Best-Response Equilibrium: An Equilibrium in Finitely Additive Mixed Strategies

Igal Milchtaich Bar-Ilan University

Wish-granting game

- The payoff is any real number s the player chooses, u(s) = s
- Any choice s^1 is inferior to any $s^2 > s^1$, which is inferior to s^3 ...
- Does the whole sequence $(s^n)_{n \in \mathbb{N}}$ represent a strategy?
- Does $\lim_{n\to\infty} u(s^n) = \infty$ make it an equilibrium strategy?
- A mixed strategy σ involves assignment of probabilities
- An equilibrium should satisfy $\sigma(\{s^n\}) = 0$ for all n
- Additivity then implies $\sigma(\{s^1, s^2, \dots, s^n\}) = 0$
- Hence, <u>sigma-additivity</u> cannot hold
- Strategy σ is defined as a <u>finitely-additive probability</u>
- For $A \subseteq \mathbb{R}$,
 - $\sigma(A) = 0$ if $s^n \in A^{\mathsf{C}}$ for almost all n
 - $\sigma(A) = 1$ if $s^n \in A$ for almost all n
- Can be extended to the entire power set of $\ensuremath{\mathbb{R}}$

Wish-granting game

- Strategy σ describes a rational choice of action
- No single action is optimal, as $\sup_{s \in \mathbb{R}} u(s) = \infty$
- Strategy σ excludes the choice of actions yielding low payoffs, no matter how 'low payoff' is understood
- For every $a < \sup u = \lim_{n \to \infty} u(s^n)$, only finitely many n's satisfy $u(s^n) < a$, and so $\sigma(\{s \in \mathbb{R} \mid u(s) < a\}) = 0$
- Strategy σ is a <u>best-response equilibrium</u>
- A similar construction works for any one-player game
- Applicable to any action set and payoff function
- Here, specifically, σ formalizes the choice of "infinity": strategy δ_∞
- For every set A bounded from above, $\delta_{\infty}(A) = 0$ and $\delta_{\infty}(A^{C}) = 1$

Finitely additive probabilities

- The power set $\mathcal{P}(S)$ of a set S is the collection of all its subsets
- $\{\emptyset\} \subseteq \mathcal{A} \subseteq \mathcal{P}(S)$ is an <u>algebra</u> if $A, B \in \mathcal{A}$ implies $A^{\mathsf{C}}, A \cup B \in \mathcal{A}$
- Its elements are the measurable sets
- A <u>finitely additive probability</u> is a function $\mu: \mathcal{A} \rightarrow [0,1]$ satisfying
 - $\mu(A) + \mu(B) = \mu(A \cup B)$ for all disjoint $A, B \in \mathcal{A}$
 - $\circ \ \mu(S) = 1$
- It is a <u>probability</u> if for all disjoint $A_1, A_2, ... \in \mathcal{A}$ with $\bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$ $\sum_{k=1}^{\infty} \mu(A_k) = \mu(\bigcup_{k=1}^{\infty} A_k)$
- A finitely additive probability $\mu' : \mathcal{A}' \to [0,1]$ is an <u>extension</u> of μ if $\mathcal{A} \subseteq \mathcal{A}'$ and $\mu = \mu'|_{\mathcal{A}}$, and it is a <u>total extension</u> if $\mathcal{A}' = \mathcal{P}(S)$
- The <u>outer measure</u> of μ is the function $\mu^* \colon \mathcal{P}(S) \to [0,1]$ defined by $\mu^*(C) = \inf \{\mu(A) \mid A \supseteq C, A \in \mathcal{A}\}$

• A set *C* with $\mu^*(C) = 0$ is μ -<u>null</u>

Integration

- A simple measurable function $f: S \to \mathbb{R}$ takes only finitely many values and satisfies $f^{-1}(\{x\}) \in \mathcal{A}$ for every value x
- The integral of f with respect to a finitely additive probability μ is

$$\int_{S} f(s) d\mu(s) = \sum_{x \in \mathbb{R}} x \, \mu \big(f^{-1}(\{x\}) \big)$$

- More generally, $f: S \to \mathbb{R}$ is μ -<u>integrable</u> if there are simple measurable functions $(f_n)_{n \in \mathbb{N}}$ such that for every $\epsilon > 0$ $\lim_{n \to \infty} \mu^*(\{s \in S \mid |f(s) - f_n(s)| > \epsilon\}) = 0,$ $\lim_{m,n \to \infty} \int_S |f_m(s) - f_n(s)| \, d\mu(s) = 0$
- The integral of such f is (well) defined by

$$\int_{S} f(s) \, d\mu(s) = \lim_{n \to \infty} \int_{S} f_n(s) \, d\mu(s)$$

Product of finitely additive probabilities

- $(\mu_i)_{i=1}^n$ defined on algebras $(\mathcal{A}_i)_{i=1}^n$ of subsets of sets $(S_i)_{i=1}^n$
- The <u>product algebra</u> $\mathcal{A} = \prod_i \mathcal{A}_i$ consists of all finite unions of sets $A \subseteq S = \prod_i S_i$ of the form $A = \prod_i A_i$ with $A_i \in \mathcal{A}_i$ for all i
- The product $\mu = \prod_i \mu_i$ is a finitely additive probability defined on \mathcal{A}
- For a rectangular set A as above, $\mu(A) = \prod_i \mu_i(A_i)$

Lemma. For a bounded function $f: S \rightarrow \mathbb{R}$,

$$\int_{S} f(s) \, d\mu(s) = \int_{S_n} \cdots \int_{S_1} f(s_1, s_2, \dots, s_n) \, d\mu_1(s_1) \cdots d\mu_n(s_n) \, ,$$

provided that the "multiple" and iterated integral both exist.

- In particular, the latter does not depend on the order of integration
- However, Fubini's theorem does not hold here
- It is possible that only the multiple or only the iterated integral exists

Best-response equilibrium

- Each player *i* has an action set S_i and a payoff function $u_i: S \longrightarrow \mathbb{R}$
- A <u>strategy</u> for *i* is any finitely additive probability $\sigma_i: \mathcal{A}_i \rightarrow [0,1]$
- A strategy profile $(\sigma_1, \sigma_2, ..., \sigma_n)$ may be identified with $\sigma = \prod_i \sigma_i$
- For any *i*, it may also be written as (σ_i, σ_{-i}) , where $\sigma_{-i} = \prod_{j \neq i} \sigma_j$
- A strategy profile σ is a <u>best-response equilibrium</u> if for every *i*
 - the following integral exists for every $s_i \in S_i$

$$v_i(s_i) \coloneqq \int_{S_{-i}} u_i(s_i, s_{-i}) \, d\sigma_{-i}(s_{-i})$$

- the function $v_i: S_i \to \mathbb{R}$ satisfies for every $a < \sup_{s_i \in S_i} v_i(s_i)$ $\sigma_i^*(\{s_i \in S_i \mid v_i(s_i) < a\}) = 0$
- Thus, actions yield well-defined expected payoffs, and any set of low-payoff actions is σ_i -null (the <u>best-response requirement</u>)

Proposition 1. If sup $v_i < \infty$, the best-response requirement holds if and only if v_i is σ_i -integrable and

$$v_i(s_i) \, d\sigma_i(s_i) = \sup v_i \, .$$

- Player *i*'s <u>equilibrium payoff</u> is $\int_{S} u_i(s) d\sigma(s) if$ the integral exists
- If u_i is not σ -integrable, the equilibrium payoff is not well defined
- A best-response equilibrium excludes the choice of low-payoff actions, without necessarily identifying expected payoffs

Proposition 2. Every strategy profile $\tilde{\sigma}$ that extends a best-response equilibrium σ is also a best-response equilibrium. At least one such $\tilde{\sigma}$ is <u>total</u> (in the sense that $\mathcal{A}_i = \mathcal{P}(S_i)$ for all i).

Bilateral trade

- An item's worth is 0 to the seller and 1 to the buyer
- The buyer has to offer a price $0 \le p \le 1$
- The seller has to select the interval of acceptable prices
- Accepting any p > 0 is a weakly dominant strategy
- But there is no mixed equilibrium of which it is a part
- Intuitively, the buyer should offer "very little", or "an ϵ "
- A best-response equilibrium does exist: the seller's strategy is δ_{0^+}
- For $A \subseteq [0,1]$ that includes a right neighborhood of 0, $\delta_{0^+}(A) = 1$
- The equilibrium payoffs are 1 to the buyer and 0 to the seller

Price competition

- The *n* identical firms with cost function *C* set prices $p_1, p_2, ..., p_n$
- Those tied for the lowest price p equally share the demand D(p)
- Competition may be expected to drive the price down
- A ("normal") mixed equilibrium may not exist, even for n = 2
- Example: D(p) = 1 p and quasi-fixed cost $C(q) = 0.16 \cdot 1_{q>0}$
- For a monopoly, p = 0.5 is profit maximizing, 0.2 gives zero profit
- For any $0.2 \le p \le 0.5$, $(\delta_{p^-}, \delta_{p^-})$ is a best-response equilibrium
- For $A \subseteq [0, \infty)$ that includes a left neighborhood of $p, \delta_{p^-}(A) = 1$
- No well-defined equilibrium profits
- More generally, $\left(\delta_{p^-}, \delta_{p^-}, ..., \delta_{p^-}
 ight)$ is a best-response equilibrium if
 - $\pi_M(p) = pD(p) C(D(p))$ is nondecreasing in (0, p), and
 - its supremum there is nonnegative

Spatial competition with three firms

- Uniformly-distributed consumers on [0,1] choose the closest firm
- A firm's profit is the total mass of its consumers
- With three firms, no pure strategy equilibrium exists
- Symmetric equilibrium with uniform distribution on [1/4,3/4]
- Unique equilibrium with a mixture of pure and mixed strategies
- One firm at 1/2, the other two mix with support [5/24,19/24]
- Cannot be replaced by any two-point randomization
- Can be replaced by $1/2 \, \delta_{x^-} + 1/2 \, \delta_{(1-x)^+}$, with $1/4 \le x \le 1/3$
- The replacement gives a best-response equilibrium
- Only the player choosing 1/2 has a well-defined equilibrium payoff

Zero-sum game without a value

- Two-player zero-sum game (Sion and Wolfe 1957)
- Both players' action set is [0,1], and u_1 is
- Maxmim value is 1/3, and maxmin strategy $\sigma_1 = 1/3\,\delta_0 + 2/3\,\delta_1$
- Minmax value is 3/7, and minmax strategy $\sigma_2 = 1/7\,\delta_{1/4} + 2/7\,\delta_{1/2} + 4/7\,\delta_1$
- There exists no "normal" mixed equilibrium
- But there is a strategy of player 2 lowering 1's maximum payoff to 1/3 (Vasquez 2017) $\sigma_2' = 1/3 \, \delta_{1/2} + 2/3 \, \delta_1$
- A best-response equilibrium (σ_1, σ_2')
- Well-defined equilibrium payoffs (1/3, -1/3)

Game without best-response equilibrium

- Three players have the same action set (0,1)
- Payoff functions $u_1(s) = -s_1$, $u_2(s) = -s_2$, $u_3(s) = \min(s_2/s_1, 1)$

 $\mathcal{U}_{\mathcal{Z}}$

1

0

*s*₂

• Best-response requirement for i = 1,2

$$\int (-s_i) \, d\sigma_i(s_i) = 0$$

• But $v_3 = \int u_3 d(\sigma_1 \times \sigma_2)$ does not exist

Two-player counterexample

• Two players have the same action set \mathbb{N} , and the payoff matrix is

• Strategy σ_1 is "diffuse" ($\sigma_1(\{n\}) = 0$ for all n) $\Rightarrow \sigma_2(\{1\}) = 1$

- But $\sigma_2(\{1\}) = 1 \Longrightarrow \sigma_1(\{1\}) = 1 \Longrightarrow \sigma_1$ is not diffuse
- Strategy σ_1 is not diffuse $\Rightarrow \lim_{n \to \infty} v_2(n) = \infty \Rightarrow \sigma_2$ is diffuse
- But σ_2 is diffuse $\Rightarrow \lim_{n \to \infty} v_1(n) = \lim_{n \to \infty} n = \infty \Rightarrow \sigma_1$ is diffuse
- The contradictions prove that no best-response equilibrium exists

Similar solution concepts

- The basic problem with finitely additive probabilities nonintegrability of payoff functions – has been addressed by others
- Finitely additive extension of a zero-sum game (Yanovskaya 1970)
- Optimistic equilibrium (Vasquez 2017: price-competition example)
- Justifiable equilibrium (Flesch et al. 2018): a strategy profile σ such that for every player i and alternative strategy τ_i

$$\int_{S} u_{i}(s) d\sigma(s) \coloneqq \inf\{\int_{S} g(s) d\sigma(s) \mid g \text{ simple measurable, } g \ge u_{i}\}$$
$$\ge \int_{S} u_{i}(s) d(\tau_{i}, \sigma_{-i})(s)$$
$$\coloneqq \sup\{\int_{S} g(s) d(\tau_{i}, \sigma_{-i})(s) \mid g \text{ simple measurable, } g \le u_{i}\}$$

• The payoff function u_i is assumed bounded

Similar solution concepts

Theorem. Every best-response equilibrium is a justifiable equilibrium but not conversely.

- A single player has action set [0,1] and payoff function $u = 1_{\mathbb{Q}}$
- The algebra \mathcal{I} is all finite unions of subintervals of [0,1]
- A simple measurable function $0 \le g \le 1$ satisfies
 - $\circ \ g \leq 1_{\mathbb{Q}}$ if and only if g=0 outside some finite subset of \mathbb{Q}
 - $\circ \ g \geq 1_{\mathbb{Q}}$ if and only if g=1 outside some finite subset of \mathbb{Q}^{C}
- The first fact gives $\int 1_{\mathbb{Q}} d\tau = 1$ for $\tau = \delta_0$
- The condition for justifiable equilibrium is $\sigma(\{s\}) = 0$ for all $s \notin \mathbb{Q}$
- Every nonatomic probability on [0,1] (e.g., Lebesgue measure) is one
- The condition for best-response equilibrium is stronger, $\sigma^*(\mathbb{Q}^{\mathbb{C}}) = 0$, which is equivalent to $\sum_{s \in \mathbb{Q} \cap [0,1]} \sigma(\{s\}) = 1$

Conceptual foundations

- In a mixed equilibrium, the choice of suboptimal actions is excluded
- The condition is both necessary and sufficient
- Only the <u>supports</u> of the players' strategies need to be examined
- Not alternative mixed strategies the mixed extension is irrelevant
- Furthermore, here mixed strategies are not randomized strategies
- They are not <u>played</u>, and may not even be playable in any sense
- Represent others' assessment of the players' choices of actions
- The equilibrium condition is rational, <u>best-response</u> choice
- Actions yielding low expected payoffs are excluded
- The expectation is with respect to the other players' strategies
- A player has no use for the integral wrt the product probability
- The existence of this integral the expected payoff is optional
- It is not a requisite for a meaningful notion of mixed equilibrium