
A Model of Human Capital Accumulation and
Occupational Choices

A simplified version of Keane and Wolpin (JPE, 1997)



• We have here three, mutually exclusive decisions in each period:

1. Attend school.

2. Work in a white-collar occupation.

3. Work in a blue-collar occupation.

• Individuals differ in their endowments of skills among the various possible
activities, i.e., there is an activity-specific set of individual endowments.

• We will keep the structure simple and allow for some individual-specific
endowments, but will also allow for some of the model’s parameters to be
common to all individuals.



The Model:

• Finite horizon model where individuals start at age 18, after they completed
their high school education, and end their lives five periods later, that is
T = 5.

• At each time t = 1, ..., 5, an individual chooses among the three alterna-
tives.

• Let,

dmt =

{
1 if the mth choice is chosen
0 otherwise,

for m = 1, 2, 3.



• Note that since the choices are mutually exclusive, we always have
3∑

m=1

dmt = 1.



The reward:

• The per period reward at time t is given by

Rt =
3∑

m=1

Rmtdmt,

where Rmt is the per-period reward, associated with the mth choice.



• Before defining the individuals’reward functions some notation is in order:

1. Let Et denote the number of completed years of schooling at time t,
and note that Et = 12, ..., 16.

2. Let xmt denote the number of years of experience in the mth occupa-
tion, m = 2, 3.

We assume that the experience is occupation specific, and one is re-
warded only for the experience one has in the occupation he/she cur-
rently works in.



• Notation (continued):

3. Let αi = (αi1, αi2, αi3)′ denote the activity specific endowment of
the individual at t = 1.

4. Let δ denote the discount factor.

5. Denote the full parameter vector of the entire model by θ.



The reward function:

1. The schooling alternative (m = 1):

Ri1t = exp {αi1 + εi1t} − tc · I (Eit ≥ 12) ,

where the endowment αi1 represents the indirect cost of effort, or enjoy-
ment (and can be positive), while tc represents the direct costs of educa-
tion, and I (·) denotes the usual indicator function.

2. White-collar alternative (m = 2):

Ri2t = exp {αi2 + β1Eit + β2xi2t + εi2t} .

3. Blue-collar alternative (m = 3):

Ri3t = exp {αi3 + γ1Eit + γ2xi3t + εi3t} .



• Note that the parameters β1, β2, γ1, and γ2, are common parameters to
all individuals.



• The vector of residuals εit = (εi1t, εi2t, εi3t)
′ represents idiosyncratic

shock, and it is assumed that

εit ∼ N (0,Ω) .



• In this model the state vector at time t, zt, is given by

zit =

αi1, αi2, αi3︸ ︷︷ ︸
αi

, Eit, xi2t, xi3t︸ ︷︷ ︸
sit

, εi1t, εi2t, εi3t︸ ︷︷ ︸
εit


= (sit, εit) ,

where the first part of the state vector,

sit = {αi, Eit, xi2t, xi3t} ,

is deterministic, while εit is the stochastic part of the state vector.



• The value function (dropping the ith subscript) at time t:

V (zt, t) = max
{dmτ}Tτ=t

E

 T∑
τ=t

δτ−t
3∑

m=1

Rmtdmt

∣∣∣∣∣∣ zt
 . (1)

• Maximization of (1) is achieved by choosing the optimal sequence of con-
trol variables:

{dmt, m = 1, 2, 3} for t = 1, ..., T (= 5) .



• Hence, we can write

V (st, t) = max
m∈{1,2,3}

{Vm (zt, t)} ,

where

Vm (zt, t) = Rmt (zit) + δE [V (zt+1, t+ 1)| zt, dmt = 1] , (2)

for all t < T .



• For t = T we have

Vm (zT , T ) = RmT (zt) .

• Note that the expectation is taken over the random components of zt+1,
namely εt, conditional on st.

• That is, there is an implicit assumption about the Markovian nature of the
problem, namely, the distribution of zt+1, depends only on zt.

• The state variable of schooling evolves deterministically according to

Et+1 = Et + d1t,

for Et ≤ E, the highest attainable level of education. In our case E = 16.



• Similarly, for occupation specific work experience we have

xm,t+1 = xmt + dmt, for m = 2, 3.



Remarks:

1. The solution to the optimization gives five mutually exclusive regions on
the domain of εt, for which each of the five alternatives is the optimal
choice.

2. Note that from the point of view of the individual agents the solution is
deterministic, because εit (but not εi,t+1) is observed when making the op-
timal decision. However, from the econometrician standpoint the solution
is stochastic, specifically, because εit is not observed by the econometri-
cian.



Backward induction for Serially Uncorrelated εt:

• Here the joint distribution of the εt, t = 1, ..., T , is given by

T∏
t=1

f (ε1t, ε2t, ε3t; η) =
T∏
t=1

f (εt; η) ,

where η is a vector of parameters that correspond to the distribution f (·).

• Note that in our case η is simply

η = vec (Ω) .

• The individual knows θ and has to solve for the sequence {dm (t)} for
t = 1, ..., T , as in (1).



Note also that

f (εt+1|zt, dmt) = f (εt+1|st, dmt) .



The value function at T :

• Consider now an individual who enters the last time period T with the
state space vector zT .

• The individual receives a draw from the distribution of εT , conditional on
sT (here εT is actually independent of sT ). The individual will then choose
the alternative with the highest reward function.



The value function at T − 1:

• Now consider the individual at time T − 1, with the deterministic part of
the state space vector sT−1.

• In order to calculate the alternative-specific value function, the individual
must first calculate

E
[
max {R1T , R2T , R3T}| sT−1, dm,T−1

]
=

∫
ε3

∫
ε2

∫
ε1

max
{
R1T , R2T , R3T | sT−1, dm,T−1

}
(3)

×f (ε1T , ε2T , ε3T ) dε1Tdε2Tdε3T ,

for each of the possible choices, dm,T−1, m = 1, 2, 3.



• The individual needs to compute (3) three times for dm,T−1 = 1, 2, 3.

• Note that the Emax (·) function is a multivariate integral, even though
the ε’s are independent over time.

• The individual knows the value functions at period T−1, Vm
(
sT−1, T − 1

)
,

up to the random draw of εT−1. The individual receives the random draw
εT−1 and then chooses the alternative with the highest value.



The value function at t:

• Moving back in time to a general period t the individual has to solve a
problem, analogous to the problem in (3), which takes the form

E
[
max

{
R1,t+1, R2,t+1, R3,t+1

}∣∣∣ st, dmt] . (4)

• Note that in order to compute (4) the alternative-specific value functions
must be calculated for all of the state vector values st+1 that may arise,
conditional on st and dmt.

• That is, it is necessary to compute the alternative-specific value functions
at each future date, for all possible realizations of the state vector.



Estimation:

• There is a significant complexity in computing the value function. Any
erroneous approximation would transmit itself into bias in the parameter
of interest θ.

• Consider an homogeneous set of individuals from the same birth cohort
who are observed for all periods t = 1, ..., T .

• Note that in any period t wages are observed if and only if a work alternative
was chosen, and only for that work alternative.



• Hence, the joint probability of choosing (for example) occupation 2 at time
t, and its corresponding (accepted) wage, w2t = R2t, is

Pr (d2t = 1, w2t|st)
= Pr (w2t|st) Pr (d2t = 1|w2t, st)

= Pr (w2t|st) Pr {w2t + δEmax [V (zt+1, t+ 1) |st, d2t = 1]

≥ w̃3te
ε3t + δEmax [V (zt+1, t+ 1) |st, d3t = 1] ,

w2t + δEmax [V (zt+1, t+ 1) |st, d2t = 1]

≥ exp {α1} eε1t − tcI (Et ≥ 12) + δEmax [V (zt+1, t+ 1) |st, d1t = 1] },

where

w̃3t (st) = exp {α3 + γ1Et + γ2x3t} .



• In words, this is the probability that alternative 2 exceed all the others,
and that the accepted wage is the observed wage.

• Similar joint probabilities can be written for the other choices.

• The likelihood function for the sample is the product of all these probabil-
ities over time and individuals.

• Maximizing the likelihood would yield a consistent estimator for θ, which
is also asymptotically normal.



• If the Emax(·) function could be calculated with no error, then one can
also use the method of simulated moments (MSM) to obtain an estimate
for θ.

• However, the MSM estimator combined with simulated estimates forEmax(·)
is not consistent for a fixed number of simulation, R.



Important remark: There are no conceptual problems in the implementation
of models with large choice sets, large state space, and serial dependence in
the unobserved elements. The problems are merely computational.



Existing Solutions and Estimation Methods:

Full-Solution Methods:

• These methods involve computational simplifications and involve finding
convenient forms for the reward functions and error distributions.

• Three crucial assumptions make the computation relatively easy:

1. The reward functions are additively separable in the unobservable, with
each unobservable associated with a mutually exclusive choice. That
is

u∗ (st, t, εt) = u (s, t) + εt,

where εt is choice specific.



2. Conditional on the observed state variables, the unobservables are in-
dependent.

3. The unobservables are distributed as multivariate extreme values.



• These three assumptions lead to two very appealing consequences for so-
lution and estimation:

1. The Emax(·) function has the closed form solution given by

E [V (s (t) , t)] = γ + τ ln


M∑
m=1

exp {Vm (st, t)}
τ

 , (5)

where Vm (st, t) is the expectation of the alternative-specific value
functions, such as the one in (2), and γ is an Euler’s constant. The im-
portance of this is that multivariate numerical integrations are avoided
in solving the DP problem.



• Consequences (continued):

2. The choice probabilities are multinomial logit and are given by (with
the normalization τ = 1) by:

Pr (dmt = 1|st) =
exp {Vm (st, t)}∑M
j=1 exp

{
Vj (st, t)

}. (6)

That is, the multivariate numerical integrations are avoided in the like-
lihood estimation. The drawback of this is that only a very limited
form of correlation across alternatives can be accommodated.

• Note: To get these last two results, we need all the assumptions above.
An assumption about the extreme distribution is not enough, we need to
have the assumption about separability as well!



Non-Full-Solution Methods:

• One can use an alternative representation of the future components of the
choice-specific valuations that do not depend explicitly on the structural
parameters of the model.

• The Emax(·) function is estimated then using data on future choice prob-
abilities.



• The intuition for this method (Hotz and Miller (1993)) is that, using (5)
and (6), one can show that

E [V (zt, t)] =
M∑
m=1

Pr (dmt = 1|st) [γ + Vm (st, t)− ln (Pr (dmt = 1|st))] .

(7)

• Now, successive forward substitutions for Vm (st, t), recognizing that it
contains future expected maximum functions, implies that the expected
maximum function at any t can be written as a function of the future
conditional choice probabilities.



• Although this method is a lot more tractable than the full solution methods
there are few disadvantages that are associated with this method:

1. One needs a lot of data to be able to estimate all the transition prob-
abilities, which are essentially estimated non-parametrically.

2. This approach cannot admit individual-specific heterogeneity, at least in
its current form. This, generally, rules out any form of serial correlation,
including that implied by permanent unobserved heterogeneity.

3. The Emax (·) values, which are calculated from the data, are not pol-
icy invariant, because they depend on the parameters of the model.
Hence, a full solution is necessary after a solution for θ has been ob-
tained in order to carry out policy experiments.


