A Model of Human Capital Accumulation and Occupational Choices

A simplified version of Keane and Wolpin (JPE, 1997)

- We have here three, mutually exclusive decisions in each period:
 - 1. Attend school.
 - 2. Work in a white-collar occupation.
 - 3. Work in a blue-collar occupation.
- Individuals differ in their endowments of skills among the various possible activities, i.e., there is an *activity-specific set of individual endowments*.
- We will keep the structure simple and allow for some individual-specific endowments, but will also allow for some of the model's parameters to be *common* to all individuals.

The Model:

- Finite horizon model where individuals start at age 18, after they completed their high school education, and end their lives five periods later, that is T = 5.
- At each time t = 1, ..., 5, an individual chooses among the three alternatives.
- Let,

$$d_{mt} = \left\{ \begin{array}{c} \mathbf{1} \\ \mathbf{0} \end{array} \right.$$

if the mth choice is chosen otherwise,

for m = 1, 2, 3.

• Note that since the choices are mutually exclusive, we always have

$$\sum_{m=1}^{3} d_{mt} = 1.$$

The reward:

• The per period reward at time t is given by

$$R_t = \sum_{m=1}^3 R_{mt} d_{mt},$$

where R_{mt} is the per-period reward, associated with the *m*th choice.

- Before defining the individuals' reward functions some notation is in order:
 - 1. Let E_t denote the number of completed years of schooling at time t, and note that $E_t = 12, ..., 16$.
 - 2. Let x_{mt} denote the number of years of experience in the *m*th occupation, m = 2, 3.

We assume that the experience is occupation specific, and one is rewarded only for the experience one has in the occupation he/she currently works in.

- Notation (continued):
 - 3. Let $\alpha_i = (\alpha_{i1}, \alpha_{i2}, \alpha_{i3})'$ denote the activity specific endowment of the individual at t = 1.
 - 4. Let δ denote the discount factor.
 - 5. Denote the full parameter vector of the entire model by θ .

The reward function:

1. The schooling alternative (m = 1):

$$R_{i1t} = \exp\left\{\alpha_{i1} + \varepsilon_{i1t}\right\} - tc \cdot I\left(E_{it} \ge 12\right),$$

where the endowment α_{i1} represents the indirect cost of effort, or enjoyment (and can be positive), while tc represents the direct costs of education, and $I(\cdot)$ denotes the usual indicator function.

2. White-collar alternative (m = 2):

$$R_{i2t} = \exp\left\{\alpha_{i2} + \beta_1 E_{it} + \beta_2 x_{i2t} + \varepsilon_{i2t}\right\}.$$

3. Blue-collar alternative (m = 3):

$$R_{i3t} = \exp\left\{\alpha_{i3} + \gamma_1 E_{it} + \gamma_2 x_{i3t} + \varepsilon_{i3t}\right\}.$$

• Note that the parameters β_1 , β_2 , γ_1 , and γ_2 , are common parameters to all individuals.

• The vector of residuals $\varepsilon_{it} = (\varepsilon_{i1t}, \varepsilon_{i2t}, \varepsilon_{i3t})'$ represents idiosyncratic shock, and it is assumed that

$$arepsilon_{it} \sim N\left(\mathbf{0}, \mathbf{\Omega}
ight).$$

• In this model the state vector at time t, z_t , is given by

$$z_{it} = \left(\underbrace{\underbrace{\alpha_{i1}, \alpha_{i2}, \alpha_{i3}}_{\alpha_i}, E_{it}, x_{i2t}, x_{i3t}, \underbrace{\varepsilon_{i1t}, \varepsilon_{i2t}, \varepsilon_{i3t}}_{\varepsilon_{it}}}_{s_{it}}\right)$$
$$= (s_{it}, \varepsilon_{it}),$$

where the first part of the state vector,

$$s_{it} = \{\alpha_i, E_{it}, x_{i2t}, x_{i3t}\},\$$

is *deterministic*, while ε_{it} is the stochastic part of the state vector.

• The value function (dropping the *i*th subscript) at time *t*:

$$V(z_t, t) = \max_{\{d_{m\tau}\}_{\tau=t}^T} E\left[\sum_{\tau=t}^T \delta^{\tau-t} \sum_{m=1}^3 R_{mt} d_{mt} \middle| z_t\right].$$
 (1)

• Maximization of (1) is achieved by choosing the optimal sequence of control variables:

$$\{d_{mt}, m = 1, 2, 3\}$$
 for $t = 1, ..., T (= 5)$.

• Hence, we can write

$$V(s_t, t) = \max_{m \in \{1, 2, 3\}} \{V_m(z_t, t)\},\$$

where

$$V_m(z_t, t) = R_{mt}(z_{it}) + \delta E[V(z_{t+1}, t+1) | z_t, d_{mt} = 1], \quad (2)$$
for all $t < T$.

• For t = T we have

$$V_m(z_T,T)=R_{mT}(z_t).$$

- Note that the expectation is taken over the random components of z_{t+1} , namely ε_t , conditional on s_t .
- That is, there is an implicit assumption about the Markovian nature of the problem, namely, the distribution of z_{t+1} , depends only on z_t .
- The state variable of schooling evolves deterministically according to

$$E_{t+1} = E_t + d_{1t},$$

for $E_t \leq \overline{E}$, the highest attainable level of education. In our case $\overline{E} = 16$.

• Similarly, for occupation specific work experience we have

$$x_{m,t+1} = x_{mt} + d_{mt}$$
, for $m = 2, 3$.

Remarks:

- 1. The solution to the optimization gives five mutually exclusive regions on the domain of ε_t , for which each of the five alternatives is the optimal choice.
- 2. Note that from the point of view of the individual agents the solution is deterministic, because ε_{it} (but not $\varepsilon_{i,t+1}$) is observed when making the optimal decision. However, from the econometrician standpoint the solution is stochastic, specifically, because ε_{it} is not observed by the econometrician.

Backward induction for Serially Uncorrelated ε_t :

• Here the joint distribution of the ε_t , t = 1, ..., T, is given by

$$\prod_{t=1}^{T} f(\varepsilon_{1t}, \varepsilon_{2t}, \varepsilon_{3t}; \eta) = \prod_{t=1}^{T} f(\varepsilon_{t}; \eta),$$

where η is a vector of parameters that correspond to the distribution $f(\cdot)$.

• Note that in our case η is simply

$$\eta = \operatorname{vec}\left(\Omega\right)$$
.

• The individual knows θ and has to solve for the sequence $\{d_m(t)\}$ for t = 1, ..., T, as in (1).

Note also that

$$f(\varepsilon_{t+1}|z_t, d_{mt}) = f(\varepsilon_{t+1}|s_t, d_{mt}).$$

The value function at T:

- Consider now an individual who enters the last time period T with the state space vector z_T .
- The individual receives a draw from the distribution of ε_T , conditional on s_T (here ε_T is actually independent of s_T). The individual will then choose the alternative with the highest reward function.

The value function at T - 1:

- Now consider the individual at time T 1, with the deterministic part of the state space vector s_{T-1} .
- In order to calculate the alternative-specific value function, the individual must first calculate

$$E\left[\max\left\{R_{1T}, R_{2T}, R_{3T}\right\} | s_{T-1}, d_{m,T-1}\right]$$

=
$$\int_{\varepsilon_{3}} \int_{\varepsilon_{2}} \int_{\varepsilon_{1}} \max\left\{R_{1T}, R_{2T}, R_{3T} | s_{T-1}, d_{m,T-1}\right\}$$
(3)
$$\times f\left(\varepsilon_{1T}, \varepsilon_{2T}, \varepsilon_{3T}\right) d\varepsilon_{1T} d\varepsilon_{2T} d\varepsilon_{3T},$$

for each of the possible choices, $d_{m,T-1}$, m = 1, 2, 3.

- The individual needs to compute (3) three times for $d_{m,T-1} = 1, 2, 3$.
- Note that the E max (·) function is a multivariate integral, even though the ε's are independent over time.
- The individual knows the value functions at period T-1, $V_m(s_{T-1}, T-1)$, up to the random draw of ε_{T-1} . The individual receives the random draw ε_{T-1} and then chooses the alternative with the highest value.

The value function at *t*:

• Moving back in time to a general period t the individual has to solve a problem, analogous to the problem in (3), which takes the form

$$E\left[\max\left\{R_{1,t+1}, R_{2,t+1}, R_{3,t+1}\right\} \middle| s_t, d_{mt}\right].$$
 (4)

- Note that in order to compute (4) the alternative-specific value functions must be calculated for all of the state vector values s_{t+1} that may arise, conditional on s_t and d_{mt}.
- That is, it is necessary to compute the alternative-specific value functions at each future date, for all possible realizations of the state vector.

Estimation:

- There is a significant complexity in computing the value function. Any erroneous approximation would transmit itself into bias in the parameter of interest θ.
- Consider an homogeneous set of individuals from the same birth cohort who are observed for all periods t = 1, ..., T.
- Note that in any period t wages are observed if and only if a work alternative was chosen, and only for that work alternative.

• Hence, the joint probability of choosing (for example) occupation 2 at time t, and its corresponding (accepted) wage, $w_{2t} = R_{2t}$, is

$$\begin{aligned} &\mathsf{Pr}\left(d_{2t} = 1, w_{2t}|s_t\right) \\ &= \mathsf{Pr}\left(w_{2t}|s_t\right)\mathsf{Pr}\left(d_{2t} = 1|w_{2t}, s_t\right) \\ &= \mathsf{Pr}\left(w_{2t}|s_t\right)\mathsf{Pr}\left\{w_{2t} + \delta E\max\left[V\left(z_{t+1}, t+1\right)|s_t, d_{2t} = 1\right]\right. \\ &\geq \widetilde{w}_{3t}e^{\varepsilon_{3t}} + \delta E\max\left[V\left(z_{t+1}, t+1\right)|s_t, d_{3t} = 1\right], \\ &\quad w_{2t} + \delta E\max\left[V\left(z_{t+1}, t+1\right)|s_t, d_{2t} = 1\right] \\ &\geq \exp\left\{\alpha_1\right\}e^{\varepsilon_{1t}} - tcI\left(E_t \ge 12\right) + \delta E\max\left[V\left(z_{t+1}, t+1\right)|s_t, d_{1t} = 1\right] \end{aligned}$$

where

$$\widetilde{w}_{3t}(s_t) = \exp\left\{\alpha_3 + \gamma_1 E_t + \gamma_2 x_{3t}\right\}.$$

- In words, this is the probability that alternative 2 exceed all the others, and that the accepted wage is the observed wage.
- Similar joint probabilities can be written for the other choices.
- The likelihood function for the sample is the product of all these probabilities over *time* and *individuals*.
- Maximizing the likelihood would yield a consistent estimator for θ , which is also asymptotically normal.

- If the E max(·) function could be calculated with no error, then one can also use the method of simulated moments (MSM) to obtain an estimate for θ.
- However, the MSM estimator combined with simulated estimates for E max(·) is not consistent for a fixed number of simulation, R.

Important remark: There are no conceptual problems in the implementation of models with large choice sets, large state space, and serial dependence in the unobserved elements. *The problems are merely computational*.

Existing Solutions and Estimation Methods:

Full-Solution Methods:

- These methods involve computational simplifications and involve finding convenient forms for the *reward functions* and *error distributions*.
- Three crucial assumptions make the computation relatively easy:
 - 1. The reward functions are additively separable in the unobservable, with each unobservable associated with a mutually exclusive choice. That is

$$u^*(s_t, t, \varepsilon_t) = u(s, t) + \varepsilon_t,$$

where ε_t is choice specific.

- 2. Conditional on the observed state variables, the unobservables are independent.
- 3. The unobservables are distributed as multivariate extreme values.

- These three assumptions lead to two very appealing consequences for solution and estimation:
 - 1. The $E \max(\cdot)$ function has the closed form solution given by

$$E\left[V\left(s\left(t\right),t\right)\right] = \gamma + \tau \ln\left\{\sum_{m=1}^{M} \frac{\exp\left\{V_m\left(s_t,t\right)\right\}}{\tau}\right\},\qquad(5)$$

where $V_m(s_t, t)$ is the expectation of the alternative-specific value functions, such as the one in (2), and γ is an Euler's constant. The importance of this is that multivariate numerical integrations are avoided in solving the DP problem.

- Consequences (continued):
 - 2. The choice probabilities are multinomial logit and are given by (with the normalization $\tau = 1$) by:

$$\Pr(d_{mt} = 1|s_t) = \frac{\exp\{V_m(s_t, t)\}}{\sum_{j=1}^{M} \exp\{V_j(s_t, t)\}}.$$
(6)

That is, the multivariate numerical integrations are avoided in the likelihood estimation. The drawback of this is that only a very limited form of correlation across alternatives can be accommodated.

 Note: To get these last two results, we need all the assumptions above. An assumption about the extreme distribution is not enough, we need to have the assumption about separability as well!

Non-Full-Solution Methods:

- One can use an alternative representation of the future components of the choice-specific valuations that do not depend explicitly on the structural parameters of the model.
- The E max(·) function is estimated then using data on future choice probabilities.

• The intuition for this method (Hotz and Miller (1993)) is that, using (5) and (6), one can show that

$$E[V(z_t, t)] = \sum_{m=1}^{M} \Pr(d_{mt} = 1|s_t) [\gamma + V_m(s_t, t) - \ln(\Pr(d_{mt} = 1|s_t))].$$
(7)

• Now, successive forward substitutions for $V_m(s_t, t)$, recognizing that it contains future expected maximum functions, implies that the expected maximum function at any t can be written as a function of the future conditional choice probabilities.

- Although this method is a lot more tractable than the full solution methods there are few disadvantages that are associated with this method:
 - 1. One needs a lot of data to be able to estimate all the transition probabilities, which are essentially estimated non-parametrically.
 - 2. This approach cannot admit individual-specific heterogeneity, at least in its current form. This, generally, rules out any form of serial correlation, including that implied by permanent unobserved heterogeneity.
 - The E max (·) values, which are calculated from the data, are not policy invariant, because they depend on the parameters of the model. Hence, a full solution is necessary after a solution for θ has been obtained in order to carry out policy experiments.