
Bar-Ilan University Moshe Buchinsky
Estimation of DP Models Department of Economics
March, 2017 UCLA

Lecture Note 2

Numerical Dynamic Programming in Economics

From Handbook of Computational Economics
by Amman, H., Kendrick, D., and J. Rust (editors)

1 Plan of lecture note

1. Introduction

2. Review of MDP’s and the Theory of Dynamic Programming

• Definitions of MDP’s, DDP’s and CDP’s

• Bellman’s Equation, Contractions, Blackwell’s Theorem

• Analytic Solutions to “Test Problems”

• Euler Equations and Euler Operators

3. Computational Complexity and Optimal Algorithms

• Discrete Computational Complexity

• Continuous Computational Complexity

4. Numerical Methods for MDP’s

• Discrete Finite Horizon

• Discrete Infinite Horizon

• Continuous Finite Horizon

• Continuous Infinite Horizon

5. Conclusions

1

2 Review of MDP’s and the Theory of Dynamic Programming

Definition 2.1: A (discrete-time) Markovian Decision Process (MDP) consists of the following
objects:

• A state space S

• An action space A

• A family of constraint sets {A (s) ⊆ A}

• A transition probability p (ds′|s, a)

• A discount factor β ∈ (0, 1)

• A single period utility function u(s, a)

The individual’s problem at time t = 0 is then

V0 (s) = max
α={α0,...,αT }

Ea

{
T∑
t=0

βtu (st, αt)

∣∣∣∣∣ s0 = s

}
. (1)

Discrete MDP’s versus Continuous MDP’s

Definition 2.2: A Discrete Decision Process (DDP) is an MDP with the following property:

• There is a finite set A such that A(s) ⊂ A for each s ∈ S.

Definition 2.3: A Continuous Decision Process (CDP) is an MDP with the following property:

• For each s ∈ S, the action set A(s) is a compact subset of Rda , with non-empty interior.

Remark 1: Important distinction between CDP’s and DDP’s:

• Solutions to DDP’s can be computed exactly (provided state space is finite), CDP’s can only
be approximated.

• CDP’s are subject to an inherent curse of dimensionality, but can break the curse of dimen-
sionality for DDP’s.

• Approximate solution methods might also be attractive for very large DDP problems even
though exact solution methods exist.

Remark 2: The CDP/DDP dichotomy is mirrored by two fundamental approaches to approxi-
mation of solutions to MDP’s:

• Discrete Approximation Methods

• Continuous Approximation Methods

2

Remark 3: There is substantial controversy in the economics literature over the “best” approxi-
mation method:

• The proliferation of different algorithms and controversies over which approach is “best” is
similar to controversies that have arise in statistics and econometrics about which estimations
methods are “best”. The computational problem is akin to nonparametric econometrics: which
is “best” way to “estimate” (i.e., compute) unknown functions V , α?

• This chapter appeals to computational complexity theory to help shed new light on these
controversies.

• Complexity theory is in principle capable of characterizing optimal algorithms for solving
MDP’s.

3 Computational Complexity and Optimal Algorithms

Optimal strategies for finding optimal strategies.

• Discrete Computational Complexity

– Turing model of computation, exact solutions to discrete, finite-dimensional problems
(matrix multiplication, LP, etc.).

– comp (n) minimal computer time to solve a problem of size n. Example, matrix multi-
plication comp (n) = O

(
n2.376

)
.

– Outstanding problems: P = NP and P = NC problems.

• Continuous Computational Complexity

– Real model of computation, ε-approximations to continuous infinite-dimensional prob-
lems (e.g. PDE’s, integration, optimization, etc.).

– comp(ε, d) minimal time to compute an ε-approximation of a d-dimensional problem.

– Tight upper and lower bounds on complexity of many problems have been established.

– Enables us to formalize the curse of dimensionality:

Definition: A class of discrete MDP problems with ds state variables and da control variables
is subject to the curse of dimensionality if comp(ds, da) = Ω(2ds+da). A class of continuous MDP
problems is subject to the curse of dimensionality if comp(ε, ds, da) = Ω(1/εds+da).

3

4 Numerical Methods for MDP’s

4.1 Dynamic Programming Solution, Finite Horizon Problems

αt (st) = arg max
at∈A(st)

{
u (st, at) + β

∫
Vt+1 (st+1) p (dst+1|st, at)

}
, (2)

Vt (st) = max
at∈A(st)

{
u (st, at) + β

∫
Vt+1 (st+1) p (dst+1|st, at)

}
. (3)

4.2 Dynamic Programming Solution, Infinite Horizon Problems

α (s) = arg max
a∈A(s)

{
u (s, a) + β

∫
V
(
s′
)
p
(
ds′|s, a

)}
, (4)

V (s) = max
a∈A(s)

{
u (s, a) + β

∫
V
(
s′
)
p
(
ds′|s, a

)}
. (5)

Bellman’s equation in operator form:

V = Γ (V) ,

where Γ : B → B is the Bellman operator defined by

Γ (V) (s) = max
a∈A(s)

{
u (s, a) + β

∫
V
(
s′
)
p
(
ds′|s, a

)}
. (6)

Contraction Mapping Theorem:
Γ is a contraction mapping with unique fixed point V ∈ B.

‖Γ (V)− Γ (W)‖ ≤ β ‖V −W‖ . (7)

Lemma 2.1: Suppose {ΓN} converge pointwise to Γ, i.e., for all W ∈ B we have

lim
N→∞

ΓN (W) = Γ (W) . (8)

Then the approximate fixed point VN = ΓN (VN) satisfies the bound:

‖VN − V ‖ ≤
‖ΓN (V)− Γ (V)‖

1− β
. (9)

Lemma 2.2: Let Γ be a contraction mapping with fixed point V = Γ (V). For each W the
following inequalities hold:

‖W − Γ (W)‖ ≤ (1 + β) ‖V −W‖ , (10)∥∥Γt (W)− V
∥∥ ≤ βt ‖Γ (W)−W‖

1− β
, (11)

4

and ∥∥Γt+1 (W)− V
∥∥ ≤ β ∥∥Γt (W)− V

∥∥ .
Lemma 2.3: Let Γ be a Bellman operator. Then we have:

Γ : B

(
0,

K

1− β

)
→ B

(
0,

K

1− β

)
,

where B (0, r) = {V ∈ B : ‖V ‖ ≤ r} and K is given by:

K = sup
s∈S

sup
a∈A(s)

|u(s, a)| .

Infinite Horizon MDP’s as Generalized Geometric Series:

Vα = [I − βMa]
−1 ua (12)

= uα + βMαuα + β2M2
αuα + βM3

αu
3
α + · · · ,

where Ma is the Markov operator defined by:

Mα (V) (s) =

∫
V
(
s′
)
p
(
ds′|s, α (s)

)
. (13)

Solution Algorithm for Contraction Mappings:

• Successive Approximations
Vk = Γ (Vk−1) = Γk (V0) . ()

• Newton-Kantorovich iterations

Vk+1 = Vk −
[
I − Γ′ (Vk)

]−1
(I − Γ) (Vk) . (14)

Fundamental Trade-offs:

1. SA is linearly convergent, NK is quadratically convergent.

2. SA is cheap per iteration, NK is expensive per iteration.

3. SA is globally convergent, NK is locally convergent.

Example: Smooth Bellman operator, Γσ

Γσ (V) (s) = σ log

 ∑
a∈A(s)

exp

{
1

σ

[
u (s, a) + β

∫
V
(
s′
)
p
(
ds′|s, a

)]} ,
Γ′σ (V) (W) (s) = β

∑
a∈A(s)

∫
W
(
s′
)
p
(
ds′|s, a

)
p (a|s) ,

5

where p (a|s) is the conditional choice probability given by

p (a|s) =
exp

{
1
σ

[
u (s, a) + β

∫
V (s′) p (ds′|s, a)

]}∑
a′∈A(s) exp

{
1
σ

[
u (s, a′) + β

∫
V (s′) p (ds′|s, a′)

]} .
Solution Algorithm for Discrete MDP’s:

• General iterative methods Gauss-Seidel, Successive Over-relaxation, etc. from literature on
nonlinear equations.

• Successive Approximations.

• Accelerated Successive Approximations

Γk (V) + bke ≤ V ≤ Γk (V) + bke, (15)

where
bk = 1

1−β min
[
Γk (V)− Γk−1 (V)

]
, and

bk = 1
1−β max

[
Γk (V)− Γk−1 (V)

]
.

(16)

• Linear Programming (with Constrain Generation)

min
V ∈R|S|

|S|∑
s=1

V (s) ,

subject to:

V (s) ≥ u (s, a) + β

|S|∑
s′=1

V
(
s′
)
p
(
ds′|s, a

)
.

• Policy iteration

αt (s) = arg max
a∈A(s)

u (s, a) + β

|S|∑
s′=1

Vαt−1

(
s′
)
p
(
ds′|s, a

) , (17)

Vαt−1 = [I −Mαt]
−1 uαt . (18)

• Modified Policy Iteration solve (5.7) approximately using successive approximations:

Vαt−1 '

[
k∑
i=0

βiM i
αt

]
uαt .

• Policy Iteration Using State Aggregation Methods.

6

• Massively Parallel Policy Iteration Pan/Reif idea: use Newton’s method to invert L = [I −Mα]:

F (X) = [I − LX] = 0,

Lk = (2I − Lk−1M)Lk−1.

Theorem: Suppose that the initial estimate L0 of L−1 satisfies ‖I − L0L‖ < 1. Then
a massive parallel processor with O (|S|ω) processors (ω ≤ 2.376) can find an approximate
solution Lk satisfying the convergence criterion

∥∥Lk − L−1∥∥ ≤ 2−n
c ‖L0‖ in O

(
log
(
|S|2

))
time.

Conjecture: Let ε > 0 be an arbitrary solution tolerance between an approximate solution
V̂ and the true solution V = Γ(V) to an |S|-state infinite horizon MDP problem. Then the
massively parallel policy iteration algorithm using the Pan-Reif algorithm to approximately
solve each policy valuation step generates an approximate solution V̂ satisfying

∥∥∥V̂ − V ∥∥∥ < ε

in at most in O
(

log (log (1/ε)) log (|S|)2
)
time steps using a massively parallel processor with

O (|S|ω) processors.

• Policy Iteration using Minimum Residual Algorithm

u = LV,

L = [I − βM] ,
(19)

with

V̂k =
k∑
i=1

c∗iL
i−1u,

and

(c∗1, ..., c
∗
k) = arg min

(c1,...,ck)∈Rk

∥∥∥∥∥u−
k∑
i=1

ciL
i−1u

∥∥∥∥∥ .
Note that MR algorithm uses Krylov information:

Ik (L, u) =
(
u, Lu, L2u, ..., Lku

)
.

Theorem: The MR algorithm using Krylov information is almost optimal for solving sys-
tem (5.32) for the class F = {L : L = I − βM, ‖M‖ ≤ 1} in the sense that the value kMR is
nearly equal to the minimal level needed to get an ε-approximation to the solution V .

kMR (ε, F) = min

(
|S| ,

⌊
log (ε)

log (β)
(1− δ)

⌋
+ 1

)
.

Observation: If we do not need extremely high precision, then if kMR (ε, F) ≤ |S|, and if L
is sparse with O (|S|) non-zeros, then MR algorithm will find approximate solution V̂ in O (|S|)
versus O

(
|S|3

)
steps used by standard Gaussian elimination to solve linear system (5.32).

7

Fundamental trade-off: Use tailor-made algorithms that exploit special structure of a
given problem, or general purpose algorithms that do not take advantage of special structure
of problem?

4.3 Approximate Solution Methods for Continuous MDP’s

• Discrete Approximation Methods: Approximate V via an expanding sequence of approximate
finite-dimensional fixed points

V ' VN = ΓN (VN) ,

where ΓN : RN → RN is defined over a finite grid {s1, ..., sN} of points in S:

ΓN (V) (sj) = max
a∈A(sj)

{
u (sj , a) +

β

N

N∑
i=1

V (si) p̂ (si|sj , a)

}
.

• Smooth Approximation Methods: Approximate V via an expanding sequence of finite dimen-
sional manifolds in B, i.e.,

V ' Vθ = gk (θ) ,

for some smooth mapping gk : Rk → B. Choose θ̂ so that V
θ̂
is “as close as possible” to the

true fixed point V .

Vθ (s) =
k∑
i=1

θipi (s) , (20)

σ (θ) = ‖Vθ − Γ (Vθ)‖ ≡

√∫
|Vθ (s)− Γ (Vθ) (s)|2 µ (ds), (21)

σN (θ) ≡

√√√√ N∑
i=1

∣∣∣Vθ (si)− Γ̂ (Vθ) (si)
∣∣∣2 . (22)

How to Choose Grid Points for DA methods?

• Uniform Grid Points (Chow and Tsitsiklis, 1991) Assume S = [0, 1]ds and A (s) = [0, 1]da = A.

Partition S and A into equal sub-cubes of length h on each side. Then have Ns = (1/h)ds

discrete states and Na = (1/h)da discrete actions. Define discretized utility and transition
probability by:

uh (s, a) = u
(
sk(s), a

)
,

ph
(
s′|s, a

)
=

p
(
sk(s′)|sk(s), a

)∫
p
(
sk(s′)|sk(s), a

)
ds′

,

where sk(s) is an arbitrary “representative” from sub cube k (s) containing point s ∈ S. Define

8

approximate Bellman operator Γh by:

Γ̂h (V) (s) = max
ak

{
uh (s, ak) + β

∫
V
(
s′
)
ph
(
s′|s, ak

)
ds′
}

= max
ak

{
uh (s, ak) + β

N∑
k=1

∫
V (sk) ph

(
sk|sk(s), ak

)
ds′

}
.

Theorem: There exist constants K1 and K2 such that for all h sufficiently small and all
V ∈ B we have: ∥∥∥Γ (V)− Γ̂h (V)

∥∥∥ ≤ (K1 + βK2 ‖V ‖)h.

Note this method is subject to the “curse of dimensionality”: The number of operations to

find ε-approximation to V is O
(
T/
(

(1− β)2 ε
)(2ds+da))

.

• Quadrature Grids (Tauchen and Hussey, 1991)∫
V
(
s′
)
p
(
s′|s, a

)
ds′ =

∫
V
(
s′
) p (s′|s, a)

p (s′)
p
(
s′
)
ds′

'
N∑
k=1

V (sk)
p (sk|s, a)

p (sk)
pk.

The quadrature abscissa {s1, ..., sN} then yield our grid, and the weights {p1, ..., pN} can be
used to define an N -state Markov chain with transition probability pN given by:

pN (sk|sj , a) =
p (sk|sj , a) pk/p (sk)∑N
i=1 p (si|sj , a) pi/p (si)

,

for j, k = 1,, N .

Then the approximate Bellman operator is given by

Γ̂N (V) (s) = max
ak∈AN (s)

{
u (s, a) + β

N∑
k=1

∫
V (sk) pN (sk|s, ak)

}
.

Theorem: Suppose that S ∈ [0, 1]. There exist constants K1 and K2 such that for all
V ∈ B = C (S) and all N sufficiently large we have:∥∥∥Γ (V)− Γ̂N (V)

∥∥∥ ≤ (K1 + βK2)

N
.

Remark: Quadrature grids are also subject to the curse of dimensionality.

– A solution for this is the random grids (Rust, 1994): Choose a random grid {s̃1, ..., s̃N}

9

via i.i.d. draws from S = [0, 1]ds . Form random Bellman operator Γ̃N defined by:

Γ̃N (V) (s) = max
a∈A(s)

{
u (s, a) +

β

N

N∑
i=1

V (s̃i) p (s̃i|s, a)

}
.

Theorem: Suppose S = [0, 1]d, A is a finite set, and (u, p) satisfy the Lipschitz condi-
tions. Then for each N > 1 the expected error in the random Bellman operator satisfies
the following uniform bound:

sup
p

sup
‖V ‖≤K/(1−β)

E
[∥∥∥Γ̃N (V)− Γ (V)

∥∥∥] ≤ γ (d) |A|KpK

(1− β)
√
N

,

where Kp is the Lipschitz bound on p and γ (d) is a bounding constant given by:

γ (d) =

√
π

2
β
[
1 + d

√
πC
]
,

and C is an absolute constant, independent of p, V , β, or d.

• Remark: This result says that randomization succeeds in breaking the curse ofdimension-
ality for DDP’s. However, randomization cannot break the curse of dimensionality of CDP’s
as is stated formally in the next theorem.

• Theorem: Randomization cannot succeed in breaking the curse of dimensionality of the
class of all continuous MDP problems, i.e., a lower bound on the computational complexity is
given by:

compwor−ran (ε, β, da, ds) = Ω

 1[
(1− β)2 ε

]da
 .

• Other methods:

– “Low Discrepancy” Grid Points (Traub and Paskov, 1994, Judd, 1994). Use analog of
random Bellman operator, but use deterministically chosen Hammersley, Halton or Sobol’
points instead of random grid points from S.

– Hybrid methods (Keane and Wolpin, 1994). Based on altemative-specific value functions:

Vt (s, a) = u (s, a) + β

∫
max

a′∈A(s′)

[
Vt+1

(
s′, a′

)]
p
(
ds′|s, a

)
,

Vt (s) = max
a∈A(s)

[Vt (s, a)] ,

V̂t (sj , a) = u (sj , a) +
β

N

N∑
i=1

max
a′∈A(s̃ija)

[Vt+1 (s̃ija, a)] p
(
ds′|s, a

)
.

• Remark: Note that unlike previous methods, Keane- Wolpin method is not self-interpolating,

10

i.e., V̂t is only defined at the pre-assigned grid points {s1, ..., sN} and not at other points
s ∈ S. Since the realizations {s̃1ja, ..., s̃Nja} will generally not fall on the pre-assigned grid
points {s1, ..., sN}, Keane and Wolpin fit an interpolating regression using the N simulated
values

{
V̂t (s1) , ..., V̂t (sN)

}
as dependent variables in order to evaluate V̂t (s) at arbitrary

points s ∈ S. In principle many other interpolation procedures could be used such as simple
linear interpolation or any of the multivariate interpolation procedures. Our formula assumes
that this procedure has already been carried out on V̂t+1, so that it can be evaluated at all
the random points s̃ija, i = 1, ..., N .

4.4 Numerical Solution for the Auto Replacement Problem

• Consider the problem of optimal replacement of durable assets analyzed in Howard 1960, for
the discrete state, and Rust (1985, 1986), for the continuous state.

• State space S = R+, where st is interpreted as a measure or the accumulated utilization of the
durable (such as the odometer reading on a car). Thus st = 0 denotes a brand new durable
good.

• There are two possible decisions {keep, replace}, corresponding to the binary constraint set
A (s) = {0, 1}, where at = 1 corresponds to selling the existing durable for scrap priceP and
replacing it with a new durable at cost P .

• Utilization of the asset each period has an exogenous exponential distribution. This corre-
sponds to a transition probability p is given by:

p (dst+1|st, at) =


λ exp {−λ (st+1 − st)} if at = 0 and st+1 ≥ st,
λ exp {−λ (st+1 − 0)} if at = 1 and st+1 ≥ st,
0 otherwise.

• The per-period cost of operating the asset in state s is given by a function c(s). This implies
the following per period utility function is:

U (st, at) =

{
−c (st) if at = 0,

−
[
P − P

]
− c (0) if at = 1.

• The Bellman’s equation is given by:

V (s) = max

{
−c (s) + β

∫ ∞
s

V
(
s′
)
λ exp

{
−λ
(
s′ − s

)}
ds′ , (23)

−
[
P − P

]
− c (0) + β

∫ ∞
0

V
(
s′
)
λ exp

{
−λs′

}
ds′
}

• Let γ be the smallest value of s such that the agent is indifferent between keeping and replacing.
Differentiating Bellman’s equation (0.6), it follows that on the continuation region, [0, γ],

11

α (s) = 0 (i.e., keep the current durable) and V satisfies the differential equation:

V ′ (s) = c′ (s) + γc (s) + λ (1− β)V (s) . (24)

• This is known as a free boundary value problem, since the boundary condition is determined
endogenously:

V (γ) =
[
P − P

]
+ V (0) = −c (γ) + βV (γ) =

−c (γ)

1− β
. (25)

• Integrating the ODE, we obtain:

V (s) = max

{
−c (γ)

1− β
,
−c (γ)

1− β
+

∫ γ

s

c′ (γ)

1− β
[1− β exp {−λ (1− β) (y − s)}] dy

}
, (26)

where γ is the unique solution to:

[
P − P

]
=

∫ γ

0

c′ (γ)

1− β
[1− β exp {−λ (1− β) y}] dy. (27)

4.5 Solving the Auto Replacement Problem by Discrete Approximation

• Formulate discrete-state version of the replacement problem using |S| = 100 states, and the
same discount factor, cost function, and replacement costs.

• Approximate the exponential transition density p (·|st, dt) by a twelve-point pprobability dis-
tribution using a simple continuity correction so that each of the 12 mass points equal the
probability that an exponential random variable falls within plus or minus .5 of the integer
value j that st assumes in the discrete case:

p (st+1 = st + j|st, dt) =


∫ .5
0 λ exp {−λy} dy j = 0,∫ j+.5
j−.5 λ exp {−λy} dy j = 1, ..., 10,∫∞
10.5 λ exp {−λy} dy j = 11.

(28)

12

