Lecture Note 1
 Dynamic Programming I

1 A Heuristic Approach

1.1 Neoclassical Growth Model

Consider the following optimization problem:

$$
\begin{align*}
& \max _{\left\{c_{t}, k_{t+1}\right\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^{t-1} U\left(c_{t}\right) \tag{1}\\
& \text { subject to: } c_{t}+k_{t+1}=F\left(k_{t}\right)
\end{align*}
$$

where

$$
\begin{aligned}
U & : \\
F & : \quad R_{+} \rightarrow R, \\
F & R_{+} \rightarrow R_{+} .
\end{aligned}
$$

The above problem in (1) can be reformulated as

$$
\max _{\left\{k_{t+1}\right\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^{t-1} U\left(F\left(k_{t}\right)-k_{t+1}\right) .
$$

Note that one need to choose a sequence of k_{t} for all periods from $t=1$ to infinity. How can such a problem be solved?

A finite horizon problem (with finite \mathbf{T}):

Consider first the problem with a finite horizon, that is,

$$
\max _{\left\{k_{t+1}\right\}_{t=1}^{\infty}} \sum_{t=1}^{T} \beta^{t-1} U\left(F\left(k_{t}\right)-k_{t+1}\right) .
$$

Period T problem:
In period T we have the solution is

$$
\begin{align*}
V^{1}\left(k_{T}\right) & =\max _{k_{T+1}} U\left(F\left(k_{T}\right)-k_{T+1}\right), \tag{2}\\
& =U\left(F\left(k_{T}\right)-k_{T+1}^{*}\right),
\end{align*}
$$

where

$$
k_{T+1}^{*} \equiv 0,
$$

is the optimal solution for the problem (2). In words, $V^{1}\left(k_{T}\right)$ is the value of having k_{T} units of capital when entering the last period, and choosing k_{T+1} optimally. Note that the superscript 1 refers to the number of periods remaining in the planning problem.

Here, the function $V^{1}\left(k_{T}\right)$ is referred to as the value function, while the variable k_{T} is called the state variable.
Period T-1 problem:

$$
\begin{align*}
V^{2}\left(k_{T-1}\right) & =\max _{k_{T+1}}\left\{U\left(F\left(k_{T-1}\right)-k_{T}\right)+\beta V^{1}\left(k_{T}\right)\right\}, \tag{3}\\
& =U\left(F\left(k_{T-1}\right)-k_{T}^{*}\right)+\beta V^{1}\left(k_{T}^{*}\right),
\end{align*}
$$

where

$$
k_{T}^{*}=G^{2}\left(k_{T-1}\right),
$$

solves the problem (3). The function $G^{2}(\cdot)$ is called the decision rule, or alternatively, the policy function. Here, the optimal k_{T}, denote by k_{T}^{*}, simply solves the first-order condition:

$$
\begin{equation*}
-U_{1}\left(F\left(k_{T-1}\right)-k_{T}^{*}\right)+\beta V_{1}^{1}\left(k_{T}^{*}\right)=0 . \tag{4}
\end{equation*}
$$

Question: What can be said about the functions $G^{2}(\cdot)$ and $V^{2}(\cdot)$?
The first-order condition (4) defines an implicit function determining k_{T} as a function of k_{T-1}. More generally in economics one often comes across equation systems of the form

$$
\begin{aligned}
\Phi(x, y) & =0, \quad \text { where } \\
x & \in R^{n}, \quad y \in R^{m}, \quad \text { and } \\
\Phi & : R^{n+m} \rightarrow R^{n}
\end{aligned}
$$

Can we find a function ϕ that solves for x in terms of y, so that $x=\phi(y)$? The answer is given in the following theorem (see also Figure 1 below):
Theorem 1 (implicit function theorem): Let Φ be a C^{q} mapping from an open set $E \subset R^{n+m}$ into R^{n} such that $\Phi(a, b)=0$ for some point $(a, b) \in E$. Suppose that the Jacobian determinant $|J|=|\partial \Phi(a, b) / \partial x| \neq 0$. then there exists a neighborhood $U \subset R^{n}$ around a and a neighborhood $W \subset R^{m}$ around b, and a unique function $\phi: W \rightarrow U$ such that: (i) $a=\phi(b)$; (ii) ϕ is class C^{q} on W; and (iii) for all $y \in W,(\phi(y), y) \in E$ and $\Phi((\phi(y), y))=0$.

Figure 1: Implicit Function Theorem

Applying the implicit function theorem to the first-order condition in (4) it is straight forward to show that (under some standard regularity conditions) $k_{T}^{*}=G^{2}\left(k_{T-1}\right)$ will be a C^{1} function, which, in turn, implies that $V^{2}\left(k_{T-1}\right)$, will be one as well.
Period t problem:

$$
\begin{align*}
V^{T+1-t}\left(k_{t}\right) & =\max _{k_{t+1}}\left\{U\left(F\left(k_{t}\right)-k_{t+1}\right)+\beta V^{T-t}\left(k_{t+1}\right)\right\}, \tag{5}\\
& =U\left(F\left(k_{t}\right)-k_{t+1}^{*}\right)+\beta V^{T-t}\left(k_{t+1}^{*}\right),
\end{align*}
$$

where $k_{t+1}^{*}=G^{T+1-t}\left(k_{t}\right)$ is the optimal k_{t+1} that solves the problem (5).
Note now that the dynamic programming effectively collapsed the single large problem, involving $T+1-t$ choice variables, into $T+1-t$ smaller problems, each of which involving only one choice variable. To see this solve out for $V^{T-t}\left(k_{t+1}\right)$ in (5) to get

$$
\begin{aligned}
V^{T+1-t}\left(k_{t}\right) & =\max _{k_{t+1}}\left\{U\left(F\left(k_{t}\right)-k_{t+1}\right)+\beta \max _{k_{t+2}}\left\{U\left(F\left(k_{t+1}\right)-k_{t+2}\right)+\beta V^{T-t-1}\left(k_{t+2}\right)\right\}\right\}, \\
& =\max _{k_{t+1}, k_{t+2}}\left\{U\left(F\left(k_{t}\right)-k_{t+1}\right)+\beta U\left(F\left(k_{t+1}\right)-k_{t+2}\right)+\beta^{2} V^{T-t-1}\left(k_{t+2}\right)\right\} .
\end{aligned}
$$

Now, solving out recursively for $V^{T-t-1}\left(k_{t+2}\right), V^{T-t-2}\left(k_{t+3}\right), \ldots$, yields

$$
\max _{\left\{k_{t+j+1}\right\}_{j=0}^{T-t}} \sum_{j=0}^{T-t} \beta^{j} U\left(F\left(k_{t+j}\right)-k_{t+j+1}\right)
$$

An infinite horizon problem:

As $T \rightarrow \infty$ we would expect to have for any time t :

$$
\begin{aligned}
& V^{T+1-t}\left(k_{t}\right) \rightarrow V\left(k_{t}\right), \quad \text { and } \\
& G^{T+1-t}\left(k_{t}\right) \rightarrow G\left(k_{t}\right) .
\end{aligned}
$$

That is, when we have an infinite horizon problem, we should have the same value function at any period in which we have the same value for the state variable k_{t}.

While this is difficult to show formally, it is a true statement. Hence, for the infinite horizon problem the value function takes the form

$$
\begin{align*}
V\left(k_{t}\right) & =\max _{k_{t+1}}\left\{U\left(F\left(k_{t}\right)-k_{t+1}\right)+\beta V\left(k_{t+1}\right)\right\} \tag{6}\\
& =U\left(F\left(k_{t}\right)-k_{t+1}^{*}\right)+\beta V\left(k_{t+1}^{*}\right)
\end{align*}
$$

where

$$
k_{t+1}^{*}=G\left(k_{t}\right) .
$$

1.2 The Envelope Theorem

Assumption: The function V is continuously differentiable.
First we characterize the solution for the infinite horizon problem. The first-order condition for this problem is

$$
-U_{1}\left(F\left(k_{t}\right)-k_{t+1}\right)+\beta V_{1}\left(k_{t+1}\right)=0,
$$

or alternatively

$$
\begin{equation*}
U_{1}\left(F\left(k_{t}\right)-k_{t+1}\right)=\beta V_{1}\left(k_{t+1}\right) . \tag{7}
\end{equation*}
$$

However, we have a problem because the first-order condition in (7) includes the unknown function V. What should we do about it?

Differentiate both sides of (6) with respect to k_{t}, to get

$$
\begin{align*}
V_{1}\left(k_{t}\right) & =U_{1}\left(F\left(k_{t}\right)-k_{t+1}\right) F_{1}\left(k_{t}\right)-U_{1}\left(F\left(k_{t}\right)-k_{t+1}\right) \frac{\partial k_{t+1}}{\partial k_{t}}+\beta V_{1}\left(k_{t+1}\right) \frac{\partial k_{t+1}}{\partial k_{t}} \\
& =U_{1}\left(F\left(k_{t}\right)-k_{t+1}\right) F_{1}\left(k_{t}\right)+\left[-U_{1}\left(F\left(k_{t}\right)-k_{t+1}\right)+\beta V_{1}\left(k_{t+1}\right)\right] \frac{\partial k_{t+1}}{\partial k_{t}} \tag{8}\\
& =U_{1}\left(F\left(k_{t}\right)-k_{t+1}\right) F_{1}\left(k_{t}\right), \tag{9}
\end{align*}
$$

because the term in square bracket in (8) is zero by the first-order condition (7).
In period $t+1$ this equation will be then

$$
\begin{equation*}
V_{1}\left(k_{t+1}\right)=U_{1}\left(F\left(k_{t+1}\right)-k_{t+2}\right) F_{1}\left(k_{t+1}\right) . \tag{10}
\end{equation*}
$$

Therefore, we can rewrite the first-order condition in (7), by substitution of from (10) into (7), as

$$
\begin{equation*}
U_{1}\left(F\left(k_{t}\right)-k_{t+1}\right)=\beta U_{1}\left(F\left(k_{t+1}\right)-k_{t+2}\right) F_{1}\left(k_{t+1}\right) . \tag{11}
\end{equation*}
$$

2 A More Formal Analysis

2.1 Neoclassical Growth Model

Dynamic programming representation:

$$
V(k)=\max _{k^{\prime}}\left\{U\left(F(k)-k^{\prime}\right)+\beta V\left(k^{\prime}\right)\right\} .
$$

There are a number of issues that we need to investigate:

1. Does V exist?
2. Is V unique?
3. Is V continuous?
4. Is V continuously differentiable?
5. Is V increasing in k ?
6. Is V concave in k ?

2.2 Method of Successive Approximation

Goal: Approximate the value function V by a sequence of successively better guesses, denote by V^{j}, at stage j.

The procedure:

Stage 0. Make an initial guess for V. Denote that function by V^{0}.
Stage 1. Compute

$$
\begin{equation*}
V^{1}(k) \equiv \max _{k^{\prime}}\left\{U\left(F(k)-k^{\prime}\right)+\beta V^{0}\left(k^{\prime}\right)\right\} . \tag{12}
\end{equation*}
$$

Stage 1. Compute V^{n+1}, given V^{n}, as follows:

$$
\begin{equation*}
V^{n+1}(k) \equiv \max _{k^{\prime}}\left\{U\left(F(k)-k^{\prime}\right)+\beta V^{n}\left(k^{\prime}\right)\right\} . \tag{13}
\end{equation*}
$$

In the operator notation this procedure can be denoted simply by

$$
V^{n+1} \equiv T V^{n}
$$

The operator T is shorthand notation for the list of operations, described by (13) that are performed on the function V^{n} to transform it into the new one, that is, V^{n+1}. Often, the operator T maps
some set of functions, say \mathcal{F}, into itself. That is $T: \mathcal{F} \rightarrow \mathcal{F}$. The hope is that as n gets large it transpires that $V^{n} \rightarrow V$, where V is such that $V=T V$.

2.3 Metric Space

Definition 1. A metric space is a set S, together with a metric $\rho: S \times S \rightarrow R_{+}$, such that for all $x, y, z \in S$ (see Figure 2 below):

1. $\rho(x, y) \geq 0$, with $\rho(x, y)=0$ if and only if $x=y$.
2. $\rho(x, y)=\rho(y, x)$.
3. $\rho(x, z) \leq \rho(x, y)+\rho(y, z)$.

Figure 2: A metric $\rho(x, y)$

Figure 3: Uniform metric

Example 1. Space of continuous functions $C:[a, b] \rightarrow R_{+}$. Here, we have

$$
\rho(x, y)=\max _{t \in[a, b]}|x(t)-y(t)| .
$$

Definition 2. A sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ in S converges to $x \in S$, if for each $\varepsilon>0$ there exists an N_{ε}, such that

$$
\rho\left(x_{n}, x\right)<\varepsilon, \quad \text { for all } n>N_{\varepsilon} .
$$

Definition 3. A sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ in S is a Cauchy sequence if for each $\varepsilon>0$ there exists an N_{ε}, such that

$$
\rho\left(x_{m}, x_{n}\right)<\varepsilon, \quad \text { for all } m, n>N_{\varepsilon} .
$$

Note that a Cauchy sequence in S may not converge to a point in S.
Example 2. Let $S=(0,1], \rho(x, y)=|x-y|$, and $\left\{x_{n}\right\}_{n=0}^{\infty}=\{1 / n\}_{n=0}^{\infty}$. Clearly, $x_{n} \rightarrow 0 \notin(0,1]$. This sequence satisfies the Cauchy criteria, though,

$$
\rho\left(x_{m}, x_{n}\right)=\left|\frac{1}{m}-\frac{1}{n}\right| \leq \frac{1}{m}+\frac{1}{n}<\varepsilon, \quad \text { if } m, n>\frac{2}{\varepsilon} .
$$

Definition 4. A metric space (S, ρ) is complete if every Cauchy sequence in S converges to a point in S.
Theorem 2. Let $X \subseteq R^{l}$ and $C(X)$ be the set of bounded continuous functions $V: X \rightarrow R$ with the uniform metric $\rho(V, W)=\sup _{x \in X}|V-W|$. Then $C(X)$ is a complete metric space.
Proof 2. Let $\left\{V^{n}\right\}_{n=0}^{\infty}$ be any Cauchy sequence in $C(X)$. Now, for each $x \in X$ the sequence
$\left\{V^{n}\right\}_{n=0}^{\infty}$ is Cauchy, since

$$
\left|V^{n}(x)-V^{m}(x)\right| \leq \sup _{y \in X}\left|V^{n}(y)-V^{m}(y)\right|=\rho\left(V^{n}, V^{m}\right)
$$

By the completeness of the real line $V^{n}(x) \rightarrow V(x)$, as $n \rightarrow \infty$. Define the function V by $V(x)$ for each $x \in X$.

It will be shown now that $\rho\left(V^{n}, V\right) \rightarrow 0$ as $n \rightarrow \infty$. Choose an $\varepsilon>0$.
Now,

$$
\begin{aligned}
\left|V^{n}(x)-V(x)\right| & \leq\left|V^{n}(x)-V^{m}(x)\right|+\left|V^{m}(x)-V(x)\right| \\
& \leq \underbrace{\rho\left(V^{n}, V^{m}\right)}_{\leq \varepsilon / 2}+\underbrace{\left|V^{m}(x)-V(x)\right|}_{\leq \varepsilon / 2} .
\end{aligned}
$$

Note that the first term of the last inequality can be made smaller than $\varepsilon / 2$ by the Cauchy criteria, that is, there exists an N_{ε}, such that for all $m, n>N_{\varepsilon}$ it transpires that $\rho\left(V^{n}, V^{m}\right)<\varepsilon / 2$. The second term can be made smaller than $\varepsilon / 2$ by point-wise convergence of V^{m} to V, that is, there exists an $M_{\varepsilon}(x)$ such that for all $m \geq M_{\varepsilon}(x)$ it follows that $\left|V^{m}(x)-V(x)\right| \leq \varepsilon / 2$. Note that here, $M_{\varepsilon}(x)$ depends on x, but N_{ε} does not. Also note that for any value of x such an $M_{\varepsilon}(x)$ will always exist. Hence, $\left|V^{n}(x)-V(x)\right| \leq \varepsilon$ for all $n>N_{\varepsilon}$ independent of the value of x. It follows then that $\rho\left(V^{n}, V\right) \leq \varepsilon$, the desired result.

Now, it remain to be shown that V is a continuous function. To do this, pick an $\varepsilon>0$. It is then the question: Does there exist a δ such that whenever $\rho\left(x, x_{0}\right) \leq \delta,\left|V(x)-V\left(x_{0}\right)\right| \leq \varepsilon$?

Note that

$$
\left|V(x)-V\left(x_{0}\right)\right| \leq \underbrace{\left|V(x)-V^{n}(x)\right|}_{\varepsilon / 3}+\underbrace{\left|V^{n}(x)-V^{n}\left(x_{0}\right)\right|}_{\varepsilon / 3}+\underbrace{\left|V^{n}\left(x_{0}\right)-V\left(x_{0}\right)\right|}_{\varepsilon / 3} .
$$

The first and the third terms can be made arbitrarily small by the uniform convergence of V^{n} to V. The second term can be made to vanish by the fact that V^{n} is a continuous function, that is, by picking a δ small enough such that the last term will be less than $\varepsilon / 3$.

QED
Remark. Point-wise convergence of a sequence of continuous functions does not imply that the limiting function is continuous.

Example 3. (See Figure 4)

Let $\left\{V^{n}\right\}_{n=1}^{\infty}$ in $C[0,1]$ be defined by $V^{n}(t)=t^{n}$. As $n \rightarrow \infty$ it transpires that: (i) $V^{n}(t) \rightarrow 0$ for $t \in\left[0,1\right.$); and (ii) $V^{n}(t) \rightarrow 1$ for $t=1$. Thus,

$$
V(t)= \begin{cases}0 & \text { for } t \in[0,1) \\ 1 & \text { for } t=1\end{cases}
$$

Hence, $V(t)$ is a discontinuous function. Clearly, by Theorem $2\left\{V^{n}\right\}_{n=1}^{\infty}$ cannot describe a Cauchy
sequence.
This, however, can also be shown directly. Note that for any given N_{ε} it is always possible to pick $m, n \geq N_{\varepsilon}$ and $t \in[0,1)$ so that $\left|t^{n}-t^{m}\right| \geq 1 / 2$. To see that, pick $n=N_{\varepsilon}$ and a $t \in(0,1)$ so that $t^{n} \geq 3 / 4$; i.e., choose $t \geq(3 / 4)^{1 / N_{\varepsilon}}$. Next, pick an m large enough such that $t^{m}<1 / 4$ or $m \geq(\ln 1 / 4) / \ln (t)$. Then the desired results follows.

Figure 4: Point-wise convergence to a discontinuous function

Example 4.

Consider the space of continuous functions $C[-1,1]$ with metric

$$
\rho(x, y)=\int_{-1}^{+1}|x(t)-y(t)| d t .
$$

Let $\left\{V^{n}\right\}_{n=1}^{\infty}$ in $C[-1,1]$ be defined by

$$
V^{n}(t)= \begin{cases}0 & \text { if }-1 \leq t \leq 0 \\ n t & \text { if } 0 \leq t \leq 1 / n \\ 1 & \text { if } 1 / n \leq t \leq 1\end{cases}
$$

Show that $\left\{V^{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. Deduce that the space of continuous functions in not complete with this metric.

2.4 The Contraction Mapping Theorem

Definition 5. Let (S, ρ) be a metric space and $T: S \rightarrow S$ be a function mapping S into itself. We say that T is a contraction mapping (with modulus β) if for $\beta \in(0,1)$,

$$
\rho(T x, T y) \leq \beta \rho(x, y), \quad \text { for all } x, y \in S
$$

Theorem 3. (Contraction Mapping Theorem, or Banach Fixed Point Theorem)
If (S, ρ) is a complete metric space and $T: S \rightarrow S$ is a continuous mapping with modulus β, then

1. T has exactly one fixed point $V \in S$ such that $V=T V$;
2. for any $V^{0} \in S, \rho\left(T^{n} V^{0}, V\right)<\beta^{n} \rho\left(V^{0}, V\right), n=0,1,2, \ldots$.

Proof 3. Define the sequence $\left\{V^{n}\right\}_{n=0}^{\infty}$ by

$$
V^{n}=T V^{n-1}=\underbrace{T T}_{T^{2}} V^{n-2}=T^{n} V^{0}
$$

It will be shown that $\left\{V^{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence. To this end, the contraction property of T implies that

$$
\rho\left(V^{2}, V^{1}\right)=\rho\left(T V^{1}, T V^{0}\right) \leq \beta \rho\left(V^{1}, V^{0}\right) .
$$

Hence,

$$
\rho\left(V^{n+1}, V^{n}\right)=\rho\left(T V^{n}, T V^{n-1}\right) \leq \beta \rho\left(V^{n}, V^{n-1}\right) \leq \beta^{n} \rho\left(V^{1}, V^{0}\right)
$$

Therefore, for any $m>n$ we have

$$
\begin{aligned}
\rho\left(V^{m}, V^{n}\right) & \leq \rho\left(V^{m}, V^{m-1}\right)+\rho\left(V^{m-1}, V^{m-2}\right)+\cdots+\rho\left(V^{n+1}, V^{n}\right) \\
& \leq\left(\beta^{m-1}+\beta^{m-2}+\cdots+\beta^{n}\right) \rho\left(V^{1}, V^{0}\right) \\
& \leq \frac{\beta^{n}}{1-\beta} \rho\left(V^{1}, V^{0}\right)
\end{aligned}
$$

where the first inequality follows from the triangular inequality property. Therefore, $\left\{V^{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence, since

$$
\frac{\beta^{n}}{1-\beta} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Since S is complete, $V^{n} \rightarrow V$.
Now we need to show that $V=T V$. To do that, note that for any $\varepsilon>0$ and $V^{0} \in S$, we have

$$
\begin{aligned}
\rho(V, T V) & \leq \rho\left(V, T^{n} V^{0}\right)+\rho\left(T^{n} V^{0}, T V\right) \\
& \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}
\end{aligned}
$$

for large enough n since $\left\{V^{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence. Therefore, $V=T V$.
Finally, suppose that another function $W \in S$ satisfies $W=T W$. Then,

$$
\rho(V, W)=\rho(T V, T W) \leq \beta \rho(V, W) .
$$

This is a contradiction, unless $V=W$.

$$
\rho\left(T^{n} V^{0}, V\right)=\rho\left(T^{n} V^{0}, T V\right) \leq \beta \rho\left(T^{n-1} V^{0}, V\right) \leq \beta^{n} \rho\left(V^{0}, V\right) .
$$

Corollary 1. Let (S, ρ) be a complete metric space and let $T: S \rightarrow S$ be a contraction mapping with fixed point $V \in S$. If S^{\prime} is a closed subset of S and $T\left(S^{\prime}\right) \subseteq S^{\prime}$, then $V \in S^{\prime}$. If in addition $T\left(S^{\prime}\right) \subseteq S^{\prime \prime} \subseteq S^{\prime}$, then $V \in S^{\prime \prime}$.
Proof. Choose $V^{0} \in S^{\prime}$ and note that $\left\{T^{n} V^{0}\right\}$ is a sequence in S^{\prime} converging to V. Since S^{\prime} is closed, it follows that $V \in S^{\prime}$. If $T\left(S^{\prime}\right) \subseteq S^{\prime \prime}$, it then follows that $V=T V \in S^{\prime \prime}$.

QED
Theorem 4. (Blackwell's Sufficiency Condition) Let $X \subseteq R^{l}$ and $B(X)$ be the space of bounded functions $V: X \rightarrow R$ with the uniform metric $\rho(V, W)=\sup _{x \in X}|V-W|$. Let T : $B(X) \rightarrow B(X)$ be an operator satisfying

1. (Monotonicity) $W, V \in B(X)$. If $V \leq W$ (i.e., $V(x) \leq W(x)$ for all x) then $T V \leq T W$.
2. (Discontinuity) There exists some constant $\beta \in(0,1)$ such that $T(V+a) \leq T V+\beta a$, for all $V \in B(X)$ and $a \geq 0$.

Then T is a contraction mapping with modulus β.
Proof. For every $W, V \in B(X), V \leq W+\rho(V, W)$. Thus, conditions (1) and (2) imply that

$$
T V \leq T(W+\rho(V, W)) \leq T W+\beta \rho(V, W)
$$

where the first inequality is by monotonicity and the second inequality is by discontinuity. Thus,

$$
T V-T W \leq \beta \rho(V, W)
$$

By permuting the functions it is easy to show that

$$
T W-T V \leq \beta \rho(V, W) .
$$

Consequently,

$$
|T V-T W| \leq \beta \rho(V, W)
$$

so that

$$
\rho(T V, T W) \leq \beta \rho(V, W)
$$

Therefore T is a contraction.

2.5 Neoclassical Growth Model

Consider the mapping

$$
\begin{equation*}
(T V)(k)=\max _{k^{\prime} \in \mathcal{K}}\left\{U\left(F(k)-k^{\prime}\right)+\beta V\left(k^{\prime}\right)\right\}, \tag{14}
\end{equation*}
$$

where $k, k^{\prime} \in \mathcal{K}=\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$.

Question: Is T a contraction?
We should check monotonicity and discontinuity, so that we can use Blackwell's Theorem.

1. Monotonicity. Suppose $V(k) \leq W(k)$ for all k. We need to show that $(T V)(k) \leq$ $(T W)(k)$.

$$
(T V)(k)=\left\{U\left(F(k)-k^{\prime *}\right)+\beta V\left(k^{\prime *}\right)\right\},
$$

where $k^{\prime *}$ maximizes (14). Now we can clearly see that

$$
\begin{aligned}
(T V)(k) & =\left\{U\left(F(k)-k^{\prime *}\right)+\beta V\left(k^{\prime *}\right)\right\}, \\
& \leq \max _{k^{\prime} \in \mathcal{K}}\left\{U\left(F(k)-k^{\prime}\right)+\beta W\left(k^{\prime}\right)\right\}, \\
& =(T W)(k) .
\end{aligned}
$$

2. Discontinuity.

$$
\begin{aligned}
(T V+a)(k) & =\max _{k^{\prime} \in \mathcal{K}}\left\{U\left(F(k)-k^{\prime}\right)+\beta\left(V\left(k^{\prime}\right)+a\right)\right\}, \\
& =\max _{k^{\prime} \in \mathcal{K}}\left\{U\left(F(k)-k^{\prime}\right)+\beta V\left(k^{\prime}\right)\right\}+\beta a, \\
& =(T V)(k)+\beta a .
\end{aligned}
$$

2.6 Characterizing the Value Function

What can we say about the value function V ? In particular,

1. Is V continuous in k ?
2. Is V strictly increasing in k ?
3. Is V strictly concave in k ?
4. Is V differentiable in k ?

Definition 6. A function $V: X \rightarrow R$ is strictly increasing if $x>y$ implies $V(x)>V(y)$. A function $V: X \rightarrow R$ is non-decreasing (or increasing) if $x>y$ implies $V(x) \geq V(y)$.
Definition 6. A function $V: X \rightarrow R$ is strictly concave if

$$
V(\theta x+(1-\theta) y)>\theta V(x)+(1-\theta) V(y),
$$

for all $x, y \in X$ such that $x \neq y$ and $\theta \in(0,1)$. A function $V: X \rightarrow R$ is concave if

$$
V(\theta x+(1-\theta) y) \geq \theta V(x)+(1-\theta) V(y),
$$

for all $x, y \in X$ such that $x \neq y$ and $\theta \in(0,1)$.
Assumption 1. Let U and F be strictly increasing functions.

Assumption 2. Let U and F be strictly concave functions.
Theorem 5. The function V is strictly increasing and strictly concave.
Proof. Consider the mapping, as in (14), given by

$$
(T V)(k)=\max _{k^{\prime} \in \mathcal{K}}\left\{U\left(F(k)-k^{\prime}\right)+\beta V\left(k^{\prime}\right)\right\} .
$$

It will be shown that the operator T maps concave functions into strictly concave ones. It is also true that the operator T maps increasing functions into strictly increasing ones. Let V be concave function. Take two point $k_{0} \neq k_{1}$ and let $k_{\theta}=\theta k_{0}+(1-\theta) k_{1}$. Observe that $F\left(k_{\theta}\right)>$ $\theta F\left(k_{0}\right)+(1-\theta) F\left(k_{1}\right)$, since F is strictly concave. Now it need to be shown that

$$
(T V)\left(k_{\theta}\right)>\theta(T V)\left(k_{0}\right)+(1-\theta)(T V)\left(k_{1}\right) .
$$

To this end, define $k_{0}^{* *}$ as the maximizer of $(T V)\left(k_{0}\right), k_{1}^{*}$ as the maximizer of $(T V)\left(k_{1}\right)$, and $k_{\theta}^{\prime}=$ $\theta k_{0}^{\prime *}+(1-\theta) k_{1}^{\prime *}$. Note that k_{θ}^{\prime} is a feasible choice when $k=k_{\theta}$, since $k_{0}^{\prime *} \leq F\left(k_{0}\right)$ and $k_{1}^{\prime *} \leq F\left(k_{1}\right)$, while $\theta F\left(k_{0}\right)+(1-\theta) F\left(k_{1}\right)<F\left(k_{\theta}\right)$. Now,

$$
\begin{aligned}
(T V)\left(k_{\theta}\right) \geq & U\left(F\left(k_{\theta}\right)-k_{\theta}^{\prime}\right)+\beta V\left(k_{\theta}^{\prime}\right), \quad \text { since } k_{\theta}^{\prime} \text { is non-optimal, } \\
> & \theta\left[U\left(F\left(k_{0}\right)-k_{0}^{\prime *}\right)+\beta V\left(k_{0}^{\prime *}\right)\right] \\
& +(1-\theta)\left[U\left(F\left(k_{1}\right)-k_{1}^{\prime *}\right)+\beta V\left(k_{1}^{\prime *}\right)\right], \quad \text { by strict concavity } \\
> & \theta(T V)\left(k_{0}\right)+(1-\theta)(T V)\left(k_{1}\right) \quad \text { by definition. }
\end{aligned}
$$

QED

Remark. The space of strictly concave functions is not complete. Hence, to finish the argument an appeal to Corollary 1 of the contraction mapping can be made.
Theorem 6. The function Vis continuous in k.
Proof. It will be shown that the operator described in (14) maps strictly increasing, strictly concave C^{2} functions into strictly increasing, strictly concave C^{2} functions. Suppose that V^{n} is a continuous, strictly increasing, strictly concave C^{2} function. The decision rule for k^{\prime} is determine from the first-order condition

$$
U_{1}\left(F(k)-k^{\prime}\right)=\beta V^{n \prime}\left(k^{\prime}\right) .
$$

This determine k^{\prime} as a continuously differentiable function of k by the implicit function theorem. Note that $0<d k^{\prime} / d k<F_{1}(k)$. Therefore, $V^{n+1}(k)$ is strictly increasing, strictly concave C^{2} function too, since

$$
V_{1}^{(n+1)}(k)=U_{1}\left(F(k)-k^{\prime}\right) F_{1}(k) .
$$

The limit of such a sequence must be continuous function (although it need not be a C^{2} function).
QED

Differentiability:

Lemma 1. Let $X \subseteq R^{l}$ be a convex set, $V: X \rightarrow R$ be a concave function. Pick an $x_{0} \in \operatorname{int}(X)$
and let D be a neighborhood of x_{0}. If there is a concave, differentiable function $W: D \rightarrow R$ with $W\left(x_{0}\right)=V\left(x_{0}\right)$ and $W(x)=V(x)$ for all $x \in D$, then V is differentiable at x_{0} and

$$
V_{i}\left(x_{0}\right)=W_{i}\left(x_{0}\right), \quad \text { for } i=1,2, \ldots, l
$$

Proof. See Figure 5 below.

Figure 5: Differentiability of V

Theorem 7. (Benveniste and Scheinkman) Suppose that K is a convex set and that U and F are strictly concave C^{1} functions. Let $V: K \rightarrow R$ in line with (14) and denote the decision rule associated with this problem by $k^{\prime}=G(k)$. Pick $k_{0} \in \operatorname{int}(K)$ and assume that $0<G\left(k_{0}\right)<F\left(k_{0}\right)$. Then $V(k)$ is continuously differentiable at k_{0} with its derivative given by

$$
V_{1}=U_{1}\left(F\left(k_{0}\right)-G\left(k_{0}\right)\right) F_{1}\left(k_{0}\right)
$$

Proof. Clearly, there exists some neighborhood D of k_{0} such that $0<G\left(k_{0}\right)<F(k)$ for all $k \in D$. Define W on D by

$$
W(k)=U\left(F(k)-G\left(k_{0}\right)\right)+\beta V\left(G\left(k_{0}\right)\right) .
$$

Now, note that W is concave and differentiable, since U and F are. Furthermore, it follows that

$$
W(k) \leq \max _{k^{\prime}}\left\{U\left(F(k)-k^{\prime}\right)+\beta V\left(k^{\prime}\right)\right\}=V(k),
$$

with the equality holding strictly at $k=k_{0}$. The result then follows immediately from Lemma 1 .
QED

