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Abstract

I consider games with finite pure-strategy sets and countably many players.

I present a “simple” example of such a game for which an ε-equilibrium exists

for all ε > 0, but for which a Nash equilibrium does not exist. This game is not

symmetric, which is inevitable in the following sense: under a mild condition on

the utility function—the co-finiteness condition—existence of an ε-equilibrium

for all ε > 0 in a symmetric game implies the existence of a Nash equilibrium

in that game. The co-finiteness condition is logically unrelated to continuity.
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1 Introduction

Peleg (1969) proved that a Nash equilibrium exists in a game whose player-set is of

an arbitrary cardinality, provided that all pure-strategy sets are finite and all utility

functions are continuous in a suitable sense. He also demonstrated the existence of

a game with infinitely many players, each of whom has finitely many pure strategies

(and discontinuous utility) in which a Nash equilibrium does not exist. Here is his

example:

Example (Peleg, 1969): Let N be the set of players, each player i has the set of pure

strategies {0, 1}, and each player i’s preferences over pure profiles a ∈ {0, 1}N are

given by the following utility function:

ui(a) =

 ai if
∑∞

j=1 aj <∞

−ai otherwise

The sum
∑∞

j=1 aj is finite if and only if there is a finite number of 1’s. Since each ai is

an independent random variable, the occurrence of the event {
∑∞

j=1 aj <∞} depends

on a countable sequence of independent random variables; since it is invariant to the

realization of any finite number of them, it is a tail event. Kolmogorov’s 0-1 Law

(henceforth, the 0-1 Law) states that the probability of a tail event is either zero or

one.1 It follows from the 0-1 Law that this game does not have a Nash equilibrium.

To see this, let p denote the probability of {
∑∞

j=1 aj <∞} in a putative equilibrium.

If p = 1 then the unique best-response of each player is to play 1, which implies p = 0.

If, on the other hand, p = 0, then each player’s unique best-response is to play 0,

which implies p = 1.2

Peleg’s example is strong, in the following senses. First, in the game it describes,

1See Billingsley (1995).
2The connection between tail events and equilibrium non-existence is profound, and goes beyond

the scope of this particular example. See Voorneveld (2010).
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not only a Nash equilibrium fails to exist, even an ε-equilibrium (Radner (1980)) does

not exist, for all sufficiently small ε > 0. Secondly, the associated non-existence proof

is not elementary, in the sense that it relies on a “high power” mathematical tool.

This gives rise to the following questions:

1. Is there an example of a game with finite pure-strategy sets and no equilibrium,

for which the non-existence proof is elementary?

2. What is the relation between the existence/non-existence of ε-equilibrium and

Nash equilibrium in such games?

I answer the first question positively by describing a game with countably many

players and finite pure-strategy sets, in which no equilibrium exists, and where non-

existence follows from direct inspection of the players’ strategic considerations. In

this game, precisely one player has a discontinuous utility function; for any other

player, the utility function is not only continuous, but, moreover, depends only on

the actions of finitely many other players. In this game an ε-equilibrium exists for

any ε > 0, which addresses the second question: existence of an ε-equilibrium for all

ε > 0 does not guarantee the existence of a Nash equilibrium in such games.

In my game, just as in Peleg’s, all pure strategy sets are {0, 1}. However, an

important difference between the two games is that in Peleg’s game the utility of

each player i is invariant to any permutation on the actions of players j 6= i, while

in my game this is not the case. Call a game with a common strategy set and the

aforementioned invariance property a symmetric game. The lack of symmetry in

my game is “almost” inevitable: I prove that if a symmetric game satisfies a mild

condition called the co-finiteness condition, and if this game has an ε-equilibrium for

all ε > 0, then it also has a Nash equilibrium. This result does not rely on continuity,

as the co-finiteness condition is logically unrelated to continuity.

Section 2 describes the model and Section 3 contains the results.
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2 Model

A game in normal-form is a tuple G = [N, (Ai)i∈N , (ui)i∈N ], where N 6= ∅ is the set of

players, Ai is the set of player i’s pure strategies (or actions), and ui : Πi∈NAi → R is

i’s utility function, defined on pure action profiles. A mixed strategy for i, generically

denoted by αi, is a probability distribution over Ai.

In this paper I consider games such that:

1. N is infinite and countable,

2. Ai is finite for all i ∈ N .

In the sequel, a game means a tuple G = [N, (Ai)i∈N , (ui)i∈N ] that respects these two

restrictions.

A profile of mixed strategies is denoted by α and player i’s expected utility under

α is denoted by Ui(α). A Nash equilibrium is a profile α such that the following holds

for each i: Ui(α) ≥ Ui(α
′), where α′ is any alternative profile that satisfies α′j = αj

for all j ∈ N \ {i}. A Nash equilibrium α is pure if for each i there is an ai ∈ Ai

such that αi(ai) = 1. A profile α is an ε-equilibrium if the following holds for each

i: Ui(α) ≥ Ui(α
′) − ε, where α′ is any alternative profile that satisfies α′j = αj for

all j ∈ N \ {i}. If α is an ε-equilibrium, say that each of its components αi is an

ε-maximizer of i’s payoff (given (αj)j 6=i).

A game is symmetric if there is a set A 6= ∅ such that Ai = A for all i ∈ N and

the preferences of each player i over elements of AN are given by a two-argument

function, u(x, a), that satisfies the following: its first argument is i’s own-action, its

second argument is the profile describing the actions of players j 6= i, and, finally,

u(x, a) = u(x, b) for any own-action x and any a and b for which there is a permutation

on N \ {i}, π, such that bj = aπ(j) for all j 6= i. That is, each player i cares about

what actions his opponents are playing, but not about who is playing what action.

A Nash equilibrium α of a symmetric game is symmetric if αi = αj for all i, j ∈ N .
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3 Results

Consider the following game, G∗: the player set is N, each player i has the set of pure

strategies {0, 1}, and utilities, defined on pure profiles, are as follows. For player 1

the utility is:

u1(a) =

 −a1 if an = 1 for all n > 1

a1 otherwise

The utility for any other player n is as follows:

un(a) =

 an if al = 1 for all l < n

−an otherwise

Proposition 1. G∗ does not have a Nash equilibrium.

Proof. Assume by contradiction that α = (αi)i∈N is a Nash equilibrium. Look at

player 1. If he plays the pure action 1 (namely, if α1(1) = 1), then player 2 necessarily

plays his unique best response—the pure action 1; subsequently, it is easy to see that

every player n plays the action 1 with certainty. But in this case player 1 is not

playing a best response, in contradiction to equilibrium. If player 1 plays the pure

action 0 then player 2 necessarily plays the action 0 as well, with certainty. But this

means that player 1 is not playing a best-response. Therefore player 1 strictly mixes.

Let I be the set of players i > 1 who do not play the action 1 with certainty; that

is, I ≡ {i ∈ N : i > 1, αi(1) < 1}. Obviously I 6= ∅; otherwise, player 1 would not

mix, but play the pure action 0. Let i∗ ≡ minI. Since i∗ ∈ I, αi∗(1) < 1, and it

therefore follows that α1(1) ≤ 1
2

(α1(1) > 1
2

implies that i∗’s unique best-response is

the action 1).

Case 1: α1(1) < 1
2
. Here i∗’s unique best-response is the action 0. This means

that player 1 is not playing a best-response: he should switch to the pure action 1.

Case 2: α1(1) = 1
2
. Since i∗ plays the action 1 with probability smaller than 1 (by

the definition of the set I), it follows that the unique best-response of player j = i∗+1
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is to play the pure action 0. But this means (by the same argument from Case 1) that

player 1 is not playing a best-response: he should switch to the pure action 1.

Despite not having a Nash equilibrium, G∗ has an ε-equilibrium, for any ε > 0.

Proposition 2. G∗ has an ε-equilibrium, for any ε > 0.

Proof. Let ε > 0. Let N∗ ≡ d log0.5
log(1−ε)e. Since we are interested in small ε’s, we can

assume that N∗ > 1. Let s∗ be the strategy that plays 1 with probability 1 − ε

and play 0 with probability ε. Let each player n play strategy s∗ if n ≤ N∗ and

play the pure action 0 otherwise. It is easy to verify that the resulting profile is an

ε-equilibrium.

SinceG∗ is not a symmetric game, one may wonder whether the pathology it exhibits—

existence of approximate equilibria and non-existence of exact equilibria—is possible

if one restricts attention to symmetric games. The following result shows that under

a certain mild condition, the answer is negative: existence of ε-equilibrium for all

ε > 0 implies the existence of Nash equilibrium.

The condition is the following. Say that a symmetric game satisfies the co-

finiteness condition if for any own-action x and any two action profiles of the other

players, a and b, the following is true: if |{j : aj 6= bj}| < ∞ then u(x, a) = u(x, b).

Note that Peleg’s game satisfies this condition.

Theorem 1. Let G be a symmetric game that satisfies the co-finiteness condition. If

G has an ε-equilibrium for all ε > 0, then it also has a Nash equilibrium. Moreover,

this Nash equilibrium is pure.

Proof. Let G be a game as above. Let A be its (finite) set of pure strategies.

Given ε > 0, let α = α(ε) be an ε-equilibrium. Let Prα denote the probabil-

ity measure that α induces on AN , where N is the set of players. Given a non-

empty S ⊂ A, let E(S) be the event “each element of S is realized infinitely many
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times.” Since E(S) is a tail event, its Prα-measure is either zero or one.3 That is,

∅ 6= S ⊂ A⇒ Prα(E(S)) ∈ {0, 1}.

Claim: There is an S ⊂ A such that Prα(E(S)) = 1.

Proof of the Claim: Let {S1, · · · , SK} be the non-empty subsets of A (K = 2|A|− 1).

SinceAN = ∪Kk=1E(Sk), the falseness of the Claim implies 1 ≤
∑
∪Kk=1E(Sk)

Prα(E(S)) =

0, a contradiction.

Let X ≡ ∪{Prα(E(S))=1}S. By the Claim, X 6= ∅. The set X consists of all pure actions

that occur infinitely many times in the α-equilibrium with probability one. Suppose

that X = {x1, · · · , xL}. Let a be the following profile:

a = (x1, · · · , xL, x1, · · · , xL, · · · , x1, · · · , xL, · · · ).

Look at a particular player i. With probability one the behavior of the others is

given by a profile, b, that satisfies one of the following: (1) b is obtained from a by

a permutation, or (2) there is a finite set of coordinates, J , such that the sub-profile

(bj)j /∈J is obtained from a by a permutation.4 By symmetry and co-finiteness, every

x in the support of i’s strategy is an ε-maximizer of u(., a). Since this is true for every

player i, it follows that every x ∈ X is an ε-maximizer of u(., a). It therefore follows

that a is a pure ε-equilibrium.

Both X and a depend on ε: X = X(ε) and a = a(ε). Since A is finite there is a

sequence {ε} ↓ 0 such that a(ε) = a∗ for all ε in the sequence. It is easy to see that

a∗ is a pure Nash equilibrium.

Note that the existence proof does not rely on continuity. Moreover, continuity and co-

finiteness are logically unrelated. To see that co-finiteness does not imply continuity,

3Peleg’s example is built with reference to the set S = {1}.
4Note that (1) is a particular manifestation of (2)—the one corresponding to J = ∅.
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consider the following game, in which the set of players is N and each pure-strategies

set is {0, 1}. In this game, a player’s utility from the profile a is one if a contains

infinitely many 0’s and infinitely many 1’s, and otherwise his utility is zero. This is

a symmetric game with a discontinuous utility, in which every strategy profile is a

Nash equilibrium; it is easy to see that it satisfies the co-finiteness condition. To see

that continuity does not imply co-finiteness, consider the following game, in which

the player set is N, the pure-strategies set is {0, 1}, and the utility from the profile

a ∈ {0, 1}N equals 1
1+|{i:ai=1}| .

5

Since Theorem 1 considers equilibria of symmetric games, it is natural to ask

whether the pure equilibrium whose existence it guarantees is also a symmetric equi-

librium. As the following example shows, the answer is negative: the fact that a

symmetric game that satisfies the co-finiteness condition has a pure equilibrium does

not imply that it has a pure symmetric equilibrium.

Consider the following symmetric game, G∗∗. The player set is N, the set of pure

strategies is {0, 1}, and utility from pure profiles is as follows:

• If there are infinitely many 0’s and infinitely many 1’s, then a player’s utility is

one.

• If everybody play the same action, then a player’s utility is zero.

• If there are exactly k appearances of some action x ∈ {0, 1}, where 0 < k <∞,

then the utility of a player whose action is x is one, and otherwise it is zero.

G∗∗ satisfies the co-finiteness condition6 and it has infinitely many non-symmetric

pure Nash equilibria—every profile with infinitely many occurrences of each action is

5For example, let a and b two profiles such that aj = bj = 0 for all j /∈ {2, 3}. If (a2, a3) = (1, 0)

and (b2, b3) = (0, 1) then player 1 obtains the same utility under either a or b, while if (a2, a3) = (0, 0)

and (b2, b3) = (1, 1) then the utility from a is higher.
6This is proved in the Appendix.
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an equilibrium. Obviously, it does not have a pure symmetric equilibrium.7

The co-finiteness condition in Theorem 1 is important: the fact that a symmetric

game (that does not satisfy the co-finiteness condition) has an ε equilibrium for all

ε > 0 does not imply that it has a Nash equilibrium. The following game, G∗∗∗,

exemplifies this: its player and action sets, as in the previous examples, are N and

{0, 1} respectively, and the utility function is as follows:

ui(a) =

 ai
1+|{k:ak=1}| if

∑∞
j=1 aj <∞

−ai otherwise

Note that this utility function is obtained from that of Peleg’s game by a relatively

minor change: replacing ai by ai
1+|{k:ak=1}| . That this game does not have a Nash

equilibrium follows from precisely the same arguments as the ones from Peleg’s game.

Nevertheless, G∗∗∗ has an ε equilibrium for all ε > 0.

Proposition 3. The game G∗∗∗ has an ε equilibrium for all ε > 0.

Proof. Let ε > 0. Let m be such that 1
1+m

< ε. Consider the following (pure) strategy

profile: each player in {1, · · · ,m} plays the action 1, and every other player plays

the action 0. Obviously, each player i ≤ m is playing a best-response; each i > m

can only improve his payoff by 1
2+m

< ε via a unilateral deviation; hence, this is an ε

equilibrium.
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7It does, however, have a non-pure symmetric equilibrium: if each player plays each action with

equal probability, a symmetric equilibrium obtains, because with probability one the realized profile

has infinitely many occurrences of either action.
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Appendix

Claim: The game G∗∗ satisfies the co-finiteness condition.

Proof. Wlog, look at player 1. Wlog, suppose that he play the action 0. Let a be

a pure profile describing the behavior of all players i > n, for some n > 1. We will

verify that knowledge of a implies the knowledge of player 1’s payoff. If a contains

infinitely many 1’s and infinitely many 0’s, the claim is obvious. Suppose then that

there is only a single action, x, that occurs infinitely many times in a.

Case 1: x = 0. If all the coordinates of a are 0, then player 1 obtain payoff zero, no

matter what the players in K ≡ {2, · · · , n} play. He also receives zero (independent

of play in K) if a contains a finite number of 1’s.

Case 2: x = 1. If all the coordinates of a are 1, then player 1 obtains the utility

one independent of play in K. Similarly, if a contains finitely many 0’s player 1 also

receives one.
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