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Abstract

Our planet is experiencing the first human-induced mass extinction of species. In response,
policymakers have implemented international trade bans to preserve rare animals and forest
species such as rhinos, elephants, and rosewood. Yet little research examines their consequences.
Combining georeferenced habitat maps of wild animals and trees with armed conflict data, I
uncover sizeable adverse effects of international trade ban treaties. First, event-study estimates
reveal that bans raise the likelihood of conflict in habitat areas by about 40%. Two findings
support a windfall-related conflict mechanism. For elephant ivory, a natural experiment shows
that, in response to supply-side policies, prices change, which in turn changes the likelihood
of conflict events in their habitat. Given the elephant’s broad habitat, the implied magnitude
exceeds that of well-studied conflict minerals. For wild trees, satellite data show that harvesting
shifts from high- to low-capacity states once bans are imposed, generating rents that spark
violence. An analysis of battles’ locations before and after the policy reveals that militias and
rebels expand into new, distant areas and are more likely to gain territorial control, consistent
with a feasibility mechanism in which windfalls relax budget constraints. A quantitative model
suggests that a targeted policy restricting trade in states with strong institutions and smaller
wildlife stocks can conserve resources while limiting conflict. Given these spillovers, international
trade bans, if maintained, should be accompanied by state-building support for low-income

countries, which often lack enforcement capacity.
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1 Introduction

Scientific evidence indicates that we are undergoing the first human-induced mass extinction of
species (Ceballos et al., 2015). Combined with the prevailing view that the private consumption
value of wildlife is lower than its social value from conservation (Brondizio et al., 2019; UNODC,
2024), this has motivated the international community to restrict or ban trade in wildlife products to
protect biodiversity. The Convention on International Trade in Endangered Species of Wild Fauna
and Flora (CITES), the main global mechanism for protecting wildlife (UNODC, 2024), banned
international trade in rhino and elephant parts in 1976 and 1990, respectively, due to declining
populations. Since then, CITES has regulated or banned the international trade in commodities
derived from 38,710 endangered species. However, trade bans could raise prices and alter incentives,
thereby empowering illegal actors and potentially fuelling violence (Miron, 1998; Angrist and Kugler,
2008; Becker et al., 2006; Dell, 2015; Castillo et al., 2020). This raises questions about the costs
and benefits of conservation-motivated trade bans.

Illegal wildlife trade has been recognised as the third-largest transnational illicit activity, with
markets for wild animals and timber estimated at $23 billion and $157 billion annually, respectively,
surpassed only by counterfeiting ($923 billion) and the illicit drug trade ($426 billion) (UNODC,
2024). Suggestive evidence links this trade to the activities of armed groups. An INTERPOL
(2014) investigation describes the ivory trade as a major source of funding for the Lord’s Resistance
Army—a rebel group active in Central Africa—while EIA (2020) highlights how the rosewood
trade in Senegal finances local armed groups. BBC (2024) refers to the conflict that began in
northern Mozambique in 2017 as being driven by “conflict timber”, describing how the rosewood
trade provided substantial financial resources to local armed groups. This occurred shortly after
CITES banned international trade in rosewood in 2016. Despite its importance, both as a conflict-
linked commodity and as a public good (Frank and Sudarshan, 2024), wildlife trade and biodiversity
protection policies have been largely overlooked in economic research, likely due to challenges of
data availability and measurement.

This paper examines the causal impact of global bans on international trade in wildlife-derived
products, enacted under the CITES treaty, on armed conflict. In the empirical part of the analysis I
document two windfall-related channels linking trade bans to conflict: higher wildlife prices and the
relocation of harvesting to states with limited enforcement capacity. The estimates suggest that,
because wildlife resources are spatially widespread, their conflict effect is quantitatively important,
exceeding the magnitude of industrial conflict minerals such as gold, copper, and silver studied
in the literature (Berman et al., 2017). Motivated by these findings, I construct a quantitative
social planner model to evaluate how alternative policies can balance the conflict externality and
conservation goals. The model shows that targeted bans restricting trade only in a subset of countries

can mitigate the conflict externality while conserving wildlife.



CITES’s institutional features allow for a causal identification of the effect of its trade bans on
conflict. Its mandate is to protect wildlife from risks associated with international trade (UNODC,
2016), and it has the authority to ban international trade in wildlife-derived products. These bans
should be enforced by the Convention’s 184 signatories at their border crossings, without sanctions
on consumers. Parties follow a predetermined schedule and meet every three years to vote on which
species to restrict from international trade.

Before estimating the causal effect of the policy on conflict, I first use wholesale price data from
China, a major demand market for wildlife products, to document the price response. CITES trade
restrictions, which act as supply-side constraints, are associated with an average increase in wildlife
prices of about one standard deviation. This pattern suggests that the policy affects the supply of
wildlife. Second, to estimate the conflict effect of the policy, I construct a panel dataset, based on a
global georeferenced grid (0.5° x 0.5°), with data on habitat of seven genera of endangered wild ani-
mals and 24 genera of endangered wild trees, policy dates, and conflict indicators from three different
conflict datasets (ACLED, UCDP, GTD). Because no single source provides habitat-suitability data
for wild trees, I construct predictive habitat maps using a machine-learning algorithm trained on
survey observations of wild tree locations together with bioclimatic and geographic features (Senula
et al., 2019). Event-study specifications show that CITES policies increase the likelihood of armed
conflicts in the habitat of the affected wildlife by about 2.6 percentage points for wild animals (35%
of the baseline risk) and about 3.5 percentage points for wild trees (46% of the baseline risk). This
finding is robust to alternative specifications, disaggregation levels, coding options, conflict defini-
tions, exclusion of specific resources and regions from the sample, and inclusion of various potential
confounders.

Inspection of the mechanism suggests that the policy generates windfall gains that fuel conflict
through two distinct channels: a price channel and a harvest-relocation channel. I first study the
African elephant ivory market using policy-driven supply shocks that left ivory’s legal status in
source countries unchanged. In 1998 and 2007, CITES authorised one-off sales of stockpiled ivory
from South Africa, Botswana, Zimbabwe, and Namibia to China and Japan. I use these shocks as
instruments in a two-stage least squares (2SLS) framework and show that policies affect conflict via
prices: a one-standard-deviation increase in ivory prices raises the likelihood of conflict in elephant
habitats by 22%. The reduced-form estimates indicate that the supply-expanding ivory sales in
1998 and 2007 decrease conflict likelihood by 23%. These findings are consistent with Kremer and
Morcom (2000)’s theoretical work, where stock releases depress prices and help coordinate on a
survival equilibrium. The estimated effect is comparable to the industrial minerals shock estimated
by Berman et al. (2017), where a one-standard-deviation price increase raises conflict likelihood by
42%. When accounting for the spatial distribution of elephants and mineral resources, or for the
number of people exposed to each shock, the ivory effect exceeds that of minerals. The analysis also
shows that the ivory shock primarily drives one-sided attacks against civilians or local militias, and
triggers both small- and large-scale conflict events.

Second, a major criticism of CITES policies is that states with low institutional capacity strug-



gle to enforce them (UNODC, 2016). Thus, I examine whether differences in state capacity are
associated with the harvesting of wild trees, which creates local windfalls and, consequently, fuels
conflict. I test this by introducing a methodological improvement that allows me to proxy tree
harvesting at the taxa level.! Focusing on wild trees in Africa, I estimate harvest relocation by
overlaying satellite-based deforestation data (Hansen et al., 2013) with genus-level habitat distribu-
tions (Senula et al., 2019) to construct a proxy for local tree harvesting. Using this proxy, I estimate
a synthetic control event study specification (Ben-Michael et al., 2021; Funke et al., 2023) showing
that the policy reduces tree harvesting in states with high institutional capacity, while harvesting
in low-capacity states increases following the policy. These weak states are also where most of the
policy-induced conflict originates. Overall, despite the relocation of harvesting, the CITES policy
is effective in reducing total deforestation of wild trees.

Next, I test whether the windfall-related rise in conflict reflects stronger incentives to seize
resource-rich territory (predation) or greater feasibility of attacks due to enhanced fighting capacity
(Blattman and Miguel, 2010; Berman et al., 2017). I examine the spatial distribution of battles
before and after the 2016 rosewood ban. The estimates suggest that, following the ban, armed groups
operating in areas likely to benefit from the windfall tend to fight farther from prior locations and
are more likely to gain territory. Together, these findings indicate that the ban generates windfalls
that strengthen armed groups’ fighting capacity and make attacks financially feasible.

Finally, to simulate alternative policies that account for the conservation—conflict trade-off, I
construct a quantitative social planner model. The model features a policymaker analogous to
CITES, who aims to protect wildlife while considering the conflict externalities of trade bans. Firms
harvest and sell rare wild trees, and a local armed group loots these firms and uses the proceeds
for territorial expansion to fight against an outside faction. The core mechanisms of the model are
heterogeneity in state capacity to enforce the policymaker’s global bans and differences in harvesting
costs arising from initial stock. It rationalises the relocation of wild tree harvesting from strong to
weak states following the ban, as observed in the data, links this relocation to conflict, and suggests
a potential mitigation strategy.

Given the empirical evidence that the ban fuels conflict primarily in weak states, the model
suggests replacing the uniform ban with a targeted ban applied only to strong states with rel-
atively smaller resource stocks. This more moderate approach—restricting trade in fewer coun-
tries—reduces the contraction in wild tree supply due to the ban and, through a dampened price
response, limits the relocation of harvesting from strong to weak states. As a result, it mitigates
the conflict externality while still protecting wildlife from complete extinction.

The model’s comparative statics highlight two additional policy-relevant dimensions. First, and

consistent with Becker et al. (2006)’s theoretical work on the cocaine trade, the model shows that

!Throughout the paper, I use “taxa” to refer to taxonomic units listed under CITES, which may be defined at the
genus or species level. I use “genera” when aggregating species-level data and “species” when referring explicitly to
that level. I use “wildlife” to denote both animals and trees, and refer to “wild animals” and “wild trees” as shorthand
for these subsets. Unless otherwise noted, these terms refer to CITES-listed taxa. I avoid the labels “endangered”,
“protected”, or “precious” unless they are directly relevant to the discussion or analysis.



the policy-induced conflict externality is amplified for wildlife products with more inelastic demand.
For such products, a given supply contraction leads to a larger price increase, which raises the
value of loot and thereby fuels more conflict, making a partial ban preferable. Second, the model’s
counterfactual analysis indicates that for wildlife with higher reproduction rates, and thus faster
natural recovery, a full trade ban is less likely to be optimal. In these cases, ecological damage is
more easily reversible and consequently carries lower weight in the planner problem.

This paper is related to four strands of the literature. First, it contributes to the environmental
policy literature by documenting the conflict cost of conservation-motivated trade bans. Existing
work has largely focused on the effectiveness of conservation policies (Assunc¢ao and Gandour, 2019;
Assungao et al., 2020; Hsiao, 2021; Da Mata and Dotta, 2021; Assuncao et al., 2023; Frank and
Oremus, 2023), the drivers of environmental degradation (Burgess et al., 2012; Greenstone and
Jack, 2015; Burgess et al., 2015, 2017; Couttenier et al., 2022), and the implementation challenges
of conservation efforts, particularly in low-capacity states (Balboni et al., 2021b; Glennerster and
Jayachandran, 2023; Harstad, 2023).

Second, while most evidence on the violent effects of supply restrictions comes from illicit drug
markets (Becker et al., 2006; Angrist and Kugler, 2008; Dell, 2015; Castillo et al., 2020; Castillo and
Kronick, 2020), this paper provides evidence of this link in a setting with external validity across
geographies and resources. It also identifies a novel windfall mechanism, showing that trade bans
shift harvesting into lawless regions and, in doing so, fuel violence. Relatedly, Chimeli and Soares
(2017) find that the mahogany export ban in Brazil increased violence, but their analysis is domestic
in scope and does not provide evidence on the underlying mechanism.

Third, the paper provides the first causal evidence on the effect wildlife trade has on armed
conflict, on a large geographic scale, by identifying a novel source of variation: policy-driven income
shocks related to wildlife. Related work has examined commodity shocks (Dube and Vargas, 2013;
Bazzi and Blattman, 2014; Berman and Couttenier, 2015; Berman et al., 2017; Ciccone, 2018),
the financing of armed groups and militias (Shapiro and Siegel, 2009; Bueno de Mesquita, 2013;
Limodio, 2019; Battiston et al., 2022), and climate shocks (Harari and La Ferrara, 2018; McGuirk
and Nunn, 2020; Eberle et al., 2020) as drivers of conflict.

Fourth, with the exception of Dal B6 and Dal B6 (2011), Couttenier et al. (2024), and Bonadio
et al. (2024), the academic literature has largely overlooked general-equilibrium interactions between
conflict and economic activity. The theoretical model links wildlife harvesting, trade policy, and
conflict through a supply-side feedback mechanism. It also builds on theoretical papers emphasising
funding (Collier et al., 2009; Fearon, 2004) and state capacity (Besley and Persson, 2011b; Acemoglu
et al., 2015) as key determinants of conflict.

The remainder of the paper is organised as follows. Section 2 reviews CITES policies, wildlife
trade, and their links to armed group activity. Section 3 presents the data. Section 4 discusses the
identification strategy, reports the baseline results for the global sample, and provides robustness
checks. Section 5 focuses on Africa and examines the mechanism. Section 6 outlines the theoretical

model and proposes mitigation strategies based on policy simulations. Section 7 concludes with a



discussion of policy implications.

2 Background

This section first describes the CITES convention—its mandate, policies, and legal scope. It then
discusses the market for wildlife and its industrial organisation, providing anecdotal evidence linking

wildlife trade to armed group activity.

2.1 CITES

The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) is
an international agreement aimed at conserving wildlife by regulating international trade, ensuring
that the trade does not cause species extinction. Established in 1973 and entering into force in
1975, with the leadership of the United States, CITES was created in response to growing concerns
about the threat global trade poses to endangered species. Today, it has 184 signatories. Appendix
Figures A.1 and A.2 show, respectively, the evolution of CITES membership over time and its
current global coverage.

CITES is part of a broader international agenda to strengthen cooperation on environmen-
tal protection, developed in response to three key challenges: (i) the global interconnectedness of
ecosystems, where environmental degradation in one country can have cross-border consequences;
(ii) the institutional weakness of some of the most ecologically rich countries, limiting their capacity
to safeguard biodiversity; and (iii) misaligned incentives between resource-rich countries that may
be tempted to exploit natural assets and others that prioritise conservation.

CITES lists wildlife taxa (at the species or genus level) in three Appendices according to con-
servation status. Appendix I includes taxa at risk of extinction (e.g., rhinos), with trade allowed
only in rare cases such as for scientific purposes. Appendix II includes taxa that could become
endangered if trade is not regulated (e.g., hippopotamus). Appendix III includes taxa protected
within specific countries that have requested international assistance in controlling trade (e.g., South
African abalone).

Parties meet approximately every three years based on a pre-determined schedule at the Confer-
ence of the Parties to update listings of wildlife taxa and revise policies. Each Party is responsible
for implementing and enforcing CITES regulations at all border crossings. At its launch, CITES
listed about 500 taxa. By 2023, more than 38,000 taxa were regulated under CITES, most of them
insects, small plants, and marine life.

Signatory countries that do not comply with CITES may face trade bans on legal wildlife
products, lose access to technical and financial conservation support, and come under diplomatic
pressure from other member states. For example, in 2018, China banned domestic trade in antique
ivory following CITES threats of suspension from legal wildlife trade. Additionally, in 2023, CITES
imposed trade sanctions on Mexico, suspending all commercial trade in CITES-listed species due

to non-compliance with obligations to protect the critically endangered vaquita, a small marine



mammal endemic to the Gulf of California, Mexico.? The sanctions affected a wide range of wildlife

products (e.g., crocodile leather, reptile skins, reptiles and exotic pets, orchids, and cacti).

2.2 The Industrial Organisation of Wildlife Markets
2.2.1 Demand

Contemporary demand for wildlife products largely originates from Asia, particularly China, reflect-
ing a combination of cultural, economic, and medicinal factors (Zhu, 2020). Traditional medicine
remains a major source of demand for products such as rhino horn, tiger bones, and pangolin scales
(Mainka and Mills, 1995), while luxury markets value elephant ivory, rosewood, ebony, crocodile
leather, and exotic furs for their aesthetic and status appeal (Sosnowski and Petrossian, 2020; Zhu,
2022). Rosewood, in particular, has symbolised wealth and distinction since the Qing dynasty and
is increasingly treated as an investment asset (Ding and Yin, 2024).

The recent surge in demand is closely tied to the rising economic power of China and other Asian
countries, where growing incomes have fuelled consumption of goods perceived as luxury items,
status symbols, or components of traditional medicine (UNODC, 2020). This trend is reinforced by
a broader state-led revival of traditional Chinese culture and heritage, initiated under Hu Jintao
(2002-2012) and intensified under Xi Jinping (2012-present) (Zhu, 2020).

2.2.2 Supply

The supply of wildlife products has long been dominated by armed groups, predating formal trade
restrictions (RUSI, 2015; TRAFFIC, 2015; WWF, 2015; EIA, 2017). UNODC (2020) describes
how armed groups across Africa and South-East Asia facilitate poaching by providing resources
and retaining the majority of profits. Local brokers then collect wildlife products and transport
them to urban storage centres, from which intermediaries—often foreign nationals originating from
major destination markets—export the goods by bribing officials to evade customs enforcement.?
For example, EIA (2014) documents how the Shandong cartel used legal agricultural trade as a
cover to smuggle ivory, bribing local politicians in the process. Finally, wholesalers and retailers
distribute the products within destination markets.

The Rosewood Trade and Northern Mozambique’s Conflict. The insurgencies in north-
ern Mozambique’s Cabo Delgado and Nampula provinces since 2017 have been linked to the illicit
trade in rosewood (Dalbergia), listed under CITES Appendix II since 2016. According to BBC
News (2023), demand from China has fuelled illegal logging operations, which in turn finance the
al-Shabab insurgent group. A Mozambique government report cited by BBC (2024) states that
“al-Shabab insurgents have taken advantage of the illicit timber trade to fuel and finance the repro-

)

duction of violence,” and further notes that “the insurgents involvement in the smuggling of fauna

2Other recent examples include Thailand (2013), Belize (2013), Guinea (2013), Lao PDR (2016), the Democratic
Republic of Congo (2018), and Nigeria (2022).

3Exporters are often nationals of the destination country, as this helps mitigate trust issues inherent in cross-
border illegal trade.



and flora products, including wood, and the exploitation of forest and wildlife resources is contribut-
ing to a very high level of fundraising for the insurgency group.” The same report estimates that “its
revenue from these activities amounted to $1.9 million a month.” Mozambique analyst Joe Hanlon
adds that “it has also gained enough funds to recruit in neighbouring provinces further south.” There
have also been reports of firms paying a “10% protection fee” to the armed group in exchange for
permission to carry out illegal logging in forest areas. These dynamics underscore the significant
role the high-end illegal timber trade plays in financing conflicts across Africa.

Ivory Trade and Armed Groups’ Activity in Africa. Several organisations have docu-
mented links between the ivory trade and armed groups’ activities. According to United Nations Se-
curity Council (2013) “The Lord’s Resistance Army (LRA), an armed group originating in Uganda,
is known to have poached elephants in Garamba National Park (Democratic Republic of Congo) and
trafficked ivory through South Sudan into Sudan, where it is exchanged for arms and supplies.” Sim-
ilarly, an investigation by the INTERPOL (2014) reveals that “ Kony-the LRA leader—ordered his
fighters to collect ivory, which was used to barter for food, weapons, and cash” and that “the LRA’s
operations in Garamba have decimated local elephant populations and created an illicit supply route
from Congo through South Sudan.” In Chad and the Central African Republic, the Janjaweed group
has targeted parks such as Zakouma National Park. According to Enough Project (2015) “Heav-
ily armed horsemen conducted cross-border poaching raids, massacring hundreds of elephants in a
matter of days. The iwory was transported north, reportedly taxed or protected by armed groups.”
According to Global Initiative Against Transnational Organized Crime (2017) “ivory, along with
gold and diamonds, became a resource exploited by the Seleka and Anti-Balaka armed factions in
the Central African Republic, who used it to fund military operations.”

The Supply Chain of Ivory. Poachers typically earn about 10% of the final raw ivory price
(UNODC, 2016). For an adult African elephant, whose tusks can weigh up to 100 kg (Milliken
et al., 2000), this can make poaching an attractive source of income. As tusks move along the
supply chain, their price can increase by 200-300% at multiple stages, and again after being carved
into high-value artefacts (UNODC, 2016). Appendix Figure A.3 illustrates the supply chains of

elephant ivory and rhino horn.

2.2.3 Further Anecdotal Evidence

Data from the African Elephant Database, a pan-African aerial census conducted every 5 to 10
years, further supports the link between armed groups and poaching. During the Chadian Civil
War (2005-2010), major fighting occurred near Am Timan and Mongo. In early 2005, a census
in Zakouma Park near Am Timan counted 3,885 elephants. By 2014, only 443 remained—a 90%
decline. Similarly, Lake Fitri near Mongo had 200 elephants in 2005 and only 70 in 2015, a 65%
drop. In the Democratic Republic of the Congo, the Kivu civil wars (2004-2013) took place near
Maiko and Kahuzi-Biega National Parks. In 1992, Maiko and surrounding areas had an estimated
6,500 elephants; by 2015, only 100 remained. In Kahuzi-Biega, the elephant population fell from
1,150 in 2002 to 70 in 2015. These represent declines of 94-98%. Although descriptive, the analysis



suggests armed groups’ involvement in poaching.

3 Data

This section discusses the data sources, the different conflict datasets, variable definitions, and

measurements. I also provide various statistics describing the data.

3.1 Data Sources

The sample for the main analysis consists of a global grid divided into 0.5° x0.5° cells (approximately
55 x 55 kilometres at the equator), with the unit of analysis being the cell-year. The main outcome
variable is a conflict indicator, with wildlife habitat and trade restriction dates as the key explanatory

variables. I use wildlife prices and deforestation data to explore the mechanism.

3.1.1 Conflict

To maximise spatial and temporal coverage, I use georeferenced conflict data from three main
sources: the Uppsala Conflict Data Program (UCDP) (Sundberg and Melander, 2013), the Armed
Conflict Location and Event Data (ACLED) (Raleigh et al., 2010), and the Global Terrorism
Database (GTD) (LaFree and Dugan, 2007). Each source has its own strengths and limitations.
UCDP covers conflicts since 1989 with at least 25 battle-related deaths and requires at least one
organised actor, potentially omitting relevant events just below the threshold. ACLED, starting in
1997 (Africa), 2010 (Asia), and 2017 (Latin America), imposes no fatality threshold and captures a
broader range of events, though it may include less relevant incidents. The GTD has been available
globally since 1970 and focuses solely on terrorism.

All three datasets draw on news, media, NGO, and government reports. Compared to ACLED,
UCDP’s strict fatality threshold and GTD’s narrow event definition help reduce measurement error
and media bias. These concerns are mitigated using cell and country-year fixed effects. In ACLED,
I follow Berman et al. (2017) in coding “battles”, “violence against civilians”, and “protests and riots”

as conflict events, and I also conduct a separate analysis by subcategory.

3.1.2 Habitats

In constructing habitat measures for wildlife taxa (wild animals and trees), I first select the relevant
taxa. I do so by first selecting only taxa that are discussed in Groves and Rutherford (2023) and
UNODC (2024) as heavily traded in illicit markets and protected under CITES. Second, due to
econometric identification requirements, I focus solely on taxa with well-defined geographic ranges.*
Given this, the full sample includes seven taxa of endangered wild animals along with 24 taxa of

endangered wild trees.

4For instance, some birds and snakes are known to be traded in illicit markets, but do not have well-defined
habitat.



Wild animals’ habitat data are sourced from the International Union for Conservation of Nature
(IUCN), the leading scientific conservation organisation specialising in wildlife monitoring, which
provides binary species-level range maps. I aggregate these maps to the genus level for consistency
with the policy. There is no single source providing habitat suitability measures for wild tree taxa.
To overcome this limitation, I gather georeferenced observations of wild tree species from the Global
Biodiversity Information Facility (GBIF) and aggregate them to the genus level. Species within each
genus are pooled due to limited occurrence records per species, allowing for more reliable habitat
suitability estimation. To minimise measurement error, I disregard the time dimension of these
surveys and treat the observations as a time-invariant proxy for taxa presence at each location.
Following established methods in the quantitative ecology literature (Phillips et al., 2006; Senula
et al., 2019), I use these observations as inputs to a Maximum Entropy machine learning model
to construct genus-level habitat suitability maps based on bioclimatic and geographical features.
Then I convert these genus-level habitat distribution maps into binary habitat measures—to be
consistent with the [UCN wild animal maps—which I use as proxies for the spatial distribution of
wild tree species. Appendix Section F provides further details on how the wild tree habitat maps

were constructed.

3.1.3 Policy

Policy change dates are sourced from the CITES website and summarised in Appendix Table A.2.
Most wild animal taxa are listed under Appendix I, with the exception of abalone, hippopotamus,
and crocodiles, which are listed under Appendix II. All wild tree taxa—typically listed at the genus
level—except Dalbergia nigra (Appendix I) are listed under Appendix II, with zero commercial trade
quotas, effectively constituting a trade ban. Unless stated otherwise, policies are enforced 90 days

after announcement.

3.1.4 Prices

Due to the illicit nature of the wildlife trade, there is no official source of wildlife prices. Of the 31
taxa in the sample, I obtained annual price data for six. Price data for three tree taxa—Dalbergia and
Pterocarpus (2009-2020), and Diospyros (1997-2021)—were sourced from China’s largest domestic
wholesale raw wood market, the Yuzhu International Timber Market (Ding and Yin, 2024). Rhino
horn and elephant ivory prices from the 1970s-1980s were obtained from surveys of retail markets
in Hong Kong (IUCN, 1990).

For contemporary elephant ivory and Nile crocodile leather, I follow Farah and Boyce (2019)
and Hauenstein et al. (2019) in using prices of close substitutes. Nile crocodile leather prices are
proxied using American alligator leather prices, and contemporary elephant ivory prices are proxied

using mammoth ivory.® To validate the reliability of the mammoth ivory price series, I use three

5Discovered in Siberia in 1992, mammoth ivory has been legally exported from Russia, primarily to China. Its
prices, sourced from Comtrade, reflect wholesale values of uncarved ivory and are less prone to measurement error
compared to other ivory price sequences derived from surveys and confiscation data.

10



alternative sequences as part of the sensitivity checks. First, Do et al. (2021) and Sosnowski et al.
(2019) estimate ivory prices from confiscation data, controlling for various fixed effects, but their
sequences end in 2013 and 2016, respectively. Second, I scrape and aggregate ivory transaction data
from auction-house websites for the period 2012-2021, when antique ivory could still be legally sold
in the UK. Both alternative sequences are highly correlated with mammoth ivory prices, with one
showing a correlation of 0.82 (¢ = 5.68) and the other 0.85 (¢ = 6.64). The main estimates remain
robust when either is used.

To summarise, I use close substitutes for two of the seven price sequences: contemporary elephant
ivory and Nile crocodile. For the remaining five (Dalbergia, Diospyros, Pterocarpus, rhino horn,
and elephant ivory from the 1970s-1980s), prices are sourced from Chinese markets, the primary

destination for these products. All prices refer to uncarved raw materials.

3.1.5 Deforestation of Wild Tree Taxa

Official statistics on traded quantities of wild trees are not available at the taxon level. Moreover,
many of these taxa are traded in illicit markets. To estimate changes in harvested quantities of wild
tree taxa following the policy, I combine remote-sensing deforestation data (Hansen et al., 2013)
with taxa-level habitat maps on a 0.1° x 0.1° grid. This yields a proxy for taxa-level harvesting
quantities.

The deforestation measure of Hansen et al. (2013) is based on satellite imagery. Tree cover loss
is defined as a stand-replacement disturbance, or the complete removal of tree canopy, at the pixel
level. The original dataset provides annual estimates of tree cover loss relative to year-2000 forest
cover, at a spatial resolution of 1 arc-second (30 x 30 metres). A common practice is to aggregate

it to the unit of analysis (0.1° x 0.1° in my case) (Burgess et al., 2012; Berman et al., 2023).

3.1.6 Industrial Minerals

For comparison with the industrial mineral shock estimates, I use data from Berman et al. (2017),
covering 14 minerals across Africa. I extend their dataset through 2024 by merging it with updated

price series for the respective minerals.

3.1.7 Other Data

To examine heterogeneity by state institutional capacity, I use the Combined Polity Score variable
from the Polity IV dataset.

3.2 Descriptive Statistics

The final sample consists of 176 countries, of which 172 experienced at least one conflict or terror
event across all datasets. A total of 149 countries have some form of resource presence, 59 with wild
animals and 149 with different species of wild trees. The sample includes 96,440 unique cells, covering
the periods 1997-2024 (ACLED), 1989-2023 (UCDP), and 1970-2021 (GTD). Overall, 16.5% of cells
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(15,916) experienced at least one conflict event during the sample period. Unconditional conflict
probabilities are 5.5% (ACLED), 1.2% (UCDP), and 0.82% (GTD). Conflict is more likely in resource
cells, with ACLED estimates of 10.4% in wild animal areas, 11.8% in wild tree areas, and 16.1% in
mineral areas. This may reflect unobserved characteristics, highlighting the importance of including
cell and country-year fixed effects in the analysis.

Figure 1 displays the global distribution of conflict events recorded in ACLED.® Most events are
clustered in the Great Lakes region of Africa, extending through Middle Africa toward the West
Coast. Additional clusters appear along the South-East coast and in the Horn of Africa. Outside
Africa, notable clusters are observed along Brazil’s East Coast, in Central America, and in Central
Asia. Appendix Table A.4 reports pairwise correlations across conflict datasets, indicating that
conflict events are spatially correlated across the three sources. ACLED records the highest number
of events, and GTD the lowest.

6 Appendix Figure A.4 shows the distribution of events based on UCDP and GTD.
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Figure 1: Spatial Distribution of ACLED Conflict Events
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Notes: Panel (a) shows the spatial distribution of ACLED (1997-2024) conflict events, where darker shading indicates a higher
proportion of years with at least one recorded incident. Panels (b) and (c) show conflict maps for Africa and the Democratic
Republic of Congo (DRC), respectively.

Overall, 5% of cells are suitable for wild animals and 10% for wild trees. Elephants (African and
Asian) have the largest animal habitat, covering 2.8% of cells, while Dalbergia is the most widespread
tree genus, suitable for 4.5% of cells. Figures 2 and 3 show the spatial distributions of wild animals
and trees included in the sample: animals are concentrated primarily in sub-Saharan Africa and
South-East Asia, while trees are concentrated in sub-Saharan Africa, South-East Asia, and Latin
America. 10.3% of habitat cells are suitable for more than one taxon, which may complicate
identification. I address this issue by assigning each cell to the wildlife taxon that was first listed

by CITES.” Appendix Table A.5 reports descriptive statistics of the main variables of interest.

If two wildlife taxa are suitable for the same cell and were listed at the same time by CITES, I exclude those
cells.
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Figure 2: Spatial Distribution of Wild Animals Habitat
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Notes: Panel (a) shows the spatial distribution of areas suitable for wild animals. Panels (b) and (c) show habitat distributions
for Africa and the Democratic Republic of Congo (DRC), respectively. The colours indicate habitat suitability for different wild
animals.
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Figure 3: Spatial Distribution of Wild Trees Habitat
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Notes: Panel (a) shows the spatial distribution of areas suitable for wild trees. Panels (b) and (c) show habitat distributions
for Africa and the Democratic Republic of Congo (DRC), respectively. The colours indicate habitat suitability for different wild
trees.

3.2.1 CITES Policies and Wildlife Prices

CITES restricts exports from source countries and imposes no sanctions on consumers. These re-
strictions are enforced at both exporters’ and importers’ borders. Therefore, the policy is interpreted
as a negative supply shock moving the supply curve inward. Figure 4 presents suggestive evidence
showing that CITES restrictions are, as expected, associated with higher wildlife prices. Appendix
Figure A.6 shows the corresponding event study estimates, suggesting an average price increase of
about one standard deviation following the policy. The estimates also support the parallel trends

assumption.

15



Figure 4: Wildlife Prices and CITES Policies
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Notes: The figure shows detrended wildlife prices together with policy changes: restrictive policies in red and expansionary
policies in green.

Appendix Figure A.7 reports the number of confiscation events of elephant ivory, rosewood, and
ebony before and after the corresponding policies, suggesting a tightening of supply following the
trade restrictions.

Taken together, the evidence suggests that CITES policy reduces wildlife supply and is associated
with higher wildlife prices.

4 Empirical Analysis

This section details the empirical strategy. Then it presents the main estimates and assesses their

robustness using a series of alternative specifications.

4.1 Identification Strategy

To assess how CITES restrictions on international wildlife trade affect conflict, I estimate a lin-
ear probability model (LPM) using an event study specification. Following the conflict literature
(Berman et al., 2017; Ciccone, 2018; Limodio, 2019; McGuirk and Nunn, 2020, 2024), I use a bi-
nary indicator for whether at least one conflict event occurs in a given cell-year as the outcome
variable. The main explanatory variable is the interaction between policy timing and a habitat

8

suitability indicator.® Using binary variables helps mitigate measurement error relative to counts

8For each cell, I have one wildlife, and for mixed cells, I assign the wildlife listed first by CITES, so the suitability
measure is unique per cell.
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or continuous measures. This identification strategy—interacting a global shock with local cell-level
characteristics—follows recent advances in the conflict literature (Miguel et al., 2004; Dube and
Vargas, 2013; Berman et al., 2017). Concerns about potential confounders and omitted variables
(e.g., geographic variation or domestic policies) are mitigated through cell and country-year fixed
effects. An advantage of using wildlife habitat as a proxy for trade is that data on habitat and
policy timing are available for all wildlife in my sample.” The core logic is to test whether conflict
likelihood changes in habitat areas following a global shock to the trade of a specific wildlife. Since
CITES meetings occur on a predetermined three-year schedule and policies take effect within 90
days, I code the announcement year as the event start (¢ = 0).

Recent works demonstrate that least squares estimation in staggered event studies, as in my case,
can produce biased estimates of the average treatment effect (De Chaisemartin and d’Haultfoeuille,
2020; Callaway and Sant’Anna, 2021). The problem arises because least squares with staggered
rollout not only leverages comparisons between treated units and “pure” controls, but also compares
treated units to those treated earlier. These so-called “forbidden” comparisons are problematic
when dynamic treatment effects are heterogeneous. Therefore, I estimate the static and dynamic
association between trade restrictions and conflict using the imputation method of Borusyak et al.
(2024), which is well-suited to my setting.

I analyse wild animals and wild trees separately, because the data are constructed independently,

and estimate the following equation!?:
7
Ve =Y Be(Myum) X Dy ier) + M+ Oep + €ns (1)
=7
i

Y} is a binary indicator for conflict in cell £ and year t. The term S, (Mk,w(k) Dw(k),t+r)
captures the treatment effect in event time r. The index r represents the relative time to when
trade in wildlife taxon w(k) becomes restricted under CITES. The term w(k) denotes the unique
wildlife taxon suitable for cell k. D44, is an indicator that equals one in years ¢ that are r
periods before or after the restriction year for taxon w(k). M, ) is a time-invariant indicator for
the suitability of cell k for wildlife taxon w(k). The specification includes cell () and country-year
(0ct) fixed effects, to control for time-invariant factors and time-varying country-level shocks. The
coefficients of interest, 3, are identified from within-cell variation in CITES trade restrictions over
time. To mitigate concerns about serial correlation, I cluster standard errors within a 500 kilometre

spatial radius, which yields the most conservative estimates.

9This is in contrast to data on trade volume, prices or trade routes. An alternative approach would follow Berman
et al. (2017) in using variation in international prices as a continuous treatment. However, due to the illegal nature of
the trade, consistent price data is difficult to obtain. Nonetheless, Appendix Table B.1 presents analogous estimates
for the six species for which I do have price data.

10T combine the two in the sensitivity checks.
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4.2 Baseline Results

Figure 5 displays event study estimates (equation (1)) using the ACLED conflict outcome. Panel
(a) presents estimates for wild animals. The parallel trends assumption holds, and the estimates are
positive and statistically significant, showing an average increase of 2.6 percentage points (corre-
sponding to 35% from the baseline risk) in the likelihood of conflict in cells suitable for wild animals
following the policy. The effect intensifies up to the fifth post-policy period and then diminishes.

Panel (b) presents estimates for wild trees. The parallel trends assumption holds, and the
estimates are positive and statistically significant. On average, the policy leads to a 3.54 percentage
points (corresponding to 46% from the baseline risk) increase in the likelihood of conflict in cells
suitable for wild trees, with the effect increasing monotonically over time. The lower standard errors
for the wild tree estimates may reflect greater accuracy in the spatial data on tree distribution.

Table 1 reports difference-in-differences estimates using ACLED, UCDP, and GTD conflict out-
comes, all consistent with the event study findings. Importantly, the UCDP estimates—capturing
large conflict events with a death threshold above 25—are also positive and statistically significant
(for animals: 1.29 percentage points and a 42% rise from the baseline conflict risk; for trees: 0.8
percentage points and a 27% rise from the baseline conflict risk). The GTD estimates, which also
capture events from the 1970s and 1980s, are similarly consistent, showing positive and statistically
significant effects (for animals: 1.5 percentage points and an 86% increase from the baseline conflict
risk; for trees: 1.4 percentage points and an 80% increase from the baseline conflict risk).

These estimates are consistent with, and fall between, those reported in other papers (Berman
et al., 2017; Eberle et al., 2020; McGuirk and Burke, 2020; McGuirk and Nunn, 2025) that use a
similar methodology with ACLED data to study changes in conflict likelihood following different

shocks.
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Figure 5: Wildlife Trade Restrictions and Conflict Likelihood
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Notes: The figure reports LPM estimates obtained using the staggered event-study imputation estimator proposed
by Borusyak et al. (2024). The pre-treatment coefficients are estimated by least squares, while the post-treatment
coeflicients are estimated using the imputation estimator. Each observation corresponds to a cell-year (1,430,970 for
wild animals and 1,435,230 for wild trees). Estimates are based on equation (1). The dependent variable is a binary
indicator for conflict incidence, equal to one if at least one conflict event occurs in a given cell and year, based on the
ACLED dataset. The main explanatory variable is an indicator for habitat cells of protected wildlife in post-policy
periods. The specification includes cell and country—year fixed effects. The omitted period is the year preceding the
policy announcement. The first and last coefficients are binned. The green horizontal lines indicate the mean of the
pre- and post-treatment coefficients. Error bars represent 95% confidence intervals, with standard errors spatially
clustered to allow for spatial and temporal correlation within a 500 km radius of each cell’s centroid.
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Table 1: Wildlife Trade Restrictions and Conflict Likelihood: Difference-in-Differences
Dep. Var.: Conflict (0/1)
Animals Trees

ACLED UCDP GTD ACLED UCDP GTD

(1) (2) (3) (4) () (6)
Habitat x Policy 0.027°*  0.013"*  0.015*** 0.035***  0.008** 0.014**

(0.007)  (0.005)  (0.004)  (0.004)  (0.003)  (0.002)
[0.003]  [0.001]  [0.001]  [0.002]  [0.001]  [0.001]

Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Observations 1,430,970 3,338,930 4,960,696 1,435,230 3,348,870 4,975,464
Dep. Var. Mean 0.076 0.030 0.017 0.076 0.030 0.017
Dep. Var. SD 0.265 0.171 0.131 0.265 0.171 0.131

Notes: The table reports LPM estimates using the Borusyak et al. (2024) imputation difference-in-differences esti-
mator. Each observation corresponds to a cell-year. The variable Habitat is an indicator measuring the suitability of
cell k£ for wildlife taxon w, and Policy indicates the timing of CITES trade restrictions imposed on wildlife taxon w
at time t. The dependent variable is a binary indicator for conflict incidence, equal to one if at least one conflict event
occurs in a given cell and year, based on the conflict datasets referenced in the column title. Coefficients are reported
with spatially clustered standard errors (in parentheses), which allow for spatial and temporal correlation within a
500 km radius of each cell’s centroid. Standard errors reported in square brackets are clustered at the country-year
and cell levels, allowing for within-country spatial correlation and infinite serial correlation within a cell. * significant
at 10%; "~ significant at 5%; ~ significant at 1%.

4.3 Sensitivity Analysis

In this subsection, I discuss sensitivity checks.

Exogeneity of Policy. Although the parallel trends assumption is satisfied, there may still
be concerns about potential endogeneity, specifically whether CITES responds to poaching crises
linked to conflict or targets conflict-affected regions. This is unlikely given how CITES operates.
While scientific recommendations inform CITES decisions, the final outcome is political and re-
quires a two-thirds majority vote among member countries. Frank and Wilcove (2019) show that
there are often long delays—averaging 10 years—in implementing trade bans on threatened species,
reflecting the slow and unpredictable nature of the political process. In addition, I perform a text
analysis of CITES protocols, which reveals no explicit mention of armed conflict or armed groups in
official meetings. Furthermore, Appendix Figure D.1 shows an anticipation test, where I shift the
policy year six periods earlier, yielding insignificant estimates. To further address concerns about
policy endogeneity, Appendix Figures D.2 and D.3 confirm that the estimates remain robust when
iteratively excluding different continental subregions, or random batches of 10% of the observations,

reducing concerns that CITES systematically targets conflict-prone regions.
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Measurement Error. A concern with using wildlife habitat classification as a proxy for treat-
ment exposure is measurement error. I implement two exercises to address this. First, Appendix
Table D.2 reports country-level, shift-share style estimates, using policy years as shifts and the total
number of habitat cells as a proxy for each country’s wildlife stock as shares. This aggregation
helps reduce the risk of local-level measurement errors. Second, Appendix Tables D.3 and D.4
report estimates using a 0.25° x 0.25° and 1° x 1° grid resolutions to test robustness to cell-size.

Potential Confounders. Due to the large spatial coverage of wildlife habitat, another con-
cern is that its distribution may overlap with other valuable resources—such as gold, minerals, or
crops—potentially confounding the estimates. To mitigate this concern, I exclude all cells geologi-
cally suitable for gold (Girard et al., 2022), as well as those that overlap with industrial mineral sites
(Berman et al., 2017).'* To further ensure that spatial confounders are not driving the estimates,
I divide the sample into above- and below-median groups based on urban areas, crop production,
human footprint, and population density, and replicate the ACLED estimates from Table 1 for each
subsample. Following Eberle et al. (2020), I also exclude all Sahel countries. Estimates are re-
ported in Appendix Table D.5. Although coefficient magnitudes vary, probably due to substantially
reduced sample sizes, the estimates remain robust across all specifications.

Different Control Groups. The global approach—mnecessary for external validity and to
capture a wide range of resources and policy shocks—raises concerns about the adequacy of the
control group. To mitigate this concern, I estimate a staggered event study specification using the
augmented synthetic control estimator from Ben-Michael et al. (2021), which constructs control
groups that perfectly match the pre-trends of treated units. Estimates are reported in Appendix
Figure D.4 and Appendix Table D.6. Furthermore, in Appendix Table D.7, I pool wild animals and
wild trees, defining treatment as CITES restrictions on either category. The estimates are consistent
with the main analysis, showing slightly larger coefficients.

Sensitivity to Spatial Clustering. Appendix Figure D.5 plots the baseline estimates using
different levels of spatial clustering, from 1° x 1° to 10° x 10° (110 x 110 km to 1,100 x 1,100 km
at the equator), showing that the statistical inference are insensitive to the choice of spatial cluster
size.

Alternative Conflict Outcomes. Conflicts are difficult to measure and are likely measured
with error (Berman et al., 2017). Thus, the common approach in the conflict literature is to estimate
a linear probability model with a binary conflict outcome (Bazzi and Blattman, 2014; Berman and
Couttenier, 2015; Berman et al., 2017; Ciccone, 2018; Eberle et al., 2020; McGuirk and Nunn, 2020).
Appendix Table D.8 reports estimates using the total number of conflict events and total number of
deaths (log(xz + 1)) in a given cell-year. Appendix Table D.9 reports estimates using conflict onset
instead of conflict incident.!? Appendix Table D.10 presents estimates using a binary indicator for

conflicts with above-median fatalities, yielding results consistent with the baseline analysis.

' Although the geological suitability map from Girard et al. (2022) is specific to gold, it covers approximately 43%
of African cells and likely captures other artisanal mining areas as well.

2Following Berman et al. (2017), I define conflict onset as the year of transition from peace to conflict in a given
cell.
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Alternative Estimators. Appendix Table D.11 shows estimates using the estimators from
Callaway and Sant’Anna (2021) and Sun and Abraham (2021), which are consistent with those
reported in Table 1.

5 Mechanism

This section examines the mechanism by which restrictions on wildlife trade increase conflict, draw-
ing on the commodity-conflict literature (Becker et al., 2006; Angrist and Kugler, 2008; Fearon, 2008;
Dube and Vargas, 2013; Bazzi and Blattman, 2014; Berman et al., 2017; Ciccone, 2018) emphasising
the role of windfalls in fuelling violence.

First, focusing on the harvesting of wild trees, I show that harvesting activity shifted from strong,
more compliant states to weak states, where most of the conflict effect originates. Second, given
evidence that the policy affects wildlife prices (Figure 4 and Appendix Figure A.6), I focus on the
ivory market, where I leverage supply shocks that left the legal status of elephant ivory unchanged
as a natural experiment to estimate the price effect of CITES policies on conflict. Additionally, I
aggregate the estimates by spatial and population exposure and compare them to the effect of the
industrial minerals shock studied by Berman et al. (2017). After establishing the conflict-windfall
nexus, I explore how armed groups’ fighting dynamics and winning likelihood have changed following
the policy.

The empirical analysis in this section focuses solely on the African sample, mainly due to better

temporal coverage provided by the ACLED dataset and for consistency across subsections.!

5.1 Evidence of Windfall Gains
5.1.1 Quantities

While CITES policy is global, countries vary in their capacity to enforce it. For example, Botswana
and South Africa have stronger enforcement capacity and are likely more effective at implementing
CITES bans on wildlife trade than the Central African Republic or the Democratic Republic of
Congo. Given stable demand, such heterogeneous enforcement can shift harvesting from high-
capacity to low-capacity states, generating windfalls in weaker ones. This matter is discussed by
Heid and Marquez-Ramos (2023). I refer to this as the harvesting-relocation windfall channel and

test whether it is associated with conflict. I focus on wild trees in Africa, for which I can estimate

13The main reasons for focusing on Africa are as follows. First, the ACLED dataset—the most detailed of the
three—provides the longest temporal coverage for Africa (starting in 1997, compared to 2010 for Asia and 2017 for
Latin America), which allows me to analyse the spatial dynamics of battles and the type of violence associated with
the windfall. Second, ACLED’s temporal coverage for Africa also enables me to exploit the natural experiments in
the ivory market in 1998 and 2007. Third, the analysis in Berman et al. (2017), which I use as a benchmark, is
also restricted to Africa. Fourth, for the wild tree analysis, constructing a global grid at the 0.1° x 0.1° resolution
is computationally too demanding (where such a fine grid is necessary to reduce measurement error regarding the
dominant species in a given cell). Fifth, splitting the global sample into high- and low-capacity states would place
almost all countries with precious trees in the low-capacity category, leaving too little variation for the analysis.
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harvested quantities at the taxon level using satellite data combined with habitat suitability.™
In particular, for the estimation, I construct a finer, 0.1° x 0.1° grid, which is necessary to reduce
measurement error regarding the dominant taxon in a given cell, and combine satellite deforestation
data from Hansen et al. (2013) with taxon-level habitat suitability.!® CITES is likely to target taxa
experiencing high harvesting pressure and therefore exhibiting different pre-trends. To address this,
I use a staggered event-study synthetic control estimator (Ben-Michael et al., 2021; Funke et al.,
2023), constructing the control group based on pre-treatment outcomes. Using this approach, I
estimate changes in deforestation at locations suitable for CITES-listed wild tree taxa following the
imposition of the trade restrictions. I use the Polity IV Combined Polity Score variable as a measure
of state capacity to divide the sample into countries with above- and below-median institutional
capacity.

I estimate the following synthetic control staggered event-study specification:

Yis = Z Br(Mp (k) X Do) tr) + M + Oct + €y (2)

Yy denotes the approximated log(xz + 1) harvested quantity in cell £ and year ¢. The term
By (Mk,w(k) Dw(k),t+r) captures the treatment effect in event time r. The index r represents the
relative time to when trade in wildlife taxon w(k) becomes restricted under CITES. The term w(k)
denotes the unique wildlife taxon suitable for cell k. D, () ¢+, is an indicator that equals one in years
t that are r periods before or after the restriction year for taxon w(k). My, ) is a time-invariant
indicator for the suitability of cell k for wildlife taxon w(k). The specification includes cell (A\g) and
country-year (d.¢) fixed effects, to control for time-invariant factors and time-varying country-level
shocks.

To assess whether the harvesting-relocation windfall is associated with an increase in conflict, I
re-estimate the conflict event-study specification for wild trees (akin to equation (1)), but splitting
the sample into countries with high and low state capacity.

Figure 6, panel (a), shows a decrease of about 9.7% in harvesting in strong states following
the policy, while panel (b) shows an increase of about 5.5% in weak states. On average, in the
African sample, the policy reduced harvesting by 0.5% (Appendix Table C.3), suggesting that most
conservation benefits were offset by increased harvesting in weak states.

In Figure 7, I replicate the event-study specification in equation (1) for a sample restricted to
Africa, splitting it into states with high and low institutional capacity. This shows that the policy—
conflict relationship is primarily driven by weak states, with an average increase of 3.3 percentage
points in conflict likelihood, compared to only 0.15 percentage points in strong states, which is
statistically insignificant (Appendix Table C.4).16 This suggests that differences in production elas-

ticity, driven by variation in enforcement capacity across states, underlie the windfall heterogeneity

MData on wild animal poaching are limited in spatial coverage and subject to selection and reporting biases.

5The finer grid is necessary to reduce measurement error in measuring the harvested taxon.

16 Appendix Table C.5 reports the difference-in-differences coefficient for the entire African sample, showing an
average increase of 5.3 percentage points in conflict likelihood.
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and are associated with the policy—conflict relationship.

Figure 6: Trade Restrictions and Harvesting of Wild Trees by State Capacity: Synthetic Control
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Notes: The figure displays staggered event-study synthetic control estimates (Ben-Michael et al., 2021) for harvesting of CITES
protected wild trees in African countries with above (a) and below (b) median state capacity. Each observation corresponds to
a cell-year, where cell size is 0.1° x 0.1°. The sample includes 523,016 (781,298) observations for the high- (low-) capacity state
sample, defined as above and below the median of the Polity IV Combined Polity Score variable. The dependent variable is
the log(z + 1) of harvested quantities of trees, based on remote sensing estimates (Hansen et al., 2013). The main explanatory
variable is an interaction between post-policy and habitat indicators, capturing the location and timing of taxa protected by
CITES. The specification includes cell and country—year fixed effects. Standard errors are computed using the wild bootstrap,
following the procedure for synthetic control estimators recommended by Ben-Michael et al. (2021).

Figure 7: Trade Restrictions on Wild Trees and Conflict by State Capacity
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Notes: The figure reports LPM estimates using the staggered event study imputation estimator suggested by Borusyak et al.
(2024). The pre-treatment coefficients are estimated using least squares, whereas the post-treatment coefficients are estimated
with the imputation estimator. The left (right) chart reports estimates for African countries with above- (below-) median state
capacity, based on the Polity IV Combined Polity Score. Each observation corresponds to a cell-year (131,663 for high-capacity
and 191,137 for low-capacity states). The estimates are based on equation (1). The dependent variable is a binary indicator
for conflict incidence, equal to one if at least one conflict event occurs in a given cell and year, based on the ACLED dataset.
The main explanatory variable is an indicator for habitat cells of protected wildlife in post-policy periods. The specifications
include cell and country—year fixed effects. The omitted period is the year preceding the policy announcement. The first and
last coefficients are binned. The green horizontal lines indicate the mean of the pre- and post-treatment coefficients. Error bars
represent 95% confidence intervals, with standard errors spatially clustered to allow for spatial and temporal correlation within
a 500 km radius of each cell’s centroid.
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5.1.2 Prices

The African elephant ivory market provides a suitable setting to estimate the effect of the policy on
conflict via prices. To estimate this effect I use two policy-driven supply shocks, which, importantly,
did not change the legal status of ivory. In 1998 and 2007, CITES approved organised sales of ivory
from South Africa, Botswana, Namibia, and Zimbabwe to China and Japan. The rationale behind
this policy was to suppress prices and reduce poaching incentives (Hsiang and Sekar, 2016; UNODC,
2016). I use the two shocks as instruments for ivory prices. I follow Dube and Vargas (2013) and
estimate a 2SLS specification to test whether policies affect conflict through prices.

Importantly, for the exclusion restriction to hold, the policy shocks—ivory sales—must affect
local conflicts across Africa only through their impact on prices, and not through any other channel.
To mitigate this concern, I exclude the four African countries that participated in the sales from
the sample.!” Given that all policy decisions were made by CITES and were outside the control of
the remaining African countries in the sample, the validity of this assumption appears plausible.

I estimate the following 2SLS specification:

My, x In(p) = v1(My, x Expang) + v2(My, + v3(Mineralsy) + Mg + et + Vi g (3)
Yie =B <Mk X 111(Pt)> + Bo(Mineralsy ;) + A + et + €xy (4)

FExpan; is an indicator variable for the expansionary policies in the ivory market at time ¢. 1
define the announcement year and the subsequent year as a treatment window to capture the policy
shock, and interact it with the indicator variable Mj, which equals one if cell k is designated as
elephant habitat.!® In(p;) denotes the price of elephant ivory. To mitigate concerns about other
confounders—such as geographic variation, domestic policies, or shocks to other commodities—the
specification includes cell and country-year fixed effects, as well as control for the industrial minerals
shock (Berman et al., 2017).

Table 2 reports the 2SLS estimates. Columns (1)—(3) of Panel A present aggregated estimates
for ACLED, UCDP, and GTD, respectively. The ACLED and UCDP coefficients show increases
in conflict likelihood of 1.7 and 1.3 percentage points, respectively, corresponding to 23% and 45%
relative to the baseline risk. The GTD coefficient is smaller: 0.5 percentage points, or 33% relative
to the baseline risk, and is less precisely estimated, but points in the same direction. Comparing
across—standardised—shocks, column (1) suggests that the mineral shock (Berman et al., 2017) has
a stronger effect on ACLED conflict events compared to the ivory shock (0.032 compared to 0.017).
In contrast, column (2) shows that the mineral shock has a weaker effect on UCDP large-scale
conflict events (0.002 compared to 0.014). Panel B reports the first-stage estimates, with associated

F-statistics that are above conventional thresholds for instrument strength. Panel C reports the

"Moreover, Appendix Table D.14 reports 2SLS estimates obtained by iteratively excluding each of Africa’s five
continental subregions.
81 code the shocks as follows: CITES 1% sale as 1998 and 1999; CITES 2"¢ sale as 2007 and 2008.
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reduced-form estimates, showing that expansionary policy shocks reduce conflict likelihood by 1.8
percentage points, and Panel D reports the corresponding OLS estimates. The 2SLS coefficients are
approximately 1.5 to 2.5 times larger than their corresponding OLS coefficients. This could be driven
by attenuation bias in OLS due to price endogeneity, for example, if some large producing locations
act as price makers. Finally, Panel E reports population-weighted least squares (WLS) estimates,
showing the average partial effect with each cell weighted by its population. The coefficients on the
ivory and industrial-mineral shocks are larger in magnitude than their OLS counterparts.

Table 2 columns (4)—(6) report estimates based on ACLED sub-categories. Columns (4)—(5) of
Panel A show that most of the ivory conflict effect is driven by one-sided violence, defined as events
where a recognised armed group attacks civilians or small unrecognised militias. In contrast, most
of the mineral shock effect is driven by battles between armed groups. Column (6) reports placebo
estimates testing the effect of the ivory shock on protests and riots; the coeflicients are statistically
insignificant. In summary, Table 2 provides evidence of a direct link between CITES supply-side
policies, induced price changes, and the likelihood of local conflict events.

Appendix Tables D.12, D.13, and D.14 present placebo exercises supporting the exogeneity
assumption of the policies with regard to ivory-related conflicts. Appendix Table D.15 reports
estimates using three alternative ivory price sequences. Appendix Table D.16 presents a sufficient-
statistics test in which both the policy vector and the price series are used to explain conflict

incidence, showing that the policy vector has no effect on conflicts once I control for prices.
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Table 2: Policies, Prices and Conflict in the Elephant Ivory Market: 2SLS
Dep. Var.: Conflict (0/1)

Aggregated ACLED Sub-Categories
ACLED UCDP GTD  One-Sided Violence Battles Protests/Riots
(1) (2) (3) (4) (5) (6)
Panel A: IV Estimates
Habitat x Price 0.017***  0.014*** 0.006* 0.008*** 0.004 0.002
(0.006) (0.005) (0.003) (0.004) (0.004) (0.003)
Mineral x Price 0.032*** 0.002 0.002 0.004** 0.007*** 0.035***
(0.007) (0.003) (0.002) (0.002) (0.002) (0.006)
Panel B: First Stage
Habitat x Ezxpansionary Shock —0.829*** —0.770*** —0.770*** —0.829*** —0.829*** —0.829***
(0.086) (0.084) (0.084) (0.086) (0.086) (0.086)
F-Stat 42,369 68,934 68,934 42,369 42,369 42,369
Panel C: Reduced Form
Habitat x Expansionary Shock —0.018"** —0.011*** —0.004** —0.004 —0.010*** —0.002
(0.006) (0.004) (0.002) (0.003) (0.003) (0.001)
Panel D: OLS
Habitat x Price 0.012%** 0.006** 0.003 0.005*** 0.007*** 0.001
(0.003)  (0.003)  (0.002) (0.002) (0.002) (0.002)
Mineral x Price 0.032*** 0.002 0.002 0.004** 0.007*** 0.035***
(0.007) (0.003) (0.002) (0.002) (0.002) (0.006)
Panel E: WLS
Habitat x Price 0.017*** 0.011** 0.004 0.011** 0.003 0.003
(0.006) (0.005) (0.002) (0.004) (0.004) (0.004)
Mineral x Price 0.041%** 0.001 0.003 0.007** 0.007*** 0.041***
(0.007) (0.003) (0.003) (0.002) (0.002) (0.007)
Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Dep. Var. Mean 0.076 0.030 0.017 0.032 0.033 0.023
Dep. Var. SD 0.265 0.171 0.131 0.161 0.173 0.151
Observations 305,312 836,992 836,992 276,256 276,256 276,256

Note: The table reports 2SLS estimates for African elephants. Each observation corresponds to a cell-year, and the sample is
restricted to Africa. Columns 1-3 report estimates for aggregated conflict variables, whereas columns 4-6 report disaggregated
categories, excluding state-related violence. Panel A reports the main 2SLS estimates, where the variable Habitat is an indicator
measuring the suitability of cell k for African elephants, and Price denotes the log price of ivory at time ¢. The estimates are based
on equations (3) and (4). The dependent variable is a binary indicator for conflict incidence, equal to one if at least one conflict
event occurs in a given cell-year, based on the conflict dataset mentioned in the title. Panel B reports the first-stage estimates, in
which policies explain the price shocks. Ezpansionary Shock is an indicator for policy-driven increases in ivory supply (1998, 1999,
2007, 2008). Panel C reports reduced-form estimates of the effects of these policies on the conflict indicator. Panel D presents OLS
estimates from regressing the conflict indicator on the interaction term Habitat x Price. Panel E presents population-weighted
least squares (WLS) estimates. Coefficients are reported with spatially clustered standard errors (in parentheses), which allow
for spatial and temporal correlation within a 500 km radius of each cell’s centroid. - significant at 10%; = significant at 5%; -
significant at 1%.
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Aggregation. Although the industrial minerals shock (Berman et al., 2017) has a larger
marginal effect on conflict than the ivory shock (0.0322 versus 0.0124 in the OLS specification),
the total conflict impact also depends on resource spatial distribution and population exposure.
Shocks to scarce, geographically concentrated resources affect fewer people and locations, whereas
widely distributed resources can be more devastating. Only 195 grid cells contain industrial minerals,
compared to 1,717 cells that are suitable for African elephants. For instance, based on the Berman
et al. (2017) industrial mining sample, Uganda has no industrial mining activity, yet approximately
15% of its land area is suitable for elephants. The broad spatial distribution of wildlife habitat and
its lower marginal effect on conflict, compared to the concentrated presence and greater marginal
impact of industrial minerals, may explain why wildlife-related shocks have been overlooked in the
literature.

To account for differences in spatial distribution, I use the OLS estimates reported in Table
2, Panel D, column (1), and multiply them by the number of grid cells that are suitable for or
contain each resource.!” Additionally, to account for population exposure, I use the population-
weighted least squares (WLS) estimates reported in Table 2, Panel E, column (1). I then multiply
the standardised coefficient estimates by the number of cells containing each resource, and by
the average population of the corresponding elephant or mineral grid cells to approximate total
population exposure.

Figure 8 displays aggregated conflict estimates for price shocks to ivory, industrial minerals,
and industrial gold. In the Affected Area panels, the y-axis represents the expected increase in the
number of grid cells with at least one conflict event following a one-standard-deviation increase in
the corresponding price index, computed by multiplying the OLS coefficient (Panel D, column (1))
by the number of cells suitable for or containing the resource. In the Affected Population panels, the
y-axis represents the expected increase in the number of people, measured in 100,000-person units,
living in conflict zones, following a one-standard-deviation increase in the price index, calculated by
multiplying the WLS coefficient (Panel E, column (1)) by the total population of the corresponding
resource cells. Although the marginal per-cell effects are larger for industrial minerals and industrial
gold, ivory is more damaging on an aggregate basis when weighted by affected area or population

exposure.

9The OLS coefficients in Panel D provide the most conservative estimates of the ivory shock.
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Figure 8: Aggregated Price-Conflict Estimates by Geographic and Population Exposure: Elephant Ivory,
Industrial Minerals, and Industrial Gold
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Notes. The figure shows conflict exposure to ivory, industrial minerals, and industrial gold price shocks using three
comparisons: marginal effect, total affected area, and affected population. Calculations are based on the standarised
coefficients reported in Table 2, Panel D, column (1) (OLS) for the marginal effect and affected area, and on Panel E,
column (1) (WLS) for the affected population. The left panel reports the per-cell marginal effect (change in conflict
probability), the middle panel shows the expected number of grid cells affected (marginal effect multiplied by the
number of resource cells), and the right panel reports the expected affected population, which is scaled in units of
100,000.

5.2 Windfall and Channels of Violence

This subsection examines how armed groups’ fighting dynamics have changed following the windfall
gains arising from CITES trade restrictions.

The literature (Blattman and Miguel, 2010; Bazzi and Blattman, 2014; Berman et al., 2017;
Jaimovich and Toledo, 2021) highlights several mechanisms through which windfall gains can fuel
conflict. First, such gains ease financing constraints for armed groups, making rebellion and attacks
more feasible (e.g., through mobilisation or arms purchases). Second, the increased returns from
capturing resource-rich areas incentivise territorial competition among armed actors. Third, wind-
falls exacerbate grievances and social instability by leaving certain segments of society relatively
disadvantaged. Fourth, by reshaping migration patterns and altering the size and composition of
local populations, windfalls can heighten ethnic tensions and trigger conflict.

This subsection presents two empirical tests. The first disentangles the feasibility and competi-
tion channels, while the second examines whether groups likely to benefit from the policy-induced
windfall capture more or less territory following CITES policies. Given the lack of anecdotal ev-
idence linking grievances or migration to wildlife trade or CITES policies, I focus solely on the

feasibility and competition channels.

5.2.1 Spatial Distribution of Battles

To assess whether competition or feasibility is the empirically dominant channel, I examine changes
in the spatial distribution of armed clashes. Specifically, I construct a distance measure capturing

how far from their pre-policy strongholds groups fight. If the competition channel is empirically
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stronger, following the policy, I would expect groups outside wildlife habitat (who likely did not
receive windfalls) to move toward resource-rich areas to contest rents; consequently, clashes should
concentrate nearer to the territories of windfall-exposed groups. Given that the outcome mea-
sures distance to each group’s own stronghold, this implies that, relative to their own pre-policy
pattern and to rivals, windfall groups would exhibit a smaller post-policy increase—or a relative
decrease—in fighting distance, appearing to fight closer to their strongholds. If the feasibility chan-
nel is empirically dominant, by contrast, I would expect the windfall-exposed groups (those with
pre-policy territory overlapping habitat) to expand outward and fight farther from their previous
battlegrounds following the policy.

To implement this test, I proceed as follows. First, I focus on the 2016 rosewood ban. Second, I
select well-recognised armed groups that fought in at least three distinct locations between the start
of the sample (1997) and 2013—three years before the 2016 trade ban on rosewood—and construct
a group-battle-location—year panel.?’ Third, for each armed group, I draw a convex hull around its
pre-policy conflict locations and compute the polygon’s centroid, which I treat as the group’s central
location.?! Fourth, using these pre-policy polygons, I classify groups as “rosewood” according to the
share of polygon area overlapping with rosewood habitat (Dalbergia and Pterocarpus). 1 label as
“rosewood” those in the upper half of the overlap distribution and the remainder as “non-rosewood”.
Fifth, I restrict the sample to 2014-2018—two years before and after the rosewood ban (2016).%2
Sixth, I define the outcome as the log distance between each conflict event and the group’s centroid,
computed as the geodesic distance in kilometres, and I estimate the effect of the interaction between
a post-policy indicator and the group’s rosewood classification indicator. A positive coefficient
suggests that rosewood groups, likely to benefit from the windfall expand outward and fight farther
away from their strongholds after the policy, implying that the feasibility channel is empirically
dominant. A negative coefficient suggests that rivals move toward windfall territories, fighting
closer to windfall groups’ strongholds, supporting the competition channel.

Figure 9 illustrates the logic of the empirical test by examining the fighting dynamics of the Anti-
Balaka group in the Central African Republic. Based on the overlapping-polygon classification, the
group is classified as a “rosewood” group likely to benefit from the rosewood windfall. The grey-
blue polygon marks the group’s territory, derived from battles between 1997 and 2013, and the
green dot indicates the centroid of that polygon. Purple dots represent the group’s battles locations
in 2014-2015—just before the CITES ban on rosewood in 2016—while red dots represent battle
locations in 2017-2018—just after the ban. On average, the purple dots (pre-policy battles) were
located 249 kilometres from the group’s centroid, while the red dots (post-policy battles) averaged
414 kilometres.

20At least three locations are required to construct a convex hull, which I use as a proxy for pre-policy territory.

21The centroid of a polygon is the area-weighted average position of all points inside it.

22This is necessary because I calculate groups’ territories using data from the pre-policy period up to three years
before each policy shock. This is also important to avoid any contamination from other shocks.
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Figure 9: Anti-Balaka Territory and Battles in the Central African Republic

Average Distance Pre—Policy (purple) is 249 km
Average Distance Post-Policy (red) is 414 km

Legend

O Group Polygon:

@® Polygon Centroid
® Post-2016 Battle
A Pre-2016 Battles

e e 300 km

Notes: The figure shows the spatial distribution of battles fought by the Anti-Balaka group, classified as a “rosewood” group, in
the Central African Republic, before and after the 2016 CITES ban on rosewood (Dalbergia and Pterocarpus). The grey-blue
polygon delineates the group’s fighting territory based on battles from 1997-2013, and the green dot marks its centroid. Purple
dots represent battles in 2014-2015, and red dots represent battles in 2016-2018 (after the ban).

To test whether the pattern observed in Figure 9 is anecdotal or systematic, I estimate the

following difference-in-differences specification:
Distancegp . = yPolicy; x RosewoodGroupg + 1y + A + 0ct + €90kt (5)

Distancegp .+ is the (log) kilometre distance between battle b, fought by group g in location k
at time ¢, and the group’s centroid, defined based on its pre-sample conflict locations. Policy, is a
post-policy indicator, and RosewoodGroup, is an indicator for whether the group’s polygon overlaps
with rosewood habitat and falls in the upper half of the distribution. The specification includes
group, cell, and country-year fixed effects to account for group- and location-specific heterogeneity,
as well as national-level shocks occurring in the same year. Standard errors are spatially clustered to
allow for spatial and temporal correlation within a radius of 500 kilometres of each battle location.?3

Table 3 reports the estimates. Rosewood-linked groups fought, on average, approximately 17%
farther away from their baseline locations in the post-policy period, relative to non-rosewood groups.
These findings suggest that the feasibility channel is empirically stronger: rosewood-heavy armed
groups, likely to benefit from the windfall, appear to have used it to expand their territorial reach.

Appendix Figure C.1 presents event-study estimates showing parallel pre-trends.

23] also experiment with clustering standard errors at the country—year and group level.
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Table 3: Rosewood Ban and Armed Groups’ Battle Distance

Dep. Var.: log(Distancegp k)
(1) (2) 3)
RosewoodGroup x Policy 0.168*** 0.144*** 0.167**

(0.037)  (0.052)  (0.068)
[0.033]  [0.050]  [0.066]

Group FE Y Y Y
Location FE N Y Y
Country-Year FE N N Y
Observations 8,429 8,429 8,429
Dep. Var. Mean 5.718 5.718 5.718
Dep. Var. SD 0.756 0.756 0.756

Notes: The table reports OLS estimates. Each observation corre-
sponds to a group—battle-location—year. The sample is restricted
to African countries over 2014-2018 and to events in which at least
one side is an armed group that had fought three or more battles by
2013. The dependent variable is the log distance between group bat-
tles and their pre-sample calculated strongholds. RosewoodGroup
is an indicator for whether a group’s pre-sample territory overlaps
(above the sample median) with the rosewood habitat. Policy is
an indicator for the post-CITES rosewood ban period (2016 and
onward). Locations are assigned based on a 0.5° x 0.5° grid. Co-
efficients are reported with spatially clustered standard errors (in
parentheses), allowing for spatial and temporal correlation within
a 500 km radius of each cell’s centroid. Standard errors in square
brackets are two-way clustered by country—year and group, allowing
for within-country spatial correlation and serial correlation within
groups. ~ significant at 10%; * significant at 5%; "~ significant at

1%.

5.2.2 Wildlife Windfall and Territorial Change

This subsection focuses on the 2016 rosewood and provides suggestive evidence on whether armed
groups trading rosewood are more likely to win battles following the rosewood trade ban. For
clashes between armed groups against the government, ACLED records which actor gains territory.
I use this information to construct a win-loss indicator for each battle and use this as an outcome
variable. I construct a group—battle-location—year panel, using battles of non-rosewood groups as a
control group. I interact a “rosewood group” indicator with a “post-policy” indicator, and restrict the
sample to the two years before and after the policy (2014-2018). I view this analysis as suggestive,
as following the policy, groups or the government might strategically engage in battles, confounding
causal inference.

I estimate the following specification:
Wingp i+ = yPolicy, x RosewoodGroupg + ng + A\ + Oct + €gb kot (6)

Wingpr+ is an indicator variable for whether group g, fought battle b in location k at time
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t, gained territory. Policy; is a post-policy indicator, and RosewoodGroupy is an indicator for
whether the group’s polygon overlaps with the rosewood habitat and falls in the upper half of the
distribution. The specification includes group, cell, and country-year fixed effects to absorb group-
and location-specific heterogeneity and contemporaneous national-level shocks. Standard errors are
two-way clustered at the group and country-year levels or at a spatial radius of 500 kilometres of
each battle location.

Table 4 reports the estimates, showing that rosewood-linked armed groups are more likely to
gain territory following the rosewood trade ban, with the probability of gaining territory increasing

by 41 percentage points.

Table 4: Rosewood Ban and Winning Likelihood
Dep. Var.: Wingp +(0/1)

(1) (2) (3)
RosewoodGroup x Policy 0.259** 0.459*** (0.416***

(0.132) (0.087) (0.074)
0.124]  [0.091]  [0.059]

Group FE Y Y Y
Location FE N Y Y
Country-Year FE N N Y
Observations 6,468 6,468 6,468
Dep. Var. Mean 0.4499 0.4499  0.4499
Dep. Var. SD 0.4975 0.4975  0.4975

Notes: The table reports LPM estimates obtained using OLS.
Each observation corresponds to a group—battle—location—year.
The sample is restricted to African countries over 2014-
2018 and includes only clashes between well-recognised armed
groups with government forces. The dependent variable is a
dummy equal to one if the group gains territory in a given
battle, serving as a proxy for victory. RosewoodGroup is an
indicator for whether a group’s pre-sample territory overlaps
(above the sample median) with rosewood (Dalbergia and Pte-
rocarpus) habitat. Policy is an indicator for the post-CITES
rosewood ban period (2016 and onwards). Locations are as-
signed based on a 0.5° x 0.5° grid. Coefficients are reported
with spatially clustered standard errors (in parentheses), al-
lowing for spatial and temporal correlation within a 500 km
radius of each cell’s centroid. Standard errors in square brack-
ets are two-way clustered by country—year and group, allow-
ing for within-country spatial correlation and serial correlation
within groups. * significant at 10%; * significant at 5%; *
significant at 1%.

6 Model

In this section, I develop a social planner model motivated by the empirical patterns in the market

for wild trees. The model serves two main purposes. First, it provides a theoretical framework
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that rationalises the observed empirical findings and clarifies the underlying mechanism. Second, I
use the model to evaluate alternative policies and suggest an approach that mitigates the conflict
externality while still protecting the environmental resource.

In constructing the model, I am guided by the following empirical findings: the policy interven-
tion raised wildlife prices, increased the likelihood of conflict (an effect driven almost entirely by
weak states), reduced overall harvesting of the wild trees, and led to a divergence in outcomes across
state capacity—harvesting fell in strong states but rose in weak ones. In addition, following EIA
(2017) and BBC News (2023), I assume that the modus operandi of armed groups involves issuing
logging concessions and levying protection fees proportional to logging revenues. Appendix Section

E provide the full derivation of the model.

6.1 Model Setup

Consider an international economy comprising multiple countries engaged in the extraction and
trade of a valuable environmental resource (e.g., precious wild trees). Each country hosts a rep-
resentative profit-maximising harvesting firm that operates under diminishing returns and faces a
global price. Countries differ along two key dimensions: their resource endowment and their insti-
tutional capacity. There are N countries, of which IV, are weak and N, are strong. Let F; denote
a pre-determined production factor proportional to the stock of wild trees in country ¢, and let
s; € {0,1} indicate whether the state has strong (s; = 1) or weak (s; = 0) institutional capacity.?*
The international price of the resource is denoted p, and firms take this price as given.

In each country, a representative harvesting firm chooses its harvesting level h; > 0 to maximise
profits, subject to two types of frictions. First, in weak states only, local armed groups loot a fraction
t; € [0,1] of firm revenue. Second, an international environmental organisation (the policymaker),
which aims to protect biodiversity, can impose a global trade ban (7 = 1) on endangered species. Due
to institutional capacity, the ban is enforced solely in strong states and imposes on the harvesting
firm a regulatory cost per unit harvested that exceeds the post-ban price (6 > p(7)). These frictions
generate asymmetric responses to policy across countries. In weak states, looting dilutes revenue
but does not prevent harvesting, whereas in strong states, enforcement is effective and binding under
a ban.

The demand side is captured by a downward-sloping world inverse demand curve for the resource
p(Q) = a — bQ, where @Q is the total global quantity and a,b > 0. Firms are small relative to the
global market and internalise only their private costs and local constraints. Hence, total harvested
quantity and market price depend on the trade policy regime 7 € {0,1}, where 7 = 1 denotes the

global trade ban imposed by the international policymaker.

6.1.1 Harvesting Sector

The representative harvesting firm chooses quantity h; > 0 to maximise:

24F; can be interpreted as a factor reflecting the stock of wild trees, where a higher stock implies a lower search
cost in country <.
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2

Hl‘ = p(T) hi(l—ti) — 2h}i?' — Tsighi. (7)

Equilibrium. Under high enforcement in strong states (f > p(7)) and an interior solution in

weak states, optimal harvesting follows:

Fip(O)(l—ti), ifTZO, S; :0,

F; p(0), if 7=0, s; =1 (since t; = 0),
hi(si,7) = (8)
Fip(].)(]_—ti), if 7= 1, S; :07

0, if r=1, s; =1 (since § > p(1)).

In weak states, the loot decreases harvesting, whereas following the ban, due to enforcement, har-

vesting in strong states comes to a halt. Accordingly, profits at the optimum follow:

s Fip(0)2(1—t;)?, ifT7=0, s, =0,

1 Fp(0)?, ifr=0, s; =1,
I (si,7) = { 9)
SEp()2(1—¢)% ifr=1, s =0,

0, ifr=1, s; =1.

\

Aggregation. Let F,, and F, denote average production factors proportional to forest stocks in
weak and strong states. For weak states, set t; = t, since optimal loot is independent of local stock

(as shown later). The effective supply coefficients for before and after the ban are:

Sy = (1—t)Ny Fyy + NgF, S = (1—t) Ny Fy. (10)

With linear inverse demand p(Q) = a — bQ and Q(7) = S;p(7), market clearing yields regime-

specific prices and quantities:

a Sy
1+bS;"’

a

m: Q(t) = Sr € {50, 51} (11)

p(r) =

6.1.2 Armed Sector

Armed Groups Revenue. In each weak state (s; = 0) an armed group extracts a share ¢; € [0, 1]
of the representative harvesting firm’s revenue, taking the world price p(7) as given. Following the

firm’s optimal production, armed groups choose the loot rate to maximise:

Rji(t) = tip(T) hi(t:) = Fip(r)*t:;(1 —t,). (12)
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This yields t* = %, a global optimum independent of local stocks. Substituting this back provides

the following optimal revenue expression:
2
Ry, = BPTS pf) . (13)

Violence. Additionally, in each weak state, there is an outside faction (—j) that does not loot
the harvesting firm and is challenged by the group that loots the harvesting firm (j). j group
decision to attack is based on subjective winning expectation, which is a function of group j’s
amount of resources relative to its subjective assessment of group —j’s resources.

Specifically, the armed groups competition and hence the conflict probability is modelled as
follows: let m;(7) € [0,1] denote the conflict probability in weak state ¢ under policy 7 € {0,1}.
I model group j competing against a rival group —j, whose baseline resources are fixed at R_j;
but whose realised resources are subject to a multiplicative lognormal shock, capturing uncertainty

about the rival’s true strength:

R_ji = R jiZ_ji, InZ_j~N(0,0d2),

The violence production function with exponent § > 0, capturing the violence elasticity, is given
by:

(R, (1)’
(R:()° + (R—jiZ_ji)"

(1) =

Under the lognormal distribution, the expectation is ]E[Z‘S | = exp (%5202). Taking expecta-

tions with respect to Z_j; and constructing a unit-free violence measure by normalising using the

baseline values, I obtain:
(o m;(0) p(7)° _ (P
) = o) e 0= (@) ““

Aggregation. Let V;(7) denote observed intensity (e.g., affected resource cells), with a scaling
factor A; > 0, then:

o Vi(r) _ ml(r) _ p(r)’
i) = imlm) R = 0 T T m0) w0

(15)

Using sample averages (same 7;(0) = 7(0) and A; = A), aggregates are N,, multiples; the scaling

by A cancels in ratios.

6.1.3 International Environmental Organisation

Objective. An international environmental organisation chooses 7 € {0, 1} (free trade versus ban)

to protect biodiversity while internalising conflict externalities. Under symmetry across weak states,
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the policymaker minimises the following loss function:

W(r) = ANQ(7)" + (1= AN Nyn(r)-A, A€ (0,1), >0, (16)

Q1) = sz\il h¥(7) is the total harvest of the scarce environmental resource, 7 captures biodiver-
sity tipping points and irreversibility of ecological damage, and 7 (7) is the per-weak-state average
conflict probability.? The biodiversity loss is scaled by N, while conflict occurs in weak states only
and therefore is scaled by N,,. A ban reduces the total harvest Q(1) < Q(0) but raises conflict in
weak states 7(1) > m(0).

Decision Rule. A ban is preferred if it minimises the international policymaker objective
function W (1) < W(0), which yields the following threshold rule:

Ny AV

\> NagriNay = (17)

AV and AQ" represent the changes in conflict and harvesting due to the ban. This is the policy
threshold where a ban is optimal if A\, the planner’s relative weight on environmental damage, is
larger than \*.

Unit Free Rule. To avoid any misspecifications or scaling issues, such as measurements of
stock, quantities, and price per unit, I normalise the expression inputs using their baseline levels,

where ¢, = ggg;, Uy = %, and gy = vg = 1. To ensure that the baseline ecological and conflict

losses are expressed in the same units, I set the conversion factor A = Q(0)7/7(0), so that Ax(0) =

Q(0)7. This normalisation makes the constants cancel and yields the compact unit-free rule below:

Nw ('Ul — 1)
N (1—g]) + Ny (v1 = 1)

Generalisability to Functional Forms. The policymaker decision rule depends only on the

A=

(18)

direction of the price and quantity responses to a supply contraction and on a monotone mapping
from prices to conflict. Expressed in unit-free ratios (g1, v1), the policymaker threshold A* and
its comparative statics are functional-form invariant under standard assumptions: (i) a downward-
sloping demand curve, (ii) higher prices increasing lootable revenues, and (iii) higher revenues
increasing conflict. The linear inverse demand and the conflict production function used in the
baseline deliver closed-form magnitudes and facilitate parameter identification (a,b,d); replacing
them with constant-elasticity, CES, logistic, or threshold functions preserves all qualitative results,
altering only calibration and curvature. Hence, the core comparative statics, that a trade ban raises
prices, shifts production toward weak states, amplifies conflict, and that the optimality threshold

A* rises with the magnitude of the conflict response, are robust to functional form.

25 A higher 1, which is associated with a more convex function, implies that ecological damage is less reversible.
In practice, this could depend on wildlife reproduction rates.
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6.2 Model Estimation

This section discusses the procedure used to recover the model’s parameters and to conduct the
welfare simulation under different policy scenario, for which I restrict the sample to Africa and
focus on the case of rosewood as a source of data input to the model.

Observables. [ take as given the sample structure, the number of strong and weak states,
the average resource stocks for weak and strong states, the (normalised) two-regime prices (before
and after the ban), and the loot share derived from the model. I also use the baseline conflict
probability in weak states (Appendix Table A.6), and the estimated excess probability due to the
ban on rosewood in Africa (Appendix Table E.4).

Recovering Model Parameters. Using this, I construct a system of equations for the pre-
and post-ban periods, recovering the demand parameters (a and b) and the armed groups’ revenue-
violence elasticity 6. Appendix Section E provides the full derivation details, and Appendix Ta-
ble E.1 summarises the recovered parameters together with the other model components required
for estimation.

Recovering the Policymaker’s Normative Weight A\*. Using the threshold equation (equa-
tion (17)) and the data inputs from Appendix Table E.1, I recover the policy threshold, defined as

the value of the normative parameter A above which a ban becomes optimal.

0.69, 1= 0.5,

. 0.54, 5= 1.0,
A(n) =

0.46, 5= 1.5,

0.40, 1= 2.0.

A higher \* suggests that a ban is less likely to be optimal. Hence, a larger n, the biodiver-
sity tipping points parameter, which implies that current ecological destruction is less likely to be

reversed, is associated with lower thresholds.

6.2.1 Comparative Statics

Figure 10 illustrates the model’s main comparative statics following the implementation of a trade
ban. Panel (a) shows that harvesting per weak state increases as the number of strong states
increases—reflecting reduced competition among remaining active states. Panels (b) and (¢) demon-
strate how this increase in harvesting translates into higher revenues for both firms and armed
groups. Panel (d) shows that, due to elevated looting revenues, an increase in the number of strong
states leads to greater conflict likelihood in the remaining weak states. Together, this analysis
underscores the model’s core mechanism: a trade-off between biodiversity protection and armed
conflict, consistent with the empirical patterns documented in the analysis.

Furthermore, this sheds light on counterfactual scenarios where either almost all states are strong
or the spatial distribution of wild trees is more concentrated in strong states, both of which produce

similar dynamics of higher conflict likelihood in the remaining weak states.
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Figure 10: Comparative Statics Under a Ban: Harvesting, Profits, Looted Revenue, and Conflict
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Notes: The figure presents comparative statics showing how harvests, profits, looted revenues, and conflict
likelihood in a given weak state change as the share of strong states (INs) in the sample under a trade ban regime.

Policymaker Decision Rule. Using the values in Appendix Table E.1, Figure 11 shows the
policymaker policy threshold rule as a function of the number of weak states (N,,). As N,, increases,
the policymaker faces two opposing effects. On one hand, biodiversity gains from imposing a trade
ban diminish, since harvesting in strong states is fully eliminated under the ban, and a larger N,
means more baseline harvesting already occurs in weak states where enforcement is absent. This
reduces the marginal impact of the ban on total harvesting, and thus the biodiversity benefit.
On the other hand, as NV, increases, conflict likelihood per weak state falls under the ban, as
equilibrium prices are lower conditional on a ban (when weaker states remain active). However,
at the extensive margin, a larger number of weak states may increase total violence (N, (v1 — 1)).
Given the parameter values, the rise in aggregate conflict outweighs the ecological benefits of a ban,
pushing the threshold \* upward and reducing the likelihood that a ban is optimal. When 7 is low,

biodiversity losses are less convex, so the conflict term dominates more quickly.
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Figure 11: Policymaker Decision Rule and Weak States (A\* vs N,, (for different 7))
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Notes: The figure shows how the optimal policymaker threshold value \*, above which a trade ban is optimal,
varies with the number of weak states (IV,,) (for fixed N) across different values of the ecological damage function 7.

Demand Elasticity, Decision Rule and Conflict. When discussing the mechanism linking
illicit actors’ empowerment to trade restrictions, Becker et al. (2006) emphasises the role of the price
elasticity of demand. They argue that trade restrictions on products with more inelastic demand are
more likely to empower drug cartels and fuel violence, since a reduction in supply leads to a larger
increase in prices, thereby attracting more resources to the illicit sector. Wildlife-related products
are likely to differ in their degree of demand elasticity. For instance, ivory, rosewood, and ebony
are considered to have relatively inelastic price elasticities of demand (Barbier and Swanson, 1990;
Zhu, 2022; Ding and Yin, 2024). In contrast, hippo ivory and certain tree taxa used for industrial
purposes are likely to have more elastic demand (Groves and Rutherford, 2023).

Figure 12 presents comparative statics of the conflict externality with respect to changes in
demand elasticity. In the model, conflict is fuelled by looting revenues, which depend on the
dispersion between pre- and post-ban prices. A more inelastic demand leads to a greater price
dispersion, implying that trade bans on products with inelastic demand are more likely to increase

conflicts.
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Figure 12: Policymaker Decision Rule and Demand Elasticity (A\* vs b (for different 7))
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Notes: The figure shows how the optimal policymaker threshold value \*, above which a trade ban is optimal,
varies with the inverse demand elasticity parameter (b) across different values of the ecological damage function 7.

Revenue Decomposition. Furthermore, the revenue—conflict mechanism in the model is
driven by two sources. Following the trade ban, the contraction in supply—due to enforcement
in strong states—increases prices, but it also raises the quantities harvested by firms operating in
those states. Appendix Section E.2.4 decomposes these two sources and shows that, given the val-
ues used in the calibration, the increase in price accounts for approximately 78 per cent of the rise
in revenue—and hence of the loot available to armed groups—while the remaining 22 per cent is

attributable to higher harvested quantities.

6.2.2 Simulations of Different Policies

Figure 13 displays loss simulations under different policies. Each panel corresponds to a different
value of 7, representing different dynamics for ecological damage. The x-axis represents the poli-
cymaker’s relative preference for biodiversity (\)—where higher values indicate greater weight on
biodiversity protection. The y-axis shows the standardised policymaker’s loss relative to the op-
timal targeted policy for a given A and 7, which is obtained through numerical optimisation that
minimises the loss based on country-level state capacity and rosewood stock.

Beyond the optimal policy (the purple line), which serves as a benchmark but is assumed to be
politically infeasible, I examine three alternative scenarios. First, I compute welfare under a uniform
ban regime (red line), akin to the current policy. I then consider two targeted policies: one that
restricts trade only in strong states with above-median rosewood stock (green line), and another that
targets strong states with below-median stock (blue line). The rationale is that restricting trade in
countries with small rosewood stock generates less conflict, since the resulting supply reduction—
and thus the post-ban price increase—is smaller. This, in turn, lowers lootable revenue while still
preserving rosewood from complete extinction.

Figure 13, Panel (a), shows that for n = 0.5, the current uniform ban results in the largest loss.

41



As the policymaker’s weight on biodiversity (\) increases, however, the loss under the uniform ban
declines relative to the optimal policy. Panel (b) presents the linear case (n = 1), with a similar
ranking. Importantly, the targeted policy that restricts trade only in strong states with low rosewood
stock (blue line) performs nearly as good as the optimal policy (purple line). Panel (c) reports
results for n = 1.5, reflecting stronger biodiversity tipping points. It shows that the targeted policy
restricting trade only in strong states with above-median rosewood stock (green line) is consistently
superior to the uniform ban and nearly as effective as the optimal policy.

The policymaker’s loss simulations yield several policy insights. First, for a policymaker con-
cerned with conflict and managing a resource with moderate biodiversity tipping points (e.g., high
reproduction rate), a targeted policy that restricts trade in strong states with low stocks of the
resource—where enforcement is effective and the price response muted—is nearly as effective as the
optimal policy and clearly superior to the uniform ban.?S Second, when biodiversity tipping points
are stronger (i.e. 7 > 1), and ecological damage is less likely to be reversible, a targeted policy focus-
ing on strong states with above-median forest stock performs nearly as good as the optimal policy,
but may underperform relative to the uniform ban when ecological damage is extreme and A—the

normative weight—is high. Appendix Table E.3 summarises the policy rankings across scenarios.

Figure 13: Simulations of policymaker Losses under Alternative Policies
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Notes: Each panel shows standardised welfare losses relative to the optimal benchmark (y-axis), computed as the
percentage difference (WP — WoPY) /I/°Pt » 100, plotted against the planner’s environmental preference
parameter A (x-axis). Four different policy scenarios are displayed in each panel: uniform ban (red), a targeted ban
applied only to strong states with low rosewood stock (blue), a targeted ban applied to strong states with high
rosewood stock (green), and the optimal policy obtained through numerical optimisation based on state capacity
and rosewood stock (purple). The different panels correspond to simulations under varying biodiversity tipping
point parameters (7).

7 Conclusion

In 1973, under the leadership of the United States and the United Kingdom, governments around

the world came together to increase global cooperation in protecting biodiversity and established

26Different species are likely to exhibit different tipping points, as these depend on recovery capacity.

42



CITES, an international convention regulating wildlife trade. Since then, more and more countries
have joined the Convention, which today has 184 signatories, and an increasing number of trade
restrictions on wildlife have been imposed (Brondizio et al., 2019). Concurrently, mounting scientific
evidence has shown that we are experiencing, for the first time, a human-induced mass extinction of
species (Ceballos et al., 2015). While the urgency of protecting biodiversity continues to grow and
restrictive conservation policies are being adopted widely (Waldron, 2020), little is known about the
harmful externalities associated with many of these policies. For instance, they can alter market
structures and incentives, potentially leading to unintended consequences.

This paper is the first to document the conflict effects—a negative and harmful externality—of
a widely adopted global biodiversity protection mechanism. The paper shows that the policy fuels
local conflict and violence, likely by making such activities financially feasible. Moreover, the study
reveals several dimensions of heterogeneity that policymakers could exploit to mitigate these harmful
externalities and suggests a concrete mitigation strategy using targeted bans.

The study’s findings have several policy implications. First, they highlight a potential trade-off
between conservation-motivated trade restrictions and armed conflict. Second, the analysis shows
that variation in state capacity influences the conflict externality, a factor that policymakers can
explicitly take into account when aiming to mitigate unintended costs. Third, the findings are
important for peacebuilding efforts by uncovering a new source of variation—wildlife habitat—that
explains armed conflict. Fourth, the quantitative model suggests that targeted bans in strong states
with small stocks of wild trees can mitigate the policy’s conflict externality and outperform the
current uniform ban approach across a wide range of model parameters. In addition, the model also
shows that policymakers should account for both demand elasticity and species reproduction rates
when determining which species to ban from trade.

Importantly, this does not mean that CITES policies are inherently harmful; rather, it highlights
the need to evaluate them through a cost-benefit lens, taking their externalities into account. The
conflict externality documented in the paper is one example of the potential costs that need to be
considered, particularly in light of growing evidence of environmental degradation and the urgent
need to allocate resources effectively for conservation. Ultimately, any restriction-based conservation
policy has the potential to generate some form of negative externalities, underscoring the importance

of future research that assesses both the costs and benefits of environmental protection efforts.
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A Descriptive Statistics

This section reports descriptive statistics related to the main estimates of the paper. Figures A.1
and A.2 show, respectively, the evolution of CITES membership over time and its current global
coverage. Figure A.3 illustrates the supply chains of elephant ivory and rhino horn. Table A.2
presents policy dates and the level of imposed restrictions, and Tables A.5 and A.6 provide summary
statistics. Figures A.4 and A.5 display the spatial distributions of conflict based on the UCDP and
GTD datasets.

Figure A.6 presents event study estimates for animals (left) and trees (right). To estimate
the statistical association between the policy and wildlife prices, I construct a wildlife-year panel
and estimate an event study specification, using prices as the outcome and policy indicators as

2T Wildlife consumption is often considered a luxury and therefore viewed

explanatory variables.
as a substitute for other luxury goods (Kremer and Morcom, 2000; Hsiang and Sekar, 2016; Do
et al., 2021; Zhu, 2020; Ding and Yin, 2024). Accordingly, I use precious metals as a control group
for wildlife products. For endangered trees, I use the World Bank hardwood timber price indices
for Cameroon and Indonesia as a control group, since these species share similar attributes and
origins with rosewood and ebony. Given the staggered timing of the policy, I apply the imputation
estimator proposed by Borusyak et al. (2024).28

I estimate the following specification:

_92 AT
(puws) = Y BeDuwpiz+ > ViDuwitj + 0w+ M + €ws (19)
z=I'~ j=0

In(py +) is the log-transformed and standardised price of wildlife/resource w in year t, Dy, 1+, and
D, ++j indicate the timing of the policy relative to treatment, and d,, and \; represent wildlife/resource
and year fixed effects, respectively. To mitigate concerns about serial correlation, standard errors
are clustered at the category level.

Appendix Table C.2 reports the difference-in-differences estimates, showing that the effect of the
policy on wildlife prices is positive, statistically significant, and is about 1.117 and 1.03 standard

deviations for wild animals and wild trees, respectively.

2TThe six wildlife products included in the analysis are: elephant ivory, rhino horn, crocodile skin, Dalbergia,
Pterocarpus, and Diospyros.

28The World Bank publishes price indices for Cameroon and Indonesia to serve as representative measures of
tropical hardwood prices.
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CITES Membership

Figure A.1: CITES Membership Over Time
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Notes: The figure shows the number of countries where CITES entered into force each year.

Figure A.2: Global Distribution of CITES Member States

Notes: The figure shows the spatial distribution of CITES member states as of 2020.
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Supply Chain of Elephant Ivory and Rhino Horn

Figure A.3: The Supply Chain of Ivory and Rhino Horn

[Source Region (Africa)]
[ Poachers ]—>[ Local Brokers ]—>[Sub—National Dealers]
Ivory $93 Ivory $125 Ivory $236
Horn  $4300 Horn $5900 Horn 39600

/[Destz’nati(m Region (China)]
- : P Retailers /
[Forelgn—Natlonal EXpor‘cers]—)[Destmatlon Wholesale High-Value Carvings
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Notes: The figure illustrates the supply chains of elephant ivory and rhino horn, from poachers in source countries to final
retailers in destination markets. Estimated prices are per kilogram, based on UNODC (2020).
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Policy Timeline

Table A.1: Policy Timeline

Date Announce Date Enforce  Appendix

Wild Trees

Luxury

Swietenia Humilis 1975 1975 II
Pericopsis Elata 1991 1991 11
Dalbergia Nigra 1991 1991 I
Swietenia Mahag- 1992 1992 II
oni

Prunus 1994 1994 II
Swietenia Macro 1995 1995 I
Agarwood 2004 2004 II
Aniba 2009 2009 11
Diospyros 2013 2013 II
Pterocarpus 2016 2016 II
Dalbergia 2016 2016 11
Industrial

Abies 1975 1975 11
Araucaria 1975 1975 11
Fitzroya 1975 1975 II
Pilgerodendron 1975 1975 II
Podocarpus P. 1975 1975 11
Podocarpus N. 1975 1975 11
Guaiacum 2002 2002 11
Gonystylus 2004 2004 11
Taxus 2004 2004 11
Gonopterodendron 2010 2010 II
Fraxinus 2014 2014 11
Cedrela 2019 2019 11
Handroanthus 2022 2022 11
Wild Animals

Crocodile 1975 1975 I
Asian Elephants 1977 1977 I
African Elephants 1977 1977 II
Rhino 1977 1977 I
African Elephants 1989 1990 I
Hippo 1994 1994 I
African Elephants 1998 1999 Stock Release
Pangolin (Manis) 1999 1999 I
Abalone 2006 2006 111
African Elephants 2007 2008 Stock Release
African Elephants 2017 2018 China Ban

Notes: The table reports the dates and levels of trade restrictions imposed on species included in the sample.
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Table A.2: Policy Timeline

Date Announce Date Enforce Appendix

Wild Trees

Luxury

Swietenia Humilis 1975 1975 I
Pericopsis Elata 1991 1991 11
Dalbergia Nigra 1991 1991 I
Swietenia Mahag- 1992 1992 11
oni

Prunus 1994 1994 II
Swietenia Macro 1995 1995 11
Agarwood 2004 2004 II
Aniba 2009 2009 11
Diospyros 2013 2013 II
Pterocarpus 2016 2016 II
Dalbergia 2016 2016 II
Industrial

Abies 1975 1975 11
Araucaria 1975 1975 I
Fitzroya 1975 1975 II
Pilgerodendron 1975 1975 11
Podocarpus P. 1975 1975 11
Podocarpus N. 1975 1975 11
Guaiacum 2002 2002 11
Gonystylus 2004 2004 I
Taxus 2004 2004 1I
Gonopterodendron 2010 2010 11
Fraxinus 2014 2014 11
Cedrela 2019 2019 11
Handroanthus 2022 2022 11

Notes: The table reports the dates and levels of trade restrictions imposed on species included in the sample.
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Table A.3: Policy Timeline (Chronologically Ordered)

Date Announce Date Enforce Appendix

Luxury Trees

Swietenia Humilis 1976 1976 11
Pericopsis Elata 1992 1992 11
Dalbergia Nigra 1992 1992 I
Swietenia Mahagoni 1992 1992 11
Prunus 1995 1995 II
Swietenia Macro 1995 1995 II
Agarwood 2004 2004 II
Aniba 2010 2010 11
Diospyros 2013 2013 II
Pterocarpus 2016 2016 11
Dalbergia 2016 2016 II
Industrial Trees

Abies 1976 1976 11
Araucaria 1976 1976 11
Fitzroya 1976 1976 II
Pilgerodendron 1976 1976 11
Podocarpus P. 1976 1976 11
Podocarpus N. 1976 1976 11
Guaiacum 2001 2001 11
Gonystylus 2004 2004 11
Taxus 2004 2004 11
Gonopterodendron 2010 2010 11
Fraxinus 2013 2013 II
Cedrela 2019 2019 11
Handroanthus 2022 2022 11

Notes: Table sorted by Date Enforce. Luxury and Industrial groups preserved.
Summary Statistics

Table A.4: Conflict Correlogram
ACLED | UCDP | GTD
ACLED 1 0.314*** | 0.259***
UCDP 1 0.421%**
GTD 1

Notes: Entries show pairwise Pearson correlations between conflict datasets. * significant at 10%;
significant at 5%; significant at 1%.
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Table A.5: Descriptive Statistics: Global

N Mean St. Dev. Control — Treatment

Pr(Conflict > 0) ACLED
All Cells

If Wild Animals = 0

If Wild Animals > 0

If Wild Trees = 0

If Wild Trees > 0

If Industrial Mine = 0

If Industrial Mine > 0

Pr(Conflict > 0) UCDP
All Cells

If Wild Animals = 0

If Wild Animals > 0

If Wild Trees = 0

If Wild Trees > 0

If Industrial Mine = 0

If Industrial Mine > 0

Pr(Conflict > 0) GTD
All Cells

If Wild Animals = 0

If Wild Animals > 0

If Wild Trees = 0

If Wild Trees > 0

If Industrial Mine = 0

If Industrial Mine > 0

Resources Distribution (Cross-Section)

Wild Animals > 0
Wild Trees > 0
Industrial Mine > 0

784,742 0.0557
649,794 0.0457
134,948 0.1042
627,126 0.0399
157,616 0.1188
248,250 0.0770
4,875 0.1608

3,375,400 0.0120
3,189,060 0.0099
186,340 0.0474
3,010,000 0.0090
365,400 0.0368
248,250 0.0378
4,875  0.0277

5,014,880 0.0082
4,738,032 0.0074
276,848 0.0218
4,472,000 0.0057
542,880 0.0290
248,250 0.0244
4,875  0.0242

5,324 0.0552
10,440 0.1083
195  0.0019

0.2294
0.2088
0.3055
0.1957
0.3235
0.2666
0.3674

0.1088
0.0991
0.2124
0.0944
0.1882
0.1908
0.1641

0.0902
0.0858
0.1461
0.0752
0.1678
0.1541
0.1537

0.2284
0.3107
0.1374

—0.0585***
(0.0010)
—0.0788***
(0.0010)
—0.0838***
(0.0040)

—0.0374***
(0.0001)
—0.0278***
(0.0001)
0.0101***
(0.0030)

—0.0144***
(0.0001)
—0.0233***
(0.0001)
0.0001
(0.0001)

60

Notes: The table reports conditional and unconditional probabilities of conflict incidence based on the ACLED, UCDP,
and GTD datasets, as well as resource distributions.



Table A.6: Descriptive Statistics: Africa

N Mean St. Dev. Control — Treatment

Pr(Conflict > 0) ACLED

All Cells 343,952 0.0789 0.2696

If Wild Animals = 0 269,724 0.0725 0.2593 —0.0297***
If Wild Animals > 0 74,228 0.1022 0.3029 (0.0012)
If Wild Trees = 0 269,612 0.0636 0.2440 —0.0709***
If Wild Trees > 0 74,340 0.1344 0.3411 (0.0013)
If Industrial Mine = 0 339,077 0.0777 0.2677 —0.0831***
If Industrial Mine > 0 4,875 0.1608 0.3674 (0.0053)
High State Capacity 98,980 0.0514 0.2209 —0.0397***
Low State Capacity 241,640 0.0911 0.2878 (0.0008)
Pr(Conflict > 0) UCDP

All Cells 429,940 0.0338 0.1808

If Wild Animals = 0 337,155 0.0328 0.1780 —0.0050***
If Wild Animals > 0 92,785 0.0378 0.1906 (0.0007)
If Wild Trees = 0 337,015 0.0306 0.1723 —0.0149***
If Wild Trees > 0 92,925 0.0456 0.2085 (0.0008)
If Industrial Mine = 0 425,065 0.0339 0.1810 0.0062***
If Industrial Mine > 0 4,875 0.0277 0.1641 (0.0024)
High State Capacity 123,725 0.0107 0.1032 —0.033***
Low State Capacity 302,050 0.0437 0.2044 (0.0004)
Pr(Conflict > 0) GTD

All Cells 638,768 0.0133 0.1145

If Wild Animals = 0 500,916 0.0131 0.1136 —0.0009***
If Wild Animals > 0 137,852 0.0140 0.1176 (0.0004)
If Wild Trees = 0 500,708 0.0111 0.1046 —0.0103***
If Wild Trees > 0 138,060 0.0213 0.1444 (0.0004)
If Industrial Mine = 0 633,893 0.0132 0.1141 —0.0110***
If Industrial Mine > 0 4,875 0.0242 0.1537 (0.0022)
High State Capacity 183,820 0.0078 0.0884 —0.0078***
Low State Capacity 448,760 0.0156 0.1241 (0.0002)
Resources Distribution (Cross-Section)

Wild Animals > 0 2,661 0.2158 0.4114

Wild Trees > 0 2,655 0.2161 0.4116

Industrial Mine > 0 195  0.0159 0.1250

State Capacity & Precious Trees

Wild Trees Distribution| High=1 759,330 0.0587 0.2351 0.017***
Wild Trees Distribution| Low=0 1,346,026 0.0417 0.1999 (0.0003)

Notes: The table reports conditional and unconditional probabilities of conflict incidence based on the ACLED, UCDP,
and GTD datasets, resource distributions across Africa, and the distribution of wild trees across high- and low-capacity states.
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Conflicts Spatial Distributions

Figure A.4: Spatial Distributions of UCDP Conflict Events
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Notes: The maps present the spatial distribution of conflict for UCDP (1989-2023) and GTD (1970-2021). Darker shading
indicates cells with a higher proportion of years featuring at least one conflict incident.
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Wildlife Prices

Figure A.6: Trade Restrictions and Wildlife Prices
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Notes: The figure presents estimates using the staggered event study imputation estimator suggested by Borusyak et al. (2024).
The pre-treatment coefficients are estimated using least squares, whereas the post-treatment coefficients are estimated with the
imputation estimator. Each observation corresponds to a resource-year. The wild animal sample includes 386 observations,
and the wild trees sample includes 549 observations. The estimates are based on equation (19), with the interaction term
Wildlife x Policy, an indicator explaining log standardised prices, and include category and year fixed effects. The omitted
period is the year prior to the policy announcement. The control group for wild animals is precious metals (gold, silver, and
platinum), and for wild precious trees it is the World Bank hard tropical timber index. The green horizontal lines indicate the
average of the pre- or post-treatment coefficients. Error bars indicate 95% confidence intervals, with standard errors clustered
to allow for arbitrary serial correlation.
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Confiscations

Figure A.7: Wildlife Trade Restrictions and Confiscation Events
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Notes: The figure depicts standardised sequences of wildlife confiscation events, alongside policy changes (in red) for blackwood
(2013), rosewood (2016), and the Chinese ban on elephant ivory (2017).
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B Further Results

This section reports additional results documented throughout the analysis, shedding more light
on the conflict-wildlife nexus. Table B.1 follows the empirical approach of Berman et al. (2017),
using wildlife prices as a source of time variation, while Table 77 reports a one-by-one price shock
analysis. Table B.3 provides one-by-one long-difference estimates for individual wildlife species.

Table B.4 provides suggestive evidence that the demand for ivory is price-inelastic. I use two
partially restrictive policy shocks (in 1977 and 1984) and import data from Hong Kong and Japan
to estimate the price elasticity of demand using a 2SLS specification. Total traded volume increased
following the shocks.

Figure B.1 provides evidence of substitution between elephant and hippo ivory, showing an
increase in reported traded volumes of hippo teeth following restrictive policy in the elephant ivory
market.

Table B.5 provides evidence of substitution between ivory-related and mineral-related conflicts.
I interact the contractionary policy years in the ivory market with a distance measure between
elephant habitat and the nearest industrial mineral site. The positive coefficient implies that in
years of reduced conflict in elephant regions, there is an increase in conflict in nearby industrial
mineral regions.

Finally, Figure B.2 provides suggestive evidence on the link between organised crime and the
ivory trade, and how this nexus evolved over time. I plot the share of large confiscations out of total
confiscations, showing a clear increase over time, which suggests that the involvement of criminal

syndicates in the trade increased over time.?”

29The analysis relies on the assumption that large-scale smuggling requires logistical capacity that small-scale
smugglers do not possess.
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Wildlife Price Shocks and Conflict Events

Table B.1: Wildlife Price Shocks and Conflict Likelihood
Dep. Var.: Conflict (0/1)

ACLED UCDP GTD
(1) (2) 3) (4) (5) (6) (7) (8) (9)
Habitat x Price 0.0063***  0.0063***  0.0081*** 0.0022*** 0.0022*** 0.0027*** 0.0030*** 0.0030*** 0.0040***

(0.0015)  (0.0015)  (0.0017)  (0.0007)  (0.0007)  (0.0009)  (0.0006)  (0.0006)  (0.0008)
[0.0013]  [0.0013]  [0.0015]  [0.0007]  [0.0007]  [0.0008]  [0.0007]  [0.0007]  [0.0008]

Habitat Around X Price 0.0059*** 0.0015** 0.0028***
(0.0011) (0.0007) (0.0006)
[0.0012] [0.0006] [0.0006]
Mineral x Price 0.0272***  0.0207*** 0.0008 0.0004 0.0016 0.0006
(0.0065) (0.0060) (0.0033) (0.0033) (0.0025) (0.0026)
[0.0059] [0.0057] [0.0032] [0.0032] [0.0025] [0.0026]
Mineral Around x Price 0.0138*** 0.0006 0.0018
(0.0032) (0.0032) (0.0026)
[0.0023] [0.0019] [0.0015]
Dep. Var. Mean 0.0531 0.0531 0.0531 0.0117 0.0117 0.0117 0.0081 0.0081 0.0081
Dep. Var. SD 0.2243 0.2243 0.2243 0.1075 0.1075 0.1075 0.0890 0.0890 0.0890
Cell FE Y Y Y Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y Y Y Y
Observations 751,939 751,939 751,939 3,334,380 3,334,380 3,334,380 4,953,936 4,953,936 4,953,936

Notes: The table reports LPM estimates using OLS. Each observation corresponds to a cell-year. The variable Habitat is an indicator

measuring the suitability of cell k for wildlife species w, and price denotes the log price of the corresponding wildlife species w in cell
k at time t. The variable Mineral x Price captures the industrial mineral price shock (Berman et al., 2017). The Around variables
indicate spatial lags. The dependent variable is a binary indicator for conflict incidence, equal to one if at least one conflict event
occurs in a given cell and year, based on the conflict datasets referenced in the column titles. Standardised coefficients are reported
with spatially clustered standard errors (in parentheses), which allow for spatial and temporal correlation within a 500 km radius of
each cell’s centroid. Standard errors in square brackets are clustered at the country-year and cell levels, allowing for spatial correlation
within a country and infinite serial correlation within a cell. * significant at 10%; ™" significant at 5%; " significant at 1%.

Table B.2: Wildlife Price Shocks and Conflict Likelihood: Disaggregated Estimates

Dep. Var.: GTD Conflict Indicator (0/1)

African Elephant Asian Elephant Hippo Rhino Crocodile Dalbergia Pterocarpus Diospyros
(1) (2) (3) (4) (5) (6) (7) (8)
Habitat X Price 0.0060™** 0.0168*** 0.0074***  —0.0020"**  0.0018***  0.0077*** 0.0047*** 0.0028***
(0.0017) (0.0032) (0.0030) (0.0006) (0.0006)  (0.0011) (0.0013) (0.0005)
Around X Price 0.0061*** 0.0017 0.0082%*** —0.0010 0.0011** 0.0029*** 0.0012 0.0010
(0.0018) (0.0017) (0.0021) (0.0011) (0.0005) (0.0008) (0.0008) (0.0005)
Composite Wildlife Index 0.0032%** 0.0035%** 0.0030***  0.0030***  0.0027*** 0.0026***  0.0028***  0.0042***
(0.0006) (0.0006) (0.0006) (0.0006) (0.0007)  (0.0008) (0.0006) (0.0016)
Dep. Var. Mean 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082
Dep. Var. SD 0.0902 0.0902 0.0902 0.0902 0.0902 0.0902 0.0902 0.0902
Cell FE Y Y Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y Y Y
Observations 2,507,440 2,507,440 2,507,440 964,400 4,822,000 964,400 964,400 2,411,000

Note: The table reports LPM estimates using OLS separately for the different wildlife species. Each observation corresponds
to a cell-year. The variable Habitat is an indicator measuring the suitability of cell k for wildlife species w, and price denotes
the log price of the corresponding wildlife species w in cell k at time t. The dependent variable is a binary indicator for
conflict incidence, equal to one if at least one conflict event occurs in a given cell and year, based on the GTD dataset. In
each column, the treatment group is restricted to the wildlife referenced in the title. Coefficients are reported with spatially
clustered standard errors (in parentheses), which allow for spatial and temporal correlation within a 500 km radius of each
cell’s centroid. ™ significant at 10%; ** significant at 5%; " significant at 1%.
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Wildlife Trade Restrictions and Conflicts: One by One Long Difference Estimates

Suggestive Evidence on Ivory Demand Elasticity

Table B.4: Elephant Ivory Elasticity Analysis Based
on Pre-Ban Imports to Japan and Hong Kong: 2SLS

log(Ivory Revenue) log(Ivory Quantity)
1 (2)

Panel A: 25LS

Coefficient 1.3455*** 0.3455
Panel B: First Stage

Policy — Price 1.4556*** 1.4556***
F-statistic 24.8 24.8
Panel C: Reduced Form

Coefficient 1.9585%** 0.5029
Panel D: OLS

Coefficient 1.3246*** 0.3246
Country Fixed Effects Y Y
Observations 70 70

Notes: The table provides empirical evidence suggesting that the de-
mand for ivory is price-inelastic, based on pre-ban import data from
Hong Kong and Japan. Panel A presents 2SLS estimates, using policy
shocks as instruments, with the unit of observation being the log of
total value and the log of total weight of imported ivory. Specifications
include country fixed effects. Panel B shows the first-stage estimates
and the F-statistic. Panel C reports the reduced-form estimates, and
Panel D shows the OLS results. All standard errors are Newey-West
to account for serial correlation. * significant at 10%; ** significant at
5%; *** significant at 1%.
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Suggestive Evidence of Substitution between Elephant and Hippo Ivory

Figure B.1: Substitution of Elephant Ivory to Hippo Ivory
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Notes: The figure shows the overall (log) export of hippo teeth from African countries to the rest of the world, measured in
tonnes. The three vertical lines indicate different policy shocks. The first line marks the introduction of the ivory export quota
system in 1984-1985. The second line marks the ban (Appendix I) on international trade in ivory in 1989. The third red line
marks CITES’s restriction on international trade in hippo teeth (Appendix II).
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Suggestive Evidence of Conflict Substitution between Elephant Ivory and Industrial

Minerals

Table B.5: Substitution between Ivory and Mineral Related Conflict Events in Africa

ACLED Incident Indicator (1-3) ACLED Onset Indicator (4-6)
(1) (2) 3) (4) (5) (6)

Sales x Elephant Cell —0.023***  —0.015*** —0.015*** —0.012*** —0.009*** —0.009***
(0.009) (0.006) (0.006) (0.006) (0.005) (0.005)

Sales x Distance Mine-Elephant  0.005*** 0.003*** 0.003*** 0.002*** 0.001*** 0.001***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

plvery x Elephant Cell 0.008***  0.016*** 0.003 0.007
(0.005) (0.006) (0.003) (0.004)
plveTy x Elephant Around Cell 0.017*** 0.008***
(0.006) (0.004)
pMine » Mine Cell 0.042***  0.037*** 0.023***  0.020***
(0.006) (0.007) (0.004) (0.004)
pMine 5 Mine Around Cell 0.012%** 0.007***
(0.005) (0.002)
Mean Dep. Var. 0.0788 0.0788 0.0788 0.0451 0.0451 0.0451
SD Dep. Var. 0.264 0.264 0.264 0.208 0.208 0.208
Cell FE Y Y Y Y Y Y
Country X Year FE Y Y Y Y Y Y
Observations 258,375 258,375 258,375 241,232 241,232 241,232

Notes: The table presents estimates showing substitution by armed groups between industrial min-
erals and ivory. Outcome variables measure conflict at the cell-year level. Columns 1-3 use an indi-
cator for conflict incidents; columns 4-6 use an indicator for conflict onset. Columns 2 and 5 control
for elephant ivory and industrial mineral price shocks (Berman et al., 2017); columns 3 and 6 addi-
tionally control for neighbouring areas of elephant habitat and industrial minerals. All specifications
include interactions of supply shocks with elephant habitat and a negative distance measure between
mining and elephant cells. All models include cell and country-year fixed effects. Standardised coef-
ficients are reported with spatially clustered standard errors (in parentheses), which allow for spatial
and temporal correlation within a 500 km radius of each cell’s centroid. ~ significant at 10%; o sig-
nificant at 5%; * significant at 1%.
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Involvement of Crime Syndicates in the Ivory Trade

Figure B.2: Share of Large Confiscations over Time
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Notes: The figure depicts the share of large ivory confiscations (above 0.5 tonnes) from the total amount of
confiscations at the annual level. The blue line indicates the relationship between the share and time, and
the red horizontal lines indicate decade-level averages.
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C Complementary Result Tables

This section presents supplementary tables that support the main results of the paper. Table C.1
reports difference-in-differences estimates for the confiscation analysis, Table C.2 shows difference-
in-differences policy-price estimates, Table C.4 reports difference-in-differences policy-conflict esti-
mates for high and low capacity states, and Table C.3 reports precious trees harvested quantities
synthetic control estimates. Figure C.1 presents event-study estimates for the distance analysis,

complementing Table 3.

Table C.1: Trade Restrictions and Wildlife Confisca-

tions
Dep. Var.: log(# Confiscation Events)
(1) (2) (3)
Habitat x Policy 1.6556*** 0.7512** 0.6923***
(0.2216) (0.34752) (0.21442)
Resource FE Y N Y
Year FE N Y Y
Observations 52 52 52

Note: The table reports difference-in-differences estimates for the ef-
fect of CITES trade restrictions on wildlife confiscations (Diospyros
(ebonies), Dalbergia (rosewood), and elephant ivory). Standard errors
are Newey-West, allowing for infinite-order serial correlation. * signifi-
cant at 10%; ™™ significant at 5%; *** significant at 1%.
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Table C.2: Trade Restrictions and Wildlife Prices: Difference-in-Differences

Dep. Var.: Log Prices
Wild Animals Wild Trees

(1) (2) (3) (4) (5) (6)
Wildlife x Policy 0.582%* 1.806™* 1.117** 0.125"* 1.367*** 1.030***
(0.167)  (0.393) (0.162) (0.131) (0.238) (0.124)

Resource FE N Y Y N Y Y
Year FE Y N Y Y N Y
Observations 386 386 386 549 549 549

Notes: The table reports estimates using the Borusyak et al. (2024) imputation difference-in-differences estimator.
Each observation corresponds to a resource-year (wildlife, and World Bank timber or precious metals prices as
controls). Wildlife x Policy is an interaction of wildlife w with its corresponding policy indicator, indicating the
timing of CITES trade restrictions imposed on wildlife w. The control group for wild animals is precious metals (gold,
silver, and platinum), and for wild precious trees it is the World Bank hard tropical timber index. Standard errors
are Newey-West, allowing for infinite serial correlation. ~ significant at 10%; ~ significant at 5%; * significant at

1%.

Table C.3: Trade Restrictions and the Harvesting of Pre-
cious Trees by State Capacity: A Synthetic Difference-in-
Differences Analysis

Dep. Var.: log(deforestation + 1)

Aggregate High Capacity Low Capacity
(1) (2) (3)

Habitat x Policy —0.0058** —0.097*** 0.055**
(0.008) (0.031) (0.025)
Cell FE Y Y Y
Country-Year FE Y Y Y
Observations 1,304,314 523,016 781,298
Dep. Var. Mean 2.13 1.762 2.31
Dep. Var. SD 1.899 1.852 1.896

Note: The table reports synthetic control difference-in-differences estimates

using the Ben-Michael et al. (2021) estimator. Each observation corresponds
to a cell-year. The variable Habitat is an indicator measuring the suitabil-
ity of cell k for wild tree species w, and Policy indicates the timing of
CITES trade restrictions imposed on wildlife species w at time ¢t. The de-
pendent variable is the annual log of deforested 30 x 30 cells within a larger
0.1° x 0.1° cell. The sample is restricted to African countries, with column
1 showing aggregate quantities, column 2 showing estimates restricted to
above-median-capacity states, and column 3 showing estimates restricted to
below-median-capacity states. Coefficients are reported with standard er-
rors which are computed using the wild bootstrap, following the procedure
for synthetic control estimators in Ben-Michael et al. (2021).” significant at
10%; ™" significant at 5%; **" significant at 1%.
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Table C.4: Wild Trees, Trade Restrictions and Conflict Likelihood by State Capacity: Difference-
in-Differences

Dep. Var.: Conflict (0/1)
High Capacity Low Capacity
ACLED UCDP GTD ACLED UCDP GTD
(1) (2) (3) (4) (5) (6)

Habitat x Policy 0.0015 —0.0061 0.0054* 0.0331"** 0.0163"* 0.0264"**
(0.0036) (0.0036) (0.0030) (0.0069) (0.0063) (0.0057)

Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Observations 131,663 166,342 250,741 191,137 242541 367,459
Dep. Var. Mean  0.0199 0.0135  0.0075  0.0516 0.0337 0.0114
Dep. Var. SD 0.1398  0.1154 0.0862  0.2212 0.1805 0.1062

Notes: The table reports LPM estimates using the Borusyak et al. (2024) imputation difference-in-differences esti-
mator. Each observation corresponds to a cell-year. The variable Habitat is an indicator measuring the suitability of
cell k for wildlife species w, and Policy indicates the timing of CITES trade restrictions imposed on wildlife species
w at time t. The dependent variable is a binary indicator for conflict incidence, equal to one if at least one conflict
event occurs in a given cell and year, based on the conflict datasets referenced in the column title. The sample is
restricted to African countries, where columns 1-3 are associated with above-median capacity states, and columns 4-6
are associated with below-median capacity states. Coefficients are reported with spatially clustered standard errors
(in parentheses), which allow for spatial and temporal correlation within a 500 km radius of each cell’s centroid. *
significant at 10%; *" significant at 5%; ~ significant at 1%.
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Table C.5: Wild Trees, Trade Restrictions and Conflict Likelihood: Difference-in-Differences
Dep. Var.: Conflict (0/1)
Wild Trees: Africa Sample
ACLED UCDP GTD
(1) (2) (3)

Habitat x Policy 0.053***  0.0091  0.0233***
(0.0063) (0.0054) (0.00459)

Cell FE Y Y Y
Country-Year FE Y Y Y
Observations 343,952 429,940 638,768
Dep. Var. Mean  0.0789  0.0338 0.0133
Dep. Var. SD 0.26 0.1808 0.1145

Notes: The table reports linear probability model
(LPM) estimates wusing the imputation-based
difference-in-differences  estimator  of = Borusyak
et al. (2024), with treatment defined as the imposition
of CITES trade restrictions on species, covering only
wild trees in Africa. Each observation corresponds
to a cell-year. The variable Habitat is an indicator
measuring the suitability of cell k for wildlife species
w, and Policy indicates the timing of CITES trade
restrictions imposed on wildlife species w at time
t. The dependent variable is a binary indicator for
conflict incidence, equal to one if at least one conflict
event occurs in a given cell and year, based on the
conflict datasets referenced in the column title. Coef-
ficients are reported with spatially clustered standard
errors (in parentheses), which allow for spatial and
temporal correlation within a 500 km radius of each
cell’s centroid. Standard errors reported in square
brackets are clustered at the country-year and cell
levels, allowing for within-country spatial correlation
and infinite serial correlation within a cell. ~ significant
at 10%; ~" significant at 5%; ~ significant at 1%.
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Figure C.1: Distance Analysis Event Study for Rosewood 2016 Ban
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Notes: The figure reports a two-way fixed effects event study estimate with log distance as the outcome, presenting the
estimates for rosewood. The omitted period is the year prior to the policy announcement (2015). The green horizontal lines
indicate the average of the pre- or post-treatment coefficients. Error bars denote 95% confidence intervals, based on two-way

clustered standard errors at the group and country-year levels.
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D Sensitivity Checks

This section discusses alternative specifications and assesses the robustness of the paper’s main

estimates.

Predictive Power of Wildlife Habitat on Country-Level Stocks

One concern with the identification strategy based on wildlife habitat classification,

One concern with identification that relies on habitat data is whether these measures predict
observed wildlife abundance. Unfortunately, granular data on wildlife stocks is unavailable. Table
D.1 examines whether the country-level count of habitat-suitable grid cells predicts country-level
wildlife stocks for the four species with available stock data. The estimates indicate that habitat

suitability is a strong predictor of stock.

Table D.1: Wildlife Habitat and Country-Level Wildlife Stock
Dep. Var.: Log (Country-Level Stocks + 1)

Diospyros Dalbergia Pterocarpus Elephant
(1) (2) 3) (4)
log (# Diospyros cells + 1) 0.0134***

(0.0026)
log (# Dalbergia cells + 1) 0.0297***
(0.0047)
log (# Pterocarpus cells + 1) 0.0485¢
(0.0038)
log (# Elephant cells + 1) 0.0428***
(0.0031)
Constant 1.9706*** 1.8719*** 1.0281***  0.8199***
(0.2012)  (0.2160)  (0.1447)  (0.1922)
Observations 50 50 50 35
R? 0.3563 0.4529 0.7748 0.5242
Adjusted R? 0.3429 0.4415 0.7701 0.5215

Notes: The table reports OLS estimates showing the correlation of the log number
of cells per country suitable for wildlife species w (based on a binary variable), with
the country-level stock of that resource. * significant at 10%; ™" significant at 5%;
*** significant at 1%.

Exogeneity of Policy

Another identification concern is the exogeneity of the policy with respect to conflicts. Given the way
it operates, it is unlikely that CITES intentionally targets conflict regions or specific conflict events
in its policies. First, CITES decisions are largely political and require a 66% majority. Second,
Frank and Wilcove (2019) documents an average delay of 10 years between species extinction and
the imposition of CITES trade restrictions. Third, CITES meets every three years based on a
pre-determined schedule. Fourth, a text analysis of CITES protocols reveals no explicit mention
of armed conflict or armed groups in official meeting records. Taken together, these institutional
features make the assumption of quasi-exogenous policy timing plausible. Furthermore, Figure

D.1 shows an anticipation test, where shifting the policy six periods earlier yields insignificant
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estimates. To further address concerns about policy endogeneity, Figures D.2 and D.3 confirm
that the estimates remain robust when iteratively excluding different continental subregions, or

random batches of 10% of the observations, reducing concerns that CITES systematically targets

conflict-prone regions.

Figure D.1: Anticipation Test: Wildlife Trade Restrictions and Conflict Likelihood
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Notes: The figure reports a placebo anticipation test using the staggered event-study imputation estimator of Borusyak et al.
(2024), where the actual treatment is artificially shifted six periods earlier. Pre-treatment coefficients are estimated using
least squares, while post-treatment coefficients are obtained with the imputation estimator. Each observation corresponds to
a cell-year (1,430,970 for wild animals and 1,435,230 for wild trees). The estimates follow equation (1), where the interaction
term Habitat X Policy captures the effect of the policy on conflict probability. The dependent variable is a binary indicator
equal to one if at least one conflict event occurs in a cell-year, based on ACLED data. The green horizontal lines indicate
the average of the pre- or post-treatment coefficients. Error bars show 95% confidence intervals, with standard errors spatially
clustered within a 500 km radius of each cell’s centroid. A joint significance F-test yields p-values of 0.688 for animals (Panel

a) and 0.284 for trees (Panel b).

78



Figure D.2: Wildlife Trade Restrictions and Conflict Likelihood: Sequential Exclusion of Subre-
gions
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Notes: The figure reports LPM estimates using the staggered event study imputation estimator (Borusyak et al., 2024). Each
bar reports a point estimate, excluding one sub-continental region at a time. Each observation corresponds to a cell-year. The
estimates are based on specification 1, with the interaction term Habitat X Policy, an indicator explaining conflict probability.
The omitted period is the year prior to the policy announcement. The dependent variable is a binary indicator for conflict
incidence, equal to one if at least one conflict event occurs in a given cell and year, based on the ACLED dataset. Error bars
indicate 95% confidence intervals, with standard errors that are spatially clustered to allow for spatial and temporal correlation
within a 500 km radius of each cell’s centroid.
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Figure D.3: Wildlife Trade Restrictions and Conflict Likelihood: Excluding Random Batches of
Pixels (10% at the time)
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Notes: The figure reports LPM estimates using the staggered event study imputation estimator (Borusyak et al., 2024). Each
bar shows a point estimate based on the sample with 10% of the observations randomly excluded. Each observation corresponds
to a cell-year. The estimates are based on specification 1, with the interaction term Habitat X Policy, an indicator explaining
conflict probability. The omitted period is the year prior to the policy announcement. The dependent variable is a binary
indicator for conflict incidence, equal to one if at least one conflict event occurs in a given cell and year, based on the ACLED
dataset. Error bars indicate 95% confidence intervals, with standard errors that are spatially clustered to allow for spatial and
temporal correlation within a 500 km radius of each cell’s centroid.

Measurement Error and Sensitivity to Cell-Size

Another concern when using wildlife habitat as a proxy for treatment exposure is the potential for
measurement error. Table D.2 reports country-level shift-share style estimates. For each country I
sum the total number of cells suitable for a given wildlife, and multiply it by the post-policy years for
this wildlife. I then sum this variable across country-year to create a wildlife-weighted country-year
level exposure to the policy, and due to the skewness of the distribution, take its log. The outcome
variable is country-year log conflict events. Furthermore, to mitigate concerns regarding grid choice,

I construct alternative grids, with 0.25° x 0.25° and 1° x 1° degree size. Tables D.3 and D.4 report
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estimates, consistent with the paper’s main results.

Table D.2: Wildlife Trade Restrictions and Conflict Events: Country-Level Estimates
Dep. Var.: log (# Country-Year Conflict Events + 1)
Wild Animals Wild Trees

ACLED UCDP GTD ACLED UCDP  GTD

log (Policy Exposure + 1) 0.4533** 0.2229* 0.16359*** 0.4362*** 0.5172** 0.4695**
(0.0419) (0.1285) (0.0419)  (0.1228) (0.2065) (0.1790)

Country FE Y Y Y Y Y Y
Subcontinent Region Year FE Y Y Y Y Y Y
Mean Dep. Var. 1.9861  1.0345 0.7624 1.9861 1.0345 0.7624
SD Dep. Var. 1.5140  1.3993 1.1307 1.5140 1.3993  1.1307
Observations 2,024 3,710 5,012 2,024 3,710 5,012

Notes: The table reports LPM estimates using OLS. Each observation corresponds to a country-year. The variable Policy
Ezposure ranks countries by their total, wildlife-weighted annual exposure to the policy. The outcome is the log number of
conflict events in a given country-year, based on the conflict dataset mentioned in the title. Coeflicients are reported with
two-way clustered standard errors (in parentheses), clustered at the levels of the fixed effects. * significant at 10%; ™" significant
at 5%; *" significant at 1%.

Table D.3: Wildlife Trade Restrictions and Conflict Likelihood at 0.25° x 0.25° Resolution
Dep. Var.: Conflict (0/1)
Wild Animals Wild Trees
ACLED UCDP GTD ACLED UCDP GTD
(1) (2) (3) (4) (5) (6)

Habitat x Policy 0.0204*** 0.0099***  0.0116™* 0.0272*** 0.0063***  0.0107***
(0.0053)  (0.0036)  (0.0031)  (0.0033)  (0.0022)  (0.0018)

Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Observations 5,723,880 13,355,720 19,842,784 5,740,920 13,395,480 19,901,856
Dep. Var. Mean 0.0583 0.0233 0.0134 0.0583 0.0233 0.0134
Dep. Var. SD 0.2037 0.1318 0.1005 0.2037 0.1318 0.1005

Notes: The table reports LPM estimates using the Borusyak et al. (2024) imputation difference-in-differences esti-
mator. Each observation corresponds to a cell-year, with 0.25° x 0.25° cell-size. The variable Habitat is an indicator
measuring the suitability of cell k for wildlife species w, and Policy indicates the timing of CITES trade restrictions
imposed on wildlife w at time ¢. The dependent variable is a binary indicator for conflict incidence, equal to one if
at least one conflict event occurs in a given cell and year, based on the conflict datasets referenced in the column
title. Coefficients are reported with spatially clustered standard errors (in parentheses), which allow for spatial and
temporal correlation within a 500 km radius of each cell’s centroid. - significant at 10%; - significant at 5%; o

significant at 1%.
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Table D.4: Wildlife Trade Restrictions and Conflict Likelihood at 1° x 1° Resolution
Dep. Var.: Conflict (0/1)
Wild Animals Wild Trees
ACLED UCDhP GTD ACLED UCDhP GTD
(1) (2) (3) (4) (5) (6)

Habitat x Policy 0.0358°* 0.0174** 0.0204™* 0.0478*** 0.0111*** 0.0188***
(0.0092)  (0.0063) (0.0054) (0.0057) (0.0039) (0.0031)

Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Observations 357,742 834,732 1,240,174 358,807 837,217 1,243,866
Dep. Var. Mean 0.1022 0.0408 0.0234 0.1022 0.0408 0.0234
Dep. Var. SD 0.3571 0.2311 0.1763 0.3571 0.2311 0.1763

Notes: The table reports LPM estimates using the Borusyak et al. (2024) imputation difference-in-differences es-
timator. Each observation corresponds to a cell-year, with 1° x 1° cell-size. The variable Habitat is an indicator
measuring the suitability of cell k for wildlife species w, and Policy indicates the timing of CITES trade restrictions
imposed on wildlife w at time ¢t. The dependent variable is a binary indicator for conflict incidence, equal to one if
at least one conflict event occurs in a given cell and year, based on the conflict datasets referenced in the column
title. Coefficients are reported with spatially clustered standard errors (in parentheses), which allow for spatial and
temporal correlation within a 500 km radius of each cell’s centroid. - significant at 10%; - significant at 5%; o
significant at 1%.

Potential Confounders

Given the broad spatial distribution of wildlife habitat, a potential concern is that it may overlap
with other valuable resources—such as gold, minerals, or crops—thereby confounding the estimates.
To address this, I exclude all cells geologically suitable for gold production (Girard et al., 2022),
as well as those with precious mineral deposits and surrounding areas (Berman et al., 2017).30 To
further mitigate concerns about spatial confounders, I divide the sample into above- and below-
median groups based on urban area coverage, crop production, human footprint, and population
density, and replicate the difference in differences ACLED estimates within each subsample. Fol-
lowing Eberle et al. (2020), I also exclude all Sahel countries. Estimates are presented in Table D.5.
While coefficient magnitudes vary—Ilikely due to reduced sample sizes—the results remain robust

across all specifications.

30 Although the geological suitability map from Girard et al. (2022) is specific to gold, it covers approximately 43%
of African grid cells and likely captures other artisanal mining zones as well.
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Table D.5: Wildlife Trade Restrictions and Conflict Likelihood: Excluding Potential Confounders

Dep. Var.: ACLED Conflict (0/1)
Built Crop Human Footprint Pop Gold & Sahel

High Low High Low High Low High Low Gold Sahel
(1) (2) 3) (4) (5) (6) (7) ) 9) (10)

Panel A: Wild Animals

Habitat x Policy 0.0282%* 0.0222** 0.0213"* 0.0212** 0.0195** 0.0273"* 0.0330*** 0.0230*** 0.0281*** 0.0211***
(0.0096) (0.0088) (0.0077) (0.0112) (0.0083) (0.0095) (0.0160) (0.0072) (0.0088) (0.0072)

Panel B: Wild Trees

Habitat x Policy 0.0204** 0.0398*** 0.0305*** 0.0297*** 0.0205*** 0.0299*** 0.0267*** 0.0466** 0.0312*** 0.0271***
(0.0049) (0.0057) (0.0048) (0.0058) (0.0080) (0.0092) (0.0047) (0.0075) (0.0043) (0.0042)
Cell FE Y Y Y Y Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y Y Y Y Y
Observations 261,397 309,042 276,535 299,357 284,670 291,222 241,265 320,450 451,572 436,984
Dep. Var. Mean 0.1142 0.0440 0.1100 0.0441 0.1130 0.0393 0.0936 0.0602 0.0663 0.0792
Dep. Var. SD 0.3180 0.2051 0.3129 0.2052 0.3166 0.1943 0.2912 0.0602 0.2488 0.2701

Note: The table reports LPM estimates using OLS. Each observation corresponds to a cell-year. Each column splits the sample into above-
or below-median groups based on the variable indicated in the title. The variable Habitat is an indicator measuring the suitability of cell k
for wildlife w, and Policy denotes the timing of CITES trade restrictions imposed on species w. The dependent variable is an ACLED binary
indicator for conflict incidence, equal to one if at least one conflict event occurs in a given cell and year. Coefficients are reported with spatially
clustered standard errors (in parentheses), which allow for spatial and infinite temporal correlation within a 500 km radius of each cell’s centroid.
* significant at 10%; ** significant at 5%; " significant at 1%.

Different Control Groups

The global approach—essential for external validity and for capturing a broad range of resources and
policy shocks—raises concerns about the adequacy of the control group. To address this, I estimate
a staggered event study model using the augmented synthetic control estimator from Ben-Michael
et al. (2021), which constructs control groups that exactly match the pre-treatment outcome trends
of treated units (Figure D.4 and Table D.6). In Table D.7, I pool wild animals and wild trees,

defining treatment as CITES restrictions on either category.
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Figure D.4: Wildlife Trade Restrictions and Conflict Likelihood: A Synthetic Control Analysis
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Notes: The figure depicts LPM estimates using the staggered event study synthetic control estimator from Ben-Michael et al.
(2021). Each observation corresponds to a cell-year. The sample includes 1,430,970 observations for animals and 1,430,970
observations for trees. The estimates are based on specification 1, with the interaction term Habitat X Policy, an indicator
explaining conflict probability. The dependent variable is a binary indicator for conflict incidence, equal to one if at least one
conflict event occurs in a given cell and year, based on the ACLED dataset. Coefficients are reported with standard errors
which are computed using the wild bootstrap, following the procedure for synthetic control estimators in Ben-Michael et al.
(2021).

Table D.6: Wildlife Trade Restrictions and Conflict Likelihood: A Synthetic Difference in-
Differences Analysis

Dep. Var.: ACLED Conflict (0/1)

Wild Animals Wild Trees
(1) (2)
Habitat x Policy 0.005*** 0.008***
(0.001) (0.002)
Cell FE Y Y
Country-Year FE Y Y
Observations 1,430,970 1,430,970
Dep. Var. Mean 0.075 0.075
Dep. Var. SD 0.264 0.264

Notes: The figure reports LPM estimates using the staggered event
study synthetic control estimator from Ben-Michael et al. (2021).
Each observation corresponds to a cell-year. The estimates are based
on specification 1, with the interaction term Habitat X Policy an in-
dicator explaining conflict probability. The dependent variable is a
binary indicator for conflict incidence, equal to one if at least one
conflict event occurs in a given cell and year, based on the ACLED
dataset. Coefficients are reported with standard errors which are
computed using the wild bootstrap, following the procedure for syn-
thetic control estimators in Ben-Michael et al. (2021). " significant
at 10%; ™~ significant at 5%; ~* significant at 1%.
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Table D.7: Wildlife Trade Restrictions and Conflict Likelihood: Difference-in-Differences
Dep. Var.: Conflict (0/1)
Wild Animals and Trees
ACLED UCDP GTD
(1) (2) (3)

Habitat x Policy ~ 0.0391***  0.01***  0.0137"*
(0.0040)  (0.0027)  (0.0028)

Cell FE Y Y Y
Country-Year FE Y Y Y
Observations 1,430,970 3,338,930 4,960,696
Dep. Var. Mean 0.0757 0.0302 0.0173
Dep. Var. SD 0.2645 0.1712 0.1306

Notes: The table reports linear probability model (LPM) esti-
mates using the imputation-based difference-in-differences estimator
of Borusyak et al. (2024), with treatment defined as the imposition of
CITES trade restrictions on species, covering both wild animals and
wild trees. Each observation corresponds to a cell-year. The variable
Habitat is an indicator measuring the suitability of cell k for wildlife
species w, and Policy indicates the timing of CITES trade restric-
tions imposed on wildlife species w at time ¢. The dependent variable
is a binary indicator for conflict incidence, equal to one if at least one
conflict event occurs in a given cell and year, based on the conflict
datasets referenced in the column title. Coefficients are reported with
spatially clustered standard errors (in parentheses), which allow for
spatial and temporal correlation within a 500 km radius of each cell’s
centroid. Standard errors reported in square brackets are clustered
at the country-year and cell levels, allowing for within-country spatial
correlation and infinite serial correlation within a cell. * significant at
10%; ™" significant at 5%; ~ significant at 1%.

Sensitivity to Standard Errors Spatial Clustering

Figure D.5 plots the baseline estimates using different levels of spatial clustering, from 1° x 1°
to 10° x 10° (110 x 110 km to 1,100 x 1,100 km at the equator), showing that the estimates are

insensitive to the choice of spatial cluster size.
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Figure D.5: Sensitivity of Estimates to Spatial Clustering
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Notes: The figure shows estimated coefficients from equation (1) for spatial clusters at various degrees (1-10). The top
panel reports estimates for animals, and the bottom panel reports estimates for trees. The main dependent variable is an
ACLED conflict indicator, while the key explanatory variable is the interaction between the policy indicator and wildlife
habitat suitability. The sample in all analyses is global.

Alternative Conflict Outcomes

Conflict measurement is complex and likely to suffer from measurement error. As such, the literature
commonly uses a binary conflict indicator variable (Bazzi and Blattman, 2014; Berman et al., 2017,
Ciccone, 2018). The UCDP and GTD conflict outcomes—owing to their narrower definitions—are
likely to suffer less from measurement error and yield estimates consistent with those based on
ACLED data. Tables D.8 and D.9 report estimates using alternative conflict outcomes, including
the number of conflict events or deaths per cell-year, as well as conflict onset, defined as transitions
from peace to war. These estimates remain consistent with the paper’s main findings. Table D.10
reports estimates based on a binary indicator for conflict events with a number of deaths above the

sample median for each dataset, showing results consistent with the baseline analysis.
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Table D.8: Wildlife Trade Restrictions and the Number of Conflict Events

Dep. Var.: log (# Conflict Events+1)
Wild Animals Wild Precious Trees

ACLED UCDP  GTD ACLED UCDP  GTD
(1) (2) (3) (4) () (6)

Habitat x Policy 0.0486*** 0.0046*"* 0.0177"* 0.0691*** 0.0162*** 0.0198***
(0.0149)  (0.0105)  (0.0060) (0.0084) (0.0056) (0.0043)

Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Observations 1,430,970 3,338,930 4,960,696 1,435,230 3,348,870 4,975,464
Dep. Var. Mean 0.0707 0.0406 0.0212 0.0707 0.0406 0.0212
Dep. Var. SD 0.385 0.273 0.1887 0.385 0.273 0.1887

Notes: The table reports LPM estimates using the Borusyak et al. (2024) imputation difference-in-differences esti-
mator. Each observation corresponds to a cell-year. The variable Habitat is an indicator measuring the suitability
of cell k for wildlife species w, and Policy indicates the timing of CITES trade restrictions imposed on wildlife w at
time ¢. The dependent variable is log number of conflict events in a given cell-year, based on the conflict datasets
referenced in the column title. Coefficients are reported with spatially clustered standard errors (in parentheses),
which allow for spatial and temporal correlation within a 500 km radius of each cell’s centroid. * significant at 10%;
™" significant at 5%; ~ significant at 1%.

87



Table D.9: Wildlife Trade Restrictions and the Onset of Conflict Events

Dep. Var.: Conflict Onset (0/1)
Wild Animals Wild Precious Trees

ACLED UCDP  GTD ACLED UCDP  GTD
(1) (2) (3) (4) () (6)

Habitat x Policy 0.0112°* 0.0065*** 0.0056*** 0.0206** 0.0025** 0.0070***
(0.0041)  (0.0026) (0.0016) (0.0026) (0.0013) (0.0010)

Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Observations 1,430,970 3,338,930 4,960,696 1,435,230 3,348,870 4,975,464
Dep. Var. Mean 0.0453 0.0143 0.0088 0.0453 0.0143 0.0088
Dep. Var. SD 0.2081 0.1188 0.0935 0.2081 0.1188 0.0935

Notes: The table reports LPM estimates using the Borusyak et al. (2024) imputation difference-in-differences esti-
mator. Each observation corresponds to a cell-year. The variable Habitat is an indicator measuring the suitability
of cell k for wildlife species w, and Policy indicates the timing of CITES trade restrictions imposed on wildlife w at
time t. The dependent variable is the onset of conflict events in a given cell and year, based on the conflict datasets
referenced in the column title. Coefficients are reported with spatially clustered standard errors (in parentheses),
which allow for spatial and temporal correlation within a 500 km radius of each cell’s centroid. * significant at 10%;
™" significant at 5%; ~ significant at 1%.
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Table D.10: Wildlife Trade Restrictions and Conflict Likelihood: Above Median Events
Dep. Var.: Large Conflict Events (0/1)

Animals Trees

ACLED UCDP GTD ACLED UCDP GTD

(1) (2) (3) (4) (5) (6)
Habitat x Policy 0.02**  0.011*  0.015  0.024™*  0.006  0.009***
(0.007)  (0.05)  (0.009)  (0.08)  (0.004)  (0.003)

Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Observations 1,430,970 3,338,930 4,960,696 1,435,230 3,348,870 4,975,464
Dep. Var. Mean 0.036 0.02 0.01 0.036 0.02 0.01
Dep. Var. SD 0.21 0.16 0.13 0.21 0.16 0.13

Notes: The table reports LPM estimates using the Borusyak et al. (2024) imputation difference-in-differences esti-
mator. Each observation corresponds to a cell-year. The variable Habitat is an indicator measuring the suitability of
cell k for wildlife taxon w, and Policy indicates the timing of CITES trade restrictions imposed on wildlife taxon w at
time ¢t. The dependent variable is a binary indicator for conflict incidence, equal to one for events with above median
death in a given cell and year, based on the conflict datasets referenced in the column title. Coefficients are reported
with spatially clustered standard errors (in parentheses), which allow for spatial and temporal correlation within a
500 km radius of each cell’s centroid. Standard errors reported in square brackets are clustered at the country-year
and cell levels, allowing for within-country spatial correlation and infinite serial correlation within a cell. ) significant
at 10%; "~ significant at 5%; * significant at 1%.

Alternative Event-Study Estimators

Recent innovations in the literature on panel data econometrics highlight the potential for bias in
estimating heterogeneous treatment effects. While the main estimates rely on the Borusyak et al.
(2024) estimator, which accounts for such bias, Table D.11 reports estimates based on alternative
heterogeneous treatment effect estimators (Callaway and Sant’Anna, 2021; Sun and Abraham, 2021).

The estimates are consistent with the main estimates presented in Table 1 and Figure 5.
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Table D.11: Wildlife Trade Restrictions and Conflict Likelihood: Alternative Estimators
Dep. Var.: Conflict (0/1)
Wild Animals Wild Trees

ACLED UCDP GTD ACLED UCDP GTD
Panel A: Callaway and Sant’Anna (2021)

Habitat x Policy 0.0315**  0.0067  0.0226™* 0.0612*** 0.0153*** 0.0126***
(0.0077)  (0.0048)  (0.002)  (0.0064) (0.0022) (0.0019)

Panel B: Sun and Abraham (2021)

Habitat x Policy 0.0294*** 0.008**  0.0203"* 0.0733** 0.013*** 0.0126***
(0.0097)  (0.0038) (0.0052) (0.0091) (0.0041)  (0.004)

Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Observations 575,892 1,126,720 1,673,984 575,892 1,126,720 1,673,984
Dep. Var. Mean 0.0757 0.0302 0.0173 0.0757 0.0302 0.0173
Dep. Var. SD 0.2645 0.1712 0.1306 0.2645 0.1712 0.1306

Notes: The table reports LPM estimates using the Callaway and Sant’Anna (2021) and Sun and Abraham (2021)
difference-in-differences estimators. Each observation corresponds to a cell-year. The variable Habitat is an indicator
measuring the suitability of cell k for wildlife species w, and Policy indicates the timing of CITES trade restrictions
imposed on wildlife w at time ¢. The dependent variable is a binary indicator for conflict incidence, equal to one if at
least one conflict event occurs in a given cell and year, based on the conflict datasets referenced in the column title.
Coefficients are reported with bootstrapped standard errors (in parentheses). ~ significant at 10%; = significant at
5%; " significant at 1%.

Sensitivity Checks Related to the 2SLS Ivory Market Analysis

This sub-section provides three different sensitivity analyses addressing concerns regarding the exo-
geneity of policies in the ivory market and other potential confounders. Table D.12 shows regression
estimates of the policy shocks on the log detrended price series of ivory and other minerals. As can
be seen, the shocks have predictive power only for the ivory price series. Table D.13 reports placebo
estimates for the 2SLS ivory market analysis shown in Table 2, where I intentionally code the
policy shocks two years earlier. Reassuringly, all conflict coefficients are statistically insignificant.
Finally, Table D.14 replicates the ACLED estimates from Table 2, excluding different continental
sub-regions sequentially. This shows that the effect is not driven by a particular location, alleviating
concerns that CITES targeted the policy based on specific regional conditions.

In estimating the effect of the ivory shock on conflict, I use the price of mammoth ivory. This

is considered a close substitute for elephant ivory (Farah et al., 2015; Hauenstein et al., 2019), and
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because mammoth ivory is traded legally, its price series is both the longest (1992-2024) available
and likely the most reliable. However, Table D.15 reports estimates based on alternative ivory
price sequences. Columns 1-2 and 4-5 use the price series constructed by Sosnowski et al. (2019)
for 1990-2016 and Do et al. (2021) for 1985-2013, both derived from confiscation data, whereas
columns 3 and 6 use prices obtained from art and antique auction websites for 2012-2021. All
coefficients are positive and statistically significant, consistent with the main estimates in Table 2.
Table D.16 presents a sufficient-statistics test in which both the policy vector and the price series
are used to explain conflict incidence, showing that the policy vector has no effect on conflicts once

prices are controlled for.

Table D.12: Placebo Estimates for Elephant Ivory Policy Shocks and Mineral Prices
Dep. Var.: Detrended Log Price
(1) 2) ®3) (4) () (6) (M) ®) ) (10) (11)

Ivory Gold Silver  Copper Platinum  Iron Lead Nickel Tin Zinc  Aluminum

Tvory Policy Shocks 0.7702** 0.1398  0.0900 0.1299 —0.1358 —0.2189 0.1113 —0.2588 0.2805 0.0275  —0.2041
(0.3500) (0.3652) (0.3926) (0.4582) (0.4189) (0.4443) (0.4579) (0.4064) (0.4018) (0.3819) (0.3268)

Observations 26 54 54 54 54 54 54 54 54 54 54

Note: The table reports placebo OLS estimates for the effect of supply-side policies in the ivory market on ivory prices and on the prices of other minerals. Each observation
corresponds to a year. Ivory Policy Shocks is an indicator variable for the two supply-increasing policies (1998, 1999, 2007, 2008) and the supply-decreasing shocks (2017
and 2018), with signs applied accordingly. The outcome variable is the detrended log price of the resource mentioned in the title. Coefficients are reported with standard
errors (in parentheses), which allow for infinite temporal correlation. * significant at 10%; ** significant at 5%; " significant at 1%.
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Table D.13: Placebo Estimates for Elephant Ivory Policy Shocks
and Conflict Likelihood

Dep. Var.: Conflict (0/1)

ACLED  UCDP GTD
(1) (2) (3)

Panel A: IV Estimates

Habitat X Price ~0.0012 0.0031 0.0041
(0.0078)  (0.0055)  (0.0042)

Panel B: First Stage

Habitat x Expansionary Policy = —0.4974*** —0.6478*** —0.6478"**
(0.0914) (0.0882) (0.0882)

Habitat x Contractionary Policy 0.7964***  0.7964***  0.7964***
(0.0639) (0.0639) (0.0639)

F-stat 12,054 17,945 17,945
Cell FE Y Y Y
Country-Year FE Y Y Y
Industrial Mineral Y Y Y
Dep. Var. Mean 0.0811 0.0370 0.0137
Dep. Var. SD 0.2730 0.1887 0.1163
Observations 272,600 283,504 283,504

Note: The table reports placebo 2SLS estimates for African elephants, where
policy shocks are intentionally coded two years before the actual policy dates
(1996, 1997, 2005, 2006, 2015, 2016). Each observation corresponds to a cell-
year, and the sample is restricted to Africa. Panel A reports the main 2SLS
estimates, where the variable Habitat is an indicator measuring the suitability
of cell k for African elephants, and Price denotes the log price of ivory at time
t. The estimates are based on first-stage predicted values based on equation
(3). The dependent variable is a binary indicator for conflict incidence, equal
to one if at least one conflict event occurs in a given cell-year, based on the
conflict datasets referenced in the column titles. Panel B reports the first-stage
estimates, in which policies explain the price shocks. FExpansionary Shock is
an indicator for policy-driven increases in ivory supply, while Contractionary
Shock reflects policy-induced supply reductions. Coefficients are reported with
spatially clustered standard errors (in parentheses), which allow for spatial and
temporal correlation within a 500 km radius of each cell’s centroid. " significant
at 10%; "~ significant at 5%; ~ significant at 1%.
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Table D.14: Policies, Price Shocks, and Conflict Likelihood in the Elephant Ivory Market:
2SLS with Sequential Exclusion of Subregions

Dep. Var.: ACLED Conflict (0/1)
Ezxcluded African Region

South East Centre West North
(1) (2) (3) (4) (5)
Panel A: IV Estimates
Habita—x\Pm’ce 0.0196*** 0.0203** 0.0219***  0.0192***  0.0188***

(0.0063)  (0.0083)  (0.0083)  (0.0067)  (0.0063)

Panel B: First Stage

Habitat x Expansionary Policy = —0.8291*** —0.8291*** —0.8291*** —0.8291*** —0.8291***
(0.0947) (0.1251) (0.1078) (0.1084) (0.0953)

Habitat x Contractionary Policy ~0.7663***  0.7663***  0.7663***  0.7663*"*  0.7663***
(0.1644)  (0.2172)  (0.1872)  (0.1883)  (0.1655)

F-stat 24,786 18,889 18,971 19,024 17,520
Cell FE Y Y Y Y Y
Country-Year FE Y Y Y Y Y
Dep. Var. Mean 0.0811 0.0667 0.0841 0.0759 0.0990
Dep. Var. SD 0.2729 0.2495 0.2775 0.2649 0.2987
Observations 272,475 207,650 208,550 209,125 192,600

Note: The table reports 2SLS estimates for African elephants, where I iteratively exclude the region men-
tioned in the title. Each observation corresponds to a cell-year, and the sample is restricted to Africa. Panel
A reports the main 2SLS estimates, where the variable Habitat is an indicator measuring the suitability of
cell k for African elephants, and Price denotes the log price of ivory at time ¢. The estimates are based on
first-stage predicted values based on equation (3). The dependent variable is a binary indicator for conflict
incidence, equal to one if at least one conflict event occurs in a given cell-year, based on the ACLED conflict
dataset. Panel B reports the first-stage estimates, in which policies explain the price shocks. Ezxpansionary
Shock is an indicator for policy-driven increases in ivory supply, while Contractionary Shock reflects policy-
induced supply reductions. Coefficients are reported with spatially clustered standard errors (in parentheses),
which allow for spatial and temporal correlation within a 500 km radius of each cell’s centroid. - significant
at 10%; "~ significant at 5%; ~ significant at 1%.
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Table D.15: Conflict and Ivory Price Shocks: Alternative Price Sequences

Dep. Var.: Conflict (0/1)
ACLED UCDP

Sosnowski et al. (2019) Do et al. (2021) Art and Antique Markets Sosnowski et al. (2019) Do et al. (2021) Art and Antique Markets
) (2 (3) (4) (5) (6)

Elephant Habita x Ivory Price 0.0065*** 0.0063*** 0.0093*** 0.0057** 0.0085** 0.005*
(0.0017) (0.0025) (0.004) (0.0022) (0.003) (0.003)
Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Observations 294,816 182,250 110,556 393,088 182,250 110,556
Dep. Var. Mean 0.06 0.049 0.112 0.028 0.026 0.0472
Dep. Var. SD 0.237 0.217 0.316 0.166 0.026 0.212

Notes: The table reports OLS estimates for African elephants, using alternative price sequences. Each observation
corresponds to a cell-year, and the sample is restricted to Africa. The variable Elephant Habitat is an indicator for
the suitability of cell k for African elephants, and Ivory Price denotes the log price of ivory at time ¢, based on the
source indicated in the table title. The dependent variable is a binary indicator for conflict incidence, equal to one
if at least one conflict event occurs in a given cell-year, as defined by the conflict datasets referenced in the column
titles. Coeflicients are reported with spatially clustered standard errors (in parentheses), which allow for spatial and
temporal correlation within a 500 km radius of each cell’s centroid. significant at 10%; - significant at 5%; o
significant at 1%.

Table D.16: Conflict and Ivory Price Shocks: A Sufficient Statistics Test
Dep. Var.: Conflict (0/1)
ACLED UCDP GTD
(1) (2) (3)
Elephant Habitat x Price 0.013*** 0.006*** 0.004**
(0.003)  (0.002) (0.002)
Elephant Habitat x Contractionary —0.004 —0.006 —0.001
(0.004)  (0.005) (0.002)
Elephant Habitat x Expansionary 0.009 0.009 0.007
(0.007)  (0.007)  (0.005)

Minerals 0.022**  0.001 0.004
(0.008)  (0.005) (0.004)
Cell FE Yes Yes Yes
Country—Year FE Yes Yes Yes
Observations 272,600 283,504 283,504
Dep. Var. Mean 0.081 0.037 0.014
Dep. Var. SD 0.272 0.188 0.116

Notes: OLS estimates for African elephants testing the sufficient-
statistics relationship between ivory price shocks and conflict incidence.
The regression interacts both the ivory price series and policy shock in-
dicators with Elephant Habitat, measuring cell-level suitability for ele-
phants. Expansionary indicates years of policy-driven supply increases
(1998-1999, 2007—2008), while Contractionary marks supply reductions
(2017-2018). Each observation is a cell-year; the sample is restricted to
Africa. Standard errors (in parentheses) are spatially clustered within
a 500 km radius around each cell centroid. p < 0.10, - p < 0.05,

seskok

p < 0.01.
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E Model

This section provides the complete set of derivations necessary to solve the model presented in

section 6.

E.1 Model Setup

E.1.1 Harvesting Sector and Equilibrium Aggregation

There are N countries indexed by 4, of which N,, are weak (s; = 0) and N; are strong (s; = 1). Each
country has local stock F;. Firms in weak states face a loot rate t; € [0, 1] set by the armed sector;

in strong states I assume no looting, ¢; = 0. A representative firm chooses h; > 0 to maximise:

p2
I; = p(r)hi(1 —t;) — oF, T5i0h;. (1)

The FOC implies:
hr = Fi[p(T)(l—ti) — 7'87;9]. (2)

With h! = 0 if the bracket is negative. Under high enforcement in strong states (6 > p(7)) and

an interior solution in weak states:

Fip(0)(1—t;), ifr=0, s, =0,

F; p(0), if 7=0, s; =1 (since t; = 0),
hi(si,7) = (3)
Fz‘p(l)<1—tz‘), if’]’: 1, S; :0,

0, ifr=1, s;=1 (6> p(1)).

Profits at the optimum are:

3 Fip(0)2(1—1)?, if 7 =0, 5 =0,

H*( ) %Ep(0)27 if 7= 0, s;i =1, (4)
i\8i, T) =

sEp(1)2(1—1t)% ifr=1, s =0,

0, ifr=1, s;=1.

Later, I derive the revenue-maximising loot share from the armed section: t = % for weak states,

independent of local stock, and ¢ = 0 for strong states.

Aggregation. Let F,, and F, denote sample average stocks in weak and strong states, and set

t; =t for weak states. The effective supply coefficients for before and after the ban are:

So = (1—t)NyFy + NF,, Sy = (1—1t) Ny Ey. (5)
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With linear inverse demand p(Q) = a — bQ and @ = S:p, market clearing yields regime-specific

prices and quantities:

a aS;
1+0bS;’ 1+bS;’

Combining (3) with (6) gives country-level harvest under each regime:

p(r) = Q(r) = Sr € {So, S1}- (6)

a(l —t)

77 ) if i — Y, =Y
11 b5 if s 0, 7=0
a
R ifsizl,T:O,
* 1+ bS
Wi (i) = a(ﬁ—% (7)
i " s .fi:7 :1’
1+ b5, it s 0, 7
\O, ifs;=1, 7=1.

Profits follow analogously from (4) with p(7) = a/(1 4 bS;).

Constructing unit-free indices (for welfare). Define:

S
rs = S—(l)’ gb = bSO (8)

Then the price and quantity ratios used in the planner’s rule are:

p(l) _ 1+9¢ QM _ . 1+9¢
p(0)  1+¢rs’ QO ° 1+¢rg

These objects are invariant to common rescalings of stocks and plug directly into the violence

(9)

and welfare expression.

E.1.2 Armed Sector

Environment and timing. In each weak state (s; = 0) an armed group extracts a share ¢; € [0, 1]
of the representative firm’s revenue. Taking the world price p as given, the firm’s optimal harvest

in a weak state solves the harvesting FOC (from the production block), yielding:

hi(ti) = Fip(r) (L —t;). (10)

Thus looting acts like a revenue tax that scales down supply.

Looted revenue and the optimal loot share. Given (10), the group’s looted revenue is:
Rji(ti) = tip(7) b} (t:) = Fip(r)*t:(1 —t;). (11)
Maximising (11) over ¢; € [0, 1] gives:

dei
dt;

d’Rj;
= Fp(r)"(1=2t) =0 = #; =5, —5" = —2Fp(7)* <0,
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So the optimum is interior and unique, and independent of local stock. Substituting t; back
into (11):
Fip(r)?

Ry = =5 (12)

Armed group contest. Let 7;(7) € [0, 1] denote the conflict probability in weak state i under
regime 7 € {0,1}. I model group j competing against a rival group —j, whose baseline resources
are fixed at R_j; but whose realised effectiveness is subject to a multiplicative lognormal shock,

capturing uncertainty about the rival’s true strength:
Rfjl' = Rfjl' iji, anfji NN(O,O'Q),
The contest function with exponent ¢ > 0 delivers, for any realised Z_j;:

(Ry;(1)°
(R:(1)° + (R—jiZ—ji)*

(1) =

Under the lognormal distribution, the expectation is E[iji] = exp(36%0?). 1 represent the
er-ante success probability by evaluating the rival term at its mean under the lognormal shock,
which yields a convenient constant:

ki = R E[Z0 ] = R, exp<%5202), (13)

and hence the maintained contest specification:

5 Fip(r)?\°
R, SO
mi(T) ~ E ]Z(Té) = ( 42 6> .
(Rji(T)) Ki (%) + Ry

The constant x; represents rival baseline resources and uncertainty dispersion; it is policy-

(14)

invariant and will drop out under baseline normalisation.
Unit-free normalisation. Let p(0) be the baseline price and ;9 = 7;(0). Evaluating (14) at

7 =0 yields

Fip(0)? o
- 4 Ri . 1— 50

0~ 5 = 5 .
(Fip4(0)2> TR (F p4(0)2) Tio

Let p(1) = (M)Z. Since R};(7)/R;;(0) = p(7), substitution gives the unit-free probability map:

p(0)
. _ T30 P(T)a = M :
m(n) = (1 —mio) + mio p(1)? | olr) = (p(0)> ‘ o

All dimensional objects (F;, R—j;, o) cancel; comparative statics depend only on the price ratio
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and 4.
Intensities and aggregation. Let V;(7) denote observed intensity (e.g., affected resource
cells), with a scaling factor A; > 0:
Vi(r) _ mi(7) p(1)°

V;(T) = Aiﬂ-i(T)a ‘_/iO = T = (1_7Tz'0)+77i0p(7—)6. (16>

Under symmetry across weak states (same m;p = 7o and, if using sample average intensity, so

A; = M), aggregates are N, multiples; the scaling by A cancels in ratios.

Summary. (i) The group’s FOC yields ¢; = § and R}, = EPTW. (ii) A contest function with

lognormal rival uncertainty implies the tractable contest form (14) with a policy-invariant constant
ki in (13). (iii) Normalising at the baseline produces the unit-free law (15); all dimensional constants
drop out. (iv) Intensities inherit the same unit-free scaling via (16).

E.1.3 Social Planner

Objective. An international planner chooses 7 € {0, 1} (free trade vs. ban), internalising biodiver-

sity and conflict externalities. Under symmetry across weak states, welfare loss is:

W(r) = ANQ(T)" + (1 —X) Nym(7)A, A€ (0,1), n>0. (17)

Where Q(7) = Zf\;1 hi(7) is total harvest and 7(7) is the per-weak-state average conflict

probability (under symmetry, this equals the common per-weak-state probability).3! Where:

Q1) <Q0),  =(1) > (0). (18)

A ban reduces total harvest but raises conflict in weak states.
Planner Decision rule. A ban is preferred iff W (1) < W (0):

W (1) =W (0) =AN(Q(1)" = Q(0)") + (1 — A) Ny(m(1) — x(0))A < 0. (19)

Define strictly positive changes under (18):

AQ"=Q(0)" - Q(1)" >0, AV = A(r(1) — 7(0)) > 0. (20)

Then Q(1)" — Q(0)" = —AQ", so (19) becomes:

0> AN(—=AQ") + (1 = A) Ny AV = =AN AQ" + Ny AV — AN, AV
=A(—NAQ"— Ny AV) + N, AV. (21)

Rearrange:

31The biodiversity loss is scaled by N, while conflict occurs in weak states only (scaled by N,,).
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)\(—NAQ”—NU,AV) < — Ny AV. (22)
The bracket is strictly negative, so dividing flips the inequality:

N, AV
= A" 2
A2 NAQ AN AY - (23)

This is the policy threshold: a ban is optimal if A > A\*.

Unit-free normalisation. Define the unit-free indices:

_ Q) m(T)

qr = Q(O)7 Ur = mv qo = Yo = 17 (24)
and let p(7) = (%)2. From the contest function normalisation:
6
vy = m(r) = o(7) p(0) = 1. (25)

m(0) (1 —mo) +mop(r)°
Since V(1) = A (1), then:

AQT AV VA -V(0)  w(1) - x(0)

=1- qn7 = = =uv — L.
Q(0)" ! V(0) V(0) m(0)
I obtain the unit-free threshold:
Ny (v —1 3 2
A= 7 ) ; v = & 5 PL= <p1> : (26)
N(l_q1)+Nw(”1—1) (1 —mo) + o p§ Do

Explicit unit-free terms. With linear inverse demand p(Q) = a — bQ and regime-specific

linear supply coefficients:

So = (1 = )Ny Fyy + NG Fy, Sy = (1 —t)N,Fy,

market clearing implies ) = S;p and therefore:

a a

PO) =155 PN =18

Hence the price ratio and quantity ratio are:

p(1) _ 14+ b5y Q1) _ S1 14+ bSy

p(0) 1408 BT 00) TS, 1465

Under the contest function, the violence ratio becomes:
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1+b5’0 2
1+ b5
1+bS\%
1_
( WO)J’_WO (1+551)

Substituting (27)—(28) into (26) yields a fully explicit A* in primitives (N, Ny, Ns, Fyy, Fs, t,b, T, 0, 7).

Equivalent compact form. Define:

v = (28>

i = g(l) -4 —(E)Ni)FNwwf?\ng’ ¢=bSo = b[(1— t)NyFy + N.F,].
Then:
1+¢ \%
p(l)  1+¢ _ 1+ ¢ _ (1+¢7“5>
p0)  Tters T iy T 1+¢ \%
(1—7T0)—|—7T0<1+¢TS>

and (26) follows.

E.2 Model Estimation

This section discusses the procedure used to recover the model’s parameters and to conduct the

welfare simulation, for which I restrict the sample to Africa and focus on the case of rosewood.

E.2.1 Recovery of Model Parameters

This subsection shows how all parameters used in the simulations are recovered from observables
and model-implied relationships. I proceed in four steps: (i) fix the primitives observed in the data;
(ii) compute the effective supply coefficients that summarise composition; (iii) use the two observed
regime prices to recover the demand parameters (a,b) and the key unit-free ratios; and (iv) pin
down the violence elasticity § from the observed probability change under the contest function.
Throughout, units cancel in the ratios that feed the welfare analysis.

Step 1: Inputs (observables). I take as given the sample structure, stocks, the two regime

prices and use the loot share derived from the model:
Ny =26, N,=25 F,=9827, F,=5476, t=1, po=92.33, p;=143.33,
and the conflict-probability moments from Appendix Table A.6 and Appendix Table E.4:

7(0) =0.0911,  APr=0.054.

Step 2: Effective supply (composition). Given the revenue-maximising loot share in weak
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states (t* = %), the regime-specific linear supply coefficients are:

Sy = (1 —t)N,F, = 1277.51, So = Sy + NgFy = 2646.51, S
0

Step 3: Demand recovery and unit-free ratios. With linear inverse demand p(Q) = a—bQ
for 7 € {0,1}. Using the two observed prices

and @ = S;p, market clearing implies p(7) = T +ab A
(p(0),p(1)) and the two S’s, I obtain:

__pM=p0)  _ 0= _
b= (05 —p(15r — 0.0008, = p(0)(1+ bSp) = 295.8014.

The price, quantity, and tightness ratios used later are:

1) 1+4b 1 1+b
p) _ 1+ 50:1.5524, Q) _ i 50:0.7494, ¢ = bSy = 2.2037.

p(0) ~ 1405, Q) ~ ¥ 1¥S,

Interpretation: % is the endogenous price change across regimes; % = q; is the propor-
tional fall in total harvest under the ban; ¢ is a convenient unit-free summary of demand tightness

at the free-trade composition.
Step 4: Violence elasticity 6. Under the baseline-normalised Tullock contest in the armed

sector, the unit-free probability ratio satisfies:
o = M0 _ P’ . (p(7)>2
m(0)  (1=m(0)) +m(0)p° p(0)

From the event study, I obtain v; = 1+ A Pr /m(0). Solving the contest function expression for ¢

gives:
(20O
p5 _ v1(1 —7(0)) . s 1 —wv7(0)
1 —wv7(0) Inp

Numerically, with:

p(1) 9 0.054

——< =1.5524 = (1.5524)" = 2.4098 =1 =1.59

p(0) o= (1552) T Goot ’
I obtain:

0 ~ 0.599 .

Summary of Model Parameter Recovery. Table E.1 reports the parameters used in the
model. NV, and Ny are the numbers of weak and strong states in the sample (below/above median
state capacity). F,, and Fy are sample-average stocks; in all welfare objects they enter only through
ratios, so common rescalings of units do not affect the results.

Looting. The armed group’s revenue-maximising choice yields t* = %, implying the weak-state
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supply wedge (1 — t*). These deliver the effective supply coefficients

So = (1 — t*)NyFy + NsF, S1 = (1= t*)NyFy,

and the unit—free composition/compression terms

TsES—O, gZ)EbS().

Demand. With linear inverse demand p(Q) = a — bQ and @ = S;p, the two observed regime
prices po (free trade) and p; (ban) identify:

y_ (L) = p(0)

~ p(0)Sy — p(1)S;’ a=p(0)(1+bSy) = p(1)(1 + bS1).

The corresponding unit-free ratios used in welfare are

p(1) 1+0Sy 1+ Q) _ 149
p(0) ~ 1408 1+ers’ Q) T T org

Violence elasticity. Conflict probability in weak states follows the unit-free contest mapping;:

x(r) _ (53)"

O 1= ao)) +(0) ()

so that with v; = 1+ A Pr /7(0) and p = (p(1)/p(0))2,

5:“<?9;§33.

Inp

Planner’s rule. The unit-free objects entering the policy rule are:

p(1) )%
(1) _ <p<o>) . Ny (v — 1)
2 = A=

Q
q = ) 9y )
L QO (1= w(0)) + (0) (28)” N (1= g{) + N (01 = 1)

where N = N, + Ng = 51 in my sample.
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Model Parameters.

Table E.1: Model Parameters

Symbol | Description Value ‘Source / Notes
Sample Structure
Ny Number of weak states 26 Below median state capacity
Ny Number of strong states 25 Above median state capacity
Forest Stocks and Prices
F, Forest in weak states 98.27 Sample average (units cancel in ratios)
F, Forest in strong states 54.76 Sample average (units cancel in ratios)
t Looting share in weak states 0.5 Revenue-maximising (t = 1/2)
p(0) Price under free trade 92.33 | Observed
p(1) Price under ban 143.33 | Observed
Supply
So Effective supply coeff. (FT) 2646.51 | (1 — t)NyFy + NoF,
Sy Effective supply coeff. (Ban) 1277.51 | (1 —t)N,F,
rs Supply composition ratio 0.4827 | 51/Sy
Demand
a Inverse demand intercept 295.8014 | From (p(0)),p(1), So, S1) via p(1) = 1355
_ p(1) — p(0)
b Slope of inverse demand 0.0008 m
10) Unit-free demand tightness 2.2037 | bSy
Qo Quantity under FT 244,352.27 | Sy p(0)
Q1 Quantity under Ban 183,105.51 | S p(1)
Violence / Conflict Parameters
7(0) Baseline weak-state conflict probability | 0.0911 | From data
APr Ban-induced change in probability 0.054 From event study
U1 Probability ratio 1.59 1+ APr/7(0)
o (44505
(i Elasticity (violence wrt loot revenue) 0.599 0= I ((p(1)/p(0))?)
A Cells per weak state (intensity scale) 29.04 Resource cells
Planner Preferences

A Weight on biodiversity [0,1] Scenario variable

Convexity of biodiversity loss (0,2) Scenario variable

E.2.2 Price Elasticity of Demand

For the linear inverse demand:

p(Q) = a—0bQ,

the (Marshallian) point price elasticity of demand at a given equilibrium (p(7), Q-) (7 = 0 free

trade, 7 = 1 ban) is:

103



4@ o)
Todp Qr
Since @ = (a — p(7))/b, so dQ/dp = —1/b. In the model the market clears against a linear

supply schedule @ = S; p(7), so at the equilibrium @, = S;p(7). Therefore:

(DB

Numerical evaluation. Using the recovered values Sy = 2646.51, S7 = 1277.51, and b =
0.0008326971,

1 1
g0 = TS —0.4538 (free trade), €1 = TS —0.9400 (ban).

Interpretation. Demand is inelastic in both regimes, and becomes more elastic under the ban.

Elasticity across regimes. The midpoint elasticity between the two equilibria:

(Q1—Qo)/((Qo+Q1)/2)

T ) —p O (GO Fp)2)
E.2.3 Recovering \*
Given the unit-free threshold:
oo Mum-h QW) a()
N =)+ No (o1 = 1) Q) 7(0)

evaluating A\* at the calibrated point:
Ny =26, N =051, ¢ =0.7494, v; =1.59.
Under the normalised contest function:

20 0)’
(1 —mp) + mo (%) m(0)

V1 =

Where the equality holds by construction of § in the parameter recovery.
The conflict term is
Ny(v1 —1) =26 x (1.59 — 1) = 15.41.

For each 7, I compute the biodiversity term N(1 — ¢{) and then \*.

Intermediate quantities.
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n | 4 1-q¢f N1-gq)
0.5 ] 0.8657 0.1343 6.8504
1.0 | 0.7494 0.2506  12.7806
1.5 ] 0.6487 0.3513 17.9143
2.0 10.5616 0.4384 22.3584

Policy threshold \*.

0.6923, n=0.5,

15.4116 0.5467, n = 1.0,
N(L—gq)) +154116 | o4625, n=15,

0.4080, n = 2.0.

A (n) =

Interpretation. As 7 rises (more convex biodiversity damages), N(1 — ¢}) increases, so \*
falls: bans are optimal for a wider range of planner weights A and is more likely to happen.
Kitagawa—Oaxaca—Blinder (KOB) decomposition (price-then—quantity)

The change in profits between the free-trade and ban equilibria can be expressed as a two-step

decomposition:

ATL = [T(p(1), h(0)) — TI(p(0), ~(0))] + [TI(p(1), A(1)) — I1(p(1), h(0))] -

~~

price effect quantity effect

Compute each term in closed form:
Allprice = F(1 = 1)?p(0) [p(1) — p(0)] = F(1 = )*p(0)* [x — 1],

Allgy = 5 F(1—1)* [p(1) — p(0)]* = 3 F(1 — t)* p(0)* [x — 1]*,
ATl =1 F(1—t)*[p(1)* = p(0)*] = £ F(1 = ¢)*p(0)* [x* — 1].

Shares of the total profit change follow directly:

Price share = Arl’_r[lce =17 X’ Quantity share = Al(_l[ty = >1<+ 0
Normalizing by baseline profits I1(0) = %F(l — t)2p(0)2 gives
All 2 AIL rice ATl t
—_ = —1 p =92 —1 vy __ -1 2.
T 1) R A (1) B
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Numerical illustration (calibration)

Using the calibrated parameters from Table E.1:
Ny = 26, F, =9827 = F = N,F, = 2555.02, t=0.5, p(0) = 92.33, p(1) = 143.33,
which implies x = p(1)/p(0) ~ 1.5524. Substituting these values yields
I1(0) = $F(1 — )*p(0)* ~ 2,722,638.54.
The decomposition components are
Allpice = F(1—1)%p(0)*(x—1) ~ 3,007,788.71,  Allgy = $F(1—1)*p(0)*(x —1)* ~ 830,700.88,

and the total change
All = LF(1 —1)%p(0)2(x* — 1) ~ 3,838,489.58.

Hence, the price component accounts for
. 2 . x—1
Price share = —— =~ 0.7836, and Quantity share = =—— =~ (0.2164.
I+x 1+x

Normalizing by II(0) gives

ATl AIL 5 ATl
A 1.4098 Price - 1.1047 dty
’ I1(0) ’ 11(0)

~ 0.3051.

11(0)
In this calibration, approximately 78% of the increase in weak-state profits after the ban arises from
the rise in price, while the remaining 22% is attributable to higher quantities produced in weak

states.

E.2.5 Derivation of the Optimal Continuous Conservation Tax

This section details the mathematical steps taken to derive the optimal continuous tax rate (7*) in
the scenario where the tax revenue is not redistributed but vanishes from the economy, providing
the 7 that minimises the policymaker’s aggregate loss.3?

Reformulation of the Harvesting Firm’s Problem. To introduce the continuous percent-
age tax 7 into the market structure, I first reformulate the representative harvesting firm’s profit
maximisation problem. For a strong state (s; = 1), the loot share (¢;) is zero. The parameter 6 is
omitted as the continuous tax rate 7 now functions as the restriction cost levied as a percentage of

revenue. The firm in country 7 chooses its harvest quantity h; > 0 to maximise profit:

32The policymaker does not redistribute the revenues in order to experiment with a tax-based policy that is as
close as possible to the actual trade-ban policy.
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2

B2
(1) = p(T)hi(1 = t;) — Lg,=1 - 7 - p(T)hi — 2}%

For weak states (s; = 0), the tax term vanishes, leaving the firm’s optimal harvest A (7) reliant

on the loot rate t* = 1/2. For strong states (s; = 1), where ¢; = 0, the optimal harvest h}(7) is

derived from the first-order condition gg: =

ho(r) = Fip(1)(1 — 7)

This continuous function of 7 allows the derivation to proceed. The total supply S(7) is then
defined as the sum of optimal harvesting across all weak and strong states, which determines the
equilibrium price p(7) and the total harvest Q(7).

The Reformulated Loss Function. The necessary condition for a local minimum 7% is
established by setting the marginal loss with respect to 7 to zero. Since the tax revenue vanishes,
the Loss Function (Wyey ) is defined solely by the two social costs: Environmental Loss and the
Conflict Externality.

Whew(T) = ANQ(7)" + (1 — A) N7 (T)A
Solving the First-Order Condition. The necessary condition for a local minimum 7* is

established by setting the marginal loss with respect to 7 to zero:

AWhew(T)
dr

’T:T* =0

I differentiate Whyew(7) with respect to 7 using the chain rule:

AWhew(T) dQ(T)" B —dm(T)
Cdr AN dr (L= ANuA dr

The marginal conservation gain is —AN %, and setting the sum to zero and rearranging yields:

aQ(r)" _ . ~dm(7)
AL = (1 - AN A

Final Condition. Expanding the marginal environmental loss term and isolating the ratio of

the planner’s weights, I obtain the final condition that 7* must satisfy:

A dm(T
A N, AT

LA N eyt (-940)

is the numerical solution to this condition, balancing the marginal

The optimal tax rate 7*

conflict cost against the marginal environmental benefit at the point of optimal policy intervention.
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Table E.2: Optimal Continuous Conservation Tax Rate (7%)
Planner’s
Preference (A\) =05 n=10 n=15 n=20
(Env. Weight)

0.2 182%  23.5% 27.8% 31.1%
0.4 31.1%  35.7%  39.5%  42.6%
0.6 45.4%  48.3%  51.0%  53.6%
0.8 60.8% 61.8% 63.3% 64.9%

Notes: The table reports the optimal tax rate (7*) required to minimise the policymaker’s loss function, expressed
as a percentage of tax on the revenues of harvesting firms in strong states. Calculations are based on calibrated
parameters for the African rosewood market (A = policymaker’s environmental weight, 7 = convexity of ecological
damage).

E.2.6 Policy Rankings

Table E.3: Ranking of Feasible Policies by Planner Preferences (A) and Biodiversity Tipping Point

()

n A Free Trade Uniform Ban Targeted Ban 1 Targeted Ban 2 Optimal Policy

0.5 0.2 3rd 4th 2nd 1st Benchmark
0.5 04 3rd 4th 2nd 1st Benchmark
0.5 0.6 3rd 4th 2nd 1st Benchmark
0.5 0.8 3rd 4th 2nd 1st Benchmark
1.0 0.2 3rd 4th 2nd 1st Benchmark
1.0 0.4 3rd 4th 2nd 1st Benchmark
1.0 0.6 3rd 4th 2nd 1st Benchmark
1.0 0.8 3rd 4th 2nd 1st Benchmark
1.5 0.2 3rd 4th 2nd 1st Benchmark
1.5 04 4th 2nd 1st 3rd Benchmark
1.5 0.6 4th 2nd 1st 3rd Benchmark
1.5 0.8 4th 1st 2nd 3rd Benchmark
2.0 0.2 4th 1st 2nd 3rd Benchmark
2.0 04 4th 1st 2nd 3rd Benchmark
2.0 0.6 4th 1st 2nd 3rd Benchmark
2.0 0.8 4th 1st 2nd 3rd Benchmark

Notes: Policies are ranked from 1st (lowest welfare loss) to 4th (highest) among the feasible options. The
Optimal Policy is shown for reference as a benchmark but is assumed to be politically infeasible. Rankings vary
with the planner’s biodiversity preference (\) and the ecological damage parameter (7).
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Rosewood in Africa: Difference-in-Differences Estimates

Table E.4: Trade Restrictions and Rosewood
Conflict in Africa: Difference in Differences Es-
timates

Dep. Var.: Conflict (0/1)
(1) (2) (3)

Habitat x Policy 0.127** 0.1477*** 0.054***
(0.01)  (0.0127) (0.0085)

Cell FE Y N Y
Country-Year FE N Y Y
Observations 343,952 343,952 343,952
Dep. Var. Mean  0.0788 0.0788 0.0788
Dep. Var. SD 0.269 0.269 0.269

Note: The table reports LPM estimates using a difference-
in-differences estimator of the effect of CITES trade restric-
tions on rosewood on conflict in Africa. Each observation
corresponds to a cell-year. The variable Habitat is an indi-
cator measuring the suitability of cell k for wildlife species
w, and Policy indicates the timing of CITES trade restric-
tions imposed on wildlife species w at time ¢. The dependent
variable is a binary indicator for conflict incidence, equal to
one if at least one conflict event occurs in a given cell and
year, based on the conflict datasets referenced in the col-
umn title. Coeflicients are reported with spatially clustered
standard errors (in parentheses), which allow for spatial and
temporal correlation within a 500 km radius of each cell’s
centroid. Standard errors reported in square brackets are
clustered at the country-year and cell levels, allowing for
within-country spatial correlation and infinite serial corre-
lation within a cell. ™ significant at 10%; " significant at
5%; *** significant at 1%.
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F Trees Distribution Modelling

Occurrence records for the focal tree taxa were obtained from the Global Biodiversity Information
Facility (GBIF). The raw presence-only data were filtered to remove duplicate records, entries with
georeferencing errors (e.g., invalid or imprecise coordinates), and spatial outliers, so that the retained
observations more accurately represented each species’ realised distribution. These occurrences were
then linked to pixel-level environmental covariates that characterise the ecological conditions at each
location.

To estimate potential distributions, I employed the Maximum Entropy (MaxEnt) algorithm.
MaxEnt contrasts the environmental conditions observed at presence locations with those sampled
at background points across the study region and estimates a probability distribution of maximum
entropy subject to constraints defined by the average values of the predictor variables at occurrence
sites. The predictors used in the analysis comprised climatic, topographic, edaphic, vegetation,
and accessibility variables, selected for their ecological relevance to tree growth and persistence and
after checking for multicollinearity among candidate predictors. The complete set of variables is
reported in Table F.1. Predictor variables were internally transformed into multiple feature classes
(linear, quadratic, hinge, product, and threshold), with a regularisation penalty applied to avoid
overfitting. The output is a continuous, unitless suitability surface ranging from 0 (unsuitable) to
1 (highly suitable) for each pixel.

For integration into subsequent analyses, the continuous suitability surfaces were converted into
binary presence—absence maps. Thresholding followed the minimum training presence rule: 1 first
computed

* .
= mn s@)

train

the lowest predicted suitability among all in-sample occurrence locations, where s(x) denotes the

pres

irain 1S the set of training presences. Out-of-sample pixels were

MaxEnt suitability at pixel x and D
then classified as:

1 ifs(zx) > T*

presence(z) =

0 if s(x) < T,
This rule guarantees zero omission for the training occurrences and yields inclusive maps of poten-
tial habitat suited for downstream ecological and economic integration. As robustness checks, I also
considered (i) the threshold that maximises sensitivity + specificity (Youden’s J) on held-out data
(with specificity computed against background points), and (ii) the 10th percentile of training pres-
ences. Results in the main text use the minimum training presence rule as the primary specification;

conclusions are qualitatively similar under the alternative thresholds.
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Table F.1: Environmental variables used in MaxEnt modelling

Category Variable Source Resolution
Climate Mean annual temperature WorldClim v2 1 km
Climate Temperature seasonality (standard deviation) | WorldClim v2 1 km
Climate Maximum temperature of the warmest month | WorldClim v2 1 km
Climate Minimum temperature of the coldest month | WorldClim v2 1 km
Climate Annual precipitation WorldClim v2 1 km
Climate Precipitation seasonality (coefficient of varia- | WorldClim v2 1 km
tion)
Topography Elevation Geodata 90 m
Topography Slope Geodata 90 m
Topography Aspect Geodata 90 m
Topography Terrain ruggedness index Geodata 90 m
Soils Soil type Geodata 250 m
Soils Soil texture (sand, silt, clay fractions) Geodata 250 m
Soils Soil pH Geodata 250 m
Soils Soil organic carbon Geodata 250 m
Land cover Land cover class (forest, cropland, grassland, | MODIS 500 m
etc.)
Vegetation Normalised Difference Vegetation Index | MODIS 250 m
(NDVI)
Vegetation Enhanced Vegetation Index (EVI) MODIS 250 m
Accessibility Distance to rivers Geodata 500 m
Accessibility Distance to roads and settlements Geodata 500 m
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Table F.2: Wildlife Trade Restrictions and Conflict Likelihood: Constant Sample Size

Dep. Var.: Conflict (0/1)

Animals Trees

ACLED UCDP GTD ACLED UCDP GTD

(1) (2) (3) (4) (5) (6)

Habitat x Policy 0.021** 0.01**  0.01** 0.044*** 0.011*** 0.023***
(0.006) (0.005) (0.004) (0.006) (0.003) ( 0.004)

Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Observations 294,816 294,816 294,816 294,816 294,816 294,816
Dep. Var. Mean 0.069 0.033  0.022 0.069 0.033 0.022
Dep. Var. SD 0.253 0.179  0.146 0.253 0.179 0.146

Notes: The table reports LPM estimates using the imputation difference-in-differences estimator of Borusyak et al.
(2024), where I hold the sample size constant across datasets over the period 19972020, restricted to Africa. Each
observation corresponds to a cell-year. The variable Habitat is an indicator measuring the suitability of cell k for
wildlife taxon w, and Policy indicates the timing of CITES trade restrictions imposed on wildlife taxon w at time t.
The dependent variable is a binary indicator for conflict incidence, equal to one if at least one conflict event occurs
in a given cell and year, based on the conflict datasets referenced in the column title. Coefficients are reported with
spatially clustered standard errors (in parentheses), which allow for spatial and temporal correlation within a 500
km radius of each cell’s centroid. Standard errors reported in square brackets are clustered at the country-year and
cell levels, allowing for within-country spatial correlation and infinite serial correlation within a cell. " significant at
10%; ™" significant at 5%; ~ significant at 1%.
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Table F.3: Wild Trees Trade Restrictions and Conflict Likelihood: In and Out of Sample Analysis
Dep. Var.: Conflict (0/1)
In Sample (32%) Out of Sample (68%)
ACLED UCDP GTD ACLED UCDP GTD
(1) (2) (3) (4) (5) (6)

Habitat x Policy 0.047**  0.01**  0.016** 0.029**  0.005**  0.012**
(0.01)  (0.004)  (0.006) (0.013)  (0.002)  (0.05)

Cell FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y
Observations 1,316,442 3,105,204 4,613,447 1,191,240 2,779,562 4,129,635
Dep. Var. Mean 0.076 0.030 0.017 0.076 0.030 0.017
Dep. Var. SD 0.265 0.171 0.131 0.265 0.171 0.131

Notes: The table reports LPM estimates using the imputation difference-in-differences estimator of Borusyak et al.
(2024). Each observation corresponds to a cell-year. The variable Habitat is an indicator measuring the suitability
of cell k for wildlife species w, and Policy indicates the timing of CITES trade restrictions imposed on species w
at time ¢. The dependent variable is a binary indicator for conflict incidence, equal to one if at least one conflict
event occurs in a given cell-year, based on the conflict datasets referenced in the column titles. The treatment group
in columns 1-3 is defined using in-sample observations of trees from GBIF surveys, whereas the treatment group in
columns 4-6 is defined using out-of-sample predictions of tree presence from the MaxFEnt machine-learning algorithm
described in Section F. Coefficients are reported with spatially clustered standard errors (in parentheses), allowing
for spatial and temporal correlation within a 500-km radius of each cell’s centroid. ~ significant at 10%; = significant
at 5%; " significant at 1%.
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