
Bar-Ilan University Moshe Buchinsky
Estimation of DP Models Department of Economics
March, 2017 UCLA

Lecture Note 4

Appoximation and Interpolation Methods

Part I

1

Introduction

In this lecture we deal with a common problem in economics, namely approxi-
mation of functions.

Such a problem occurs when it is too costly either in terms of time or complexity
to compute the true function or when the function is unknown

Usually the only thing required is to be able to compute the function at few
points and formulate a guess for all other values.

Th e choice of method is often a matter of efficiency and ease of computing.

Approximation and Interpolation Methods: Part I

Page 2 of 174

Following Judd [1998], we will consider 3 types of approximation methods:

1. Local approximation, which essentially exploits information on the value of
the function in one point and its derivatives at the same point.

2. Lp approximations, which actually find a nice function that is close to the
function we want to evaluate in the sense of a Lp norm. We usually rely
on interpolation, which requires to know the function at some points.

3. Regressions, an intermediate situation between the two preceding cases, as
it usually relies on m moments to find n parameters of the approximating
function.

Approximation and Interpolation Methods: Part I

Page 3 of 174

Local approximations

The problem of the local approximation of a function

f : R→ R.

Make use of information about the function at a particular point x0 ∈ R, to
produce a good approximation of f in a neighborhood of x0.

Two nethods of interest:

• Taylor series expansion; and

• Padé approximation

Approximation and Interpolation Methods: Part I

Page 4 of 174

Taylor series expansion

The most well-known and natural approximation

The basic framework: This approximation relies on the standard Taylor’s
theorem:

Theorem 1 Suppose F : R is a Ck+1 function, then for x∗ ∈ Rn, we have

F (x) = F (x∗) +
nX
i=1

∂F

∂xi
(x∗) (xi − x∗i)

+
1

2

nX
i1=1

nX
i2=1

∂2F

∂xi1∂xi2
(x∗)

³
xi1 − x∗i1

´ ³
xi2 − x∗i2

´
+ · · ·

+
1

k!

nX
i1=1

· · ·
nX

ik=1

∂kF

∂xi1 · · · ∂xik
(x∗)

³
xi1 − x∗i1

´ ³
xik − x∗ik

´
+O

³
kx− x∗kk+1

´

Approximation and Interpolation Methods: Part I

Page 5 of 174

Now we need to form a polynomial approximation of the function f as described
by the Taylor’s theorem.

This approximation method therefore applies to situations where the function
is at least k times differentiable to get a kth order approximation.

Then the error is at most of order O
³
kx− x∗kk+1

´

A Reminder: A function f : Rn→ Rk is O
³
xl
´
if

lim
x→0

kf (x)k
kxkl

<∞.

Approximation and Interpolation Methods: Part I

Page 6 of 174

We may look at Taylor series expansion as an approximate the function by an
infinite series.

For instance in the one dimensional case

F (x) '
nX

k=0

αk (x− x∗)k

where αk =
1
k!
∂F
∂xi

(x∗).

As n→∞ the equation can be understood as a power series expansion of the
F in the neighborhood of x∗.

Approximation and Interpolation Methods: Part I

Page 7 of 174

A computer delivers exp(x) in similar way, since

exp (x) ≡
∞X
k=0

xk

k!
.

This representation gives rise to a very important theorem...

but first some preliminary definitions.

Approximation and Interpolation Methods: Part I

Page 8 of 174

Definition 1 We call the radius of convergence of the complex power series,
the quantity r defined by

r = sup

⎧⎨⎩|x| :
¯̄̄̄
¯̄ ∞X
k=0

αkx
k

¯̄̄̄
¯̄ <∞

⎫⎬⎭ .

Therefore r provides the maximal radius of x ∈ C for which the complex series
converges.

That is for any x ∈ C such that |x| < r, the series converges, while it diverges
for any x ∈ C such that |x| > r.

Approximation and Interpolation Methods: Part I

Page 9 of 174

Definition 2 A function f : Ω ⊂ C → C is said to be analytic, if for every
x∗ ∈ Ω there exists a sequence αk and a radius r such that

F (x) =
∞X
k=0

αk (x− x∗)k for kx− x∗k < r

Definition 3 Let F : Ω ⊂ C → C be a function, and x∗ ∈ Ω. x∗ is a
singularity of F if F is analytic on Ω− {x∗}but not on Ω.

Approximation and Interpolation Methods: Part I

Page 10 of 174

Example, consider the tangent function tan(x).

It can be written as the ratio of two analytic functions:

tan(x) =
sin (x)

cos (x)
,

since cos (x) and sin (x) may be written as

cos (x) =
∞X
i=0

(−1)n x2n

(2n)!
,

sin (x) =
∞X
i=0

(−1)n x2n+1

(2n+ 1)!
.

However, the function obviously admits a singularity at x∗ = π/2, for which
cos (x∗) = 0.

Approximation and Interpolation Methods: Part I

Page 11 of 174

Theorem 2 Let F be an analytic function in x ∈ C. If F or any derivative
of F exhibits a singularity at x0 ∈ C, then the radius of convergence in the
complex plane of the Taylor series expansion of F in the neighborhood of x∗

∞X
k=0

1

k!

∂kF

∂xk
(x∗) (x− x∗)k

is bounded from above by
°°°x∗ − x0

°°°.

Approximation and Interpolation Methods: Part I

Page 12 of 174

This is extremely important as it gives us a guideline to use Taylor series ex-
pansions.

It actually tells us that the series at x∗ cannot deliver a reliable approximation
for F at any point farther away from x∗ than any singular point of F .

An example: Consider an approximation for

F (x) = log (1− x) , where x ∈ (−∞, 1) ,

in a neighborhood of x∗ = 0.

Note that x0 = 1 is a singular value for F (x).

Approximation and Interpolation Methods: Part I

Page 13 of 174

The Taylor series expansion of F (x) in the neighborhood of x∗ = 0 is

log (1− x) ' ϕ (x) ≡ −
∞X
k=1

xk

k
.

What the theorem tells us is that this approximation may be used for values of
x such that kx− x∗k is below

°°°x∗ − x0
°°° = k0− 1k = 1. That is, only for x

such that −1 < x < 1.

In other words, the radius of convergence of the Taylor approximation to this
function is r = 1.

Approximation and Interpolation Methods: Part I

Page 14 of 174

Table 1 reports an example for the “true” value of log(1−x)and its approximate
value using 100 terms in the summation

Note that as soon as
°°°x∗ − x0

°°° approaches the radius, the accuracy falls sharply
Table 1: Taylor series expansion for log (1− x)

x log (1− x) ϕ100 (x) ε
-0.9999 0.69309718 0.68817193 0.00492525
-0.9900 0.68813464 0.68632282 0.00181182
-0.9000 0.64185389 0.64185376 1.25155e-007
-0.5000 0.40546511 0.40546511 1.11022e-016
0.0000 0.00000000 0.00000000 0
0.5000 -0.69314718 -0.69314718 2.22045e-016
0.9000 -2.30258509 -2.30258291 2.18735e-006
0.9900 -4.60517019 -4.38945277 0.215717
0.9999 -9.21034037 -5.17740221 4.03294

Approximation and Interpolation Methods: Part I

Page 15 of 174

The usefulness of the approach: This approach to approximation is partic-
ularly useful and quite widespread in economic dynamics

For example: The optimal growth model.

When preferences are logarithmic and technology is Cobb-Douglas, its dynamic
is characterized by the following equations

kt+1 = kαt − ct + (1− δ) kt (1)
1

ct
= β

1

ct+1

³
αkα−1t+1 + 1− δ

´
(2)

Approximation and Interpolation Methods: Part I

Page 16 of 174

It is customary. to linearize of log-linearize such an economy around the steady
state

Assume that the steady state given by ct+1 = ct = c∗ and kt+1 = kt = k∗

for all t.

Approximation and Interpolation Methods: Part I

Page 17 of 174

Linearization:

Denote by bkt the deviation of kt from its steady state level in period t, i.e.,bkt = kt − k∗ for all t.

Likewise, define bct = ct − c∗.

The first step of linearization is to re-express the system in terms of functions:

F (kt+1, ct+1, kt, ct) =

⎛⎝ kt+1 − kαt + ct − (1− δ) kt
1
ct
− β 1

ct+1

³
αkα−1t+1 + 1− δ

´
,

⎞⎠

Approximation and Interpolation Methods: Part I

Page 18 of 174

From which we build the Taylor expansion:

F (kt+1, ct+1, kt, ct) ' F (k∗, c∗, k∗, c∗) + F1 (k
∗, c∗, k∗, c∗) bkt+1

+F2 (k
∗, c∗, k∗, c∗) bct+1 + F3 (k

∗, c∗, k∗, c∗) bkt
+F4 (k

∗, c∗, k∗, c∗) bct.
We have to compute the derivatives of each sub-function, and realize that in
steady state F (k∗, c∗, k∗, c∗) = 0.

Approximation and Interpolation Methods: Part I

Page 19 of 174

This yields the following system⎛⎝ bkt+1 − αk∗α−1t + bct − (1− δ) bkt
− 1
c∗2
bct + β 1

c∗2
³
αk∗α−1t + 1− δ

´ bct+1 − β 1c∗α (α− 1) k
∗α−2
t

bkt+1
⎞⎠ = Ã

0
0

!
,

which simplifies to⎛⎝ bkt+1 − αk∗α−1t + bct − (1− δ) bkt
−bct + β 1

c∗2

³
αk∗α−1t + 1− δ

´ bct+1 − β c∗
k∗α (α− 1) k

∗α−1
t

bkt+1
⎞⎠ = Ã

0
0

!
.

We then have to solve the implied linear dynamic system, but this is another
story....

Approximation and Interpolation Methods: Part I

Page 20 of 174

Log-linearization:

Another common practice is to take a log-linear approximation to the equilib-
rium.

Such an approximation is usually taken because it delivers a natural interpreta-
tion of the coefficients in front of the variables, namely, they can be interpreted
as elasticities.

Consider the one-dimensional function f (x) and let’s assume that we want to
take a log-linear approximation of f around x∗

This would amount to have, as deviation, a log-deviation rather than a simple
deviation:

bx = log (x)− log (x∗)

Approximation and Interpolation Methods: Part I

Page 21 of 174

Then, a restatement of the problem is in order, as we are to take an approxi-
mation with respect to log(x):

f (x) = f (exp (log (x))) ,

which leads to the following first order Taylor expansion

f (x) ' f (x∗) + f 0 (exp (log (x∗))) exp (log (x∗)) bx
= f (x∗) + f 0 (x∗)x∗bx.

Approximation and Interpolation Methods: Part I

Page 22 of 174

If we apply this technic to the growth model, we end up with the system⎛⎜⎝ bkt+1 − 1−β(1−δ)
β

bkt + µ
1−β(1−δ)

αβ − δ
¶ bct − (1− δ) bkt

−bct + bct+1 − (α− 1) (1− β (1− δ)) bkt+1
⎞⎟⎠ = Ã

0
0

!
.

Approximation and Interpolation Methods: Part I

Page 23 of 174

Regressions as approximation

This type of approximation is particularly common in economics as it just cor-
responds to ordinary least square (OLS).

The problem amounts to approximating a function F by another function G of
exogenous variables.

We have a set of observable endogenous variables yi, i = 1, ..., N , which we are
willing to explain in terms of the set of exogenous variables Xi =

n
x1i , ..., x

k
i

o
,

i = 1, ..., N .

Approximation and Interpolation Methods: Part I

Page 24 of 174

This problem amounts to find a set of parameters θ that solves the problem

min
θ∈Rp

NX
i=1

(yi −G (Xi; θ))
2 . (3)

Now, θ is chosen so that on average G (Xi; θ) is close enough to yi, such that
G delivers a “good” approximation for the true function F

Approximation and Interpolation Methods: Part I

Page 25 of 174

Number of data points: In numerical analysis we may be exactly identi-
fied, that is, the number of data points N , can be equal to the number of
parameters p

Obviously, we can impose a situation where N > p in order to exploit more
information

The difference between these two choices should be clear to you, in the first
case we are sure that the approximation will be exact in the selected points,
whereas this will not necessarily be the case in the second experiment.

Example: Assume we have a sample made of 2 data points for a function that
we want to approximate using a linear function.

The linear function is defined by an intercept, α, and the slope β.

Approximation and Interpolation Methods: Part I

Page 26 of 174

In such a case, (3) rewrites

min
{α,β}

(y1 − α− βx1)
2 + (y2 − α− βx2)

2 ,

which yields the system of orthogonality conditions

(y1 − α− βx1) + (y2 − α− βx2) = 0,

(y1 − α− βx1)x1 + (y2 − α− βx2)x2 = 0,

or Ã
1 1
x1 x2

!
y1 − α− βx1
y2 − α− βx2

≡ Av = 0.

This system then just amounts to find the null space of the matrix A

Approximation and Interpolation Methods: Part I

Page 27 of 174

This leads to

y1 = α+ βx1

y2 = α− βx2

Such that the approximation is exact.

When the system is over-identified this is not the case anymore.

Approximation and Interpolation Methods: Part I

Page 28 of 174

Selection of data points:

This is actually a major difference between econometrics and numerical approx-
imations.

In the latter case we control the space over which we want to take an approxi-
mation.

In particular, we can spread the data points wherever we want in order to control
information.

Approximation and Interpolation Methods: Part I

Page 29 of 174

Consider the following function

Figure 1: Selection of points

It may be beneficial to concentrate a lot of points around the kink in x∗

Approximation and Interpolation Methods: Part I

Page 30 of 174

Functional forms:

One key issue in the selection of the approximating function is a functional
form.

One simple choice is Xi=
n
1, xi, x

2
i , ..., x

p
i

o
.

However, this often turns to be a very bad choice as many problems then turn
out to be ill-conditioned with such a choice.

This particularly can create a multicollinearity problem.

Approximation and Interpolation Methods: Part I

Page 31 of 174

Assume for instance that you want to approximate a production function that
depends on employment and the capital stock.

The capital stock is basically a smooth moving average of investment decisions

kt+1 = it + (1− δ) kt ⇐⇒ kt+1 =
∞X
l=0

(1− δ)l it−l.

Therefore, taking as a basis for exogenous variables powers of the capital stock
is a bad idea.

Approximation and Interpolation Methods: Part I

Page 32 of 174

To see that, assume that δ = .025 and it is a white noise process with variance
0.1, then simulate a 1000 data points process for the capital stock.

The correlation matrix for kjt , j = 1, ..., 4, we get:

kt k2t k3t k4t
kt 1.0000 0.9835 0.9572 0.9315
k2t 0.9835 1.0000 0.9933 0.9801
k3t 0.9572 0.9933 1.0000 0.9963
k4t 0.9315 0.9801 0.9963 1.0000

A typical solution for this problem is to rely on orthogonal polynomials rather
than monomials. (Will be discussed later.)

Approximation and Interpolation Methods: Part I

Page 33 of 174

A second possibility is to rely on parsimonious approaches that do not require
too much information in terms of function specification.

An alternative is to use neural networks.

But first we have to deal with a potential problem that one may face with all
the examples.

The true decision rule is unknown, so we do not actually know the function we
are dealing with.

However, the main properties of the decision rule are known, e.g., we know that
it has to satisfy some conditions imposed by economic theory.

Approximation and Interpolation Methods: Part I

Page 34 of 174

Example: Try to to find an approximate solution for the consumption decision
rule in the deterministic optimal growth model.

Economic theory implies that consumption should satisfy the Euler equation

c−σt = βc−σt+1
³
αkα−1t+1 + 1− δ

´
, (4)

while the capital stock evolves according to

kt+1 = kαt − ct + (1− δ) kt. (5)

Approximation and Interpolation Methods: Part I

Page 35 of 174

Assume that consumption may be approximated by

φ (kt, θ) = exp
³
θ0 + θ1 log (kt) + θ3 log (kt)

2
´

over the interval
h
k, k

i
.

Our problem is then to find the triple {θ0, θ1, θ3} that minimizes
NX
t=1

h
φ (kt, θ)

−σ − βφ (kt+1, θ)
−σ ³αkα−1t+1 + 1− δ

´i2
.

This amounts to solving a non-linear least squares problem.

However, a lot of structure is put on this problem as kt+1 has to satisfy the
law of motion:

kt+1 = kαt − exp
³
θ0 + θ1 log (kt) + θ3 log (kt)

2
´
+ (1− δ) kt.

Approximation and Interpolation Methods: Part I

Page 36 of 174

The algorithm then works as follows:

1. Set a grid of N data points, {ki}Ni=1, for the capital stock over the intervalh
k, k

i
, and an initial vector {θ0, θ1, θ3}.

2. For each ki, i = 1, ..., N , and given {θ0, θ1, θ3}, compute

ct = φ (kt, θ) and

kt+1 = kαt − φ (kt, θ) + (1− δ) kt.

3. Compute

ct+1 = φ (kt+1, θ) and the quatity

< (kt, θ) = φ (kt, θ)
−σ − βφ (kt+1, θ)

−σ ³αkα−1t+1 + 1− δ
´

Approximation and Interpolation Methods: Part I

Page 37 of 174

4. If the quantity

NX
t=1

< (kt, θ)2

is minimal then stop, else update {θ0, θ1, θ3} and go back to step 2.

Approximation and Interpolation Methods: Part I

Page 38 of 174

Example: compute the approximate decision rule for the deterministic optimal
growth model with α = .3, β = .95, δ = .1, and σ = 1.5.

Assume that kt may deviate up to 90% from its capital stock in steady state
i.e., k = .1k∗ and k = 1.9k∗

Used 20 data points.

Approximation and Interpolation Methods: Part I

Page 39 of 174

Figure 2: Least-square approximation of consumption

The solution obtained is rather accurate.

Approximation and Interpolation Methods: Part I

Page 40 of 174

We actually have

1

N

NX
i=1

¯̄̄̄
¯ctruei − cLSi

ctruei

¯̄̄̄
¯ = 8.7434e−4 and max

i=1,...,N

¯̄̄̄
¯ctruei − cLSi

ctruei

¯̄̄̄
¯ = .00514

Interpretation: Using the approximate decision rule, an agent would make a
maximal error of 0.51% in its economic calculus, i.e., 51 cents for each 100$
spent on consumption.

Approximation and Interpolation Methods: Part I

Page 41 of 174

Neural Network:

A neural network may be simply viewed as a particular type of functions, flexible
enough to fit fairly general functions.

A neural network may be simply understood using the standard metaphor of
human brain.

There is an input, x, which is processed by a node.

Each node is actually a function that transforms the input into an output which
is then itself passed to another node.

Approximation and Interpolation Methods: Part I

Page 42 of 174

Example: panel (a) of Figure 3, borrowed from Judd [1998], illustrates the
single-layer neural network

Figure 3: Neural Networks–Panel A

(a)

x1

x2

xn

........

��
�

� y

Approximation and Interpolation Methods: Part I

Page 43 of 174

The functional form of the single-layer neural network is given by

G (x, θ) = h

⎛⎝ nX
i=1

θig
³
x(i)

´⎞⎠ ,

where x is the vector of inputs

h and g are scalar functions.

A common choice for g is g (x) = x.

If we set h to be the identity, then we are back to the standard OLS model
with monomials

Approximation and Interpolation Methods: Part I

Page 44 of 174

A second, and more interesting type of neural network is the hidden-layer feed-
forward neural network depicted in panel (b) of Figure 3

Figure 3: Neural Networks–Panel B

(b)

x1

x2

xn

........

�

�

�

�
�

	

�

�
�
�

� y

Approximation and Interpolation Methods: Part I

Page 45 of 174

The associated function form for the hidden-layer feedforward neural network
is given by

G (x, θ) = f

⎛⎝ mX
j=1

γjh

⎛⎝ nX
i=1

θig
³
x(i)

´⎞⎠⎞⎠ .

In this case, h is called the hidden-layer activation function and it serves as a
“squasher” function

That is, h is monotonically non-decreasing function that maps R onto [0, 1].

Approximation and Interpolation Methods: Part I

Page 46 of 174

Three very popular functions for h are:

1. The heaviside step function

h (x) =

(
1 for x ≥ 0
0 for x < 0.

2. The sigmoid function

h (x) =
1

1 + exp (−x)
.

3. Cumulative distribution functions, for example the normal cdf

h (x) =
1√
2πσ

Z x

−∞
exp

Ã
− x2

2σ2

!
.

Approximation and Interpolation Methods: Part I

Page 47 of 174

Obtaining an approximation then simply amounts to determine the set of co-
efficients

n
γj, θ

j
i ; i = 1, ..., n; j = 1, ...,m

o
.

This can be done by a non-linear least squares, that is, solving

min
{θ,γ}

NX
l=1

(yl −G (xl, θ, γ))
2 .

A nice feature of neural networks is that they deliver accurate approximation
with relatively few parameters.

The flexibility of the approximating functions is what does the job.

Neural network are extremely powerful in that they offer a universal approxi-
mation method.

Approximation and Interpolation Methods: Part I

Page 48 of 174

This is established in the following theorem by Hornik, Stinchcombe and White
[1989].

Approximation and Interpolation Methods: Part I

Page 49 of 174

Theorem 3 Let f : Rn → R be a continuous function to be approximated.
Let h be a continuous function, h : R→ R, such that either (i)

R∞
−∞ h (x) dx

is finite and non-zero and h is Lp for 1 ≤ p ≤ ∞; or (ii) h is a “squashing”
function (non-decreasing, with limx→∞ h (x) = 1, limx→−∞ h (x) = 0). Let

Σn (h) = {g : Rn→ R, g (x) =
nX

j=1

θjh
³
x0wj + aj

´
, aj, θj ∈ R,

and wj ∈ Rn, wj 6= 0, m = 1, 2, ...}

be the set of all possible single hidden-layer feedforward neural networks, using
h as the hidden layer activation function. Then, for all ε > 0, probability
measure μ, and compact sets K ⊂ Rn, there is a g ∈ Σn (h) such that

sup
x∈K

|f (x)− g (x)| ≤ ε and
Z
K
|f (x)− g (x)| dμ ≤ ε.

Approximation and Interpolation Methods: Part I

Page 50 of 174

This theorem states that for a broad class of functions, neural networks deliver
an accurate approximation to any continuous function.

We may use any squashing function of the type described above, or any simple
function that satisfies condition (i).

One potential limitation of the approach lies into the fact that we have to
conduct non-linear estimation, which may be cumbersome under certain cir-
cumstances.

Approximation and Interpolation Methods: Part I

Page 51 of 174

As an example, consider the the function

F (x) = min

Ã
max

Ã
−3
2
,
µ
x− 1

2

¶3!
, 2

!
,

over the interval [−3, 3] and consider a single hidden-layer feedforward network
of the form

eF (x, θ, ω, α) = θ1
1 + exp (− (ω1x+ α1))

+
θ2

1 + exp (− (ω2x+ α2))
.

Approximation and Interpolation Methods: Part I

Page 52 of 174

The algorithm is then straightforward:

1. Generate N values for x ∈ [−3, 3] and compute F (x).

2. Set initial values for Θ0 = {θi, ωi, αi; i = 1, 2}

3. Compute

NX
i=1

³
F (xi)− eF (xi,Θ)´2

if this quantity is minimal then stop, else update Θ and go back to 2.

Approximation and Interpolation Methods: Part I

Page 53 of 174

The last step can be performed using a non-linear minimizer.

Figure 4 plots the approximation where N = 1000 and the solution vector Θ
yields the values reported in

Table 2: Neural Network Approximation

θ1 ω1 α1 θ2 ω2 α2
2.0277 6.8424 -10.0893 -1.5091 -7.6414 -2.9238

Approximation and Interpolation Methods: Part I

Page 54 of 174

Figure 4: Neural Network Approximation

Approximation and Interpolation Methods: Part I

Page 55 of 174

Note from the form of the Θ that the first layer handle positive values for x,
while the second layer takes care of the negative part of the function.

Generally, the the function IS approximated quite well by this simple neural
network:

E2 =

⎡⎣ 1
N

NX
i=1

³
F (xi)− eF ³

xi,
bΘ´´2

⎤⎦1/2 = .0469 and

E∞ = max
i

¯̄̄
F (xi)− eF ³

xi,
bΘ´¯̄̄ = .220

Approximation and Interpolation Methods: Part I

Page 56 of 174

All the methods so far actually relied on regressions.

They are simple, but may be either totally unreliable and ill-conditioned in a
number of problem,

or difficult to compute because they rely on non-linear optimization.

We will now consider more powerful methods which are simpler to implement.

But....

Approximation and Interpolation Methods: Part I

Page 57 of 174

We first need to define some important preliminary concepts which are related
to orthogonal polynomials.

Approximation and Interpolation Methods: Part I

Page 58 of 174

Orthogonal polynomials

This class of polynomial possesses, by definition, the orthogonality property
which will prove to be extremely efficient and useful in a number of problem.

It solves the multicollinearity problem we encountered in OLS.

It greatly simplifies the computation of the approximation in a number of prob-
lems.

Approximation and Interpolation Methods: Part I

Page 59 of 174

Definition 4 (Weighting function) A weighting function ω (x) on the interval
[a, b] is a function that is positive almost everywhere on [a, b] and has a finite
integral on [a, b].

An example of such a weighting function is ω (x) =
³
1− x2

´−1/2
over the

interval [−1, 1]. Indeed, limx→−1ω (x) =
√
2/2 and ω0 (x) > 0,so that

ω (x) is positive everywhere over the whole interval. Furthermore,Z 1
−1

³
1− x2

´−1/2
dx = arcsin (x)|1−1 = π.

Approximation and Interpolation Methods: Part I

Page 60 of 174

Definition 5 (Inner product) Let us consider two functions f1 (x) and f2 (x)
both defined at least on [a, b], the inner product with respect to the weighting
function ω (x) is given by

hf1, f2i =
Z b

a
f1 (x) f2 (x)ω (x) dx.

Example: assume that f1 (x) = 1 and f2 (x) = x, and ω (x) =
³
1− x2

´−1/2
.

Then, the inner product over the interval [−1, 1] is

hf1, f2i =
Z 1
−1

x³
1− x2

´−1/2dx = −
q
1− x2

¯̄̄̄1
−1
= 0.

That is, the inner product of 1 and x wrt ω (x) on [−1, 1] is identically null.

This, in fact, defines the orthogonality property.

Approximation and Interpolation Methods: Part I

Page 61 of 174

Definition 6 (Orthogonal Polynomials) The family of polynomials {Pn (x)} is
mutually orthogonal with respect to ω (x) iffD

Pi, Pj
E
= 0 for i 6= j.

Definition 7 (Orthonormal Polynomials) The family of polynomials {Pn (x)}
is mutually orthonormal with respect to ω (x) iff it is orthogonal and

hPi, Pii = 1 for all i.

Approximation and Interpolation Methods: Part I

Page 62 of 174

Common families of orthogonal polynomials (see Judd [1998]) and their recur-
sive formulation are given here:

Table 3: Orthogonal polynomials (definitions)

Family ω (x) [a, b] Definition

Legendre 1 [−1, 1] Pn (x) =
(−1)n
2nn!

dn

dxn

³
1− x2

´n
Chebychev

³
1− x2

´−1/2
[−1, 1] Tn (x) = cos

³
n cos−1 (x)

´
Laguerre exp (−x) [0,∞] Ln (x) =

exp(x)
n!

dn

dxn (x
n exp (−x))

Hermite exp
³
−x2

´
(−∞,∞) Hn (x) = (−1)n exp

³
x2
´

dn

dxn exp
³
−x2

´

Approximation and Interpolation Methods: Part I

Page 63 of 174

Table 4: Orthogonal polynomials (recursive representation)

Family 0 1 Recursion
Legendre 1 P1 (x) = x Pn+1 (x) =

2n+1
n+1 xPn (x)−

n
n+1Pn−1 (x)

Chebychev 1 T1 (x) = x Tn+1 (x) = 2xTn (x)− Tn−1 (x)
Laguerre 1 L1 (x) = 1− x Ln+1 (x) =

2n+1−x
n+1 Ln (x)− n

n_+1Ln−1 (x)
Hermite 1 H1 (x) = 2x Hn+1 (x) = 2xHn (x)− 2nHn−1 (x)

Approximation and Interpolation Methods: Part I

Page 64 of 174

Least square orthogonal polynomial approximation

Definition 8 Let F : [a, b] → R be a function we want to approximate, and
g (x) a polynomial approximation of F . The least square polynomial approx-
imation of F with respect to the weighting function ω (x) is the degree n
polynomial that solves

min
deg(g)≤n

Z b

a
(F (x)− g (x))2ω (x) dx.

The weight ω (x) may be given the same interpretation as in GMM estimation.

Setting ω (x) = 1, which amounts to put the same weight on any x then
corresponds to a simple OLS approximation.

Approximation and Interpolation Methods: Part I

Page 65 of 174

Assume that

g (x) =
nX
i=0

ciϕi (x) ,

where {ϕk (x)}nk=0 is a sequence of orthogonal polynomials, the least square
problem rewrites

min
{ci}ni=0

Z b

a

⎛⎝F (x)− nX
i=0

ciϕi (x)

⎞⎠2ω (x) dx.

Approximation and Interpolation Methods: Part I

Page 66 of 174

The first order conditions wrt to ci are given byZ b

a

⎛⎝F (x)− nX
i=0

ciϕi (x)

⎞⎠ϕi (x)ω (x) dx = 0, for i = 0, ..., n.

=⇒ ci =
hF,ϕii
hϕi, ϕii

.

Therefore, we have

F (x) '
nX
i=0

hF, ϕii
hϕi, ϕii

ϕi (x) .

Approximation and Interpolation Methods: Part I

Page 67 of 174

There are several examples of the use of this type of approximation.

Fourier approximation is an example of those which is suitable for periodic
functions.

We will focus on Chebychev approximation.

Beyond least square approximation, there exists other approaches that departs
from the least square by the norm they use.

Approximation and Interpolation Methods: Part I

Page 68 of 174

Examples:

• Uniform approximation, which attempt to solve

lim
n→∞ max

x∈[a,b]
|F (x)− Pn (x)| = 0.

The main difference between this approach and L2 approximation is that
contrary to L2 norms that put no restrictions on the approximation on par-
ticular points, the uniform approximation imposes that the approximation
of F at each x is exact, whereas L2 approximations just requires the total
error to be as small as possible.

Approximation and Interpolation Methods: Part I

Page 69 of 174

• Minimax approximations, which rest on the L∞ norm, such that these
approximations attempt to find an approximation that provides the best
uniform approximation to the function F . That is, we search the degree
n polynomial that achieves

min
deg(g)≤n

kF (x)− g (x)k∞ .

Approximation and Interpolation Methods: Part I

Page 70 of 174

Interpolation methods

Up to now, we have seen that there exist methods to compute the value of a
function at some particular points.

In many cases we might also be interested in getting the function at some other
points.

This is the problem of interpolation.

Approximation and Interpolation Methods: Part I

Page 71 of 174

Linear interpolation

Assume you have a collection of data points C = {(xi, yi) |i = 1, ..., n}.

Then for any x ∈ [xi−1, xi], we can compute y as

y =
yi − yi−1
xi − xi−1| {z }

slope

x+
xiyi−1 − xi−1yi

xi − xi−1| {z }
Intercept

.

This method is very useful in many of applications

Approximation and Interpolation Methods: Part I

Page 72 of 174

But, it can be inefficient for different:

1. It does not deliver an approximating function but rather a collection of
approximations for each interval;

2. It requires to identify the interval where the approximation is to be com-
puted, which may be particularly costly when the interval is not uniform;

3. It can perform badly for non-linear functions.

Approximation and Interpolation Methods: Part I

Page 73 of 174

Lagrange interpolation

This type of approximation consider a collection of data

C = {(xi, yi) |i = 1, ..., n} ,

with distinct xi, called the Lagrange data.

Lagrange interpolation amounts to find a degree n− 1 polynomial P (x), such
that yi = P (xi).

Therefore, the method is exact for each point.

Approximation and Interpolation Methods: Part I

Page 74 of 174

Lagrange interpolating polynomials are defined by

Pi (x) =
Y
j 6=i

x− xj

xi − xj
.

Note that Pi (xi) = 1 and Pi
³
xj
´
= 0.

The interpolation is then given by

P (x) =
n−1X
i=1

yiPi (x) .

Approximation and Interpolation Methods: Part I

Page 75 of 174

An obvious problem is that we if the number of point is high enough, this type
of interpolation is totally intractable.

Indeed, just to compute a single Pi (x) this already requires 2 (n− 1) subtrac-
tions and n multiplications.

Then this has to be constructed for all n data points to compute all needed
Pi (x).

Then to compute P (x) we need n additions and n multiplications.

Overall, this interpolation requires 3n2 operations!

Approximation and Interpolation Methods: Part I

Page 76 of 174

Instead, one may actually attempt to compute directly:

P (x) =
n−1X
i=0

aix
i,

which may be obtained by solving the linear system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y1 = α0 + α1x1 + α2x

2
1 + · · ·+ αn−1x

n−1
1

y2 = α0 + α1x2 + α2x
2
2 + · · ·+ αn−1x

n−1
2...

yn = α0 + α1xn + α2x
2
n + · · ·+ αn−1xn−1n

,

Approximation and Interpolation Methods: Part I

Page 77 of 174

or

Aα = y,

where α = {α1, ..., αn−1}, and A is the so-called Vandermonde matrix for xi,
i = 1, ..., n

A =

⎛⎜⎜⎜⎜⎝
1 x1 x21 . . . xn−11
1 x2 x22 . . . xn−12...
1 xn x2n . . . xn−1n

⎞⎟⎟⎟⎟⎠ .

Approximation and Interpolation Methods: Part I

Page 78 of 174

If the Lagrange formula guarantees the existence of the interpolation, the fol-
lowing theorem guarantees its uniqueness.

Theorem 4 Provided the interpolating points are distinct, there is a unique
solution to the Lagrange interpolation problem.

The method may be quite demanding from a computational point of view, as
we have to invert an n× n matrix.

There then exist much more efficient methods, and in particular the so-called
Chebychev approximation that works very well for smooth functions.

Approximation and Interpolation Methods: Part I

Page 79 of 174

Chebychev approximation

Chebychev approximation uses Chebychev polynomials as a basis for the poly-
nomials:

Figure 5: Chebychev polynomials

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

n=1
n=2
n=3
n=4

Approximation and Interpolation Methods: Part I

Page 80 of 174

These polynomials are described by the recursion

Tn+1 (x) = 2xTn (x)− Tn−1 (x) with

T0 (x) = 1,

T1 (x) = x.

This admits as solution

Tn (x) = cos
³
n cos−1 (x)

´

These polynomials form an orthogonal basis with respect to the weighting func-

tion ω (x) =
³
1− x2

´−1/2
over the interval [-1, 1].

Approximation and Interpolation Methods: Part I

Page 81 of 174

Nevertheless, this interval may be generalized to [a, b], by transforming the
data using the formula

x = 2
y − a

b− a
− 1, for y ∈ [a, b].

Beyond the standard orthogonality property, Chebychev polynomials exhibit a
discrete orthogonality property:

nX
i=1

Ti (rk)Tj (rk) =

⎧⎪⎨⎪⎩
0 for i 6= j
n for i = j = 0
n
2 for i = j 6= 0,

where rk, k = 1, ..., n, are the roots of Tn (x) = 0.

Approximation and Interpolation Methods: Part I

Page 82 of 174

The following theorem establishes the usefulness of Chebychev approximation.

Theorem 5 Assume that F is a Ck function over the interval [−1, 1], and let

ci =
2

π

Z 1
−1

F (x)Ti (x)p
1− x2

dx, for i = 1, ..., n,

and

gn (x) =
c0
2
+

nX
i=1

ciTi (x) .

Then, there exists ε <∞ such that for all n ≥ 2

kF (x)− gn (x)k∞ ≤ ε
log (n)

nk
.

Approximation and Interpolation Methods: Part I

Page 83 of 174

That is, the approximation gn (x) will arbitrarily close to F (x) as the degree
of approximation n increases to ∞.

In effect, since ε
log(n)
nk

→ 0 as n → ∞, we have that gn (x) converges
uniformly to F (x).

Furthermore, the next theorem will establish a useful property on the coefficients
of the approximation.

Approximation and Interpolation Methods: Part I

Page 84 of 174

Theorem 6 Assume F is a Ck function over the interval [−1, 1], and admits
a Chebychev representation

F (x) =
c0
2
+
∞X
i=1

ciTi (x) ,

then, there exists c such that

|ci| ≤
c

ik
for i ≥ 1.

Approximation and Interpolation Methods: Part I

Page 85 of 174

That is, the theorem states that the smoother the function to be approximated
is (i.e., the greater k is), the faster is the pace at which the coefficients will
drop off.

Consequently we can achieve a high enough accuracy using less coefficients.

So far we have established that Chebychev approximation can be accurate for
smooth functions, but we still do not know how to proceed to get a good
approximation.

In particular, a very important issue is the selection of interpolating data points,
the so-called nodes.

Approximation and Interpolation Methods: Part I

Page 86 of 174

This is the main problem of interpolation: How to select nodes such that we
minimize the interpolation error?

The answer to this question is particularly simple in the case of Chebychev
interpolation: The nodes should be the zeros of the nth degree Chebychev
polynomial.

Approximation and Interpolation Methods: Part I

Page 87 of 174

We have m data points to use in computing the approximation.

Using m > n data points, we can compute the (n− 1)th order Chebychev
approximation relying on the Chebychev regression algorithm described below.

When m = n, the algorithm reduces to the so-called Chebychev interpolation
formula.

We have a function F : [a, b] → R. The objective is to construct a degree
n ≤ m polynomial approximation for F on [a, b]:

G (x) =
nX
i=0

αiTi

µ
2
x− a

b− a
− 1

¶
.

Approximation and Interpolation Methods: Part I

Page 88 of 174

The Algorithm:

1. Compute m ≥ n+1 Chebychev interpolation nodes on [−1, 1], which are
the roots of the degree m Chebychev polynomial

rk = − cos
µ
2k − 1
2m

π
¶

for k = 1, ...,m.

2. Adjust the nodes, rk, to fit in the [a, b] interval

xk = (rk + 1)
b− a

2
+ a for k = 1, ...,m.

3. Evaluate the function F at each approximation node xk, to get a collection
of ordinates

yk = F (xk) for k = 1, ...,m

Approximation and Interpolation Methods: Part I

Page 89 of 174

4. Compute the collection of n+ 1 coefficients α = {αi; i = 0, ..., n} as

αi =

Pm
k=1 ykTi (rk)Pm
k=1 Ti (rk)

2

5. Form the approximation

G(x) ≡
nX
i=0

αiTi

µ
2
x− a

b− a
− 1

¶

Approximation and Interpolation Methods: Part I

Page 90 of 174

Note that step 4 can be interpreted in terms of an OLS problem. That is,
because of the orthogonality property of the Chebychev polynomials the coef-
ficients αi are given by

αi =
cov (y, Ti (x))

var (Ti (x))
for i = 0, ..., n.

Or, in matrix notations

α =
³
X0X

´−1
X0Y

where

X =

⎛⎜⎜⎜⎝
T0 (x1) T1 (x1) . . . Tn (x1)
T0 (x2) T1 (x2) . . . Tn (x2)
...

T0 (xm) T1 (xm) . . . Tn (xm)

⎞⎟⎟⎟⎠ and Y =

⎛⎜⎜⎜⎝
y1
y2
...
ym

⎞⎟⎟⎟⎠

Approximation and Interpolation Methods: Part I

Page 91 of 174

We now report two examples implementing the above algorithm.

The first one deals with the smooth function

F (x) = xθ.

The second evaluates the accuracy for the non-smooth function:

F (x) = min
³
max

³
−1.5, (x− 1/2)3

´
, 2
´
.

Approximation and Interpolation Methods: Part I

Page 92 of 174

Smooth function:

We set θ = 0.1 and approximate the function over the interval [0.01, 2].

We select 100 nodes and evaluate the accuracy of degree 2 and 6 approximation.

Table 5 reports the coefficients:

Table 5: Chebychev Coefficients: Smooth function

n = 2 n = 6
c0 0.9547 0.9547
c1 0.1567 0.1567
c2 -0.0598 -0.0598
c3 − 0.0324
c4 − -0.0202
c5 − 0.0136
c6 − -0.0096

Approximation and Interpolation Methods: Part I

Page 93 of 174

The table shows that adding terms in the approximation does not alter the
coefficients of lower degree.

This merely reflects the orthogonality properties of the Chebychev polynomials.

This is of great importance: Once we obtain a high order approximation, ob-
taining lower orders is particularly simple.

This is the economization principle.

Approximation and Interpolation Methods: Part I

Page 94 of 174

Figure 6 reports the true function and the corresponding approximation.

Figure 6: Smooth function: F (x) = x0.1

0 0.5 1 1.5 2
0.6

0.7

0.8

0.9

1

1.1

x

Approximation

True
n=2
n=6

0 0.5 1 1.5 2
−0.15

−0.1

−0.05

0

0.05

x

Residuals

n=2
n=6

A “good approximation” for the function is obtained at rather low degrees.

Indeed, the difference between the function and its approximation at order 6 is
already excellent.

Approximation and Interpolation Methods: Part I

Page 95 of 174

Matlab Code: Smooth Function Approximation

m = 100; % number of nodes

n = 6; % degree of polynomials

rk = -cos((2*[1:m]-1)*pi/(2*m)); % Roots of degree m polynomials

a = 0.01; % lower bound of interval

b = 2; % upper bound of interval

xk = (rk+1)*(b-a)/2+a; % nodes

Y = xk.^0.1; % compute the function at nodes

%

% Builds Chebychev polynomials

%

Tx = zeros(m,n+1);

Tx(:,1) = ones(m,1);

Tx(:,2) = xk(:);

for i=3:n+1;

Tx(:,i) = 2*xk(:).*Tx(:,i-1)-Tx(:,i-2);

end

%

% Chebychev regression

%

alpha = X\Y; % compute the approximation coefficients

G = X*a; % compute the approximation

Approximation and Interpolation Methods: Part I

Page 96 of 174

Non-smooth function:

In the case of the non-smooth function we consider

F (x) = min
³
max

³
−1.5, (x− 1/2)3

´
, 2
´
.

Table 6 shows that the coefficients remain large even at degree 15.

Approximation and Interpolation Methods: Part I

Page 97 of 174

Table 6: Chebychev Coefficients: Non-smooth function

n = 3 n = 7 n = 15
c0 -0.0140 -0.0140 -0.0140
c1 2.0549 2.0549 2.0549
c2 0.4176 0.4176 0.4176
c3 -0.3120 -0.3120 -0.3120
c4 — -0.1607 -0.1607
c5 — -0.0425 -0.0425
c6 — -0.0802 -0.0802
c7 — 0.0571 0.0571
c8 — — 0.1828
c9 — — 0.0275
c10 — — -0.1444
c11 — — -0.0686
c12 — — 0.0548
c13 — — 0.0355
c14 — — -0.0012
c15 — — 0.0208

Approximation and Interpolation Methods: Part I

Page 98 of 174

Figure 7: Non-smooth function:
F (x) = min

³
max

³
−1.5, (x− 1/2)3

´
, 2
´

−4 −2 0 2 4
−2

−1

0

1

2

3

x

Approximation

True
n=3
n=7
n=15

−4 −2 0 2 4
−0.5

0

0.5

1

x

Residuals

n=3
n=7
n=15

The residuals remain high at order 15.

Approximation and Interpolation Methods: Part I

Page 99 of 174

That is, Chebychev approximations are well suited for smooth functions, but
have difficulties in capturing kinks.

Nevertheless, increasing the order of the approximation drastically improves the
approximation.

Approximation and Interpolation Methods: Part I

Page 100 of 174

In the non-smooth function case, maybe a piecewise approximation would per-
form better.

Indeed, in this case, we may compute 3 approximation

• for x ∈ (−∞, x) , G (x) = −1.5;

• for x ∈ (x, x) , G (x) ≡ Pn
i=0 βiTi

³
2x−ab−z − 1

´
;

• for x ∈ (x,∞) , G (x) = 2,

where x and x

(x− 1/2)3 = −1.5
(x− 1/2)3 = 2

Approximation and Interpolation Methods: Part I

Page 101 of 174

In such a case, the approximation would be perfect with n = 3.

This suggests that piecewise approximation may be of interest in a number of
cases.

Approximation and Interpolation Methods: Part I

Page 102 of 174

Piecewise interpolation

We have actually already seen piecewise approximation method: the linear
interpolation method.

A more powerful and efficient method uses splines.

A spline can be any smooth function that is piecewise polynomial, but most of
all it should be smooth at all nodes.

Approximation and Interpolation Methods: Part I

Page 103 of 174

Definition 9 A function S (x) on an interval [a, b] is a spline of order n if

1. S (x) is a Cn−2 function on [a, b],

2. There exist a collection of ordered nodes a = x0 < x1 < ... < xm = b such
that S (x) is a polynomial of order n − 1 on each interval [xi, xi+1] , for
i = 0, ...,m− 1.

Approximation and Interpolation Methods: Part I

Page 104 of 174

Examples of spline functions are:

Cubic splines: These splines functions are splines of order 4. These splines are
the most popular and are of the form

Xi (x) = ai+ bi (x− xi) + ci (x− xi)
2 + di (x− xi)

3 for x ∈ [xi, xi+1] .

Approximation and Interpolation Methods: Part I

Page 105 of 174

B0-splines: These functions are splines of order 1:

B0i (x) =

⎧⎪⎨⎪⎩
0, x < xi
1, xi ≤ x ≤ xi+1
0, x > xi+1

Approximation and Interpolation Methods: Part I

Page 106 of 174

B1-splines: These functions are splines of order 2 that actually describe tent
functions:

B1i (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, x < xi
x−xi

ẋi+1−xi, xi ≤ x ≤ xi+1
xi+2−x

xi+2−xi+1, xi+1 ≤ x ≤ xi+2

0, x > xi+2

Such a spline reaches a peak at x = xi+1 and is upward (downward) sloping
for x < xi+1 (or x > xi+1).

Approximation and Interpolation Methods: Part I

Page 107 of 174

Higher order spline functions are defined by the recursion:

Bn
i (x) =

Ã
x− xi

xi+n − xi

!
Bn−1
i (x) +

Ã
xi+n+1 − x

xi+n+1 − xi+1

!
Bn−1
i+1 (x) .

Approximation and Interpolation Methods: Part I

Page 108 of 174

Cubic splines are the most widely used splines to interpolate functions.

Assume that we are endowed with Lagrange data , i.e., a collection of nodes
xi and corresponding values for the function yi = F (xi) to interpolate:

{(xi, yi) : i = 0, ..., n} .

We have in hand n intervals [xi, xi+1], i = 0, ..., n − 1, for which we search
for n cubic splines:

Si (x) = ai + bi (x− xi) + ci (x− xi)
2 + di (x− xi)

3 for x ∈ [xi, xi+1] .

Approximation and Interpolation Methods: Part I

Page 109 of 174

The problem is to select 4n coefficients {ai, bi, ci, di : i = 0, ..., n− 1} using
n+ 1 nodes.

Hence, we need 4n identification conditions.

The first set of restrictions is provided by imposing the spline approximations
to be exact at the nodes:

S (xi) = yi for i = 0, ..., n− 1 and Sn−1 (xn) = yn,

or simply

ai = yi for i = 0, ..., n− 1, and

an−1 + bn−1 (xn − xn−1) + cn−1 (xn − xn−1)
2 + dn−1 (xn − xn−1)

3 = yn.

Approximation and Interpolation Methods: Part I

Page 110 of 174

The second set of restrictions: Continuity at the upper bound of each interval:

Si (xi) = Si−1 (xi) for i = 1, ..., n− 1,

or, for hi = xi − xi−1:

ai = ai−1 + bi−1hi + ci−1h
2
i + di−1h

3
i for i = 1, ..., n− 1. (6)

Approximation and Interpolation Methods: Part I

Page 111 of 174

Since we are dealing with a cubic spline interpolation, this requires the approx-
imation to be C2.

Hence, the first and second order derivatives should be continuous.

This yields the following n− 1 restrctions for the first order derivatives

S0i (xi) = S0i−1 (xi) for i = 1, ..., n− 1,

or

bi = bi−1 + 2ci−1hi + 3di−1h
2
i for i = 1, ..., n− 1.

Approximation and Interpolation Methods: Part I

Page 112 of 174

Additional n− 1 conditions for the second order derivatives

S00i (xi) = S00i−1 (xi) for i = 1, ..., n− 1,

or

2ci = 2ci−1 + 6di−1hi for i = 1, ..., n− 1. (7)

Altogether we have so far 4n − 2 equations, so two 2 more restrictions are
needed.

Approximation and Interpolation Methods: Part I

Page 113 of 174

There are several ways to select such conditions:

1. Natural cubic splines impose that the second order derivatives S000 (x0) =
S00n (xn) = 0.

Note that the latter is actually not to be calculated in our problem. Nev-
ertheless this imposes

c0 = cn = 0.

An interpretation of this condition is that the cubic spline is represented
by the tangent of S at x0 and xn.

Approximation and Interpolation Methods: Part I

Page 114 of 174

2. Another way to fix S (x) would be to use potential information on the
slope of the function to be approximated.

One may set

S00 (x0) = F 0 (x0) and S0n−1 (xn) = F 0 (xn) .

This is the so-called Hermite spline.

However, the derivative of F may either not be known or does not exist.

So, further source of information is needed.

Approximation and Interpolation Methods: Part I

Page 115 of 174

3. One can then rely on an approximation of the slope by the secant line.
This is what is proposed by the secant Hermite spline, which amounts to
approximate F 0 (x0) and F 0 (xn) by the secant line over the corresponding
interval:

S00 (x0) =
S0 (x1)− S0 (x0)

x1 − x0
and

S0n−1 (xn) =
Sn−1 (xn)− Sn−1 (xn−1)

xn − xn−1
.

But from the identification scheme, we have S0 (x1) = S1 (x1) = y1 and
Sn−1 (xn) = yn, so we get

b0 =
(y1 − y0)

h1
and bn−1 =

(yn−1 − yn)

hn
.

Approximation and Interpolation Methods: Part I

Page 116 of 174

We focus now on the natural cubic spline approximation, which imposes c0 =
cn = 0.

First, note that the system the system of equation above has the recursive form

di−1 =
1

3hi
(ci − ci−1) for i = 1, ..., n− 1.

Substitution results into the expression for bi gives:

bi− bi−1 = 2ci−1hi+ (ci − ci−1)hi = (ci − ci−1)hi for i = 1, ..., n− 1.

Approximation and Interpolation Methods: Part I

Page 117 of 174

Hence, (6) becomes

ai − ai−1 = bi−1hi + ci−1h
2
i +

1

3
(ci − ci−1)h

2
i

= bi−1hi +
1

3
(ci − 2ci−1)h2i for i = 1, ..., n− 1,

which we may rewrite as

ai − ai−1
hi

= bi−1 +
1

3
(ci − 2ci−1)hi for i = 1, ..., n− 1.

Likewise, we have

ai+1 − ai
hi+1

= bi +
1

3
(ci+1 − 2ci)hi+1 for i = 0, ..., n− 2,

Approximation and Interpolation Methods: Part I

Page 118 of 174

Subtracting the last two equations yield

ai+1 − ai
hi+1

−ai − ai−1
hi

= bi−bi−1+
1

3
(ci+1 − 2ci)hi+1−

1

3
(ci − 2ci−1)hi,

for i = 1, ..., n− 2.

Taking (??) and (??) into account yields

3

hi+1
(yi+1 − yi)−

3

hi
(yi − yi−1) = hici−1 + 2 (hi + hi+1) ci+ hi+1ci+1,

for i = 1, ..., n− 2.

Approximation and Interpolation Methods: Part I

Page 119 of 174

We however have the additional (n− 1)th identification restriction that im-
poses c0 = 0 and the last restriction cn = 0. We therefore end-up with a
system of the form

Ac = B,

where A is said to be tridiagonal (and therefore sparse). It is also symmetric
and element-wise positive.

It is hence positive definite and therefore invertible

A=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 (h0 + h1) h1
h1 2 (h1 + h2) h2

h2 2 (h2 + h3) h3
· · · · · ·
hn−3 2 (hn−3 + hn−2) hn−2

hn−2 2 (hn−2 + hn−1)

⎞

⎠

Approximation and Interpolation Methods: Part I

Page 120 of 174

c =

⎛⎜⎝ c1
. . .
cn−1

⎞⎟⎠ , and

B =

⎛⎜⎜⎝
3
h1
(y2 − y1)− 3

h0
(y1 − y0)

. . .
3

hn−1
(yn − yn−1)− 3

hn−2
(yn−1 − yn−2)

⎞⎟⎟⎠ .

Approximation and Interpolation Methods: Part I

Page 121 of 174

So, we got all the ci, i = 1, n− 1, and can compute the b’s and d’s as

bi−1 =
yi − yi−1

hi
− 1
3
(ci + 2ci−1)hi for i = 1, ..., n− 1; and

bn−1 =
yn − yn−1

hn
− 2cn−1

3hn

and

di−1 =
1

3hi
(ci − ci−1)hi for i = 1, ..., n− 1; and

dn−1 = −2cn−1
3hn

.

Finally we have had ai = yi, for i = 0, ..., n− 1.

Approximation and Interpolation Methods: Part I

Page 122 of 174

Once the approximation is obtained, the evaluation of the approximation has
to be undertaken.

The only difficult part which interval the value of the argument we want to
evaluate belongs to.

That is, we have to find i ∈ {0, ..., n− 1} such that x ∈ [xi, xi+1].

Most of the time, a uniform grid is used, such that the interval [a, b] is divided
using the linear scheme xi = a + i∆, where ∆ = (b− a) / (n− 1), for
i = 0, ..., n− 1.

In such a case, it is particularly simple to determine the interval as i is given by

i = [(a− x)/∆].

Approximation and Interpolation Methods: Part I

Page 123 of 174

Nevertheless, there are some cases where it may be efficient to use non-uniform
grid.

For instance, in the case of the non-smoothed function we consider above it
would be useful to consider the following simple 4 nodes gridn

−3, .5− 3√
1.5, .5 +

3√
2, 3

o
,

We saw that this grid yields a perfect approximation (recall that the central
part of the function is cubic!)

Approximation and Interpolation Methods: Part I

Page 124 of 174

As an example of spline approximation, Figure 8 reports the spline approxima-
tion to the non-smooth function

F (x) = min
³
max

³
−1.5, (x− 1/2)3

´
, 2
´
,

considering a uniform grid over the [−3, 3] interval with 3, 7 and 15 nodes.

Figure 8: Cubic spline approximation

−4 −2 0 2 4
−2

−1

0

1

2

3

x

Approximation

True
n=3
n=7
n=15

−4 −2 0 2 4
−0.5

0

0.5

1

1.5

x

Residuals

n=3
n=7
n=15

Approximation and Interpolation Methods: Part I

Page 125 of 174

In order to gauge the potential of spline approximation, we report in the upper
panel of Figure 9 the L2 and L∞ error of approximation.

Figure 9: Approximation errors (Panel A)

F (x) = min(max(−1.5, (x − 1/2)3), 2) over [−3; 3]

0 20 40 60
0

0.01

0.02

0.03

of nodes

L2 error

0 20 40 60
0

0.2

0.4

0.6

0.8

of nodes

L∞ error

Approximation and Interpolation Methods: Part I

Page 126 of 174

The L2 approximation error is given by kF (x)− S (x)k .

the L∞ is given by max |F (x)− S (x)|.

Increasing the number of nodes improves the approximation in that the error is
driven to zero.

But, the convergence is not monotonic in the case of the L∞ error.

This is because F , is not even C1 on the overall interval.

Approximation and Interpolation Methods: Part I

Page 127 of 174

When we consider a smooth function this convergence is monotonic, as can be
seen from the lower panel that report it for the function F (x) = x.1 over the
interval [0.01, 2]:

Figure 9: Approximation errors (Panel B)

F (x) = x0.1 over [0.01; 2]

0 20 40 60
0

1

2

3
x 10

−3

of nodes

L2 error

0 20 40 60
0

0.05

0.1

0.15

0.2

of nodes

L∞ error

Approximation and Interpolation Methods: Part I

Page 128 of 174

All this is actually illustrated in the following Theorem:

Theorem 7 Let F be a C4 function over the interval [x0, xn] and S its cubic
spline approximation on {x0, ..., xn}, and let δ ≥ maxi {xi − xi−1}, then

kF − Sk∞ ≤
5

384

°°°F (4)°°°∞ δ4

and °°°F 0 − S0
°°°∞ ≤ 9 +

q
(3)

216

°°°F (4)°°°∞ δ3.

This theorem actually gives upper bounds on the spline approximation.

These bounds decrease at a fast pace (power of 4) as the number of nodes
increases (as δ diminishes).

Approximation and Interpolation Methods: Part I

Page 129 of 174

Splines are usually viewed as a particularly good approximation method for two
main reasons:

1. A good approximation may be achieved even for functions that are not C∞
or that do not possess high order derivatives.

Indeed, Theorem (7) indicates that the error term depends only on fourth
order derivatives.

Even if the fifth order derivative were badly behaved an accurate approxi-
mation may still be obtained.

2. Evaluation of splines is particularly cheap as they involve most of the time
at most cubic polynomials, the only costly part being the interval search
step.

Approximation and Interpolation Methods: Part I

Page 130 of 174

Matlab Code: Cubic Spline Approximation

nbx = 8; % number of nodes

a = -3; % lower bound of interval

b = 3; % upper bound of interval

dx = (b-a)/(n-1); % step in the grid

x = [a:dx:b]; % grid points

y = min(max(-1.5,(x(i)-0.5)^3),2);

A = spalloc((nbx-2),(nbx-2),3*nbx-8); % creates sparse matrix A

B = zeros((nbx-2),1); % creates vector B

A(1,[1 2])=[2*(dx+dx) dx];

for i=2:nbx-3;

A(i,[i-1 i i+1])=[dx 2*(dx+dx) dx];

B(i)=3*(y(i+2)-y(i+1))/dx-3*(y(i+1)-y(i))/dx;

end

A(nbx-2,[nbx-3 nbx-2])=[dx 2*(dx+dx)];

c = [0;A\B];

a = y(1:nbx-1);

b = (y(2:nbx)-y(1:nbx-1))/dx-dx*([c(2:nbx-1);0]+2*c(1:nbx-1))/3;

d = ([c(2:nbx-1);0]-c(1:nbx-1))/(3*dx);

S = [a’;b’;c(1:nbx-1)’;d’]; % Matrix of spline coefficients

Approximation and Interpolation Methods: Part I

Page 131 of 174

One potential problem that may arise with this method stems from the fact
that we have not imposed any particular restriction on the shape of the approx-
imation relative to the true function.

This may be of great importance in some cases.

Assume for instance that we need to approximate the function F (xt) that
characterizes the dynamics of variable x in the following backward looking
dynamic equation:

xt+1 = F (xt) .

Assume that F is a concave function, but it is costly to compute, so we do
want to approximate it.

Approximation and Interpolation Methods: Part I

Page 132 of 174

However, as seen from the previous examples, some methods generate oscilla-
tions in the approximation.

This can create an important problem since it implies that the approximation
is not strictly concave, which is crucial in characterizing the dynamics of the
variable x.

Also, the approximation of a strictly increasing function may be locally decreas-
ing.

All this may create (1) some divergent path; (2) some spurious steady state;
and consequently (3) spurious dynamics.

It is therefore crucial to develop shape preserving methods, in particular the
curvature and monotonicity properties.

Approximation and Interpolation Methods: Part I

Page 133 of 174

Shape preserving approximations

We will see an approximation method that preserves the shape of the function
we want to approximate.

This method was proposed by Schumaker [1983] and essentially amounts to
using information on both the level and the slope of the function to be approx-
imated.

Approximation and Interpolation Methods: Part I

Page 134 of 174

We consider two situations:

1. Hermite interpolation: Assumes that we have information on both the level
and the slope of the function to be approximated.

2. Lagrange data interpolation: Assumes that no information on the slope
of the function is available.

Both method was originally developed using quadratic splines.

Approximation and Interpolation Methods: Part I

Page 135 of 174

Hermite interpolation

This method assumes that we have information on both the level and the slope
of the function to be approximated.

Assume we want to approximate the function F on the interval [x1, x2] and
we know

yi = F (xi) and zi = F 0 (xi) , i = 1, 2.

Build a quadratic function S (x) on [x1, x2] that satisfies

S (xi) = yi and S0 (xi) = zi for i = 1, 2.

Approximation and Interpolation Methods: Part I

Page 136 of 174

Schumaker establishes first that

Lemma 8 If
z1 + z2
2

=
y2 − y1
x2 − x1

then the quadratic form

S (x) = y1 + z1 (x− x1) +
z2 − z1

2 (x2 − x1)
(x− x1)

2

satisfies S (xi) = yi and S0 (xi) = zi for i = 1, 2.

Approximation and Interpolation Methods: Part I

Page 137 of 174

The construction of this function is rather appealing.

If z1 and z2 have the same sign then S0 (x) has the same sign as z1 and z2
over [x1, x2]:

S0 (x) = z1 +
(z2 − z1)

(x2 − x1)
(x− x1) .

Hence, if F is monotonically increasing (decreasing) on the interval [x1, x2],
so is S (x).

Furthermore, z1 > z2 (z1 < z2) indicates concavity (convexity), that is,
S (x) is such that

S00 (x) = (z2 − z1) / (x2 − x1) < 0 (> 0) .

Approximation and Interpolation Methods: Part I

Page 138 of 174

Problem: the conditions of the lemma are way too stringent, so the procedure
need to be somewhat changed.

This may be done by adding a node between x1 and x2 and construct another
spline that satisfies the lemma.

Approximation and Interpolation Methods: Part I

Page 139 of 174

Lemma 9 For every x∗ ∈ (x1, x2) there exist a unique quadratic spline that
solves

S (xi) = yi and S0 (xi) = zi for i = 1, 2

with a node at x∗. This spline is given by

S (x) =

(
α01 + α11 (x− x1) + α21 (x− x1)

2 for x ∈ [x1, x∗]
α02 + α12 (x− x∗) + α22 (x− x∗)2 for x ∈ [x∗, x2]

where

α01 = y1 α11 = z1 α21 =
z−z1

2(x∗−x1)
α02 = y1 +

z+z1
2 (x∗ − x1) α12 = z α22 =

z2−z
2(xx−x∗)

and

z =
2 (y2 − y1)− (z1 (x∗ − x1) + z2 (xx − x∗))

x2 − x1
.

Approximation and Interpolation Methods: Part I

Page 140 of 174

If the latter lemma fully characterize the quadratic spline, it gives no information
on x∗, which therefore remains to be selected.

The point x∗ need to be such that the spline matches the desired shape prop-
erties.

First note that if z1 and z2 are both positive (negative), then S (x) is monotone
if and only if z1z ≥ 0 (≤ 0).

This is equivalent to

2 (y − y1) R (x∗ − x1) z1 + (x2 − x∗) z2 if z1, z2 R 0.

This essentially deals with the monotonicity problem.

Approximation and Interpolation Methods: Part I

Page 141 of 174

To tackle the curvature issue we compute the slope of the secant line between
x1 and x2

∆ =
y2 − y1
x2 − x1

.

Then, if

(z2 −∆) (z1 −∆) ≥ 0,

it the presence of an inflexion point in the interval [x1, x2].

Hence, the interpolant cannot be neither convex nor concave.

Approximation and Interpolation Methods: Part I

Page 142 of 174

Conversely, if |z2 −∆| < |z1 −∆| and x∗ satisfies

x1 < x∗ ≤ x ≡ x1 +
2 (x2 − x1) (z2 −∆)

(z2 − z1)

then S (x) is convex (concave) if z1 < z2 (z1 > z2).

Furthermore, if z1z2 > 0 it is also monotone.

Approximation and Interpolation Methods: Part I

Page 143 of 174

If, in contrast, |z2 −∆| > |z1 −∆| and x∗ satisfies

x ≡ x2 +
2 (x2 − x1) (z1 −∆)

(z2 − z1)
≤ x∗ < x2

then S (x) is convex (concave) if z1 < z2 (z1 > z2).

These set of results gives us the range of values for x∗ that will insure that
shape properties will be preserved.

Approximation and Interpolation Methods: Part I

Page 144 of 174

1. Check if lemma 8 is satisfied. If so, set x∗ = x2 and set S (x) as in lemma
9. Then STOP. Else, go to 2.

2. Compute ∆ = y2 − y1/x2 − x1.

3. if (z1 −∆) (z2 −∆) ≥ 0 set x∗ = (x1 + x2) /2 and STOP. Else, go to
4.

4. if |z1 −∆| < |z2 −∆| ≥ 0 set x∗ = (x1 + x) /2 and STOP. Else, go to
5.

5. if |z1 −∆| ≥ |z2 −∆| ≥ 0 set x∗ = (x2 + x) /2 and STOP.

Now we have at hand a value for x∗ in [x1, x2].

Approximation and Interpolation Methods: Part I

Page 145 of 174

We then can apply it to each sub-interval to get x∗i ∈ [xi, xi+1] and then solve
the general interpolation problem as explained in lemma 9.

Note here that everything assumes that with have Hermite data in hand — i.e.,
{xi, yi, żi : i = 0, .., n}.

However, in most cases the slope is typically unknown.

So, we need to adapt the algorithm to such situations.

Approximation and Interpolation Methods: Part I

Page 146 of 174

Unknown slope: back to the Lagrange interpolation

Assume now that we do not have any data for the slope of the function.

That is we are only endowed with the Lagrange data

{xi, yi : i = 0, .., n} .

In such a case, we have to add the needed information–an estimate of the
slope of the function–and proceed as in the case of the Hermite interpolation.

Approximation and Interpolation Methods: Part I

Page 147 of 174

Schumaker proposes the following procedure for obtaining {żi : i = 0, .., n}.

Compute

Li =
h
(xi+1 − xi)

2 + (yi+1 − yi)
2
i1/2

and

∆i =
yi+1 − yi
xi+1 − xi

for i = 1, ..., n− 1.

Approximation and Interpolation Methods: Part I

Page 148 of 174

Then żi : i = 0, ..., n can be recovered as

zi =

⎧⎨⎩
Li−1∆i−1+Li∆i

Li−1+Li
if ∆i−1∆i > 0

0 ∆i−1∆i ≤ 0
i = 2, ..., n− 1

and

z1 = −
3∆1 − z2

2
and zn = −

3∆n− 1− sn−1
2

.

Now, we just apply exactly the same procedure as described in the previous
section.

Approximation and Interpolation Methods: Part I

Page 149 of 174

Up to now, all methods we have been studying are unidimensional whereas most
of the model we deal with in economics involve more than asingle variable.

We therefore need to extend the analysis to higher dimensional problems.

Approximation and Interpolation Methods: Part I

Page 150 of 174

Multidimensional approximations

Computing a multidimensional approximation to a function may be quite cum-
bersome and even impossible in some cases.

To understand the problem, let us restate an example provided by Judd [1998].

Consider the data points

{P1, P2, P3, P4} = {(1, 0) , (−1, 0) , (0, 1) , (0,−1)} in R2

and the corresponding data zi = F (Pi) , i = 1, ..., 4.

Approximation and Interpolation Methods: Part I

Page 151 of 174

Assume that we want to construct the approximation of function F using a
linear combination of {1, x, y, xy} defined as

G (x, y) = a+ bx+ cy + dxy

such that G (xi, yi) = zi.

Finding a, b, c, d amounts to solve the linear system⎛⎜⎜⎜⎝
1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

a
b
c
d

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

z1
z2
z3
z4

⎞⎟⎟⎟⎠

which is not of full rank.

Approximation and Interpolation Methods: Part I

Page 152 of 174

This example reveals two potential problems:

1. Approximation in higher dimensional systems involves cross-product and
therefore poses the problem of the selection of polynomial basis to be used
for approximation,

2. More important is the selection of the grid of nodes used to evaluate the
function to compute the approximation.

We now investigate these issues, by first considering the simplest way to attack
the questioN, namely considering tensor product bases.

We then introduce a second way of dealing with this problem, using complete
polynomials.

Approximation and Interpolation Methods: Part I

Page 153 of 174

In each case, we concentrate on how to use the Chebychev approximation.

Approximation and Interpolation Methods: Part I

Page 154 of 174

Tensor product bases

The idea here is to use the tensor product of univariate functions to form a
basis of multivariate functions.

Suppose we want to approximate a function F : R2 −→ R using simple
univariate monomials up to order 2:

Define X =
n
1, x, x2

o
and Y =

n
1, y, y2

o
.

The tensor product basis is given byn
1, x, y, xy, x2, y2, x2y, xy2, x2y2

o

i.e., all possible 2-terms products of elements belonging to X and Y.

Approximation and Interpolation Methods: Part I

Page 155 of 174

We are now in position to define the n-fold tensor product basis for functions
of n variables {x1, ..., xi, ..., xn}.

Definition 10 Given a basis for n functions of the single variable xi : Pi =n
pki (xi)

oki
k=0

then the tensor product basis is given by

B =

⎧⎨⎩
κ1Y

k1=0

...
κnY

kn=0

.p
k1
1 (x1) ...p

kn
n (xn)

⎫⎬⎭ .

Approximation and Interpolation Methods: Part I

Page 156 of 174

An important problem with this type of tensor product basis is their size.

For example, considering a m-dimensional space with polynomials of order n,
we already get (n+ 1)m terms!

This exponential growth in the number of terms makes it particularly costly to
use this type of basis, if the number of terms or the number of nodes is high.

Nevertheless, it will often be satisfactory or sufficient for low enough polyno-
mials (in practice n = 2!)

Approximation and Interpolation Methods: Part I

Page 157 of 174

Complete polynomials

Complete polynomials have the advantage of growing only polynomially as the
dimension increases.

Intuitively, complete polynomials bases take products of order lower than a
priori given κ into account, ignoring higher terms of higher degrees.

Definition 11 For κ ∈ N given, the complete set of polynomials of total degree
κ in n variables is given by

Bc =

⎧⎨⎩xk11 × ...× xknn : k1, ..., kn ≥ 0,
nX
i=1

ki ≤ κ

⎫⎬⎭ .

Approximation and Interpolation Methods: Part I

Page 158 of 174

To illustrate this more clearly, we consider the example of the previous section,
i.e., X =

n
1, x, x2

o
and Y =

n
1, y, y2

o
, and assume that κ = 2.

In this case, we end up with a complete polynomials basis of the type

Bc =
n
1, x, y, x2, y2, xy

o
= BÂ

n
xy2, x2y, x2y2

o
.

We already seen this in the Taylor’s theorem for multivariate case:

F (x) ' F (x∗) +
nX
i=1

∂F

∂xi
(x∗) (xi − xi∗)

...

+
1

k!

nX
ii=1

...
nX

ik=1

∂kF

∂xi1...∂xik
(x∗)

³
xi1 − x∗i1

´ ³
xik − x∗ik

´

Approximation and Interpolation Methods: Part I

Page 159 of 174

For instance, considering the Taylor expansion to the 2-dimensional function
F (x, y) around (x∗, y∗) we get

F (x, y) ' F (x∗, y∗) + Fx (x
∗, y∗) (x− x∗) + Fy (x

∗, y∗) (y − y∗)

+
1

2

³
Fxx (x

∗, y∗) (x− x∗)2 + 2Fxy (x∗, y∗) (x− x∗) (y − y∗)

+Fyy (x
∗, y∗) (y − y∗)2

´
,

which rewrites

F (x, y) = α0 + α1x+ α2y + α3x
2 + α4y

2 + α5xy.

Such an implicit polynomial basis is the complete polynomials basis of order 2
with 2 variables.

Approximation and Interpolation Methods: Part I

Page 160 of 174

The key difference between tensor product bases and complete polynomials
bases is the rate at which the size of the basis increases.

What do we loose using complete polynomials rather than tensor product bases?

From a theoretical point of view, Taylor’s theorem gives us the answer: Nothing!

The complete polynomials and tensor product bases deliver the same degree of
asymptotic convergence.

Once we have chosen a basis, we can proceed to approximation.

Approximation and Interpolation Methods: Part I

Page 161 of 174

For example, we may use Chebychev approximation in higher dimensional prob-
lems.

Judd [1998] reports the algorithm for this problem.

It takes advantage of a very nice feature of orthogonal polynomials: They
preserve the orthogonality property even if we extend them to higher dimensions.

Assume now that we want to compute the Chebychev approximation of a 2-
dimensional function F (x, y) over the interval [ax; bx]× [ay; by].

Further assume (for simplicity) that we want to use a tensor product basis.

Approximation and Interpolation Methods: Part I

Page 162 of 174

Then, the algorithm is as follows:

1. Choose a polynomial order for x (nx) and y (ny) .

2. Compute mx ≥ nx+1 and my ≥ ny+1 Chebychev interpolation nodes
on [−1; 1]

zxk = cos
µ
2k − 1
2mx

π
¶
, k = 1, ...,mx, and

z
y
k = cos

Ã
2k − 1
2my

π

!
, k = 1, ...,my

Approximation and Interpolation Methods: Part I

Page 163 of 174

3. Adjust the nodes to fit in both interval

xk = ax + (1 + zxk)
µ
bx − ax

2

¶
, k = 1, ...,mx and

yk = ay +
³
1 + z

y
k

´µby − ay

2

¶
, k = 1, ...,my

4. Evaluate the function F at each node to form

Ω ≡ {ωkl = F (xk, yl) : k = 1, ...,mx; l = 1, ...,my}

Approximation and Interpolation Methods: Part I

Page 164 of 174

5. Compute the (nx + 1)×(ny + 1) Chebychev coefficients αij, i = 0, ..., nx;
j = 0, ..., ny :

αij =

Pmx
k=1

Pmy
l=1ωklT

x
i

³
zxk

´
T
y
j

³
z
y
l

´
µPmx

k=1 T
x
i

³
zxk

´2¶µPmy
l=1 T

y
j

³
z
y
l

´2¶,
or simply

α =
Tx (zx)0ΩTy (zy)

kTx (zx)k2 × kTy (zy)k2

Approximation and Interpolation Methods: Part I

Page 165 of 174

6. Compute the approximation function as

G (x, y) =
nxX
i=0

nyX
j=0

αijT
x
i

µ
2
x− ax

bx − ax
− 1

¶
T
y
j

Ã
2
y − ay

by − ay
− 1

!
,

or simply as

G (x, y) = Tx
µ
2
x− ax

bx − ax
− 1

¶
αTy

Ã
2
y − ay

by − ay
− 1

!0
.

Approximation and Interpolation Methods: Part I

Page 166 of 174

As an illustration of the algorithm we compute the approximation of the CES
function

F (x, y) = [xρ + yρ]
1
ρ ,

on the [0.01; 2]× [0.01; 2] interval for ρ = 0.75.

We used 5-th order polynomials for both x and y

We use 20 nodes for both x and y. That is, there are 400 possible interpolation
nodes.

Applying the above algorithm we obtain a matrix of coefficients reported in
Table 7.

Approximation and Interpolation Methods: Part I

Page 167 of 174

Table 7: Matrix of Chebychev coefficients (tensor product basis)

kx\ky 0 1 2 3 4 5
0 2.4251 1.2744 -0.0582 0.0217 -0.0104 0.0057
1 1.2744 0.2030 -0.0366 0.0124 -0.0055 0.0029
2 -0.0582 -0.0366 0.0094 -0.0037 0.0018 -0.0009
3 0.0217 0.0124 -0.0037 0.0016 -0.0008 0.0005
4 -0.0104 -0.0055 0.0018 -0.0008 0.0004 -0.0003
5 0.0057 0.0029 -0.0009 0.0005 -0.0003 0.0002

Most of the coefficients that involve the cross-product of higher order terms
are close to zero.

Hence, using a complete polynomial basis is likely to yield the same efficiency
at a lower computational cost.

Approximation and Interpolation Methods: Part I

Page 168 of 174

Figure 10 reports the graph of the residuals for the approximation.

Figure 10: Residuals: Tensor product basis

0
0.5

1
1.5

2

0

0.5

1

1.5

2

−0.015

−0.01

−0.005

0

0.005

0.01

xy

Approximation and Interpolation Methods: Part I

Page 169 of 174

Approximation and Interpolation Methods: Part I

Page 170 of 174

If we now want to perform the same approximation using a complete polyno-
mials basis, we just have to modify the algorithm to take into account the fact
that when iterating on i and j we want to impose i+ j ≤ κ. Let us compute
is for κ = 5. This implies that the basis will consists of

1, Tx
1 (.) , T

y
1 (.) , T

x
2 () , T

y
2 (.) , T

x
3 (.) , T

y
3 (.) , T

x
4 (.) , T

y
4 () , T

x
5 (.) , T

y
5 (.) ,

Tx
1 (.)T

y
1 (.) , T

x
1 ()T

y
2 (.) , T

x
1 (.)T

y
3 () , T

x
1 (.)T

y
4 (.) ,

Tx
2 (.)T

y
1 (.) , T

x
2 ()T

y
2 (.) , T

x
2 (.)T

y
3 () ,

Tx
3 (.)T

y
1 (.) , T

x
3 ()T

y
2 (.) ,

Tx
4 (.)T

y
1 (.)

Approximation and Interpolation Methods: Part I

Page 171 of 174

Table 8: Matrix of Chebychev coefficients (Complete polynomials
basis)

kx\ky 0 1 2 3 4 5
0 2.4251 1.2744 -0.0582 0.0217 -0.0104 0.0057
1 1.2744 0.2030 -0.0366 0.0124 -0.0055 —
2 -0.0582 -0.0366 0.0094 -0.0037 — —
3 0.0217 0.0124 -0.0037 — — —
4 -0.0104 -0.0055 — — — —
5 0.0057 — — — — —

Note that, because of the orthogonality condition of Chebychev polynomials,
the coefficients that remain are the same as the one we got in the tensor product
basis.

Approximation and Interpolation Methods: Part I

Page 172 of 174

Figure 11 report the residuals from the approximation using the complete basis.

Figure 11: Residuals: Complete polynomials basis

0
0.5

1
1.5

2

0

0.5

1

1.5

2

−0.02

−0.01

0

0.01

0.02

x
y

The “constrained” approximation yields quantitatively similar results to the
tensor product basis.

Approximation and Interpolation Methods: Part I

Page 173 of 174

The matlab code section, reports the lines in step 4 that are affected by the
adoption of the complete polynomials basis:

Matlab Code: Complete Polynomials Specificities

a=zeros(nx+1,ny+1);

for ix=1:nx+1;

iy = 1;

while ix+iy-2<=kappa

a(ix,iy)=(Xx(:,ix)’*Y*Xy(:,iy))./(T2x(ix)*T2y(iy));

iy=iy+1;

end

end

Approximation and Interpolation Methods: Part I

Page 174 of 174

