates) ordered by descending
frequencies.
e A preference >.

OUTPUT: “True” if Condition 1 is satisfied for profile = with respect to >(. “False” otherwise.
ALGORITHM:

1. Within every group of preferences with the same frequency, order the preferences by ascending
inversion-distance from >.

2. Fori=1,2,....,n" — 1:
If o (=) > pr(-ig1) and d(>;, >0) > d(>;41. >0), return False.

3. Setd := d(>,, >0)- If Z?:O |T(K, j)| = n, return True. Else, return False.

Given a profile 7 € P", we would like to check whether there exists some preference-
relation > such that 7 exhibits level-1 consensus around it. Our solution is given by
Algorithm 1 (using, as a sub-routine, Algorithm 2).

Theorem 1 Algorithm 1 checks whether a profile w exhibits level-1 consensus in time:
0K /log K + n*logn’)

where n’ < min(K!, n) is the number of distinct preferences in 7. In particular, the
run-time is polynomial in the profile size.

This entire section is devoted to proving Theorem 1. We first explain why Algorithm
1 is correct. Then we analyze its run-time.

@ Springer



Flexible level-1 consensus ensuring stable social choice. . .

Algorithm 1 is based on the simple observation that the two conditions in Definition
2 are equivalent to the following:

(Condition 1) For all >, =€ P, if u;(>") > ur(>), thend(>', >g) <
d(>, >o).

(Condition 2)  There exists a pair >, ~’€ P such that u; (~) > wuz(>).

The algorithm proceeds in several steps.

First, we calculate the frequency 1, (=) of each of the preferences =€ 7. Let n’ be
the number of distinct preferences in 7. Note that n” < n and also n’ < K, since with
K alternatives there are at most K! possible preferences. Now Condition 2 is easily
checked: it is satisfied if-and-only-if (a) there exists a pair of preferences in = with
different frequencies, or (b) n’ < K'! (since this implies that there exists a preference
not in = with frequency 0).

If Condition 2 is satisfied, it only remains to check whether Condition 1 is satisfied
as well.

We order the preferences in descending order of w,(>), and rename them
1, >2, ..., >, such that u;(>1) > ur(>2) > --- > ur(>,). This enables us
to identify the candidates for level-1-consensus. Since d(>q, >9) = 0, Condition 1
immediately implies that each candidate for level-1 consensus must be a preference
with maximal frequency. So, the candidates are >1, >2, ..., >, such that h < n’ is
the largest index for which p; (>1) = z (>2) = -+ = Uz (>pn).

Now we can directly check Condition 1. This condition should be checked sep-
arately for each candidate preference >(. Given a candidate-preference >, we can
calculate its inversion-distance from each preference >;€ w , d(>;, >0). Now, we
represent the profile  relative to > in the form of a scatter-plot, which will lead to
a straight-forward assessment of the profile’s consensus status. Our scatter-plot is a
plot whose x-axis denotes the distance d(>;, >¢) and whose y-axis denotes the fre-
quency wur (>;). Note that there may be several different preference relations >; with
the same frequency, w, (>;) = m. Therefore, for each integer value on the y-axis of
the scatter-plot, m, we may have several corresponding values on the x-axis, which
can be represented by a horizontal segment whose maximum and minimum borders
are given by max;.;, (~,)=m d(>i, >0) and min;.;; (~,)=m d(>;, >0), respectively.

Condition 1 above requires that, for every two frequencies m| > my, all prefer-
ences with frequency m are closer to >¢ than all preferences with frequency my:
max;., (-)=m; d(>i,>0) < MiNj., (~)=m, d(>i,>0). Graphically (see Fig. 1),
this means that when we scan the scatter plot from top to bottom, we must see non-
overlapping intervals ordered strictly from left to right.

Three examples are shown in Fig. 1. The left example is positive: there are five
non-overlapping intervals (two of which consist of a single point), and when they are
scanned from top to bottom, they are ordered strictly from left to right. Therefore
Condition 1 holds. The middle and right examples are negative: the second and third
intervals from the top overlap. For instance, in the middle example the overlap is in a
single point, x = 2. This point corresponds to two distinct preferences with different
frequencies (5 and 4), both of which are at distance 2 from the candidate preference;
these preferences violate Condition 1.

@ Springer
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Fig.1 Scatter-plot representation of profiles relative to a candidate preference enables to graphically check
whether level-1 consensus around that candidate is satisfied. The left plot satisfies Condition 1 since the
horizontal segments are decreasing and non-overlapping. The middle and right plots violate Condition 1
since there are overlapping segments (circled)

The process of ‘scanning the scatter plot from top to bottom’ can be formalized
as follows (see Algorithm 2). Order the list of preferences lexicographically by two
criteria: the primary criterion is descending frequency (as before), and the secondary
criterion is ascending distance. So the preferences are partitioned to equivalence classes
by their frequency: the classes are ordered by descending frequency, and within each
equivalence-class, the preferences are ordered by ascending distance from >(. Pref-
erences with both the same frequency and the same distance are ordered arbitrarily.
Under this ordering, the following lemma holds:

Lemma 1 If Condition 1 is violated for any pair of preference relations in w, then it
is violated for an adjacent pair >;, > for some i.

The lemma is easy to understand based on the graphical criterion outlined above. A
formal proof is provided in Appendix A.

Lemma 1 implies that in order to ensure that Condition 1 is satisfied for all prefer-
ences in 1, it is sufficient to scan the ordered list of preferences from > to >,/, and
check if there is some i such that p; (>;) > r (>i+1)andd(>;, >0) = d(>i+1, >0)-

If Condition 1 holds for all preferences in 7, it remains to check that it holds
for preferences not in 7, i.e, preferences with zero frequency. Let d be the largest
distance from a preference in 7 to >, i.e, d= d(>,, >0). Condition 1 implies that,
if uz(>) = 0, then d(>, >¢) > d. Therefore, we have to check that the distances
between >o and preferences not in 7 are all larger than d. Equivalently, we can
ensure that all preferences with distance at most d are in 7. This can be checked by
calculating the number of possible preferences with distance at most d, and verifying
that it is equal to the total number n’ of distinct preferences in 7. Since this number
involves all possible preferences, it does not depend on the candidate >(. Therefore,
we can calculate this number assuming w.l.o.g that > is the preference defined by
1 >0 2 >0 ... >0 K. So we have to calculate the number of permutations on
K elements with at most d inversions (out-of-order elements). This can be written
as:

@ Springer
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d
Y ITK, j
j=0

where T (K, j) is the set of permutations on K elements with exactly j inversions.”

The number |7 (K, j)| can be calculated using the following recurrence relation

e VK : |T(K,0)| = 1, since there is exactly one permutation with zero inversions—
the identity permutation.

e Vj: |T(0, )| =0, since there are no permutations with 0 elements.

o VK,j : IT(K, )l = XM &=LD 17k — 1, j — i)]: for any permutation of
1, ..., K with j inversions, let i be the number of elements that come after element
K in that permutation. Since K is larger than all other elements, there are exactly
i inversions involving K. Therefore, if we remove K, we get a permutation of
1,..., K — 1 with exactly j — i inversions. By summing the counts of these
permutations for all possible values of i (namely,i > 0,i < j,i < K — 1) we get
T (K, ).

The algorithm for detecting Level-1 Consensus is summarized in Algorithm 1.
We complete the proof of Theorem 1 by a run-time analysis.

Lemma 2 The run-time of Algorithm 1 is:
0K /log K +n*logn’)
where n’ < min(K!, n) is the number of distinct preferences in .

Proof We first analyze Algorithm 2. It has to calculate the distance between >( and
each of the other n’ — 1 preferences. Calculating the inversion distance between a
given pair of preferences can be done by a recently-developed algorithm (Chan and
Pitrascu 2010) with a runtime of O (K +/log K). We then have to order the n’ distinct
preferences and then scan them from top to bottom. Ordering n’ items can be done in
time O (n'logn’). The value of n’ is at most the maximum of n (the number of voters)
and K'! (the number of possible preferences). So the run-time of Algorithm 2 is

O(n'K+/log K + n'logn”)

As will be explained in the next section, the probability of having two preferences
exhibiting exactly the same frequency is low, so in most cases we will have to apply
Algorithm 2 only once. However, in the improbable case in which there are many
preferences with the same frequency, we would have to apply it at most n’ times.
Therefore, the worst-case run-time of Algorithm 1 is n’ times the run-time of Algorithm
2. O

2 |T(K, J)| is also known as the Mahonian number; see OEIS sequence A008302, https://oeis.org/
A008302.
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4 Probability of level-1 consensus

Equipped with a procedure for checking level-1 consensus, we set out to check how
likely is this property in various settings. We conducted several simulation experi-
ments.

In the first experiment we used the PrefLib database (Mattei and Walsh 2013), an
online database of real-world preference-profiles collected from various sources. This
database contains 315 full profiles, with different numbers of alternatives and voters;
see Table 1 for statistics. For each profile, we used the algorithm described in the
previous section to check whether there exists a 1-level consensus. The results were
striking: none of the 315 profiles exhibited a level-1 consensus.

In the second experiment we used preference-profiles that were generated according
to Mallows’ phi model (Mallows 1957), which was claimed to favor level-1 consensus
(Mahajne et al. 2015). Mallows’ model assumes that there is a “correct” preference
>, and the actual preferences of the voters are noisy variants of it. The probability of a
preference > depends on its inversion distance from the correct preference: d (>, >).
The strength of this dependence is determined by a parameter ¢ € (0, 1], where lower
¢ means higher dependence; when ¢ — 0 the preferences of all voters are identical
and equal to >, while when ¢ = 1 the preference of each voter is selected uniformly
at random from the K'! possible orderings on K items. In general, the probability of
each preference-relation > is given by (Lu and Boutilier 2014):

Prob[ > | ¢,>*]=%-¢d<>’>*)

where Z is a normalization factor.

We considered all six combinations of K € {3,4,5} alternatives and n €
{100, 1000} voters, where ¢ varied between 0 and 1. For each combination of K, n, ¢
we ran 1000 experiments and calculated (a) the fraction of profiles that exhibit level-1
consensus, (b) the fraction of profiles that are single-peaked,3 and (c) the fraction of
profiles that exhibit Flexible Consensus, which will be presented in the next section.
The results are shown in Fig. 2.

As can be expected, consensus always exists when ¢ = 0, since in this case there is
a deterministic consensus on the “true” preference. Additionally, when there are 100
voters and 3 alternatives and ¢ is small, a small positive percentage of the profiles
exhibit a level-1 consensus (top left plot). In all other cases, the percentage of level-1
consensus profiles drops to 0 when ¢ > 0.05.

Why is level-1 consensus so rare?

Intuitively, the reason is that it requires groups of preferences to have exactly
the same frequency in the population. Condition 1 implies that if d(>;, >0) =
d(>j, >o) then p; (~;) = pz (>;).Forevery K > 3 and for every candidate >, there
exist at least two preferences with the same distance from the candidate, d(>;, >¢)
= d(>j, »0). Hence, a necessary condition for level-1 consensus is that there exist at

3 This calculation was done for the sake of comparison. It was implemented using Nicholas Mattei’s
PrefLib tools, which are freely available at GitHub: https://github.com/nmattei/PrefLib-Tools.
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Fig. 2 Percentage of profiles, from a set of profiles selected at random according to Mallows’ phi model,
which exhibit level-1-consensus, single-peakedness, or Flexible Consensus (the latter is defined in Sect. 5).
Note that the graphs of level-1 consensus and single-peakedness are almost overlapping in all plots except
the top-left

least two preferences with exactly the same frequency. As the number of voters goes
to 0o, the probability that any specific preference-relation appears with any specific
frequency goes to 0. Therefore, the probability that two preference-relations have the
same frequency goes to 0 too.

To formalize this intuition, we present an asymptotic upper bound on the probability
of level-1 consensus for the case ¢ = 1. This is the case of impartial culture, in which
all K! preferences are equally probable.

We select a preference-profile m according to the following random process,
parametrized by K (the number of alternatives) and an integer-valued parameter m.

e Let (>i),'K:! | be an enumeration of the preferences in P.
e For each i, draw a number B; according to a binomial distribution with m trials
and success-probability 1/K!.

e Return a profile in which, for every i, there are B; voters whose preference is >;.
All the B;’s are i.i.d. random variables with mean value u := ;. The total number
of preferences in the profile 7 is n = ZIKZ'] B;; this is also a random variable, and
its mean value is E[n] = Z,K:‘ | 71 = m. The process is symmetric with respect to
the preferences in P, so all preferences are equally likely, in accordance with the
impartial-culture assumption.

Define P°"™U(m, K) as the probability that the above random process yields a
profile that exhibits Level-1 Consensus. The rest of the section is devoted to proving
the following proposition:

Proposition 1 For every K :

llm PC(}I’lS(fI’lSI/LY(’,n7 K) — 0
m— 00
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Proof We first show an upper bound on the probability for level-1 consensus around
a fixed preference.

Let ¢ be a fixed preference. Denote by P<°™f1xed(; K') the probability that a
profile , selected according to the random process above with parameters m, K,
exhibits Level-1 Consensus around (. Since all preferences are equally probable,
peon-fixed i, ) is the same for all >o. We now present an approximate upper bound
on Pcon—ﬁxed(m’ K).

Recall that 7 (K, d) is the set of distinct preferences whose inversion-distance
from > is exactly d, where d can vary between 0 and (12( ) (the number of pairs of
K alternatives). The conditions for Level-1 Consensus imply that all preferences in
T (K, d) must have the same frequency in 7, i.e:

Foralli, j suchthat >;€ T(K,d) and >;e T(K,d): B; = B; @)

Let P, p, 1) be the probability that 7 i.i.d. random variables distributed like
Binom[m, p] are equal. Then, (1) implies that:

6
~ b 1
Pcon—ﬁxed(m’ K) < H) pequal (m7 E, T (K, d)|) 2)

In Appendix C, we show that P4 (m, p, 1) can be approximated as:

1
(V2mpgm)'=!

P, p, 1) ~

where ¢ = 1 — p and the symbol &~ means that the ratio of the expressions in its two
sides goes to 1 as m — oo. Therefore, (2) can be approximated as:

([;) 1 [T (k,d)|—1]
periedon, k) <=1/ | ] (znﬁn)
d=0
&)
2mm D aZolIT (k,d)|—1]
Y (7) N

The sum in the exponent can be simplified as follows:

) () ©
DTk, —11= | ITGk ) —(2)—1
d=0 d=0
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The sum of |T' (K, d)| over all possible values of d (i.e, d between 0 and ([2( )) equals
the total number of different preferences over K items, which is K'!:

)
D ITk, d)| = K! @

d=0

Substituting in (3) gives:

K- (%)-1
Pcon—ﬁxed(m K) < A 1/ an (2)
' - K!

Recall that Peo™fixed 4, K is the probability of level-1 consensus around a fixed
preference. The probability of level-1 consensus around any preference is, by the union
bound, at most this probability times the number of possible preferences, i.e,

Pconsensus(m,k) <K!. Pcon—ﬁxed(m, K)
K!

(2K =)

so for every fixed K > 3, lim,;,_, oo PO™™% (m, k) = 0. O

As an illustration, with K = 3 alternatives we get an upper bound of 6/+/ (27 m/6)2

€ O(1/m); with K = 4 alternatives the upper bound is 24/\/2mm /247 ¢
O(1/m®3). The rate of convergence to zero is faster when K is larger.

5 Flexible consensus

Motivated by the low probability of a level-1 consensus, we suggest below a weakened
variant of this property termed Flexible Consensus. It is equivalent to a weakened
version of Condition 1, without Condition 2.

Definition 3 Let >pc P. A profile # € P" exhibits Flexible Consensus around >
if the following condition holds:

(Flexible Condition 1)
Forall >/, >, if pur(>") > uz(>), then d(>',>¢) <d(>, >9).

The only difference between Condition 1 and Flexible Condition 1 is that
d(>~',=0) < d(>,>0) is replaced by d(>',>0) < d(>,>0). It will be
shown below that this apparently minor change significantly increases the proba-
bility that the condition is satisfied, while keeping the desirable stability properties
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of the original condition. Moreover, these stability properties hold even without
Condition 2.4

5.1 First stability property: existence of a Condorcet winner

Definition 4 Given a profile i, the majority relation M, is defined as follows: a M, b
iff, in a vote between alternatives a and b, a beats b by a weak majority. L.e, the number
of preferences in 7 by which a > b is at least as large as the number of preferences
in by which b > a.

Lemma 3 Let w € P" be a profile of n voters and =o€ P a preference-relation such
that Flexible Condition 1 is satisfied. — Then, for any two alternatives a, b:

(1) Ifa >¢ b (a is preferred to b by >¢) then aMb.

(2) Ifn is odd then the opposite is also true: if aM b then a > b.

(3) Ifniseventhen the opposite is “almost” true: ifaM; b then either a >y b ora >
b, where =1 is another preference around which there is Flexible Consensus.’

Proof (1) Suppose thata >¢ b. Partition P, the set of K! possible preferences, to two
subsets:
e The subset C(a > b) containing the K!/2 preferences for which a > b;
e The subset C(b > a) containing the K'!/2 preferences for which b > a.

Let w® : C(b > a) — C(a > b) be the bijection that takes a preference in
C(b > a) and switches a with b in the ranking. Since a >¢ b, this switch brings
every preferencein C (b > a) atleast one step closer to >¢. I.e, for every preference
=€ C(b > a) it holds that d(w™ (>), =¢) < d(>, >=¢) (see proof in Appendix
B).

By Flexible Condition 1, this implies that ,u,n(w“h(>)) > U (>). So for every
preference > by which b is preferred to a corresponds a unique preference w® (>)
by which a is preferred to b, which is at least as frequent. Therefore, a beats b by
a weak majority: aMb.

(2) When n is odd and a M, b, the majority must be strict, so it is not true that bM a.
Hence, by (1), it is not true that b > a. By our assumption, > is a strict total
order. Therefore, a > b.

(3) When n is even and aM, b, there are two cases: if a >=¢ b then we are done.
If b >0 a, then a = b, where == w“b(>o). It remains to prove that there is
Flexible Consensus around w?’ (>).

4 Our proofs below closely follow the proofs of Mahajne et al. (2015). Their proofs are stated for level-r
consensus for general r, and indeed Flexible Condition 1 can also be adapted to general r, but for the sake
of simplicity we prefer to focus on the case r = 1.

5 We are grateful to an anonymous referee for suggesting this additional condition.
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Stepl  Since b >( a, the argument in (1) shows that, for every preference >¢
C(a > b), the frequency p (w“”(>)) > 1 (). But since aM b, all these
inequalities must be equalities, i.e, for every preference > C(a > b), we
must have ji; (W (>)) = pr ().

Step II  For every two preferences >, >': d(>, ') = d(w’(>), w*(>')). To see
this, consider the pairs of alternatives that are inversed between >, >’. If, in
each such pair, we replace a by b and b by a, then we get exactly the pairs
of alternatives that are inversed between w4’ (>) and wb .

Step Il Let >/, > be two preferences for which d (>, w(=0)) < d(>, w(>9)).
Then, by Step II, d(w (=), =0) < d(w(>), >0). Since there is Flexible
Consensus around >, this implies: j (W’ (>")) > pz (w* (>)). By Step
I, this implies: pr (=") > ux (>=). Hence, there is Flexible Consensus around
w (>). O

Definition 5 For every preference >op€ P, the alternative ranked first according to
>0 is denoted by Best (>)

Definition 6 Given a profile 7 € P", a weak Condorcet winner of m is an alternative
a that beats all other alternatives by a weak majority, i.e, for any other alternative b,
aMb.

Theorem 2 Let 1 € P" be a profile and >o€ P a preference-relation around which
there is Flexible Consensus. Then Best(>¢) is a weak Condorcet winner of .

Moreover, if n is odd then > coincides with the majority relation My, and > is
the unique preference in P for which Flexible Condition 1 is satisfied.

Proof Let a := Best(>g). So for every b # a, a > b. By Lemma 3, this implies
that a M b. Hence, a is a weak Condorcet winner of 7.

When 7 is odd, Lemma 3 implies that a >¢ b iff aM;b, so >¢ coincides with
the ordering induced by M. This is true for any preference in P for which Flexible
Condition 1 holds, so any such preference coincides with >. O

5.2 Second stability property: agreement of scoring rules

A scoring rule is a rule for selecting an alternative based on a profile.

Definition 7 A scoring rule is a rule characterized by a vector S of length K,
S1 > --- > Sk. Given a profile 7, for each preference >€ m, the rule assigns
score S to the alternative ranked first by >, S to the alternative ranked second by >,
and so on. The rule then sums the scores assigned to each alternative by all preferences
in 7, and selects the alternative/s that received the highest total score.

In general, every scoring-rule S might select a different alternative. But below we
show that, if a profile exhibits Flexible Consensus, then there is an alternative which
is selected all scoring rules.
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Lemma 4 Letw € P" be aprofile and =o€ P a preference-relation such that Flexible
Condition 1 is satisfied. ~ Then, for any two alternatives a, b and any scoring-rule S,
if a >=o b then the score of a is at least as large as the score of b.

Proof Similarly to the proof of Lemma 3, we partition P into two subsets, C(a > b)
and C (b > a), and define the bijection w® between them.

For every scoring-rule S and preference >< P, define Ag , 5(>) as the difference
between the score of a in > and the score of b in >. By definition of a scoring rule:

e For every preference >€ C(a > b), Ag 4.p(>) is weakly-positive.
e For every preference >€ C(b > a), Ag 4,p(>) is weakly-negative.
e For every preference >€ P, Ag 4p(>) = —As,a,h(wab(>))-

Given the scoring rule S and the profile , define Ag 4 5 () as the difference between
the total score of a in 7 and the total score of b in 7. Then, by definition:

Asap(m) =Y pr (=) - Asap(>)

~eP

= Y ua() Asap()+ Y (=) Asap(>)
=eC(a>b) >=eC(b>a)

= D ) Asan() F ) - Asap @)
>=eC(a>b)

= Y [ Asas() = ma ) - Asan(-)]
=eC(a>Db)

= Y Asan() (1) = )]

=eC(a>b)

Since a >o b, for every preference < C(a > b), the lemma in Appendix B
implies that d(w (=), >=9) > d(>, =¢). Hence, by Flexible Condition 1, p, (>) >
wr (w (>). Hence, all terms in the last sum are weakly-positive. Hence, Ag(r) > 0
and the lemma is proved. O

Theorem 3 Let m1 € P" be a profile and =o€ P a preference-relation such that
Flexible Condition 1 is satisfied. Then the score assignedto Best () by every scoring
rule is at least as high as the score assigned to any other alternative by the same rule.

Proof Follows immediately from Lemma 4. O
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6 Algorithm for detecting flexible consensus

Algorithm 3 Detection of Flexible Consensus
INPUT:

e Asetof K alternatives, A = {ay,...,ag}.
e A profile w containing n preference-relations on A (possibly with duplicates).

OUTPUT:

o If 7 exhibits Flexible Consensus around some preference >, return >.
o Otherwise, return “no consensus”.

ALGORITHM:

Calculate the frequency (i (>) of each preference >¢€ .

Define n’ = number of distinct preferences in 7.

Order the preferences by descending frequency: puz (>1) > puz(>2) = -+ > Uz ().

Set M := juz (>1) to be the maximum frequency of a preference relation.

For j =1,2,...n" while uy (>j) = M: Check if Flexible Condition 1 is satisfied for 7 and > ; (see
Algorithm 4). If it is, then return > ;.

6. Return “no consensus; Flexible Condition 1 is violated for all candidates”.

hAE ol e

Checking the existence of Flexible Consensus is very similar to checking Level-1
Consensus. The check is presented in Algorithm 3. It is very similar to Algorithm 1;
the only differences are that we do not need to check Condition 2 (since it does not
exist in Flexible-Level-1-Consensus), and instead of checking Condition 1 for each
candidate, we check Flexible-Condition-1.

The procedure for checking Flexible Condition 1 is presented as Algorithm 4.
It is very similar to the one for checking Condition 1 in Algorithm 2. There are
two differences: the inequality that leads to the failure of the procedure is d(>;, >0)
> d(>i+1, >0) (instead of d(>;, >9) > d(>;+1, >0)), and in the last step we have
to check that there is no preference outside of 7 whose distance to >¢ is less than d
(instead of less-than-or-equal-to d ). Hence, by following the same proof as in Sect. 3,
it is easy to prove:

Theorem 4 Algorithm 3 checks whether a profile mw exhibits Flexible Consensus in
time:

0K /log K +n*logn’)

where n’ < min(K!, n) is the number of distinct preferences in 7.
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Algorithm 4 Check if Flexible Condition 1 is satisfied
INPUT:

e A profile = containing n preference-relations on A (possibly with duplicates) ordered by descending
frequencies.
e A preference >.

OUTPUT: “True” if Flexible Condition 1 is satisfied for 7 and >(. “False” otherwise.
ALGORITHM:

1. Order preferences with the same frequency by ascending inversion-distance from >.
2. Fori=1,2,....,n — 1:
If Hr (=) > pr(=i+1) and d(>;, >0) > d(>;41, >0), return False. R
3. Set dA:: d(>,/, >0). Define n* as the number of profiles in v whose distance to > is at most d — 1.

If Z?;(l) T(K, j) = n*, return True. Else, return False.

7 Probability of flexible consensus

We applied Algorithm 3 to the same experimental settings described in Sect. 4 and
estimated the probability of having Flexible Consensus. Out of the 315 PrefLib profiles,
39 exhibit Flexible Consensus. All 39 profiles are from the dataset labeled “ED-00004
1-100”, where all profiles have 3 alternatives. This means that 39% of all these profiles
with 3 alternatives exhibited the Flexible Consensus (in contrast to 0 which exhibited
level-1 consensus).

The results of the experiments on random profiles are shown in Fig. 2; it is evident
that in all settings, including the most challenging setting of impartial culture (¢ = 1),
Flexible Consensus is substantially more probable than level-1 consensus.

We complement the empirical findings with a theoretical analysis of the asymptotic
probability of Flexible Consensus under the impartial culture assumption. We consider
a profile generated by the random process described before Proposition 1. We denote
by pflexible-consensus ), - k) the probability that such a random profile exhibits Flexible
Consensus. In stark contrast to Proposition 1, we prove that this probability is always
larger than a positive constant, even when the number of voters goes to infinity:

Proposition 2 For every K there exists a constant Cg > 0 such that:

Yim - Pﬂexible—consensm(m’ K) > Ck

Proof As explained in the proof of Proposition 1, the probability that two or more
preferences have exactly the same frequency goes to 0 whenm — o0, so for simplicity
we neglect this possibility and assume that each preference relation has a different
frequency. Note that this assumption can only decrease the probability of Flexible
Consensus, since it implies that there is a unique preference with maximum frequency,
so there is only one candidate that can possibly satisfy Flexible Condition 1. We denote
this candidate by >(. Below we calculate the probability that Flexible Condition 1
holds for this preference.
For every i > 1, define:

Fioi= {px(>) [d(>,>0) =1}
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so F; contains the frequencies of all preferences whose distance from > is exactly
i. Note that F; is non-empty only when i < (g), since (15) is the maximum possible
inversion-distance between two preferences on K alternatives.

Flexible Condition 1 is equivalent to the requirement that each member of the set
F; is larger than each member of the set F}, for every i < j.6 However, it does not
impose any restrictions on the frequencies within F;.

Let F := U; F; = the set of frequencies of the K! — 1 preferences different than
>0. The total number of different orders on F is | F'|!. The total number of orders that
satisfy Flexible Condition 1 is | F{|!- [F2|!- - - |F ) !. Since all preferences are equally

2
likely, all | F'|! orders are equally likely. Therefore, the probability that the order of
frequencies satisfies Flexible Condition 1 is at least:

IF B [ F ey I
2
[F|!

(&)

which is a positive constant that does not approach 0 even when m — oo. O

As an illustration, we calculate the lower bound for K = 3 alternatives. In this case
we have |F|| = 2and |F>| =2 and |F3| = 1 and |F| = 2+ 2+ 1 = 5. Therefore, the
probability that Flexible Condition 1 is satisfied in a random impartial-culture profile
isatleast2!-2!-1!/5! = 1/30 ~ 0.033. In our experiments with ¢ = 1, the fraction of
profiles with Flexible Consensus (in 1000 experiments) was 0.045 for 100 voters and
0.043 for 1000 voters. This is slightly higher than the lower bound of 0.033, which
can be explained by the fact that, when r is finite, there is a positive probability that
two preferences have the same frequency.

When K > 3, the asymptotic probability of Flexible Condition 1 in an impartial
culture remains positive, though much lower. For example, for K = 4 the lower bound
is approximately 10~!2. This is consistent with the fact that we found no profiles that
exhibit Flexible Consensus in our experiments with ¢ = 1 and K > 4.

8 Conclusion

We presented a practical procedure for checking whether a preference-profile exhibits
a level-1 consensus. We realized that this property is highly improbable, and found a
weaker property, Flexible Consensus, that preserves the desirable stability properties
of the social choice. Furthermore, Flexible Consensus is provably more likely than
level-1 consensus. This was demonstrated both theoretically (for the impartial culture
setting) and empirically and over a database of real-world profiles.

Our experiments can be reproduced by re-running the code, which is freely available
through the following GitHub fork: https://github.com/erelsgl/PrefLib-Tools.
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Appendices

Appendix A: To verify Condition 1, it is sufficient to check adjacent pref-
erences

This section provides a formal proof to the following lemma used in Sect. 3.

Lemma 1 Suppose that the preference relations in a profile w are ordered by two
criteria: first by frequency uy (>;), then by distance d(>;, >¢), where > is a fixed
preference. In this ordering, if Condition 1 is violated for any pair of preference
relations in 1, then it is violated for an adjacent pair >;, >;+1 for some i.

Proof Suppose that there exist indices i < j such that Condition 1 is violated for the
pair >;, >, i.e, Uz (>;) > prz (>;), yet d(>;, >0) = d(>j, >0). We now prove the
lemma by induction on the difference of indices, j —i.

Base: If j —i = 1, then >; and > ; are already adjacent, so we are done.

Step: Suppose that j — i > 1. We prove that there exists a pair with a smaller
difference that violates Condition 1. We consider several cases.

Case 1 i is not the largest index in its equivalence class. i.e, there exists i’ > i
such that pu,(>;7) = wy(>;). Then, by the secondary ordering criterion,
d (>, >0) = d(>;, >0), Condition 1 is violated for the pair >;» and > ;.

Case 2 j is not the smallest index in its equivalence class. i.e, there exists j/ < j
such that pu; (=) = wuz(>;). Then, by the secondary ordering criterion,
d(>j,>0) = d(>j,>0), Condition 1 is violated for the pair >; and > ;.
Otherwise, i is the largest index in its equivalence class, j is the smallest index
in its equivalence class, but still i + 1 < j. This means that the equivalence
classes of i and j are not adjacent, i.e, by (>;) > pz (>it1) > pz(>;). Now
there are two remaining cases:

Case 3 d(>;,>0) > d(>i+1,>0), in which case Condition 1 is violated for the
adjacent pair >; and >; 1 and we are done.

Cased4 d(>;y1,>0) > d(>;, >0). This implies d(>; 1, >0) > d(>, >0), so Con-
dition 1 is violated for the pair >; 1 and >; and we are done. O

Appendix B: The effect of a switch on the inversion-distance

This section provides a formal proof to an intuitive claim made within the proof of
Lemma 3. Let a, b be two fixed alternatives. Let C(a > b) be the set of preferences
by which @ > b and C(b > a) the set of preferences by which b > a. Let w* :
C( > a) — C(a > b) be a function that takes a preference-relation and creates a
new preference-relation by switching the position of a and b in the ranking.
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Lemma S Ifa > b, then for every preference >=1€ C(b > a):
d(-1,>0) > dw™ (1), >0)

Proof For every preference >, define D (>, >() as the set of pairs-of-alternatives {i, j}
that are ranked differently in > and in >(. By definition, the inversion distance is the
cardinality of this set, d(>-, >=0) = |D(>, >0)|. Therefore, it is sufficient to show
that there are more pairs in D(>1, >¢) than in D(w (=), >0). To show this, we
consider all possible pairs-of-alternatives; for each pair, we calculate its contribution
to the difference in cardinalities |D(>1, >¢)| — |D(w“b(>1), >0)|, and show that the
net difference is positive.

e The pair {a, b} isin D(>1, >¢) butnotin D(w (>1), >0), so this pair contributes
+1 to the difference.

e Any pair that contains neither a nor b is not affected by the switch. I.e, each pair
{c, e} where ¢, e # a, bisin D(>1, >¢) if-and-only-if it is in D(w*(>1), >0),
so it contributes O to the difference.

e Let ¢ be an alternative that is ranked by > above b or below a, i.e, either ¢ >
b =1 aorb > a > c. Then, the order between c to a or b in > is not affected
by the switch, so {c, a} is in D(>1, >¢) if-and-only-if it is in D(w®(>=1), =0), so
it contributes 0 to the difference. The same is true for {c, b}.

e Finally, let ¢ be an alternative that is ranked by > between a and b,1i.e,b > ¢ >
a. Then, the switch w® changes the direction of both the pair {c, a} and the pair
{c, b}:

— Ifc >¢ a >¢ b, thenthe pair {c, a}isin D (>, w“b(>1)) butnotin D(>q, >1),
and the pair {c, b} is in D(>q, >1) but not in D(>g, w* (>1)), so these pairs
contribute +1 — 1 = 0 to the difference.

— Ifa >¢ ¢ > b, thenboth the pair {c, a} and the pair {c, b} are in D (>q, >1) but
notin D(>g, w?’(>1)), so these pairs contribute +1+ 1 = 2 to the difference.

— Ifa >¢ b >¢ c,thenthe pair {c, a}isin D(>¢, >1) butnotin D (>, w (1)),
and the pair {c, b} is in D (>, w(=1)) but not in D(>¢, >1), so these pairs
contribute +1 — 1 = 0 to the difference.

We proved that the contribution of each pair of alternatives is at least 0, and the contribu-
tion of the pair {a, b} is +1. Therefore, the difference | D(>1, >0)|—| D(w (=), >0)|
is positive and the lemma is proved. O
Appendix C: Probability that binomial random variables are equal

This section justifies the following approximation, used in Sect. 4.

Let By, ..., B; be i.i.d. random variables distributed binomially with m trials and
success-probability p < 1/2. Let g := 1 — p. Define:

Py 1) :=Pr[B] = --- = By]
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Then, for every ¢t > 1, when m is sufficiently large,

P (m, p. 1) ~

1

(V2mpgm)'~!
Proof The value of each of the variables B; can be any integer between 0 and m.
Therefore we can present P4" as a sum of probabilities of disjoint events:

m

PN (m, p, 1) =Y Pr[B; =+ =B, =]

i=0

Since the B; are i.i.d:

m

P m, p,1) =) (Pr[B) = i)’
i=0

-2 (7))

where g := 1 — p. Using Stirling’s approximation, when m, i, m — i are sufficiently

large:
my m m™
i 2mi(m —i) it(m—i)ymi

Substitute this in P44 and approximate the sum by an integral:

t
PeQual(m’ o /m m ) m™ e dy
y=0 2ry(m —y) yY(m — y)m=y
Substitute y = mx and dy = mdx:
t
1 —
Pequal(m P10~ m/ 1 . piE gmmx e
o x=0 2rmx(l —x) xMx(1 — x)m—mx
t
1 mx ,m—mx
_ 1 P™q
o 1=t/2
- / — " emx — yx)ym—mx dx
x=0 2rx(1 —x) x™%(1 —x)

The integral can be approximated by Laplace’s method. Define:

h(x) = /——

gx) =t |:x ln(%) + 1 - x)ln(lz_x)i|
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Then:
Pequal(m’ p.1)~ ml=t/2 fxlzoh(x)emg(x)dx

The function g(x) is twice continuously differentiable on (0, 1) and has a unique

maximum at xo = ﬁ = p; the maximum value is g(xg) = 0. Moreover,
g’ (x0) = —% < 0. Therefore, by Laplace’s method:

21

hxg) - ¢M8G0)
—mg" (xo) (x0)

Pequal(m’ P, 1) & ml—t/Z

where the symbol &~ means that the ratio between the expressions in its two sides goes
to 1 as m — oo. Substituting the functions g and i gives:

/2
P (i, p, 1) ~m!' 12 y ( : ) .
m/(pq) \2mpq

= m=D12 . (2 pg) (1-0/2
= Qapgm)' ="/

1
Pequal(m, P, l) ~

" (V2Zrpqmy !

m}

Note that Peq“al(m, p, 1) = 1, which is trivially true, since a single random variable
always equals itself. When ¢t > 2, pequal (m, p,1) > 0asm — oo.
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