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Lecture Note 3

Simulation Methods

Simulation estimators are estimators that utilize simulated random variables to ease
computational difficulties. Many estimators require the evaluation of integrals in order to
compute the estimators. If the dimension of the integrals is low (one, two, three, or even four),
standard quadrature (i.e., numerical integration) methods can be used. If the dimension is
high, then these methods are ineffective and other methods must be employed. Monte Carlo
integration and quasi-Monte Carlo integration are two such methods.

As an example, consider maximum likelihood estimation of a panel binary probit model
with serial correlation in the latent variables.

Monte Carlo Integration:
See Ch. 5 of Hammersley and Handscomb (1964), Monte Carlo Methods.
Consider the evaluation of the simple integral

I1 =

ˆ
h(x)f(x)dx , where

ˆ
h2(x)f(x)dx <∞

and f(x) is the density of some random variable or random vector X. Standard numerical
methods approximate I1 by breaking up the domain of hf into a grid and approximating hf
by a constant on each interval (or hyper-cube). This approach runs into difficulty in higher
dimensional problems. For example, consider the integral

I2 =

ˆ 1

0

· · ·
ˆ 1

0

h(x∼)f(x∼)dx1, ..., dxJ .

For a grid of mesh-size ε, one needs 1/εJ points when the domain is [0, 1]J . For example,
if ε = .01 and J = 10, then 1/εJ = 1020. Computing I2 by approximating h(x∼)f(x∼) by a
constant on each of 1020 hyper-cubes is very costly, if not impossible.

Monte Carlo integration is an alternative method of approximating integrals such as I2.
Let X1, ..., XR be R iid random variables each with density f . Then,

Eh(Xr) =

ˆ
h(x)f(x)dx = I1 , ∀r = 1, ..., R .
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Furthermore,

E
1

R
ΣR
r=1h(Xr) = I1 .

Thus,

ÎCF =
1

R
ΣR
r=1h(Xr)

is an unbiased estimator of I1. Here, CF stands for crude frequency. ÎCF is called the crude
frequency simulator of I1. The variance of ÎCF is

Var(ÎCF ) = Var(h(Xr))/R =

ˆ
(h(x)− I1)2f(x)dx/R .

We can estimate V ar(ÎCF ) by

V̂ar(ÎCF ) =
1

R
ΣR
r=1(h(Xr)− ÎCF )2/R .

Example: Consider the following case:

h(x) =
ex−1

e−1
and f(x) =

 1 for x ∈ [0, 1]

0 otherwise
.

In this case, I1 = .418. For illustrative purposes, suppose we cannot calculate I1 analytically.
Instead, we use the CF simulator to approximate I1. We have V ar1/2(h(Xr)) = .286. Take
R = 16. Sixteen U [0, 1] random numbers (from a table of random numbers) are .96, .28, .21,
.94, .35, .40, .10, .52, .18, .08, .50, .83, .73, .25, .33, .34. These random numbers yield

ÎCF = .357 ,

V̂ar(ÎCF )1/2 = .07 , and

|ÎCF − I1| = .061 .

Next, we consider the case where a crude frequency simulator is used in an estimation
problem. Suppose an integral of the following type arises in a likelihood function:

I2(θ) =

ˆ
1(x∼ ∈ Dθ)q(x∼ , θ)f(x∼)dx∼ ,

where x∼ ∈ RJ , f(x∼) is a density function, q(x∼ , θ) is a function that depends on x∼ and the
unknown parameter θ, and Dθ is a subset of RJ (possibly unbounded) that may depend on
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θ. For example, suppose we want to calculate

Pθ(Y∼ ≥ 0∼) where

Y∼ ∼ N(µ,Ω) , θ = (µ′, vech(Ω)′)′ .

Let X∼ ∼ N(0, IJ), Ω = ΓΓ′, and Y∼ = µ+ ΓX∼ . Then

Pθ(Y∼ ≥ 0∼) = P (ΓX ≥ −µ)

=

ˆ
1(x∼ ≥ −Γ−1µ)

J∏
j=1

φ(xj)dxj .

This is of the form I2(θ) with Dθ = {x∼ : x∼ ≥ −Γ−1µ}, q(x∼ , θ) = 1, and f(x∼) =
∏J
j=1 φ(xj).

If we can draw R iid draws X∼1, ..., X∼R from the density f(·), then the crude frequency
simulator of I2(θ) is

ÎCF (θ) =
1

R
ΣR
r=11(X∼r ∈ Dθ)q(X∼r, θ) .

In the case where I2(θ) = Pθ(Y∼ ≥ 0), we need to be able to draw iid N(0, 1) random variables.
Standard packages, such as GAUSS and Matlab, have built in random number generators
for N(0, 1) random variables, as well as U [0, 1] random variables.

If one needs to draw a real-valued random variable with continuous distribution function
F , one can use the probability integral transform:

F−1(Ur) ∼ F if Ur ∼ U [0, 1] .

(To prove this, write P (F−1(Ur) ≤ x) = P (Ur ≤ F (x)) = F (x).) If the inverse df F−1(·) has
closed form, this method works well.

Note that ÎCF (θ) is often a discontinuous function of θ even if I2(θ) is continuous. For
example, this is true when I2(θ) = Pθ(Y∼ ≥ 0∼). This occurs because

ÎCF (θ) =
1

R

R∑
r=1

1(X∼r ≥ −Γ−1µ)

is a step function with steps that depend on µ and Γ. Discontinuity of ÎCF (θ) is a nuisance
because it prevents one from using standard optimization methods (which rely on derivatives)
to maximize the likelihood function when the likelihood function is evaluated using the CF
simulator. (A common optimization algorithm for discontinuous criterion functions is the
Nelder–Meade simplex method.) It also prevents one from using standard asymptotic dis-
tribution theory, which relies on derivatives (but more sophisticated asymptotic distribution
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can be applied).

Importance Sampling:
The crude frequency simulator generally is not very efficient. That is, its variance is

relatively large compared to that of more sophisticated methods. Three more sophisticated
methods are (i) importance sampling, (ii) control variate methods, and (iii) antithetic variate
methods.

To explain importance sampling, we return to approximation of I1. We can rewrite I1 as

I1 =

ˆ
h(x)f(x)

g(x)
g(x)dx .

Suppose g(·) is a density and we can draw iid random variables X1, ..., XR with density g.
Then,

ÎIS =
1

R
ΣR
r=1

h(Xr)f(Xr)

g(Xr)

is an unbiased estimator of I1. Its variance is

Var(h(Xr)f(Xr)/g(Xr))/R =

ˆ
(h(x)f(x)/g(x)− I1)2g(x)dx/R .

Depending on the choice of g(·), this variance may be smaller than that of ÎCF . In particular,
if the shape of g(·) mimics that of h(·)f(·) well, then h(·)f(·)/g(·) will be close to a constant
and V ar(h(Xr)f(Xr)/g(Xr)) will be close to zero. If g(x) = ch(x)f(x) for a constant c, then
V ar(h(Xr)f(Xr)/g(Xr)) is identically zero and ÎIS = I1. But, for g to be a density, one needs´
g(x)dx =

´
ch(x)f(x)dx = 1. That is, one needs to take c = 1/

´ 1
0
h(x)f(x)dx = 1/I1.

Hence, in order to draw from the density ch(x)f(x), one needs to know c, and equivalently,
I1. In consequence, drawing from g(·) = ch(·)f(·) is not feasible. Nevertheless, we would
like to choose g(·) such that g(·) is close to being proportional to h(·)f(·) and such that it is
easy to simulate rv’s with density g(·).
Example: Suppose h(x) = ex−1

e−1 , f(x) = 1(x ∈ [0, 1]), and we take g(x) = 2x. Then, the df
G and the inverse df G−1 corresponding to the density g are

G(x) =


0 for x ≤ 0

x2 for 0 < x < 1

1 for x ≥ 1

and G−1(x) =


0 for x ≤ 0

x1/2 for 0 < x < 1

1 for x ≥ 1 .

We can draw R iid random variables X1, ..., XR by drawing R iid U [0, 1] random variables
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ξ1, ..., ξR and letting Xr = G−1(ξr) = ξ1/2r for r = 1, ..., R. Then,

ÎIS =
1

R
ΣR
r=1

eXr−1

(e−1)2Xr

=
1

R
ΣR
r=1

eξ
1/2
r −1

(e−1)2ξ
1/2
r

.

In this example,
Var(ÎCF )/Var(ÎIS) = 29.9 ,

so the importance sampling simulator is much more efficient than the crude frequency sim-
ulator.

Control Variate Method:
Given a function m(·) on [0, 1], we can rewrite I1 as

I1 =

ˆ
h(x)f(x)dx =

ˆ
m(x)f(x)dx+

ˆ
(h(x)−m(x))f(x)dx .

Supposem(·) is such that (i)
´
m(x)f(x)dx can be calculated analytically, i.e.,

´
m(x)f(x)dx

is known, and (ii) m(·) mimics h(·) sufficiently well that h(x)−m(x) is close to a constant
and, hence, V ar(h(Xr)−m(Xr)) is close to zero, where Xr has density f . Then, the control
variate simulator

ÎCV =

ˆ
m(x)f(x)dx+

1

R
ΣR
r=1(h(Xr)−m(Xr))

will be relatively efficient. Its variance is

Var(ÎCV ) = Var(h(Xr)−m(Xr))/R

= [Var(h(Xr)) + Var(m(Xr))− 2Cov(h(Xr)), m(Xr))]/R .

In this case, 1
R

ΣR
r=1m(Xr) is called a control variate for 1

R
ΣR
r=1h(Xr), the CF simulator. A

good control variate is one that is positively correlated with ÎCF . Also, one needs to know´
m(x)f(x)dx in order for 1

R
ΣR
r=1m(Xr) to serve as a control variate.

In our example, we might take m(x) = x to be a control variate, since we can calculate´ 1
0
xdx = 1

2
easily and since m(x) and h(x) resemble each other. With this choice,

Var(ÎCF )/Var(ÎCV ) = 60.4 ,

so the CV simulator works well.
Note that the CV method can be used to improve the efficiency of any simulator, not

just a CF simulator. For example, one could use the CV method to improve the efficiency
of an importance sampling simulator.
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Antithetic Variate Method:
This method is based on using the CF simulator plus a second simulator that is unbiased

for I1 and is negatively correlated with the CF simulator. The antithetic variate simulator is
then the average of the two simulators. Let ÎAV be an antithetic variate. Then, the antithetic
variate simulator is

ÎAV S = (ÎCF + ÎAV )/2 .

The AV simulator is unbiased for I1 and has variance

Var(ÎAV S) = Var(ÎCF ) + Var(ÎAV ) + 2Cov(ÎCF , ÎAV ) .

V ar(ÎAV S) is small when Cov(ÎCF , ÎAV ) is negative.
The AV method does not require that the first simulator is the CF simulator. One could

construct an AV simulator when starting with an IS or CV simulator.
In our example with h(x) = ex−1

e−1 , an antithetic variate for the CF simulator is

ÎAV =
1

R
ΣR
r=1h(1−Xr) ,

where Xr ∼ U [0, 1]. Note that 1−Xr ∼ U [0, 1]. Also, h(Xr) and h(1−Xr) are negatively
correlated when h is monotone (as it is).

In our example,
Var(ÎCF )/Var(ÎAV S) = 62 ,

where ÎAV S = (ÎCF + ÎAV )/2.
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An Example of Binary Choice Model:
We will use the binary probit model to illustrate different simulation methods. In this

model, we observe (Y1, X1), ..., (Yn, Xn), where

Yi =

 1 if Y ∗i > 0

0 otherwise,

Y ∗i = X ′iθ0 + Ui ,

Ui ∼ iidN(0, 1) .

The likelihood function is

n∏
i=1

Pθ(Yi = 1)Yi(1− Pθ(Yi = 1))1−Yi

=
n∏
i=1

Φ(X ′iθ)
Yi(1− Φ(X ′iθ))

1−Yi .

The (normalized) log-likelihood function is

`n(θ) =
1

n
Σn
i=1(Yi log Φ(X ′iθ) + (1−Yi) log(1− Φ(X ′iθ))) .

We pretend (for the purposes of the example) that we cannot compute Φ(X ′iθ) by standard
quadrature methods. Instead, we will use simulation methods.

The method of simulated likelihood (MSL) just replaces the unknown integrals Φ(X ′iθ) in
the likelihood function by simulated versions. The MSL estimator maximizes the simulated
likelihood function. Generally we want to carry out the simulations such that the same
sequence of underlying pseudo-random variables is used for each value of θ. We have

Φ(X ′iθ) =

ˆ
1(u ≤ X ′iθ)φ(u)du .

Suppose εi1, ..., εiR are iid N(0, 1) pseudo-random variables. Then, the crude frequency
simulator of Φ(X ′iθ) is

Φ̂Ri(X
′
iθ) =

1

R
ΣR
r=11(εir ≤ X ′iθ) .

The simulated likelihood estimator θ̂Rn maximizes the simulated likelihood function or sim-
ulated log likelihood function:

̂̀
Rn(θ) =

1

n
Σn
i=1(Yi log Φ̂Ri(X

′
iθ) + (1−Yi) log(1− Φ̂Ri(X

′
iθ))) ,
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where Φ̂Ri(X
′
iθ) is some simulator of Φ(X ′iθ) such as the CF simulator above.

What is needed in order for θ̂Rn to be consistent? Remember the consistency result of
Lecture 1 for extremum estimators. Assumptions EE, ID, and W–CON are sufficient for
θ̂Rn to converge in probability to the value θ∗ that minimizes Q(θ), the probability limit of
Qn(θ) = ̂̀

nR(θ). What is Q(θ)? If we use different (and independent) simulated rv’s for each
observation, then ̂̀

Rn(θ) is an average of iid rv’s and a law of large numbers can be applied.
If we use the same simulated rv’s for each observation, i.e., if εir is the same for all i, then a
law of large numbers does not apply. We recommend using different simulated rv’s for each
observation. In this case, if R is fixed as n→∞, then Qn(θ) converges in probability to

Q(R)(θ) = EYi log Φ̂Ri(X
′
iθ) + E(1−Yi) log(1− Φ̂Ri(X

′
iθ))

= EX [Φ(X ′iθ0)Eε log ΦRi(X
′
iθ)] + EX [(1− Φ(X ′iθ0))Eε log(1− Φ̂Ri(X

′
iθ0))] ,

where EX denotes expectation with respect to Xi and Eε denotes expectation with respect
to εi1, ..., εiR. Note that

EεΦ̂Ri(X
′
iθ) = Φ(X ′iθ) ,

but
Eε log Φ̂Ri(X

′
iθ) < logEΦRi(X

′
iθ) = log Φ(X ′iθ)

and
Eε log(1− Φ̂Ri(X

′
iθ)) < log(1− EεΦ̂Ri(X

′
iθ)) = log(1− Φ(X ′iθ))

by Jensen’s inequality. In consequence, the limit function Q(R)(θ) does not equal the limit
function for the case where Φ(X ′iθ) can be calculated exactly. The latter is

Q∗(θ) = EXΦ(X ′iθ0) log Φ(X ′iθ) + EX(1− Φ(X ′iθ0)) log(1− Φ(X ′iθ)) .

There is no reason why Q(R)(θ) is uniquely minimized at θ0. In general, it will not be and
θ̂Rn will be inconsistent when R is held fixed as n→∞.

To obtain a consistent estimator one needs to let R depend on n and have R = Rn →∞
as n→∞. In this case, ̂̀

Rnn(θ) will converge in probability to Q∗(θ), the same function as
when the likelihood function can be computed exactly. Thus, in this case, the MSL estimator
θ̂Rn will be consistent. In practice, this means that for given n, R needs to be relatively large
for the MSL estimator to avoid large bias.

To obtain asymptotic normality of θ̂Rn, one needs R to diverge to infinity at a certain
rate as n → ∞. This imposes a more stringent requirement for R to be large than that
required for consistency. In practice, a suitable choice for R depends on how accurate the
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simulator is for given R. The better the simulator, the smaller R can be.
Although different simulated rv’s should be used for different observations, the same

simulated rv’s should be used for every value of θ for a given observation. The latter choice
circumvents the “chattering effect” on the likelihood that occurs if different simulated rv’s
are used for different values of θ. It also reduces the number of different rv’s that need to be
simulated.
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