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Shape preserving approximations

In this section, we will see an approximation method that preserves the shape
of the function we want to approximate.

This method was proposed by Schumaker [1983] and essentially amounts to
exploit some information on both the level and the slope of the function to be
approximated to build a smooth approximation.

We will deal with two situations.
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The first one — Hermite interpolation — assumes that we have information on
both the level and the slope of the function to approximate.

The second one — that uses Lagrange data — assumes that no information on
the slope of the function is available.

Both method was originally developed using quadratic splines.
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Hermite interpolation

This method assumes that we have information on both the level and the slope
of the function to be approximated.

Assume we want to approximate the function F on the interval [xi, x2] and we
know yi = F (xi) and zi = F 0 (xi) , i = 1, 2.

Schumaker proposes to build a quadratic function S (x) on [x1, x2] that satis-
fies

S (xi) = yi and S0 (xi) = zi for i = 1, 2.
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Schumaker establishes first that

Lemma 1 If
z1 + z2
2

=
y2 − y1
x2 − x1

then the quadratic form

S (x) = y1 + z1 (x− x1) +
z2 − z1

2 (x2 − x1)
(x− x1)

2

satisfies S (xi) = yi and S0 (xi) = zi for i = 1, 2.
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The construction of this function is rather appealing. If z1 and z2 have the
same sign then S0 (x) has the same sign as z1 and z22 over [x1, x2]:

S0 (x) = z1 +
(z2 − z1)

(x2 − x1)
(x− x1) .

Hence, if F is monotonically increasing (decreasing) on the interval [x1, x2], so
is S (x). Further, z1 > z2 (z1 < z2) indicates concavity (convexity), which
S (x) satisfies as S00 (x) = (z2 − z1) / (x2 − x1) < 0 (> 0) .
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However, the conditions stated by this lemma are extremely stringent and do
not usually apply, such that we have to adapt the procedure.

This may be done by adding a node between x1 and x2 and construct another
spline that satisfies the lemma.
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Lemma 2 For every x∗ ∈ (x1, x2) there exist a unique quadratic spline that
solves

S (xi) = yi and S0 (xi) = zi for i = 1, 2

with a node at x∗. This spline is given by

S (x) =

(
α01 + α11 (x− x1) + α21 + α11 (x− x1)

2 for x ∈ [x1, x∗]
α02 + α12 (x− x∗) + α21 + α22 (x− x∗)2 for x ∈ [x∗, xx]

where

α01 = y1 α11 = z1 α21 =
z−z1

2(x∗−x1)
α02 = y1 +

z+z1
2 (x∗ − x1) α12 = z α22 =

z2−z
2(xx−x∗)

where z = 2(y2−y1)−(z1(x∗−x1)+z2(xx−x∗))
x2−x1 .
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If the latter lemma fully characterized the quadratic spline, it gives no informa-
tion on x∗ which therefore remains to be selected.

x∗ will be set such that the spline matches the desired shape properties.

First note that if z1 and z2 are both positive (negative), then S (x) is monotone
if and only if z1z ≥ 0 (≤ 0)which is actually equivalent to

2 (y − y1) R (x∗ − x1) z1 + (x2 − x∗) z2 if z1, z2 R 0.
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This essentially deals with the monotonicity problem, and we now have to tackle
the question of curvature. To do so, we compute the slope of the secant line
between x1 and x2

∆ =
y2 − y1
x2 − x1

.

Then, if (z2 −∆) (z1 −∆) ≥ 0, this indicates the presence of an inflexion
point in the interval [x1, x2] such that the interpolant cannot be neither convex
nor concave.

Conversely, if |z2 −∆| < |z1 −∆| and x∗ satisfies

x1 < x∗ ≤ x ≡ x1 +
2 (x2 − x1) (z2 −∆)

(z2 − z1)

then S (x), as described in the latter lemma, is convex (concave) if z1 <

z2 (z1 > z2)
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Further, if z1z2 > 0 it is also monotone.

If, on the contrary, |z2 −∆| > |z1 −∆| and x∗ satisfies

x ≡ x2 +
2 (x2 − x1) (z1 −∆)

(z2 − z1)
≤ x∗ < x2

then S (x), as described in the latter lemma, is convex (concave) if z1 <

z2 (z1 > z2) .

This therefore endows us with a range of values for x∗ that will insure that
shape properties will be preserved.
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1. Check if lemma 1 is satisfied. If so set x∗ = x2 and set S (x) as in lemma
2. Then STOP else go to 2.

2. Compute ∆ = y2 − y1/x2 − x1

3. if (z1 −∆) (z2 −∆) ≥ 0 set x∗ = (x1 + x2) /2 and STOP else go to 4.

4. if |z1 −∆| < |z2 −∆| ≥ 0 set x∗ = (x1 + x) /2 and STOP else go to
5.

5. if |z1 −∆| ≥ |z2 −∆| ≥ 0 set x∗ = (x2 + x) /2 and STOP.
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We have then in hand a value for x∗ for [x1, x2].

We then apply it to each sub-interval to get x∗i ∈ [xi, xi+1] and then solve the
general interpolation problem as explained in lemma 2.

Note here that everything assumes that with have Hermite data in hand — i.e.,
{xi, yi, żi : i = 0, .., n}. However, the knowledge of the slope is usually not
the rule and we therefore have to adapt the algorithm to such situations.
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Unknown slope: back to Lagrange interpolation

Assume now that we do not have any data for the slope of the function, that
is we are only endowed with Lagrange data {xi, yi : i = 0, .., n}.

In such a case, we just have to add the needed information — an estimate of
the slope of the function— and proceed exactly as in Hermite interpolation.

Schumaker proposes the following procedure to get {żi : i = 0, .., n}. Compute

Li =
h
(xi+1 − xi)

2 + (yi+1 − yi)
2
i1/2

and

∆i =
yi+1 − yi
xi+1 − xi

for i = 1, ..., n− 1.
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Then żi : i = 0, ..., n can be recovered as

zi =

⎧⎨⎩
Li−1∆i−1+Li∆i

Li−1+Li
if ∆i−1∆i > 0

0 ∆i−1∆i ≤ 0
i = 2, ..., n− 1

and

z1 = −
3∆1 − z2

2
and zn = −

3∆n− 1− sn−1
2

.

Then, we just apply exactly the same procedure as described in the previous
section.
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Up to now, all methods we have been studying are unidimensional whereas
most of the model we deal with in economics involve more than 1 variable. We
therefore need to extend the analysis to higher dimensional problems.
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Multidimensional approximations

Computing a multidimensional approximation to a function may be quite cum-
bersome and even impossible in some cases.

To understand the problem, let us restate an example provided by Judd [1998].

Consider we have data points {P1, P2, P3, P4} = {(1, 0) , (−1, 0) , (0, 1) , (0,−1)}
in R2 and the corresponding data zi = F (Pi) , i = 1, ..., 4.

Assume now that we want to construct the approximation of function F using
a linear combination of {1, x, y, xy} defined as

G (x, y) = a+ bx+ cy + dxy

such that G (xi, yi) = zi.
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Finding a, b, c, d amounts to solve the linear system⎛⎜⎜⎜⎝
1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

a
b
c
d

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

z1
z2
z3
z4

⎞⎟⎟⎟⎠
which is not feasible as the matrix is not full rank.
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This example reveals two potential problems:

1. Approximation in higher dimensional systems involves cross-product and
therefore poses the problem of the selection of polynomial basis to be used
for approximation,

2. More important is the selection of the grid of nodes used to evaluate the
function to compute the approximation.

We now investigate these issues, by first considering the simplest way to attack
the question — namely considering tensor product bases — and then moving to
a second way of dealing with this problem — considering complete polynomials.
In each case, we explain how Chebychev approximations can be obtained.
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Tensor product bases

The idea here is to use the tensor product of univariate functions to form a
basis of multivariate functions. In order to better understand this point, let us
consider that we want to approximate a function F : R2 −→ R using simple
univariate monomials up to order 2: X =

n
1, x, x2

o
and Y =

n
1, y, y2

o
. The

tensor product basis is given byn
1, x, y, xy, x2, y2, x2y, xy2, x2y2

o
i.e., all possible 2-terms products of elements belonging to X and Y.

We are now in position to define the n-fold tensor product basis for functions
of n variables {x1, ..., xi, ..., xn}.
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Definition 1 Given a basis for n functions of the single variable xi : Pi =n
pki (xi)

oki
k=0

then the tensor product basis is given by

B =

⎧⎨⎩
k1Y

k1=0

...
knY

kn=0

.p
k1
1 (x1) ...p

kn
n (xn)

⎫⎬⎭ .
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An important problem with this type of tensor product basis is their size. For
example, considering a m-dimensional space with polynomials of order n, we
already get (n+ 1)m terms!

This exponential growth in the number of terms makes it particularly costly to
use this type of basis, as soon as the number of terms or the number of nodes
is high.

Nevertheless, it will often be satisfactory or sufficient for low enough polyno-
mials (in practice n = 2!) Therefore, one often relies on less computationally
costly basis.
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Complete polynomials

As aforementioned, tensor product bases grow exponentially as the dimension
of the problem increases, complete polynomials have the great advantage of
growing only polynomially as the dimension increases.

From an intuitive point of view, complete polynomials bases take products of
order lower than a priori given κ into account, ignoring higher terms of higher
degrees.
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Definition 2 For κ ∈ N given, the complete set of polynomials of total degree
κ in n variables is given by

Bc =

⎧⎨⎩xk11 × ...× xknn : k1, ..., kn ≥ 0,
nX
i=1

ki ≤ κ

⎫⎬⎭ .

To see this more clearly, let us consider the example developed in the previous
section

³
X =

n
1, x, x2

o
and Y =

n
1, y, y2

o´
and let us assume that κ = 2.

In this case, we end up with a complete polynomials basis of the type

Bc =
n
1, x, y, x2, y2, xy

o
= BÂ

n
xy2, x2y, x2y2

o
.
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Note that we have actually already encountered this type of basis, as this is
typically what is done by Taylor’s theorem for many dimensions

F (x) ' F (x∗) +
nX
i=1

∂F

∂xi
(x∗) (xi − xi∗)

...

+
1

k!

nX
ii=1

...
nX

ik=1

∂F

∂xi1...∂xik
(x∗)

³
xi1 − x∗i1

´ ³
xik − x∗ik

´
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For instance, considering the Taylor expansion to the 2-dimensional function
F (x, y) around (x∗, y∗) we get

F (x, y) ' F (x∗, y∗) + Fx (x
∗, y∗) (x− x∗) + Fy (x

∗, y∗) (y − y∗)

+
1

2
{Fxx (x∗, y∗) (x− x∗)2 + 2Fxy (x∗, y∗) (x− x∗) (y − y∗)

+Fyy (x
∗, y∗) (y − y∗)2 }

which rewrites

F (x, y) = α0 + α1x+ α2y + α3x
2 + α4y

2 + α5xy

such that the implicit polynomial basis is the complete polynomials basis of
order 2 with 2 variables.
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The key difference between tensor product bases and complete polynomials
bases lies essentially in the rate at which the size of the basis increases.

As aforementioned, tensor product bases grow exponentially while complete
polynomials bases only grow polynomially. This reduces the computational
cost of approximation.

But what do we loose using complete polynomials rather than tensor product
bases?

From a theoretical point of view, Taylor’s theorem gives us the answer: Nothing!
Indeed, Taylor’s theorem indicates that the element in Bc delivers a approxima-
tion in the neighborhood of x∗ at exhibits an asymptotic degree of convergence
equal to k.

Approximation and Interpolation Methods: Part II

Page 27 of 53



The n-fold tensor product, B, can deliver only a kth degree of convergence as
it does not contains all terms of degree k + 1.

In other words, complete polynomials and tensor product bases deliver the same
degree of asymptotic convergence and therefore complete polynomials based
approximation yields an as good level of accuracy as tensor product based
approximations.

Once we have chosen a basis, we can proceed to approximation. For example,
we may use Chebychev approximation in higher dimensional problems. Judd
[1998] reports the algorithm for this problem.

As we will see, it takes advantage of a very nice feature of orthogonal poly-
nomials: they inherit their orthogonality property even if we extend them to
higher dimensions.
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Let us then assume we want to compute the Chebychev approximation of a
2-dimensional function F (x, y) over the interval [ax; bx]× [ay; by] and let us
assume — to keep things simple for a while — that we use a tensor product basis.
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Then, the algorithm is as follows:

1. Choose a polynomial order for x (nx) and y (ny)

2. Compute mx ≥ nx+1 and my ≥ ny+1 Chebychev interpolation nodes
on [−1; 1]

zxk = cos
µ
2k − 1
2mx

π
¶
, k = 1, ...,mx

and

z
y
k = cos

Ã
2k − 1
2my

π

!
, k = 1, ...,my
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3. Adjust the nodes to fit in both interval

xk = ax + (1 + zxk)
µ
bx − ax

2

¶
, k = 1, ...,mx

and

yk = ay +
³
1 + z

y
k

´µby − ay

2

¶
, k = 1, ...,my

4. Evaluate the function F at each node to form

Ω ≡ {ωkl = F (xk, yl) : k = 1, ...,mx; l = 1, ...,my}
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5. Compute the (n. + 1)×(ny + 1) Chebychev coefficients αij, i = 0, ..., nx,
j = 0, ...ny, as

αij =

Pmx
k=1

Pmy
l=1 ωklT

x
i

³
zxk

´
T
y
j

³
z
y
l

´
µPmx

k=1 T
x
i

³
zxk

´2¶µPmy
l=1 T

y
j

³
z
y
l

´2¶
which may be simply obtained in this case as

α =
Tx (zx)0ΩTy (zy)

kTx (zx)k2 × kTy (zy)k2
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6. Compute the approximation as

G (x, y) =
nxX
i=0

nyX
j=0

αijT
x
i

µ
2
x− ax

bx − ax
− 1

¶
T
y
j

Ã
2
y − ay

by − ay
− 1

!

which may also be obtained as

G (x, y) = Tx
µ
2
x− ax

bx − ax
− 1

¶
αTy

Ã
2
y − ay

by − ay
− 1

!0
.
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As an illustration of the algorithm we compute the approximation of the CES
function

F (x, y) = [xρ + yρ]
1
ρ

on the [0.01; 2]× [0.01; 2] interval for ρ = 0.75.

We used 5-th order polynomials for both x and y and 20 nodes for both x and
y, such that there are 400 possible interpolation nodes. Applying the algorithm
we just described, we get the matrix of coefficients reported in table 7.

As can be seen from the table, most of the coefficients are close to zero as soon
as they involve the cross-product of higher order terms, such that using a com-
plete polynomial basis would yield the same efficiency at a lower computational
cost.

Figure 10 reports the graph of the residuals for the approximation.
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Table 7: Matrix of Chebychev coefficients (tensor product basis)

kx\ky 0 1 2 3 4 5
0 2.4251 1.2744 -0.0582 0.0217 -0.0104 0.0057
1 1.2744 0.2030 -0.0366 0.0124 -0.0055 0.0029
2 -0.0582 -0.0366 0.0094 -0.0037 0.0018 -0.0009
3 0.0217 0.0124 -0.0037 0.0016 -0.0008 0.0005
4 -0.0104 -0.0055 0.0018 -0.0008 0.0004 -0.0003
5 0.0057 0.0029 -0.0009 0.0005 -0.0003 0.0002
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Figure 10: Residuals: Tensor product basis
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If we now want to perform the same approximation using a complete polyno-
mials basis, we just have to modify the algorithm to take into account the fact
that when iterating on i and j we want to impose i+ j ≤ κ. Let us compute
is for κ = 5. This implies that the basis will consists of

1, Tx
1 (.) , T

y
1 (.) , T

x
2 () , T

y
2 (.) , T

x
3 (.) , T

y
3 (.) , T

x
4 (.) , T

y
4 () , T

x
5 (.) , T

y
5 (.) ,

Tx
1 (.)T

y
1 (.) , T

x
1 ()T

y
2 (.) , T

x
1 (.)T

y
3 () , T

x
1 (.)T

y
4 (.) ,

Tx
2 (.)T

y
1 (.) , T

x
2 ()T

y
2 (.) , T

x
2 (.)T

y
3 () ,

Tx
3 (.)T

y
1 (.) , T

x
3 ()T

y
2 (.) ,

Tx
4 (.)T

y
1 (.)
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Table 8: Matrix of Chebychev coefficients (Complete polynomials
basis)

kx\ky 0 1 2 3 4 5
0 2.4251 1.2744 -0.0582 0.0217 -0.0104 0.0057
1 1.2744 0.2030 -0.0366 0.0124 -0.0055 —
2 -0.0582 -0.0366 0.0094 -0.0037 — —
3 0.0217 0.0124 -0.0037 — — —
4 -0.0104 -0.0055 — — — —
5 0.0057 — — — — —
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A first thing to note is that the coefficients that remain are the same as the
one we got in the tensor product basis.

This should not be of any surprise as what we just find is just the expression
of the Chebychev economization we already encountered in the unidimensional
case and which is just the direct consequence of the orthogonality condition of
Chebychev polynomials.

Figure 11 report the residuals from the approximation using the complete basis.
As can be seen from the figure, this “constrained” approximation yields quanti-
tatively similar results compared to the tensor product basis, therefore achieving
almost the same accuracy while being less costly from a computational point
of view.
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In the matlab code section, we just report the lines in step 4 that are affected
by the adoption of the complete polynomials basis.

Matlab Code: Complete Polynomials Specificities

a=zeros(nx+1,ny+1);

for ix=1:nx+1;

iy = 1;

while ix+iy-2<=kappa

a(ix,iy)=(Xx(:,ix)’*Y*Xy(:,iy))./(T2x(ix)*T2y(iy));

iy=iy+1;

end

end
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Figure 11: Residuals: Complete polynomials basis
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Finite element approximations

Finite element are extremely popular among engineers (especially in aeronau-
tics).

This approach considers elements that are zero over most of the domain of
approximation.

Although they are extremely powerful in the case of 2-dimensional problems,
they are more difficult to implement in higher dimensions.

We therefore focus on the bi-dimensional case.
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Bilinear approximations

A bilinear interpolation proposes to interpolate data linearly in both coordinate
directions. Assume that we have the values of a function F (x, y) at the four
points

P1 = (−1,−1) P2 = (−1, 1)
P3 = (1,−1) P4 = (1, 1)

A cardinal interpolation basis on [−1; 1] × [−1; 1] is provided by the set of
functions

b1 (x, y) =
1
4 (1− x) (1− y) b2 (x, y) =

1
4 (1− x) (1 + y)

b3 (x, y) =
1
4 (1 + x) (1− y) b4 (x, y) =

1
4 (1 + x) (1 + y)
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All functions bi are zero on all Pj, i 6= j, but on the point to which is associated
the same index (i = j) . Therefore, an approximation of F (x, y) on [−1; 1]×
[−1; 1] is given by

F (x, y)

' F (−1,−1) b1 (x, y)F (−1, 1) b2 (x, y)F (1,−1) b3 (x, y)F (1, 1) b4 (x, y) .

If we have data on [ax; bx] × [ay; by] , we use the linear transformation we
have already encountered a great number of timesÃ

2
x− ax

bx − ax
− 1, 2 y − ay

by − ay
− 1

!
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Then, if we have Lagrange data of the type {xi, yi, zi : i = 1, ..., n}, we pro-
ceed as follows

1. Construct a grid of nodes for x and y;

2. Construct the interpolant over each square applying the previous scheme;

3. Piece all interpolant together.
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Note that an important issue of piecewise interpolation is related to the continu-
ity of the approximation: individual pieces must meet continuously at common
edges.

In bilinear interpolation, this is insured by the fact that two interpolants overlap
only at the edges of rectangles on which the approximation is a linear interpolant
of 2 common end points.

This would not be insured if we were to construct bi-quadratic or bi-cubic
interpolations for example.

Note that this type of interpolation scheme is typically what is done when a
computer draw a 3d graph of a function.
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In figure 12, we plot the residuals of the bilinear approximation of the CES
function we approximated in the previous section, with 5 uniform intervals (6
nodes such that

x = {0.010, 0.408, 0.806, 1.204, 1.602, 2.000} ,

and

y = {0.010, 0.408, 0.806, 1.204, 1.602, 2.000}).

Like in the spline approximation procedure, the most difficult step once we have
obtained an approximation is to determine the square the point for which we
want an approximation belongs to.

We therefore face exactly the same type of problems.
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Figure 12: Residuals of the bilinear approximation
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Simplicial 2D linear interpolation

This method essentially amounts to consider triangles rather than rectangles
as an approximation basis. The idea is then to build triangles in the x-y plane.

To do so, and assuming that the Lagrange data have already been transformed
using the linear map described earlier, we set 3 points

P1 = (0, 0) , P2 = (0, 1) , P (1, 0)

to which we associate 3 functions

b1 (x, y) = 1− x− y, b2 (x, y) = y, b3 (x, y) = x

which are such that all functions bi are zero on all Pj, i 6= j, but on the point
to which is associated the same index (i = j) . b1, b2 and b3 are the cardinal
functions on P1, P2, P3.
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Let us now add the point P4 = (1, 1), then we have the following cardinal
functions for P2, P3, P4 :

b4 (x, y) = 1− x, b5 (x, y) = 1− y, b6 (x, y) = x+ y − 1.

Therefore, on the square P1, P2, P3, P4 the interpolant for F is given by

G (x, y)

=

(
F (0, 0) (1− x− y) + F (0, 1) y + F (1, 0)x if x+ y ≤ 1
F (0, 1) (1− x) + F (1, 0) (1− y) + F (1, 1) (x+ y − 1) if x+ y ≥ 1
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It should be clear to you that if these methods are pretty easy to implement in
dimension 3, it becomes quite cumbersome in higher dimensions, and not that
much is proposed in the literature, are most of these methods were designed
by engineers and physicists that essentially have to deal with 2, 3 at most 4
dimensional problems.

We will see that this will be a limitation in a number of economic applications.
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