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Lecture Note 1

Dynamic Programming I

1 A Heuristic Approach

1.1 Neoclassical Growth Model

Consider the following optimization problem:

max
{ct,kt+1}∞t=1

∞∑
t=1

βt−1U (ct) (1)

subject to: ct + kt+1 = F (kt) ,

where

U : R+ → R,

F : R+ → R+.

The above problem in (1) can be reformulated as

max
{kt+1}∞t=1

∞∑
t=1

βt−1U (F (kt)− kt+1) .

Note that one need to choose a sequence of kt for all periods from t = 1 to infinity. How can such
a problem be solved?

A finite horizon problem (with finite T):
Consider first the problem with a finite horizon, that is,

max
{kt+1}∞t=1

T∑
t=1

βt−1U (F (kt)− kt+1) .

Period T problem:
In period T we have the solution is

V 1 (kT ) = max
kT+1

U (F (kT )− kT+1) , (2)

= U
(
F (kT )− k∗T+1

)
,
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where
k∗T+1 ≡ 0,

is the optimal solution for the problem (2). In words, V 1 (kT ) is the value of having kT units of
capital when entering the last period, and choosing kT+1 optimally. Note that the superscript 1

refers to the number of periods remaining in the planning problem.
Here, the function V 1 (kT ) is referred to as the value function, while the variable kT is called

the state variable.
Period T − 1 problem:

V 2 (kT−1) = max
kT+1

{
U (F (kT−1)− kT ) + βV 1 (kT )

}
, (3)

= U (F (kT−1)− k∗T ) + βV 1 (k∗T ) ,

where
k∗T = G2 (kT−1) ,

solves the problem (3). The function G2 (·) is called the decision rule, or alternatively, the policy
function. Here, the optimal kT , denote by k∗T , simply solves the first-order condition:

−U1 (F (kT−1)− k∗T ) + βV 1
1 (k∗T ) = 0. (4)

Question: What can be said about the functions G2 (·) and V 2 (·)?
The first-order condition (4) defines an implicit function determining kT as a function of kT−1.

More generally in economics one often comes across equation systems of the form

Φ (x, y) = 0, where

x ∈ Rn, y ∈ Rm, and

Φ : Rn+m → Rn.

Can we find a function φ that solves for x in terms of y, so that x = φ(y)? The answer is given in
the following theorem (see also Figure 1 below):
Theorem 1 (implicit function theorem): Let Φ be a Cq mapping from an open set E ⊂ Rn+m

into Rn such that Φ (a, b) = 0 for some point (a, b) ∈ E. Suppose that the Jacobian determinant
|J | = |∂Φ (a, b) /∂x| 6= 0. then there exists a neighborhood U ⊂ Rn around a and a neighborhood
W ⊂ Rm around b, and a unique function φ : W → U such that: (i) a = φ(b); (ii) φ is class Cq on
W ; and (iii) for all y ∈W , (φ(y), y) ∈ E and Φ ((φ(y), y)) = 0.
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Figure 1: Implicit Function Theorem

Applying the implicit function theorem to the first-order condition in (4) it is straight forward
to show that (under some standard regularity conditions) k∗T = G2 (kT−1) will be a C1 function,
which, in turn, implies that V 2 (kT−1), will be one as well.
Period t problem:

V T+1−t (kt) = max
kt+1

{
U (F (kt)− kt+1) + βV T−t (kt+1)

}
, (5)

= U
(
F (kt)− k∗t+1

)
+ βV T−t (k∗t+1

)
,

where k∗t+1 = GT+1−t (kt) is the optimal kt+1 that solves the problem (5).
Note now that the dynamic programming effectively collapsed the single large problem, involving

T + 1− t choice variables, into T + 1− t smaller problems, each of which involving only one choice
variable. To see this solve out for V T−t (kt+1) in (5) to get

V T+1−t (kt) = max
kt+1

{
U (F (kt)− kt+1) + βmax

kt+2

{
U (F (kt+1)− kt+2) + βV T−t−1 (kt+2)

}}
,

= max
kt+1,kt+2

{
U (F (kt)− kt+1) + βU (F (kt+1)− kt+2) + β2V T−t−1 (kt+2)

}
.

Now, solving out recursively for V T−t−1 (kt+2), V T−t−2 (kt+3),...., yields

max
{kt+j+1}T−t

j=0

T−t∑
j=0

βjU (F (kt+j)− kt+j+1) .
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An infinite horizon problem:
As T →∞ we would expect to have for any time t:

V T+1−t (kt) → V (kt) , and

GT+1−t (kt) → G (kt) .

That is, when we have an infinite horizon problem, we should have the same value function at any
period in which we have the same value for the state variable kt.

While this is difficult to show formally, it is a true statement. Hence, for the infinite horizon
problem the value function takes the form

V (kt) = max
kt+1

{U (F (kt)− kt+1) + βV (kt+1)} , (6)

= U
(
F (kt)− k∗t+1

)
+ βV

(
k∗t+1

)
,

where
k∗t+1 = G (kt) .

1.2 The Envelope Theorem

Assumption: The function V is continuously differentiable.
First we characterize the solution for the infinite horizon problem. The first-order condition for

this problem is
−U1 (F (kt)− kt+1) + βV1 (kt+1) = 0,

or alternatively
U1 (F (kt)− kt+1) = βV1 (kt+1) . (7)

However, we have a problem because the first-order condition in (7) includes the unknown function
V . What should we do about it?

Differentiate both sides of (6) with respect to kt, to get

V1 (kt) = U1 (F (kt)− kt+1)F1 (kt)− U1 (F (kt)− kt+1)
∂kt+1

∂kt
+ βV1 (kt+1)

∂kt+1

∂kt

= U1 (F (kt)− kt+1)F1 (kt) + [−U1 (F (kt)− kt+1) + βV1 (kt+1)]
∂kt+1

∂kt
(8)

= U1 (F (kt)− kt+1)F1 (kt) , (9)

because the term in square bracket in (8) is zero by the first-order condition (7).
In period t+ 1 this equation will be then

V1 (kt+1) = U1 (F (kt+1)− kt+2)F1 (kt+1) . (10)
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Therefore, we can rewrite the first-order condition in (7), by substitution of from (10) into (7), as

U1 (F (kt)− kt+1) = βU1 (F (kt+1)− kt+2)F1 (kt+1) . (11)

2 A More Formal Analysis

2.1 Neoclassical Growth Model

Dynamic programming representation:

V (k) = max
k′

{
U
(
F (k)− k′

)
+ βV

(
k′
)}
.

There are a number of issues that we need to investigate:

1. Does V exist?

2. Is V unique?

3. Is V continuous?

4. Is V continuously differentiable?

5. Is V increasing in k?

6. Is V concave in k?

2.2 Method of Successive Approximation

Goal: Approximate the value function V by a sequence of successively better guesses, denote by
V j , at stage j.

The procedure:
Stage 0. Make an initial guess for V . Denote that function by V 0.
Stage 1. Compute

V 1 (k) ≡ max
k′

{
U
(
F (k)− k′

)
+ βV 0

(
k′
)}
. (12)

Stage 1. Compute V n+1, given V n, as follows:

V n+1 (k) ≡ max
k′

{
U
(
F (k)− k′

)
+ βV n

(
k′
)}
. (13)

In the operator notation this procedure can be denoted simply by

V n+1 ≡ TV n.

The operator T is shorthand notation for the list of operations, described by (13) that are performed
on the function V n to transform it into the new one, that is, V n+1. Often, the operator T maps
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some set of functions, say F , into itself. That is T : F → F . The hope is that as n gets large it
transpires that V n → V , where V is such that V = TV .

2.3 Metric Space

Definition 1. A metric space is a set S, together with a metric ρ : S × S → R+, such that for
all x, y, z ∈ S (see Figure 2 below):

1. ρ(x, y) ≥ 0, with ρ(x, y) = 0 if and only if x = y.

2. ρ(x, y) = ρ(y, x).

3. ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Figure 2: A metric ρ(x, y)
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Figure 3: Uniform metric

Example 1. Space of continuous functions C : [a, b]→ R+. Here, we have

ρ(x, y) = max
t∈[a,b]

|x(t)− y(t)| .

Definition 2. A sequence {xn}∞n=0 in S converges to x ∈ S, if for each ε > 0 there exists an Nε,
such that

ρ(xn, x) < ε, for all n > Nε.

Definition 3. A sequence {xn}∞n=0 in S is a Cauchy sequence if for each ε > 0 there exists an
Nε, such that

ρ(xm, xn) < ε, for all m,n > Nε.

Note that a Cauchy sequence in S may not converge to a point in S.
Example 2. Let S= (0, 1], ρ(x, y) = |x− y|, and {xn}∞n=0 = {1/n}∞n=0. Clearly, xn → 0 /∈ (0, 1].
This sequence satisfies the Cauchy criteria, though,

ρ(xm, xn) =

∣∣∣∣ 1

m
− 1

n

∣∣∣∣ ≤ 1

m
+

1

n
< ε, if m,n >

2

ε
.

Definition 4. A metric space (S, ρ) is complete if every Cauchy sequence in S converges to a
point in S.
Theorem 2. Let X ⊆ Rl and C(X) be the set of bounded continuous functions V : X → R with
the uniform metric ρ(V,W ) = supx∈X |V −W |. Then C(X) is a complete metric space.
Proof 2. Let {V n}∞n=0 be any Cauchy sequence in C(X). Now, for each x ∈ X the sequence
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{V n}∞n=0 is Cauchy, since

|V n(x)− V m(x)| ≤ sup
y∈X
|V n(y)− V m(y)| = ρ (V n, V m) .

By the completeness of the real line V n(x)→ V (x), as n→∞. Define the function V by V (x)

for each x ∈ X.
It will be shown now that ρ (V n, V )→ 0 as n→∞. Choose an ε > 0.
Now,

|V n(x)− V (x)| ≤ |V n(x)− V m(x)|+ |V m(x)− V (x)|

≤ ρ (V n, V m)︸ ︷︷ ︸
≤ε/2

+ |V m(x)− V (x)|︸ ︷︷ ︸
≤ε/2

.

Note that the first term of the last inequality can be made smaller than ε/2 by the Cauchy criteria,
that is, there exists an Nε, such that for all m,n > Nε it transpires that ρ(V n, V m) < ε/2. The
second term can be made smaller than ε/2 by point-wise convergence of V m to V , that is, there
exists an Mε(x) such that for all m ≥Mε(x) it follows that |V m(x)− V (x)| ≤ ε/2. Note that here,
Mε(x) depends on x, but Nε does not. Also note that for any value of x such an Mε(x) will always
exist. Hence, |V n(x)− V (x)| ≤ ε for all n > Nε independent of the value of x. It follows then that
ρ (V n, V ) ≤ ε, the desired result.

Now, it remain to be shown that V is a continuous function. To do this, pick an ε > 0. It is
then the question: Does there exist a δ such that whenever ρ(x, x0) ≤ δ, |V (x)− V (x0)| ≤ ε?

Note that

|V (x)− V (x0)| ≤ |V (x)− V n(x)|︸ ︷︷ ︸
ε/3

+ |V n(x)− V n(x0)|︸ ︷︷ ︸
ε/3

+ |V n(x0)− V (x0)|︸ ︷︷ ︸
ε/3

.

The first and the third terms can be made arbitrarily small by the uniform convergence of V n to
V . The second term can be made to vanish by the fact that V n is a continuous function, that is,
by picking a δ small enough such that the last term will be less than ε/3.

QED
Remark. Point-wise convergence of a sequence of continuous functions does not imply that the
limiting function is continuous.
Example 3. (See Figure 4)

Let {V n}∞n=1 in C[0, 1] be defined by V n(t) = tn. As n → ∞ it transpires that: (i) V n(t) → 0

for t ∈ [0, 1); and (ii) V n(t)→ 1 for t = 1. Thus,

V (t) =

{
0 for t ∈ [0, 1),

1 for t = 1.

Hence, V (t) is a discontinuous function. Clearly, by Theorem 2 {V n}∞n=1 cannot describe a Cauchy
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sequence.
This, however, can also be shown directly. Note that for any given Nε it is always possible to

pick m,n ≥ Nε and t ∈ [0, 1) so that |tn − tm| ≥ 1/2. To see that, pick n = Nε and a t ∈ (0, 1)

so that tn ≥ 3/4; i.e., choose t ≥ (3/4)1/Nε . Next, pick an m large enough such that tm < 1/4 or
m ≥ (ln 1/4) / ln(t). Then the desired results follows.

Figure 4: Point-wise convergence to a discontinuous function

Example 4.
Consider the space of continuous functions C[−1, 1] with metric

ρ(x, y) =

∫ +1

−1
|x(t)− y(t)| dt.

Let {V n}∞n=1 in C[−1, 1] be defined by

V n(t) =


0 if − 1 ≤ t ≤ 0,

nt if 0 ≤ t ≤ 1/n,

1 if 1/n ≤ t ≤ 1.

Show that {V n}∞n=1 is a Cauchy sequence. Deduce that the space of continuous functions in not
complete with this metric.

2.4 The Contraction Mapping Theorem

Definition 5. Let (S, ρ) be a metric space and T : S → S be a function mapping S into itself.
We say that T is a contraction mapping (with modulus β) if for β ∈ (0, 1) ,

ρ (Tx, Ty) ≤ βρ (x, y) , for all x, y ∈ S.
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Theorem 3. (Contraction Mapping Theorem, or Banach Fixed Point Theorem)
If (S, ρ) is a complete metric space and T : S → S is a continuous mapping with modulus β, then

1. T has exactly one fixed point V ∈ S such that V = TV ;

2. for any V 0 ∈ S, ρ
(
TnV 0, V

)
< βnρ

(
V 0, V

)
, n = 0, 1, 2, ... .

Proof 3. Define the sequence {V n}∞n=0 by

V n = TV n−1 = TT︸︷︷︸
T 2

V n−2 = TnV 0.

It will be shown that {V n}∞n=0 is a Cauchy sequence. To this end, the contraction property of T
implies that

ρ
(
V 2, V 1

)
= ρ

(
TV 1, TV 0

)
≤ βρ

(
V 1, V 0

)
.

Hence,
ρ
(
V n+1, V n

)
= ρ

(
TV n, TV n−1) ≤ βρ (V n, V n−1) ≤ βnρ (V 1, V 0

)
.

Therefore, for any m > n we have

ρ (V m, V n) ≤ ρ
(
V m, V m−1)+ ρ

(
V m−1, V m−2)+ · · ·+ ρ

(
V n+1, V n

)
,

≤
(
βm−1 + βm−2 + · · ·+ βn

)
ρ
(
V 1, V 0

)
,

≤ βn

1− β
ρ
(
V 1, V 0

)
,

where the first inequality follows from the triangular inequality property. Therefore, {V n}∞n=0 is a
Cauchy sequence, since

βn

1− β
→ 0 as n→∞.

Since S is complete, V n → V .
Now we need to show that V = TV . To do that, note that for any ε > 0 and V 0 ∈ S, we have

ρ (V, TV ) ≤ ρ
(
V, TnV 0

)
+ ρ

(
TnV 0, TV

)
,

≤ ε

2
+
ε

2
,

for large enough n since {V n}∞n=0 is a Cauchy sequence. Therefore, V = TV .
Finally, suppose that another function W ∈ S satisfies W = TW . Then,

ρ (V,W ) = ρ (TV, TW ) ≤ βρ (V,W ) .

This is a contradiction, unless V = W .

ρ
(
TnV 0, V

)
= ρ

(
TnV 0, TV

)
≤ βρ

(
Tn−1V 0, V

)
≤ βnρ

(
V 0, V

)
.

10



QED
Corollary 1. Let (S, ρ) be a complete metric space and let T : S → S be a contraction mapping
with fixed point V ∈ S. If S′ is a closed subset of S and T (S′) ⊆ S′, then V ∈ S′. If in addition
T (S′) ⊆ S′′ ⊆ S′, then V ∈ S′′.
Proof. Choose V 0 ∈ S′ and note that

{
TnV 0

}
is a sequence in S′ converging to V . Since S′ is

closed, it follows that V ∈ S′. If T (S′) ⊆ S′′, it then follows that V = TV ∈ S′′.
QED

Theorem 4. (Blackwell’s Sufficiency Condition) Let X ⊆ Rl and B(X) be the space of
bounded functions V : X → R with the uniform metric ρ(V,W ) = supx∈X |V −W |. Let T :

B(X)→ B(X) be an operator satisfying

1. (Monotonicity) W,V ∈ B(X). If V ≤W (i.e., V (x) ≤W (x) for all x) then TV ≤ TW .

2. (Discontinuity) There exists some constant β ∈ (0, 1) such that T (V + a) ≤ TV + βa, for
all V ∈ B(X) and a ≥ 0.

Then T is a contraction mapping with modulus β.
Proof. For every W,V ∈ B(X), , V ≤W + ρ(V,W ). Thus, conditions (1) and (2) imply that

TV ≤ T (W + ρ(V,W )) ≤ TW + βρ(V,W ),

where the first inequality is by monotonicity and the second inequality is by discontinuity. Thus,

TV − TW ≤ βρ(V,W ).

By permuting the functions it is easy to show that

TW − TV ≤ βρ(V,W ).

Consequently,
|TV − TW | ≤ βρ(V,W ),

so that
ρ (TV, TW ) ≤ βρ(V,W ).

Therefore T is a contraction.
QED

2.5 Neoclassical Growth Model

Consider the mapping
(TV ) (k) = max

k′∈K

{
U
(
F (k)− k′

)
+ βV (k′)

}
, (14)

where k, k′ ∈ K = {k1, k2, ..., kn}.
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Question: Is T a contraction?
We should check monotonicity and discontinuity, so that we can use Blackwell’s Theorem.

1. Monotonicity. Suppose V (k) ≤ W (k) for all k. We need to show that (TV ) (k) ≤
(TW ) (k).

(TV ) (k) =
{
U
(
F (k)− k′∗

)
+ βV (k′∗)

}
,

where k′∗ maximizes (14). Now we can clearly see that

(TV ) (k) =
{
U
(
F (k)− k′∗

)
+ βV (k′∗)

}
,

≤ max
k′∈K

{
U
(
F (k)− k′

)
+ βW (k′)

}
,

= (TW ) (k).

2. Discontinuity.

(TV + a) (k) = max
k′∈K

{
U
(
F (k)− k′

)
+ β

(
V (k′) + a

)}
,

= max
k′∈K

{
U
(
F (k)− k′

)
+ βV (k′)

}
+ βa,

= (TV ) (k) + βa.

2.6 Characterizing the Value Function

What can we say about the value function V ? In particular,

1. Is V continuous in k?

2. Is V strictly increasing in k?

3. Is V strictly concave in k?

4. Is V differentiable in k?

Definition 6. A function V : X → R is strictly increasing if x > y implies V (x) > V (y). A
function V : X → R is non-decreasing (or increasing) if x > y implies V (x) ≥ V (y).
Definition 6. A function V : X → R is strictly concave if

V (θx+ (1− θ)y) > θV (x) + (1− θ)V (y) ,

for all x, y ∈ X such that x 6= y and θ ∈ (0, 1). A function V : X → R is concave if

V (θx+ (1− θ)y) ≥ θV (x) + (1− θ)V (y) ,

for all x, y ∈ X such that x 6= y and θ ∈ (0, 1).
Assumption 1. Let U and F be strictly increasing functions.
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Assumption 2. Let U and F be strictly concave functions.
Theorem 5. The function V is strictly increasing and strictly concave.
Proof. Consider the mapping, as in (14), given by

(TV ) (k) = max
k′∈K

{
U
(
F (k)− k′

)
+ βV (k′)

}
.

It will be shown that the operator T maps concave functions into strictly concave ones. It is
also true that the operator T maps increasing functions into strictly increasing ones. Let V be
concave function. Take two point k0 6= k1 and let kθ = θk0 + (1− θ) k1. Observe that F (kθ) >

θF (k0) + (1− θ)F (k1), since F is strictly concave. Now it need to be shown that

(TV ) (kθ) > θ (TV ) (k0) + (1− θ) (TV ) (k1).

To this end, define k′∗0 as the maximizer of (TV ) (k0), k
′∗
1 as the maximizer of (TV ) (k1), and k′θ =

θk
′∗
0 +(1− θ) k′∗1 . Note that k′θ is a feasible choice when k = kθ, since k

′∗
0 ≤ F (k0) and k

′∗
1 ≤ F (k1),

while θF (k0) + (1− θ)F (k1) < F (kθ). Now,

(TV ) (kθ) ≥ U
(
F (kθ)− k′θ

)
+ βV (k′θ), since k′θ is non-optimal,

> θ
[
U
(
F (k0)− k′∗0

)
+ βV (k′∗0 )

]
+ (1− θ)

[
U
(
F (k1)− k′∗1

)
+ βV (k′∗1 )

]
, by strict concavity

> θ (TV ) (k0) + (1− θ) (TV ) (k1) by definition.

QED
Remark. The space of strictly concave functions is not complete. Hence, to finish the argument
an appeal to Corollary 1 of the contraction mapping can be made.
Theorem 6. The function V is continuous in k.
Proof. It will be shown that the operator described in (14) maps strictly increasing, strictly
concave C2 functions into strictly increasing, strictly concave C2 functions. Suppose that V n is a
continuous, strictly increasing, strictly concave C2 function. The decision rule for k′ is determine
from the first-order condition

U1

(
F (k)− k′

)
= βV n′(k′).

This determine k′ as a continuously differentiable function of k by the implicit function theorem.
Note that 0 < dk′/dk < F1(k). Therefore, V n+1(k) is strictly increasing, strictly concave C2

function too, since
V

(n+1)
1 (k) = U1

(
F (k)− k′

)
F1(k).

The limit of such a sequence must be continuous function (although it need not be a C2function).
QED

Differentiability:
Lemma 1. Let X ⊆ Rl be a convex set, V : X → R be a concave function. Pick an x0 ∈ int(X)
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and let D be a neighborhood of x0. If there is a concave, differentiable function W : D → R with
W (x0) = V (x0) and W (x) = V (x) for all x ∈ D, then V is differentiable at x0 and

Vi(x0) = Wi(x0), for i = 1, 2, ..., l.

Proof. See Figure 5 below.

Figure 5: Differentiability of V

Theorem 7. (Benveniste and Scheinkman) Suppose that K is a convex set and that U and
F are strictly concave C1 functions. Let V : K → R in line with (14) and denote the decision rule
associated with this problem by k′ = G (k). Pick k0 ∈ int(K) and assume that 0 < G (k0) < F (k0).
Then V (k) is continuously differentiable at k0 with its derivative given by

V1 = U1 (F (k0)−G (k0))F1 (k0) .

Proof. Clearly, there exists some neighborhood D of k0such that 0 < G (k0) < F (k) for all k ∈ D.
Define W on D by

W (k) = U (F (k)−G (k0)) + βV (G (k0)) .

Now, note that W is concave and differentiable, since U and F are. Furthermore, it follows that

W (k) ≤ max
k′

{
U
(
F (k)− k′

)
+ βV

(
k′
)}

= V (k) ,

with the equality holding strictly at k = k0. The result then follows immediately from Lemma 1.
QED
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