
Approximate Revenue Maximization with Multiple

Items∗

Sergiu Hart † Noam Nisan ‡

May 8, 2012

Abstract

Myerson’s classic result provides a full description of how a seller can maximize

revenue when selling a single item. We address the question of revenue maximiza-

tion in the simplest possible multi-item setting: two items and a single buyer who

has independently distributed values for the items, and an additive valuation. In

general, the revenue achievable from selling two independent items may be strictly

higher than the sum of the revenues obtainable by selling each of them separately.

In fact, the structure of optimal (i.e., revenue-maximizing) mechanisms for two

items even in this simple setting is not understood.

In this paper we obtain approximate revenue optimization results using two

simple auctions: that of selling the items separately, and that of selling them as a

single bundle. Our main results (which are of a “direct sum” variety, and apply

to any distributions) are as follows. Selling the items separately guarantees at

least half the revenue of the optimal auction; for identically distributed items, this

becomes at least 73% of the optimal revenue.

For the case of k > 2 items, we show that selling separately guarantees at least

a c/ log2 k fraction of the optimal revenue; for identically distributed items, the

bundling auction yields at least a c/ log k fraction of the optimal revenue.

∗First version: February 2012.
†Institute of Mathematics, Department of Economics, and Center for the Study of Rationality, He-

brew University of Jerusalem. Research partially supported by a European Research Council Advanced
Investigator grant.

‡School of Computer Science and Engineering, and Center for the Study of Rationality, Hebrew
University of Jerusalem. Research partially supported by a grant from the Israeli Science Foundation
and by a Google grant on Electronic Markets and Auctions.

1



1 Introduction

Suppose that you have one item to sell to a single buyer whose willingness to pay is

unknown to you but is distributed according to a known prior (given by a cumulative

distribution F ). If you offer to sell it for a price p then the probability that the buyer

will buy is1 1 − F (p), and your revenue will be p · (1 − F (p)). The seller will choose a

price p∗ that maximizes this expression.

This problem is exactly the classical monopolist pricing problem, but looking at it

from an auction point of view, one may ask whether there are mechanisms for selling

the item that yield a higher revenue. Such mechanisms could be indirect, could offer

different prices for different probabilities of getting the item, and perhaps others. Yet,

Myerson’s characterization of optimal auctions (Myerson [1981]) concludes that the take-

it-or-leave-it offer at the above price p∗ yields the optimal revenue among all mechanisms.

Even more, Myerson’s result also applies when there are multiple buyers, in which case

p∗ would be the reserve price in a second price auction.

Now suppose that you have two (different) items that you want to sell to a single

buyer. Furthermore, let us consider the simplest case where the buyer’s values for the

items are independently and identically distributed according to F (“i.i.d.-F” for short),

and furthermore that his valuation is additive: if the value for the first item is x and for

the second is y, then the value for the bundle – i.e., getting both items – is2 x + y. It

would seem that since the two items are completely independent from each other, then

the best we should be able to do is to sell each of them separately in the optimal way,

and thus extract exactly twice the revenue we would make from a single item. Yet this

turns out to be false.

Example: Consider the distribution taking values 1 and 2, each with probability 1/2.

Let us first look at selling a single item optimally: the seller can either choose to price it

at 1, selling always3 and getting a revenue of 1, or choose to price the item at 2, selling it

with probability 1/2, still obtaining an expected revenue of 1, and so the optimal revenue

for a single item is 1. Now consider the following mechanism for selling both items:

bundle them together, and sell the bundle for price 3. The probability that the sum of

the buyer’s values for the two items is at least 3 is 3/4, and so the revenue is 3 ·3/4 = 2.25

– larger than 2, which is obtained by selling them separately.

However, that is not always so: bundling may sometimes be worse than selling the

1Assume for simplicity that the distribution is continuous.
2Our buyer’s demand is not limited to one item (which is the case in some of the existing literature;

see below).
3Since we want to maximize revenue we can always assume without loss of generality that ties are

broken in a way that maximizes revenue; this can always be achieved by appropriate small perturbations.
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items separately. For the distribution taking values 0 and 1, each with probability 1/2,

selling the bundle can yield at most a revenue of 3/4, and this is less than twice the

single-item revenue of 1/2. In some other cases neither selling separately nor bundling

is optimal. For the distribution that takes values 0, 1 and 2, each with probability 1/3,

the unique optimal auction turns out to offer to the buyer the choice between any single

item at price 2, and the bundle of both items at a “discount” price of 3. This auction

gets revenue of 13/9 revenue, which is larger than the revenue of 4/3 obtained from

either selling the two items separately, or from selling them as a single bundle. A similar

situation happens for the uniform distribution on [0, 1], for which neither bundling nor

selling separately is optimal (Manelli and Vincent [2006]). In yet other cases the optimal

mechanism is not even deterministic and must offer lotteries for the items. This happens

in the following example from Hart and Reny [2011]4: Let F be the distribution which

takes values 1, 2 and 4, with probabilities 1/6, 1/2, 1/3, respectively. It turns out that

the unique optimal mechanism offers the buyer the choice between buying any one good

with probability 1/2 for a price of 1, and buying the bundle of both goods (surely) for a

price of 4; any deterministic mechanism has a strictly lower revenue.

So, it is not clear what optimal mechanisms for selling two items look like, and in-

deed characterizations of optimal auctions even for this simple case are not known. We

shorty describe some of the previous work on these type of issues. McAfee and McMillan

[1988] identify cases where the optimal mechanism is deterministic. However, Thanas-

soulis [2004] and Manelli and Vincent [2006] found a technical error in the paper and

exhibit counter-examples. These last two papers contain good surveys of the work within

economic theory, with more recent analysis by Fang and Norman [2006], Jehiel et al.

[2007], Hart and Reny [2010], Hart and Reny [2011], Lev [2011]. In the last few years

algorithmic work on these types of topics was carried out. One line of work (e.g. Briest

et al. [2010] and Cai et al. [2012]) shows that for discrete distributions the optimal auction

can be found by linear programming in rather general settings. This is certainly true in

our simple setting where the direct representation of the auction constraints provides a

polynomial size linear program. Thus we emphasize that the difficulty in our case is not

computational, but is rather that of characterization and understanding the results of the

explicit computations: this is certainly so for continuous distributions, but also for dis-

crete ones.5 Another line of work in computer science (Chawla et al. [2007], Chawla et al.

4Previous examples where randomization helps appear in Manelli and Vincent [2006], Manelli and
Vincent [2007] and Thanassoulis [2004], but these require interdependent distributions of values, rather
than independent and identically distributed values.

5If we limit ourselves to deterministic auctions (and discrete distributions), finding the optimal one
is easy computationally in the case of one buyer (just enumerate), in contrast to the general case of
multiple buyers with correlated values for which computational complexity difficulty has been established
by Papadimitriou and Pierrakos [2011].
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[2010a], Chawla et al. [2010b], Daskalakis and Weinberg [2011]) attempts approximating

the optimal revenue by simple mechanisms. This was done for various settings, especially

unit-demand settings and some generalizations. One conclusion from this line of work

is that for many subclasses of distributions (such as those with monotone hazard rate)

various simple mechanisms can extract a constant fraction of the expected value of the

items6. This is true in our simple setting, where for such distributions selling the items

separately provides a constant fraction of the expected value and thus of the optimal

revenue.

The current paper may be viewed as continuing this tradition of approximating the

optimal revenue with simple auctions. It may also be viewed as studying the extent

to which auctions can gain revenue by doing things that appear less “natural” (such as

pricing lotteries whose outcomes are the items; of course, the better our understanding

becomes, the more things we may consider as natural.) We study two very simple and

natural auctions that we show do give good approximations: the first simple auction is

to sell the items separately and independently, and the second simple auction is to sell all

items together as a bundle. We emphasize that our results hold for arbitrary distributions

and we do not make any assumptions (such as monotone hazard rate).7 In particular, our

approximations to the optimal revenue also hold when the expected value of the items is

arbitrarily (even infinitely) larger than the optimal revenue.

We will denote by Rev(F) ≡ Revk(F) the optimal revenue obtainable from selling,

to a single buyer (with an additive valuation), k items whose valuation is distributed

according to a (k-dimensional joint) distribution F . This revenue is well understood only

for the special case of one item (k = 1), i.e., for a one-dimensional F , in which case it is

obtained by selling at the Myerson price (i.e., Rev1(F ) = supp≥0p · (1− F (p)). The first

three theorems below relate the revenue obtainable from selling multiple independent

items optimally (which is not well understood) to the revenue obtainable by selling each

of them separately (which is well understood).

Our first and main result shows that while selling two independent items separately

need not be optimal, it is not far from optimal and always yields at least half of the optimal

revenue. We do not know of any easier proof that provides any constant approximation

bound.8

6In our setting ths is true even more generally, for instance whenever the ratio between the median
and the expectation is bounded, which happens in particular when the tail of the distribution is “thinner”
than x−α for α > 1.

7One may argue that there is no need for uniform approximation results on the ground that the seller
knows the distribution of the buyer’s valuation. However, as we have shown above, that does not help
finding the optimal auction (even for simple distributions) – whereas the approximations are always easy
and simple (as they use only optimal prices for one-dimensional distributions).

8There is an easy proof for the special case of deterministic auctions, which we leave as an exercise
to the reader. It does not seem that this type of easy proof can be extended to general auctions since it
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The joint distribution of two items distributed independently according to F1 and F2,

respectively, is denoted by F1 × F2.

Theorem 1 For every one-dimensional distributions F1 and F2,

Rev1(F1) + Rev1(F2) ≥
1

2
· Rev2(F1 × F2).

This result is quite robust and generalizes to auctions with multiple buyers, using

either the Dominant-Strategy or the Bayes-Nash notions of implementation. It also gen-

eralizes to multi-dimensional distributions, i.e., to cases of selling two collections of items,

and even to more general mechanism design settings (see Theorems 20 and 30).9 How-

ever, as we show in a companion paper Hart and Nisan [2012], such a result does not hold

when the values for the items are allowed to be correlated: there exists a joint distribution

of item values such that the revenue obtainable from each item separately is finite, but

selling the items optimally yields infinite revenue.

For the special case of two identically distributed items (one-dimensional and single

buyer), i.e., F1 = F2, we get a tighter result.

Theorem 2 For every one-dimensional distribution F ,

Rev1(F ) + Rev1(F ) ≥ e

e + 1
· Rev2(F × F ).

Thus, for two independent items, each distributed according to F , taking the optimal

Myerson price for a single item distributed according to F and offering the buyer to choose

which items to buy at that price per item (none, either one, or both), is guaranteed to

yield at least 73% of the optimal revenue for the two items. This holds for any distribution

F (and recall that, in general, we do not know what that optimal revenue is; in contrast,

the Myerson price is well-defined and immediate to determine).

There is a small gap between this bound of e/(e+1) = 0.73... and the best separation

that we have with a gap of of 0.78... (see Corollary 29). We conjecture that the latter is

in fact the tight bound.

We next consider the case of more than two items. It turns out that, as the number

of items grows, the ratio between the revenue obtainable from selling them optimally to

that obtainable by selling them separately is unbounded. In fact, we present an example

showing that the ratio may be as large as O(log k) (see Lemma 8). Our main positive

would apply also to interdependent item values in which case, as we show in a companion paper Hart and
Nisan [2012], there is no finite bound relating the two-item revenue to that of selling them separately.

9However, we have not been able to generalize these decomposition results to multiple buyers and
multiple items simultaneously.
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result for the case of multiple items is a bound on this gap in terms of the number of

items. When the k items are independent and distributed according to F1, . . . , Fk, we

write F1 × · · · × Fk for their product joint distribution.

Theorem 3 There exists a constant c > 0 such that for every integer k ≥ 2 and every

one-dimensional distributions F1, . . . , Fk,

Rev1(F1) + · · · + Rev1(Fk) ≥
c

log2 k
· Revk(F1 × · · · × Fk).

We then consider the other simple single-dimensional auction, the bundling auction,

which offers a single price for the bundle of all items.10 We ask how well it can approx-

imate the optimal revenue. We first observe that, in general, the bundling auction may

do much worse and only yield a revenue that is a factor of almost k times lower than that

of the optimal auction (see Example 15; moreover, we show in Lemma 14 that this is

tight up to a constant factor). However, when the items are independent and identically

distributed, then the bundling auction does much better. It is well known (Armstrong

[1999], Bakos and Brynjolfsson [1999]) that for every fixed distribution F , as the number

of items distributed independently according to F approaches infinity, the bundling auc-

tion approaches the optimal one (for completeness we provide a short proof in Appendix

D.) This, however, requires k to grow as F remains fixed. On the other hand, we show

that this is not true uniformly over F : for every large enough k, there are distributions

where the bundling auction on k items extracts less than 57% of the optimal revenue

(Example 19). Our main result for the bundling auction is that in this case it extracts

a logarithmic (in the number of items k) fraction of the optimal revenue. We do not

know whether the loss is in fact bounded by a constant fraction. Since the distribution of

the sum of k independent and identically distributed according to F items is the k-times

convolution F ∗ · · · ∗ F , our result is:

Theorem 4 There exists a constant c > 0 such that for every integer k ≥ 2 and every

one-dimensional distribution F ,

Rev1(F ∗ · · · ∗ F
︸ ︷︷ ︸

k

) ≥ c

log k
· Revk(F × · · · × F

︸ ︷︷ ︸

k

).

Many problems are left open. From the general point of view, the characterization

of the optimal auction is still mostly open, despite the many partial results in the cited

papers. In particular, it is open to fully characterize when selling separately is optimal;

10By Myerson’s result, this is indeed the optimal mechanism for selling the bundle.
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when the bundling auction is optimal11; or when are deterministic auctions optimal. More

specifically, regarding our approximation results, gaps remain between our lower bounds

and upper bounds.

The structure of the paper is as follows. In Section 2 we present our notations and

the preliminary setup. Section 3 studies the relations between the bundling auction and

selling separately; these relations are not only interesting in their own right, but are then

also used as part of the general analysis and provide us with most of the examples that

we have for gaps in revenue. Section 4 studies the case of two items, gives the main

decomposition theorem together with a few extensions; Section 5 gives our results for

more than two items. Several proofs are postponed to appendices. Finally, Appendix

E provides a table summarizing our bounds on the revenue gaps between the separate

auction and the optimal auction, and between the bundling auction and the optimal

auction.

2 Notation and Preliminaries

2.1 Mechanisms

A mechanism for selling k items specifies a (possibly randomized) protocol for interaction

between a seller (who has no private information and commits to the mechanism) and a

buyer who has a private valuation for the items. The outcome of the mechanism is an

allocation specifying the probability of getting each of the k items and an (expected)12

payment that the buyer gives to the seller. We will use the following notations:

• Buyer valuation: x = (x1, . . . , xk) where xi ≥ 0 denotes the value of the buyer

for getting item i.

• Allocation: q = (q1, . . . , qk) ∈ [0, 1]k, where qi = qi(x) denotes the probability

that item i is allocated to the buyer when his valuation is x (alternatively, one may

interpret qi as the fractional quantity of item i that the buyer gets).

• Seller revenue: s = s(x) denotes the expected payment13 that the seller receives

from the buyer when the buyer’s valuation is x.

11We do show that this is the case for a class of distributions that decrease not too slowly; see Theorem
28.

12We only consider risk-neutral agents.
13In the literature this is also called transfer, cost, price, revenue, and denoted by p, t, c, etc. We

hope that using the mnemonic s for the Seller’s final payoff and b for the Buyer’s final payoff will avoid
confusion.
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• Buyer utility: b = b(x) denotes the utility of the buyer when his valuation is x,

i.e., b(x) =
∑

i xiqi(x) − s(x) = x · q(x) − s(x).

We will be discussing mechanisms that are:

• IR – (Ex-post) Individually Rational: b(x) ≥ 0 for all x.

• IC – Incentive Compatible: For all x, x′:
∑

i xiqi(x)−s(x) ≥ ∑

i xiqi(x
′)−s(x′).

The IC requirement simply captures the notion that the buyer acts strategically in the

mechanism. Since we are discussing a single buyer, this is in a simple decision-theoretic

sense and in particular there is no distinction between the domainant strategy and the

Bayes-Nash implementation notions.

The following lemma gives well known and easily proven equivalent conditions for

incentive compatibility.

Lemma 5 The following three definitions are equivalent for a mechanism with b(x) =

x · q(x) − s(x) =
∑

i xiqi(x) − s(x):

1. The mechanism is IC.

2. The allocation q is weakly monotone, in the sense that for all x, x′ we have (x −
x′) · (q(x) − q(x′)) ≥ 0, and the payment to the seller satisfies x′ · (q(x) − q(x′)) ≤
s(x) − s(x′) ≤ x · (q(x) − q(x′)) for all x, x′.

3. The buyer’s utility b is a convex function of x and for all x the allocation q(x) is

a subgradient of b at x, i.e., for all x′ we have b(x′) − b(x) ≥ q(x) · (x′ − x). In

particular b is differentiable almost everywhere and there qi(x) = ∂b(x)/∂xi.

Proof. • 1 implies 2: The RHS of the second part is the IC constraint for x, the LHS is

the IC constraint for x′, and the whole second part directly implies the first part.

• 2 implies 1: Conversely, the RHS of the second part is exactly the IC constraint for

x.

• 1 implies 3: By IC, b(x) = supx′ x · q(x′) − s(x′) is a supremum of linear functions

of x and is thus convex. For the second part, b(x′) − b(x) − q(x) · (x′ − x) = x′ · q(x′) +

s(x) − s(x′) − x′ · q(x) ≥ 0, where the inequality is exactly the IC constraint for x′.

• 3 implies 1: Conversely, as in the previous line, the subgradient property at x is

exactly equivalent to the IC constraint for x′.

Note that this in particular implies that any convex function b with 0 ≤ ∂b(x)/∂xi ≤ 1

for all i defines an incentive compatible mechanism by setting qi(x) = ∂b(x)/∂xi (at non-

differentiability points take q to be an arbitrary subgradient of b) and s(x) = x·q(x)−b(x).
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When x1, . . . , xk are distributed according to the joint cumulative distribution function

F on14
R

k
+, the expected revenue of the mechanism given by b is

R(b;F) = Ex∼F(s(x)) =

∫

· · ·
∫

(
k∑

i=1

xi
∂b(x)

∂xi

− b(x)

)

dF(x1, . . . , xk).

Thus we want to maximize this expression over all convex functions b with 0 ≤
∂b(x)/∂xi ≤ 1 for all i. We can also assume

• NPT – No Positive Transfers: s(x) ≥ 0 for all x.

This is without loss of generality as any mechanism can be converted to an NPT one,

with the revenue only increasing.15 This in particular implies that b(0) = 0 without loss

of generality (as it follows from IR+NPT).

2.2 Revenue

For a cumulative distribution F on R
k
+ (for k ≥ 1), we consider the optimal revenue

obtainable from selling k items to a (single, additive) buyer whose valuation for the k

items is jointly distributed according to F :

• Rev(F) ≡ Revk(F) is the maximal revenue obtainable by any incentive compatible

and individually rational mechanism.

• SRev(F) is the maximal revenue obtainable by selling each item separately.

• BRev(F) is the maximal revenue obtainable by bundling all items together.

Thus, Rev(F) = supbR(b;F) where b ranges over all convex functions with 0 ≤
∂b(x)/∂xi ≤ 1 for all i and b(0) = 0. It will be often convenient to use random variables

rather than distributions, and thus we use Rev(X) and Rev(F) interchangeably when

the buyer’s valuation is a random variable X = (X1, . . . , Xk) with values in R
k
+ distributed

according to F . In this case we have SRev(X) = Rev(X1) + · · · + Rev(Xk) and

BRev(X) = Rev(X1 + · · · + Xk).

This paper will only deal with independently distributed item values, that is, F =

F1 ×· · ·×Fk, where Fi is the distribution of item16 i. We have17 SRev(F) = Rev(F1)+

14We write this as x = (x1, . . . , xk) ∼ F . We use F for multi-dimensional distributions and F for
one-dimensional distributions.

15For each x with s(x) < 0 redefine q(x) and s(x) as q(x′) and s(x′) for x′ that maximizes
∑

i
xiqi(x

′)−
s(x′) over those x′ with s(x′) ≥ 0.

16As these are cumulative distribution functions, we have F(x1, . . . , xk) = F1(x1) · . . . · Fk(xk).
17The formula for SRev holds without independence, with Fi the i-th marginal distribution of F .
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· · ·+Rev(Fk) and BRev(F) = Rev(F1∗· · ·∗Fk), where * denotes convolution. Our com-

panion paper Hart and Nisan [2012] studies general distributions F , i.e., interdependent

values.

For k = 1 we have Myerson’s characterization of the optimal revenue:

Rev1(X) = SRev(X) = BRev(X) = sup
p≥0

p · P(X ≥ p)

(which also equals supp≥0 p · P(X > p) = supp≥0 p · (1 − F (p))).

Note that for any k, both the separate revenue SRev and the bundling revenue BRev

require solving only one-dimensional problems; by Myerson’s characterization, the former

is given by k item prices p1, . . . , pk, and the latter by one price p̄ for all items together.

3 Warm up: Selling Separately vs. Bundling

In this section we analyze the gaps between the two simple auctions: bundling and selling

the items separately. Not only are these comparisons interesting in their own right, but

they will be used as part of our general analysis, and will also provide the largest lower

bounds we have on the approximation ratios of these two auctions relative to the optimal

revenue.

We start with a particular distribution which will turn out to be key to our analysis.

We then prove upper bounds on the bundling revenue in terms of the separate revenue,

and finally we prove upper bounds on the separate revenue in terms of the bundling

revenue.

3.1 The Equal-Revenue Distribution

We introduce the distribution which we will show is extremal in the sense of maximizing

the ratio between the bundling auction revenue and the separate auction revenue.

Let us denote by ER – the equal-revenue distribution – the distribution with density

function f(x) = x−2 for x ≥ 1; its cumulative distribution function is thus F (x) = 1−x−1

for x ≥ 1 (and for x < 1 we have f(x) = 0 and F (x) = 0). (This is also called the Pareto

distribution with parameter α = 1.) It is easy to see that, on one hand, Rev1(ER) = 1

and, moreover, this revenue is obtained by choosing any price p ≥ 1. On the other hand

its expected value is infinite: E(ER) =
∫ ∞

1
x · x−2dx = ∞. We start with a computation

of the distribution of the weighted sum of two ER distributions.
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Lemma 6 Let X1, X2 be18 i.i.d.-ER and α, β > 0. Then19

P(αX1 + βX2 ≥ z) =
αβ

z2
log

(

1 +
z2 − (α + β)z

αβ

)

+
α + β

z

for z ≥ α + β, and P(αX1 + βX2 ≥ z) = 1 for z ≤ α + β.

Proof. Let Z = αX1 + βX2. For z ≤ α + β we have P(Z ≥ z) = 1 since Xi ≥ 1. For

z > α + β we get

P(Z ≥ z) =

∫

f(x)

(

1 − F

(
z − αx

β

))

dx

=

∫ (z−β)/α

1

1

x2

β

z − αx
dx +

∫ ∞

(z−β)/α

1

x2
1 dx

=
β

z

[
α

z
log x − α

z
log

( z

α
− x

)

− 1

x

](z−β)/α

1

+
α

z − β

=
αβ

z2

(

log

(
z

β
− 1

)

+ log
( z

α
− 1

))

− αβ

z(z − β)
+

β

z
+

α

z − β

=
αβ

z2
log

(

1 +
z2 − (α + β)z

αβ

)

+
α + β

z
.

We can now calculate the revenue obtainable from bundling several independent ER

items.

Lemma 7 BRev(ER×ER) = 2.5569... , where 2.5569... = 2(w+1) with w the solution

of 20 wew = 1/e.

Remark. We will see below (Corollary 29) that bundling is optimal here, and so 2.5569...

is in fact the optimal revenue for two i.i.d.-ER items.

Proof. Using Lemma 6 with α = β = 1 yields p · P(X1 + X2 ≥ p) = p−1 log(1 + p2 −
2p) + 2 = 2p−1 log(p − 1) + 2, which attains its maximum of 2w + 2 at p = 1 + 1/w.

Lemma 8 There exist constants c1, c2 > 0 such that for all k ≥ 2,

c1k log k ≤ BRev(ER×k) ≤ c2k log k.

18For a one-dimensional distribution F , “i.i.d.-F” refers to a collection of independent random variables
each distributed according to F .

19log denotes natural logarithm.
20Thus w = W (1/e) where W is the so-called “Lambert-W” function.
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In particular, this shows that selling separately may yield, as k increases, an arbitrarily

small proportion of the optimal revenue: Rev(ER×k) ≥ BRev(ER×k) ≥ c1k log k =

c1 log k · SRev(ER×k).

Proof. Let X be a random variable with distribution ER; for M ≥ 1 let XM :=

min{X,M} be X truncated at M . It is immediate to compute E(XM) = log M + 1 andVar(XM) ≤ 2M .

• Lower bound : Let X1, . . . , Xk be i.i.d.-ER; for every p,M > 0 we have Rev(
∑

i Xi) ≥
p · P (

∑

i Xi ≥ p) ≥ p · P
(∑

i X
M
i ≥ p

)
.

When M = k log k and p = (k log k)/2 we get (kE(XM) − p)/
√

kVar(XM) ≥
√

log k/8, so p is at least
√

log k/8 standard deviations below the mean of
∑k

i=1 XM
i .

Therefore, by Chebyshev’s inequality, P(
∑k

i=1 XM
i ≥ p) ≥ 1 − 8/ log k ≥ 1/2 for all k

large enough, and then Rev(
∑k

i=1 Xi) ≥ p · 1/2 = k log k/4.

• Upper bound : We need to bound supp≥0 p · P(
∑k

i=1 Xi ≥ p). If p ≤ 6k log k then

p · P(
∑k

i=1 Xi ≥ p) ≤ p ≤ 6k log k.

If p ≥ 6k log k then (take M = p)

p · P
(

k∑

i=1

Xi ≥ p

)

≤ p · P
(

k∑

i=1

Xp
i ≥ p

)

+ p · P (Xi > p for some 1 ≤ i ≤ k) . (1)

The second term is at most p · k · (1 − F (p)) = k (since F (p) = 1 − 1/p). To estimate

the first term, we again use Chebyshev’s inequality. When k is large enough we have

p/(k(log p + 1)) ≤ 2 (recall that p ≥ 6k log k), and so p is at least
√

p/(8k) standard

deviations above the mean of
∑k

i=1 Xp
i . Thus p · P(

∑k
i=1 Xp

i ≥ p) ≤ p · (8k)/p = 8k, and

so p · P(
∑k

i=1 Xi ≥ p) ≤ 9k (recall (1)).

Altogether, Rev(
∑k

i=1 Xi) ≤ max{6k log k, 9k} = 6k log k for all k large enough.

Remark. A more precise analysis, based on the “Generalized Central Limit Theorem,”21

shows that BRev(ER×k)/(k log k) converges to 1 as k → ∞. Indeed, when Xi are i.i.d.-

ER, the sequence (
∑k

i=1 Xi − bk)/ak with ak = kπ/2 and bk = k log k + Θ(k) converges

in distribution to the Cauchy distribution as k → ∞. Since Rev1(Cauchy) can be shown

to be bounded (by 1/π), it follows that Rev(
∑k

i=1 Xi) = k log k + Θ(k).

3.2 Upper Bounds on the Bundling Revenue

It turns out that the equal revenue distribution exhibits the largest possible ratio between

the bundling auction and selling separately. This is a simple corollary from the fact that

the equal revenue distribution has the heaviest possible tail.

21See, e.g., Zaliapin et al. [2005].
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Let X and Y be one-dimensional random variables. We say that X is (first-order)

stochastically dominated by Y if for every real p we have P(X ≥ p) ≤ P(Y ≥ p). Thus,

Y gets higher values than X.

Lemma 9 If a one-dimensional X is stochastically dominated by a one-dimensional Y

then Rev1(X) ≤ Rev1(Y ).

Proof. Rev(X) = supp p · P(X ≥ p) ≤ supp p · P(Y ≥ p) = Rev(Y ) (by Myerson’s

characterization).

It should be noted that this monotonicity of the revenue with respect to stochastic

dominance does not hold when there are two or more items Hart and Reny [2011].

Lemma 10 For every one-dimensional X and every r > 0: Rev1(X) ≤ r if and only if

X is stochastically dominated by22 r · ER.

Proof. By Myerson’s characterization, Rev(X) ≤ r if and only if for every p we have

P(X ≥ p) ≤ r/p ; but r/p is precisely the probability that r · ER is at least p.

We will thus need to consider sums of “scaled” versions of ER, i.e., linear combinations

of independent ER random variables. What we will see next is that equalizing the scaling

factors yields stochastic domination.

Lemma 11 Let X1, X2 be i.i.d.-ER and let α, β, a′, β′ > 0 satisfy α + β = α′ + β′. If 23

αβ ≤ α′β′ then αX1 + βX2 is stochastically dominated by α′X1 + β′X2.

Proof. Let Z = αX1 + βX2 and Z ′ = α′X1 + β′X2, and put γ = α + β = α′ + β′. Using

Lemma 6, for z ≤ γ we have P(Z ≥ z) = P(Z ′ ≥ z) = 1, and for z > γ we get

P(Z ≥ z) =
αβ

z2
log

(

1 +
z2 − γz

αβ

)

+
γ

z

≤ α′β′

z2
log

(

1 +
z2 − γz

α′β′

)

+
γ

z
= P(Z ′ ≥ z),

since t log(1 + 1/t) is increasing in t for t > 0, and αβ/(z2 − γz) ≤ α′β′/(z2 − γz) by our

assumption that αβ ≤ α′β′ together with z > γ.

We note the following useful fact: if for every i, Xi is stochastically dominated by Yi,

then X1 + · · · + Xk is stochastically dominated by24 Y1 + · · · + Yk.

22We slightly abuse the notation and write r · ER for a random variable r · Y when Y is distributed
according to ER.

23Equivalently, |α − β| ≥ |α′ − β′|.
24Think of all the random variables being defined on the same probability space and satisfying Xi ≤ Yi

pointwise (which can be obtained by the so-called “coupling” construction), and then
∑

Xi ≤
∑

Yi is
immediate.
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Corollary 12 Let Xi be i.i.d.-ER and αi > 0. Then
∑k

i=1 αiXi is stochastically domi-

nated by
∑k

i=1 ᾱXi, where ᾱ = (
∑k

i=1 αi)/k.

Proof. If, say, α1 < ᾱ < α2, then the previous lemma implies that α1X1 + α2X2 is

stochastically dominated by ᾱX1 + α′
2X2 ,where α′

2 = α1 + α2 − ᾱ, and so
∑k

i=1 αiXi is

stochastically dominated by ᾱX1 + α′
2X2 +

∑k
i=3 αiXi. Continue in the same way until

all coefficients become ᾱ.

We can now provide our upper bounds on the bundling revenues.

Lemma 13 (i) For every one-dimensional distributions F1, F2,

BRev(F1 × F2) ≤ 1.278... · (Rev(F1) + Rev(F2)) = 1.278... · SRev(F1 × F2),

where 1.278... = w + 1 with w the solution of wew = 1/e.

(ii) There exists a constant c > 0 such that for every k ≥ 2 and every one-dimensional

distributions F1, . . . , Fk,

BRev(F1 × · · · × Fk) ≤ c log k ·
k∑

i=1

Rev(Fi) = c log k · SRev(F1 × · · · × Fk).

Proof. Let Xi be distributed according to Fi, and denote ri = Rev(Fi), so Xi is

stochastically dominated by riYi where Yi is distributed according to ER (see Lemma

10). Assume that the Xi are independent, and also that the Yi are independent. Then

X1 + · · ·+Xk is stochastically dominated by r1Y1 + · · ·+ rkYk. By Corollary 12 the latter

is stochastically dominated by r̄Y1 + · · · + r̄Yk where r̄ = (
∑

i ri)/k = (
∑

i Rev(Fi))/k.

Therefore BRev(F1×· · ·×Fk) ≤ r̄BRev(ER×k), and the results (i) and (ii) follow from

Lemmas 7 and 8 respectively.

3.3 Lower Bounds on the Bundling Revenue

In general, the bundling revenue obtainable from items that are independently distributed

according to different distributions may be significantly smaller than the separate revenue.

Lemma 14 For every integer k ≥ 1 and every one-dimensional distributions F1, . . . , Fk,

BRev(F1 × · · · × Fk) ≥
1

k
·

k∑

i=1

Rev(Fi) =
1

k
· SRev(F1 × · · · × Fk).

Proof. For every i we have Rev(Fi) ≤ BRev(F1 × · · · × Fk), and so
∑

i Rev(Fi) ≤
k · BRev(F1 × · · · × Fk).
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This is tight:

Example 15 BRev(F1 × · · · × Fk) = (1/k + ǫ) · SRev(F1 × · · · × Fk) :

Take a large M and let Fi have support {0,M i} with P(M i) = M−i. Then Rev(F i) = 1

and so SRev(F 1×· · ·×F k) = k, while BRev(F 1×· · ·×F k) is easily seen to be at most

maxi M
i · (M−i + · · · + M−k) ≤ 1 + 1/(M − 1).

However, when the items are distributed according to identical distributions, the

bundling revenue cannot be much smaller than the separate revenue, and this is the case

that the rest of this section deals with.

Lemma 16 For every one-dimensional distribution F ,

BRev(F × F ) ≥ 4

3
· Rev(F ) =

2

3
· SRev(F × F ).

Proof. Let X be distributed according to F ; let p be the optimal Myerson price for X and

q = P(X ≥ p), so Rev(F ) = pq. If q ≤ 2/3 then the bundling auction can offer a price of

p and the probability that the bundle will be sold is at least the probability that one of

the items by itself has value p, which happens with probability 2q−q2 = q(2−q) ≥ 4q/3,

so the revenue will be at least 4q/3 · p = (4/3)Rev(F ). On the other hand, if q ≥ 2/3

then the bundling auction can offer price 2p, and the probability that it will be accepted

is at least the probability that both items will get value of at least p, i.e. q2. The revenue

will be 2q2p ≥ (4/3)qp = (4/3)Rev(F ).

This bound is tight:

Example 17 BRev(F × F ) = (2/3) · SRev(F × F ) :

Let F have support {0, 1} with P(1) = 2/3, then Rev(F ) = 2/3 while BRev(F × F ) =

8/9 (which is obtained both at price 1 and at price 2).25

We write F ∗k for the k-times convolution of F ; this is the distribution of the sum of

k i.i.d. random variables each distributed according to F .

Lemma 18 For every integer k ≥ 1 and every one-dimensional distribution F ,

BRev(F×k) = Rev(F ∗k) ≥ 1

4
k · Rev(F ) =

1

4
· SRev(F×k).

25It can be checked that the optimal revenue is attained here by the separate auction, i.e., Rev(F×F ) =
SRev(F × F ) = 4/3.

15



Proof. Let X be distributed according to F ; let p be the optimal Myerson price for X

and q = P(X ≥ p), so Rev(F ) = pq. We separate between two cases. If qk ≤ 1 then the

bundling auction can offer price p and, using inclusion-exclusion, the probability that it

will be taken is bounded from below by kq −
(

k
2

)
q2 ≥ kq/2 so the revenue will be at least

kqp/2 ≥ k · Rev(F )/2. If qk ≥ 1 then we can offer price p⌊qk⌋. Since the median in a

Binomial(k, q) distribution is known to be at least ⌊qk⌋, the probability that the buyer

will buy is at least 1/2. The revenue will be at least p⌊qk⌋/2 ≥ kqp/4 = k · Rev(F )/4.

We have not attempted optimizing this constant 1/4, which can be easily improved.

The largest gap that we know of is the following example where the bundling revenue is

less than 57% than that of selling the items separately, and applies to all large enough k.

We suspect that this is in fact the maximal possible gap.

Example 19 For every k large enough, a one-dimensional distribution F such that

BRev(F×k)/SRev(F×k) ≤ 0.57 :

Take a large k and consider the distribution F on {0, 1} with P(1) = c/k where c =

1.256... is the solution of 1 − e−c = 2(1 − (c + 1)e−c), so the revenue from selling a

single item is c/k. The bundling auction should clearly offer an integral price. If it

offers price 1 then the probability of selling is 1 − (1 − c/k)k ≈ 1 − e−c = 0.715...,

which is also the expected revenue. If it offers price 2 then the probability of selling is

1− (1− c/k)k − k(c/k)(1− c/k)k−1 ≈ 1− (c + 1)e−c and the revenue is twice that, again

0.715.... If it offers price 3 then the probability of selling is 1 − (1 − c/k)k − k(c/k)(1 −
c/k)k−1 −

(
k
2

)
(c/k)2(1 − c/k)k−2 ≈ 1 − (1 + c + c2/2)e−c ≈ 0.13..., and the revenue is

three times higher, which is less than 0.715. For higher integral prices t the probability

of selling is bounded from above by ct/t!, the revenue is t times that, and is even smaller.

Thus BRev(F×k)/SRev(F×k) ≈ 0.715/1.256 ≤ 0.57 for all k large enough.

4 Two Items

Our main result is an “approximate direct sum” theorem. We start with a short proof of

Theorem 1 which deals with two independent items. The arguments used in this proof

are then extended to a more general setup of two independent sets of items.

4.1 A Direct Proof of Theorem 1

In this section we provide a short and direct proof of Theorem 1 (see the Introduction),

which says that Rev(F1 × F2) ≤ 2(Rev(F1) + Rev(F2)).
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Proof of Theorem 1. Let X and Y be independent one-dimensional nonnegative

random variables. Take any IC and IR mechanism (q, s). We will split its expected

revenue into two parts, according to which one of X and Y is maximal: E(s(X,Y )) ≤
E(1X≥Y s(X,Y ))+E(1Y ≥X s(X,Y )) (the inequality since 1X=Y s(X,Y ) is counted twice;

recall that s ≥ 0 by NPT). We will show that

E(1X≥Y s(X,Y )) ≤ 2Rev(X); (2)

interchanging X and Y completes the proof.

To prove (2), for every fixed value y of Y define a mechanism (q̃, s̃) for X by q̃(x) :=

q1(x, y) and s̃(x) := s(x, y)−yq2(x, y) for every x (so the buyer’s payoff remains the same:

b̃(x) = b(x, y)). The mechanism (q̃, s̃) is IC and IR for X, since (q, s) was IC and IR for

(X,Y ) (only the IC constraints with y fixed, i.e., (x′, y) vs. (x, y), matter). Therefore

Rev(X) ≥ Rev(1X≥y X) ≥ E(1X≥y s̃(X))

≥ E(1X≥y (s(X, y) − y)) ≥ E(1X≥y s(X, y)) − Rev(X),

where we have used NPT for the one-dimensional X for the first inequality; s̃(x) =

s(x, y) − yq2(x, y) ≥ s(x, y) − y (since y ≥ 0 and q2 ≤ 1) for the third inequality; and

E(1X≥y y) = P(X ≥ y) y ≤ Rev(X) (since posting a price of y is an IC and IR mechanism

for X) for the last inequality. This holds for every value y of Y ; taking expectation over

y (recall that X is independent of Y ) yields (2).

4.2 The Main Decomposition Result

We now generalize the decomposition of the previous section to two sets of items. In this

section X is a k1-dimensional nonnegative random variable and Y is a k2-dimensional

nonnegative random variable (with k1, k2 ≥ 1). While we will assume that the vectors X

and Y are independent, we allow for arbitrary interdependence among the coordinates of

X, and the same for the coordinates of Y .

Theorem 20 (Generalization of Theorem 1) Let X and Y be multi-dimensional ran-

dom variables. If X and Y are independent then

Rev(X,Y ) ≤ 2 (Rev(X) + Rev(Y )).

The proof of this theorem is divided into a series of lemmas. The main insights are

the “Marginal Mechanism” (Lemma 21) and the “Smaller Value” (Lemma 25).
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The first attempt in bounding the revenue from two items, is to fix one of them

and look at the induced marginal mechanism on the second. Let us use the notation

Val(X) = E(
∑

i Xi) =
∑

i E(Xi), the expected total sum of values, for multi-dimensional

X’s (for one-dimensional X this is Val(X) = E(X).)

Lemma 21 (Marginal Mechanism) Let X and Y be multi-dimensional random vari-

ables (here X and Y may be dependent). Then

Rev(X,Y ) ≤ Val(Y ) + EY [Rev(X|Y )],

where (X|Y ) denotes the conditional distribution of X given Y .

Proof. Take a mechanism that obtains the optimal revenue from (X,Y ), and fix some

value of y = (y1, . . . , yk2
). The induced mechanism on the X-items, which are distributed

according to (X|Y = y), is IC and IR, but also hands out quantities of the Y items. If we

modify it so that instead of allocating yj with probability qj = qj(x, y), it pays back to

the buyer an additional money amount of qjyj, we are left with an IC and IR mechanism

for the X items. The revenue of this mechanism is that of the original mechanism

conditioned on Y = y minus the expected value of
∑

j qjyj, which is bounded from above

by
∑

j yj. Now take expectation over the values y of Y to get Ey∼Y [Rev(X|Y = y)] ≥
Rev(X,Y ) − Val(Y ).

Remark. When X and Y are independent then (X|Y = y) = X for every y and thus

Rev(X,Y ) ≤ Val(Y ) + Rev(X).

Unfortunately this does not suffice to get good bounds since it is entirely possible

for Val(Y ) to be infinite even when Rev(Y ) is finite (as happens, e.g., for the equal-

revenue distribution ER.) To effectively use the marginal mechanism lemma we will have

to carefully cut up the domain of (X,Y ), bound the value of one of the items in each

of these sub-domains, and then stitch the results together. We will use Z to denote an

arbitrary multi-dimensional nonnegative random variable, but the reader may want to

think of it as (X,Y ).

Lemma 22 (Sub-Domain Restriction) Let Z be a multi-dimensional random vari-

able and let S be a set of values of 26 Z. Then

Rev(1Z∈SZ) ≤ Rev(Z).

26If Z is a k-dimensional random variable, then S is a (measurable) subset of R
k
+. We use the notation1Z∈S for the indicator random variable which takes the value 1 when Z ∈ S and 0 otherwise.
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Proof. The optimal mechanism for 1Z∈SZ will extract at least as much from Z. This

follows directly from an optimal mechanism having No Positive Transfers (see the end of

Section 2.1).

Lemma 23 (Sub-Domain Stitching) Let Z be a multi-dimensional random variable

and let S, T be two sets of values of Z such that S ∪ T contains the support of Z. Then

Rev(1Z∈SZ) + Rev(1z∈T Z) ≥ Rev(Z).

Proof. Take the optimal mechanism for Z. Rev(Z) is the revenue extracted by this

mechanism, which is at most the sum of what is extracted on S and on T . If you

take the same mechanism and run it on the random variable 1Z∈SZ, it will extract the

same amount on S as it extracted from Z on S, and similarly for T which contains the

complement of S.

Our trick will be to choose S so that we are able to bound Val(1(X,Y )∈SY ). This will

suffice since the marginal mechanism lemma actually implies:

Lemma 24 (Marginal Mechanism on Sub-Domain) Let X and Y be multi-dimensional

random variables, and let S be a set of values of (X,Y ). If X and Y are independent

then

Rev(1(X,Y )∈S · (X,Y )) ≤ Val(1(X,Y )∈SY ) + Rev(X).

Proof. For every y let Sy = {x|(x, y) ∈ S}. Note that Rev(1(X,Y )∈S · (X,Y )) =

Rev(1(X,Y )∈SX,1(X,Y )∈SY ), and Rev(1(X,Y )∈SX|Y = y) = Rev(1X∈Sy
X). The Marginal

Mechanism Lemma 21 yields Rev(1(X,Y )∈S·(X,Y )) ≤ Val(1(X,Y )∈SY )+Ey∼Y [Rev(1X∈Sy
X)],

and by the Sub-Domain Restriction Lemma 22 we have Rev(1X∈Sy
X) ≤ Rev(X) for

every y.

In the case of two items, i.e. one-dimensional X and Y , the set of values S for which

we bound Val(1(X,Y )∈SY ) will be the set {Y ≤ X}.

Lemma 25 (Smaller Value) Let X and Y be one-dimensional random variables. If X

and Y are independent then

E(1Y ≤XY ) ≤ Rev(X).

Proof. A possible mechanism for X that yields revenue of Val(1Y ≤XY ) is the following:

choose a random y according to Y and offer this as the price. The expected revenue of

this mechanism is Ey∼Y (y · P(X ≥ y)) = Ey∼Y (E(Y 1Y ≤X |Y = y)) = E(Y 1Y ≤X), so this

is a lower bound on Rev(X).
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The proof of Theorem 1 can now be restated as follows:

Proof of Theorem 20 – one-dimensional case. Using the Sub-Domain Stitch-

ing Lemma 23, we will cut the space as follows: Rev(X,Y ) ≤ Rev(1Y ≤X(X,Y )) +

Rev(1X≤Y (X,Y )). By the Marginal Mechanism on Sub-Domain Lemma 24, the first

term is bounded by E(1Y ≤XY ) + Rev(X) ≤ 2Rev(X), where the inequality uses the

Smaller Value Lemma 25. The second term is bounded similarly.

The multi-dimensional case is almost identical. The Smaller Value Lemma 25 be-

comes:

Lemma 26 Let X and Y be multi-dimensional random variables. If X and Y are inde-

pendent then

Val(1∑

j Yj≤
∑

i Xi
Y ) ≤ BRev(X).

Proof. Apply Lemma 25 to the one-dimensional random variables
∑

i Xi and
∑

j Yj,

and recall that Rev(
∑

i Xi) = BRev(X).

From this we get a slightly stronger version of Theorem 20 for multi-dimensional

variables (which will be used in Section 5 to get bounds for any fixed number of items).

Theorem 27 Let X and Y be multi-dimensional random variables. If X and Y are

independent then

Rev(X,Y ) ≤ Rev(X) + Rev(Y ) + BRev(X) + BRev(Y ).

Proof. The proof is almost identical to that of the main theorem. We will cut the space

by Rev(X,Y ) ≤ Rev(1∑

j Yj≤
∑

i Xi
· (X,Y ))+Rev(1∑

j Yj≥
∑

i Xi
· (X,Y )), and bound the

first term by Val(1∑

j Yj+Rev(X)≤
∑

i Xi
Y ) ≤ BRev(X) + Rev(X) using Lemmas 24 and

26. The second term is bounded similarly.

Proof of Theorem 20 – multi-dimensional case. Use the previous theorem and

BRev ≤ Rev.

Remark. The decomposition of this section holds in more general setups than the

totally additive valuation of this paper (where the value to the buyer of the outcome q ∈
[0, 1]k is

∑

i qixi). Indeed, consider an abstract mechanism design problem with a set of

alternatives A, valuated by the buyer according to a function v : A → R+ (known to him,

whereas the seller only knows that the function v is drawn from a certain distribution).

If the set of alternatives A is in fact a product A = A1 × A2 with the valuation additive
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between the two sets, i.e., v(a1, a2) = v1(a1) + v2(a2), with v1 distributed according

to X and v2 acording to Y , then Theorem 20 holds as stated. The proof now uses

Val(Y ) = E(supa2∈A2
v2(a2)) (which, in our case, where A2 = [0, 1]k2 and v2(q) =

∑

j qjyj,

is indeed Val(Y ) = E(
∑

j Yj) since supq v2(q) =
∑

j yj ).

4.3 A Tighter Result for Two I.I.D. Items

For the special case of two independent and identically distributed items we have a tighter

result, namely Theorem 2 stated in the Introduction. The proof is more technical and is

relegated to Appendix A.

4.4 A Class of Distributions Where Bundling Is Optimal

For some special cases we are able to fully characterize the optimal auction for two items.

We will show that bundling is optimal for distributions whose density function decreases

fast enough; this includes the equal-revenue distribution.

Theorem 28 Let F be a one-dimensional cumulative distribution function with density

function f . Assume that there is a > 0 such that for x < a we have f(x) = 0 and for

x > a the function f(x) is differentiable and satisfies

xf ′(x) +
3

2
f(x) ≤ 0. (3)

Then bundling is optimal for two items: Rev(F × F ) = BRev(F × F ).

Theorem 28 is proved in Appendix B. Condition (3) is equivalent to
(
x3/2f(x)

)′ ≤ 0,

i.e., x3/2f(x) is nonincreasing in x (the support of F is thus either a finite interval [a,A],

or the half-line [a,∞)). When f(x) = cx−γ, (3) holds whenever γ ≥ 3/2. In particular,

ER satisfies (3); thus, by Lemma 7, we have:

Corollary 29 Rev(ER × ER) = BRev(ER × ER) = 2.5569... .

Thus SRev(ER×ER)/Rev(ER×ER) = 2/2.559... = 0.78..., which the largest gap

we have obtained between the separate auction and the optimal one.

4.5 Multiple Buyers

Up to now we dealt a single buyer, but it turns out that the main decomposition result

generalizes to the case of multiple buyers. We consider selling the two items (with a

single unit of each) to n buyers, where buyer j’s valuation for the first item is Xj, and for
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the second item is Y j (with Xj + Y j being the value for getting both). Let the auction

allocate the first item to buyer j with probability qj
1, and the second item with probability

qj
2; of course, here

∑n
j=1 qj

1 ≤ 1 and
∑n

j=1 qj
2 ≤ 1.

Unlike the simple decision-theoretic problem facing the single buyer, we now have a

multi-person game among the buyers. Thus, we consider two main notions of incentive

compatibility: dominant-strategy IC and Bayes-Nash IC. Our result below applies equally

well to both notions, and with an identical proof.

For either one of these notions, we denote by Rev[n](X,Y ) the revenue that is obtain-

able by the optimal auction. Similarly, selling the two items separately yields a maximal

revenue of SRev[n](X,Y ) = Rev[n](X) + Rev[n](Y ).

We allow the values of the different buyers for each single item to be arbitrarily

correlated; however, we assume that independence between the two items.

Theorem 30 Let X = (X1, . . . , Xn) ∈ R
n
+ be the values of the first item to the n buyers,

and let Y = (Y 1, . . . , Y n) ∈ R
n
+ be the values of the second item to the n buyers. If X

and Y are independent then

Rev
[n](X) + Rev

[n](Y ) ≥ 1

2
· Rev

[n](X,Y ),

where Rev[n] is taken throughout either with respect to dominant-strategy implementation,

or with respect to Bayes-Nash implementation.

Thus selling the two items separately yields at least half the maximal revenue, i.e.,

SRev[n](X,Y ) ≥ (1/2) · Rev[n](X,Y ).

The proof of Theorem 30 is almost identical to the proof of the Theorem 20 and

is spelled out in Appendix C (we also point out there why we could not extend it to

multiple buyers and more than 2 items). We emphasize that the proof does not use the

characterization of the optimal revenue for a single item and n buyers (just like the proof

of Theorem 20 did not use Myerson’s characterization for one buyer).

5 More Than Two Items

The multi-dimensional decomposition results of Section 4.2 can be used recursively, by

viewing k items as two sets of k/2 items each. Using Theorem 20 we can prove by

induction that Rev(F1 × · · · × Fk) ≤ k
∑k

i=1 Rev(Fi), as follows: Rev(F1 × · · · ×
Fk) ≤ 2(Rev(F1 × · · · × Fk/2) + Rev(Fk/2+1 × · · · × Fk)) ≤ 2(k/2

∑k/2
i=1 Rev(Fi) +

k/2
∑k

i=k/2+1 Rev(Fi)) = k
∑k

i=1 Rev(Fi), where the first inequality is by Theorem 20,

and the second by the induction hypothesis.
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However, using the stronger statement of Theorem 27, as well as the relations we have

shown between the bundling revenue and the separate revenue, will give us the better

bound of c log2 k (instead of k) of Theorem 3, stated in the Introduction.

Proof of Theorem 3. Assume first that k ≥ 2 is a power of 2, and we will prove by

induction that Rev(F1 × · · · ×Fk) ≤ c log2(2k)
∑k

i=1 Rev(Fi), where c is the constant of

Lemma 13. By applying Theorem 27 to (F1 × · · · × Fk/2) × (Fk/2+1 × · · · × Fk) we get

Rev(F1 × · · · × Fk) ≤ BRev(F1 × · · · × Fk/2) + BRev(Fk/2+1 × · · · × Fk)

+Rev(F1 × · · · × Fk/2) + Rev(Fk/2+1 × · · · × Fk). (4)

Using Lemma 13 on each of the BRev terms, their sum is bounded by c log k
∑k

i=1 Rev(Fi).

Using the induction hypothesis on each of the Rev terms, their sum is bounded by

c log2 k
∑k

i=1 Rev(Fi). Now log k + log2 k ≤ log2(2k), and so the coefficient of each

Rev(Fi) is at most c log2(2k) as required.

When 2m−1 < k < 2m we can pad to 2m with items that have value identically zero,

and so do not contribute anything to the revenue. This at most doubles k.

As we have seen in Example 15, the bundling auction may, in contrast, extract only

1/k fraction of the optimal revenue. This we can show is tight.

Lemma 31 There exists a constant c > 0 such that for every k ≥ 2 and every one-

dimensional distributions F1, ..., Fk,

BRev(F1 × · · · × Fk) ≥
c

k
· Rev(F1 × · · · × Fk).

Proof. For k a power of two, we use as in the previous proof the decomposition of (4)

to obtain by induction Rev(F1 × · · · × Fk) ≤ (3k − 2)BRev(F1 × · · · × Fk), where the

induction step uses the fact that the bundled revenue from a subset of the items is at

most the bundled revenue from all of them. Again, when k is not a power of 2 we can

pad to the next power of 2 with items that have value identically zero, which at most

doubles k.

However, for identically distributed items the bundling auction does much better, and

in fact we can prove a tighter result, with log k instead of k : Theorem 4, stated in the

Introduction.

Proof of Theorem 4. For k ≥ 2 a power of two we apply Theorem 27 inductively

to obtain: Rev(F×k) ≤ 2BRev(F×(k/2)) + 4BRev(F×(k/4)) + . . .+ (k/2)BRev(F×2) +

k BRev(F ) + k Rev(F ). Each of the log2 k + 1 terms in this sum is of the form
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(k/m)BRev(F×m) = (k/m)Rev(F ∗m) and is thus bounded from above, using Lemma

18 applied to the distribution F ∗m, by 4Rev(F ∗k) = 4BRev(F×k). Altogether we have

Rev(F×k) ≤ 4(log2 k + 1)BRev(F×k).

When 2m−1 < k < 2m we have Rev(F×k) ≤ Rev(F×2m

) ≤ 4(log2 2m+1)BRev(F×2m

) ≤
4(log2 k + 2) · 2 · 1.3 ·BRev(F×2m−1

) ≤ 4(log2 k + 2) · 2 · 1.3 ·BRev(F×k) (we have used

Lemma 13 with F1 = F2 = F ∗2m−1

and 1 + w ≤ 1.3).

Acknowledgments

The authors would like to thank Motty Perry and Phil Reny for introducing us to the

subject and for many useful discussions. We also acknowledge helpful suggestions of

anonymous referees.

References

Mark Armstrong. Price discrimination by a many-product firm. The Review of Economic

Studies, 66(1):151–168, 1999.

Yannis Bakos and Erik Brynjolfsson. Bundling information goods: Pricing, profits, and

efficiency. Management Science, 45(12):1613–1630, 1999.

Patrick Briest, Shuchi Chawla, Robert Kleinberg, and S. Matthew Weinberg. Pricing

randomized allocations. In SODA, pages 585–597, 2010.

Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. An algorithmic charac-

terization of multi-dimensional mechanisms. In STOC, 2012.

Shuchi Chawla, Jason D. Hartline, and Robert D. Kleinberg. Algorithmic pricing via

virtual valuations. In ACM Conference on Electronic Commerce, pages 243–251, 2007.

Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-

parameter mechanism design and sequential posted pricing. In STOC, pages 311–320,

2010a.

Shuchi Chawla, David L. Malec, and Balasubramanian Sivan. The power of ran-

domness in bayesian optimal mechanism design. In Proceedings of the 11th ACM

conference on Electronic commerce, EC ’10, pages 149–158, New York, NY, USA,

2010b. ACM. ISBN 978-1-60558-822-3. doi: 10.1145/1807342.1807366. URL

http://doi.acm.org/10.1145/1807342.1807366.

24



Constantinos Daskalakis and S. Matthew Weinberg. On optimal multi-dimensional mech-

anism design. Electronic Colloquium on Computational Complexity (ECCC), 18:170,

2011.

Hanming Fang and Peter Norman. To bundle or not to bundle. RAND Journal of

Economics, 37(4):946–963, 2006.

Sergiu Hart and Noam Nisan. Approximate revenue maximization for two items with

correlated values, 2012.

Sergiu Hart and Phil Reny. Revenue maximization in two dimensions, manuscript, 2010.

Sergiu Hart and Phil Reny. Maximizing revenue with multiple goods: Some examples,

manuscript, 2011.

Philippe Jehiel, Moritz Meyer ter Vehn, and Benny Moldovanu. Mixed bundling auctions.

Journal of Economic Theory, 134(1):494 – 512, 2007.

Omer Lev. A two-dimensional problem of revenue maximization. Journal of Mathematical

Economics, 47:718 – 727, 2011.

Alejandro M. Manelli and Daniel R. Vincent. Bundling as an optimal selling mechanism

for a multiple-good monopolist. Journal of Economic Theory, 127(1):1 – 35, 2006.

ISSN 0022-0531. doi: 10.1016/j.jet.2005.08.007.

Alejandro M. Manelli and Daniel R. Vincent. Multidimensional mechanism design: Rev-

enue maximization and the multiple-good monopoly. Journal of Economic Theory,

137:153 – 185, 2007. ISSN 0022-0531. doi: 10.1016/j.jet.2006.12.007.

R.Preston McAfee and John McMillan. Multidimensional incentive compatibility and

mechanism design. Journal of Economic Theory, 46(2):335 – 354, 1988. ISSN 0022-

0531. doi: 10.1016/0022-0531(88)90135-4.

R. B. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73,

1981.

Christos H. Papadimitriou and George Pierrakos. On optimal single-item auctions. In

STOC, pages 119–128, 2011.

John Thanassoulis. Haggling over substitutes. Journal of Economic Theory, 117(2):217

– 245, 2004. ISSN 0022-0531. doi: 10.1016/j.jet.2003.09.002.

I. V. Zaliapin, Y. Y. Kagan, and F. P. Schoenberg. Approximating the distribution of

pareto sums. Pure and Applied geophysics, 162:1187–1228, 2005.

25



Appendices

A A Tighter Bound for Two Items

In this appendix we prove Theorem 2 which is stated in the Introduction (see also Section

4.2), which says that selling two i.i.d. items separately yields at least e/(e + 1) = 0.73...

of the optimal revenue.

Proof of Theorem 2. Let X and Y be i.i.d.-F . Without loss of generality we will

restrict ourselves to symmetric mechanisms, i.e., b such that b(x, y) = b(y, x) (indeed: if

b(x, y) is optimal, then so are b̂(x, y) := b(y, x) and their average b̄(x, y) := (b(x, y) +

b̂(x, y))/2, which is symmetric). Put R := Rev(X) = Rev(Y ) = supt≥0 t · F̄ (t), where

F̄ (t) := P(X ≥ t) = limu→t+(1 − F (u)).

Define ϕ(x) := q1(x, x) = q2(x, x)(= bx(x, x)) and Φ(x) := b(x, x)/2, then Φ(x) =
∫ x

0
ϕ(t) dt (recall that b(0, 0) = 0 by IR and NPT).

We will consider the two regions X ≥ Y and Y ≥ X separately; by symmetry, the

expected revenue in the two regions is the same, and so it suffices to show that

E(s(X,Y )1X≥Y ) ≤
(

1 +
1

e

)

R.

As in Lemma 21 and Appendix 4.1, fix y and define a mechanism (q̃y, s̃y) for X by

q̃y(x) := q1(x, y) and s̃y(x) := s(x, y) − yq2(x, y) for every x (note that the buyer’s

payoff remains the same: b̃y(x) = b(x, y)). The mechanism (q̃y, s̃y) is IC and IR for X,

since (q, s) was IC and IR for (X,Y ). Now apply the mechanism (q̃y, s̃y) to the random

variable X conditional on [X ≥ y], which we write Xy for short. Since Xy ≥ y we have

b̃y(Xy) = b(Xy, y) ≥ b(y, y) = 2Φ(y) and q̃y(Xy) = q1(Xy, y) ≥ q1(y, y) = ϕ(y), and so

applying Lemma 32 below to Xy yields

E(s̃y(X)|X ≥ y) = E(s̃y(Xy)) ≤ (1 − ϕ(y))Rev(Xy) + yϕ(y) − 2Φ(y). (5)

Since P(Xy ≥ t) = P(X ≥ t)/P(X ≥ y) = F̄ (t)/F̄ (y) for all t ≥ y, we get

Rev(Xy) = sup
z≥0

z · P(Xy ≥ z) = sup
z≥y

z · F̄ (z)

F̄ (y)
≤ sup

z≥0
z · F̄ (z)

F̄ (y)
=

R

F̄ (y)
.

Multiply (5) by P(X ≥ y) = F̄ (y) to get

E(s̃y(X)1X≥y) ≤ (1 − ϕ(y))R + (yϕ(y) − 2Φ(y))F̄ (y),
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and then take expectation over Y = y :

E(s̃Y (X)1X≥Y ) ≤ RE(1 − ϕ(Y )) + E((Y ϕ(Y ) − 2Φ(Y )1X≥Y ).

Since s(x, y) = s̃y(x) + yq2(x, y) ≤ s̃y(x) + yq2(x, x) = s̃y(x) + yϕ(x) (use y ≥ 0 and the

monotonicity of q2(x, y) in y), we finally get

E(s(X,Y )1X≥Y ) = E(s̃Y (X)1X≥Y ) + E(Y φ(X)1X≥Y )

≤ R − RE(ϕ(Y )) + E(W1X≥Y ), (6)

where

W := Y ϕ(X) + Y ϕ(Y ) − 2Φ(Y ).

The expression (6) is affine in ϕ (recall that Φ(x) =
∫ x

0
ϕ(s) ds), and ϕ is a nonde-

creasing function with values in [0, 1]. The set of such functions ϕ is the closed convex hull

of the functions ϕ(x) = 1[t,∞)(x) for t ≥ 0. Therefore, in order to bound (6), it suffices

to consider these extreme functions.

When ϕ(x) = 1[t,∞)(x) we get Φ(x) = max{x − t, 0} and

W =







2Y − 2(Y − t) = 2t, if X ≥ Y ≥ t,

Y − 0 = Y, if X ≥ t > Y,

0, if t > X ≥ Y.

Thus

E(1X≥Y ) = 2tP(X ≥ Y ≥ t) + E(Y 1X≥t>Y )

= tP(X ≥ t)P(Y ≥ t) + P(X ≥ t)E(Y 1t>Y )

= P(X ≥ t)E(min{Y, t}) = F̄ (t)E(min{Y, t})

(we have used the fact that X,Y are i.i.d., and min{Y, t} = t1Y ≥t + Y 1t>Y ). Together

with E(ϕ(Y )) = P(Y ≥ t) = F̄ (t), (6) becomes

R − RF̄ (t) + F̄ (t)E(min{Y, t}) = R + F̄ (t) (E(min{Y, t}) − R) . (7)

Let r(t) denote the expression in (7). When t ≤ R we have E(min{Y, t}) ≤ R, and so

r(t) ≤ R. When t > R we have

E(min{Y, t}) =

∫ ∞

0

P(min{Y, t} ≥ u) du =

∫ t

0

P(Y ≥ u) du
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=

∫ t

0

F̄ (u) du ≤
∫ R

0

1 du +

∫ t

R

R

u
du = R + R log

(
t

R

)

,

where we have used F̄ (u) ≤ min{R/u, 1} (which follows from R = supu≥0 uF̄ (u)). There-

fore in this case

r(t) ≤ R +
R

t

(

R + R log

(
t

R

)

− R

)

= R

(

1 +
log τ

τ

)

,

where τ := t/R > 1. Since maxτ≥1 τ−1 log τ = 1/e (attained at τ = e), it follows that

r(t) ≤ (1 + 1/e)R for all t > R, and thus also for all t ≥ 0. Recalling (6) and (7)

therefore yields E(s(X,Y )1X≥Y ) ≤ (1 + 1/e)R, and so E(s(X,Y )) ≤ 2(1 + 1/e)R =

(1 + 1/e) · SRev(F × F ).

Lemma 32 Let X be a one-dimensional random variable whose support is included in

[x0,∞) for some x0 ≥ 0, and let b0 ≥ 0 and 0 ≤ q0 ≤ 1 be given. Then the maximal

revenue the seller can obtain from X subject to guaranteeing to the buyer a payoff of at

least b0 and a probability of getting the item of at least q0 (i.e., b(x) ≥ b0 and q(x) ≥ q0

for all x ≥ x0) is

(1 − q0)Rev(X) + q0x0 − b0.

Proof. A mechanism satisfying these constraints is plainly seen to correspond to a one-

dimensional convex function b with q0 ≤ b′(x) ≤ 1 and b(x0) = b0. When q0 < 1 (if

q0 = 1 the result is immediate) put b̃(x) := (b(x) − q0(x − x0) − b0)/(1 − q0), then b̃

is a convex function with 0 ≤ b̃(x) ≤ 1 and b̃(x0) = 0, and so Rev(F ) ≥ R(b̃; F ) =

(R(b; F ) − q0x0 + b0)/(1 − q0).

B When Bundling Is Optimal

In this appendix we prove Theorem 28 which is stated in Section 4.3: for two i.i.d. items,

if the one-item value distribution satisfies condition (3), then bundling is optimal.

Proof of Theorem 28. Let b correspond to a two-dimensional IC and IR mechanism;

assume without loss of generality that b is symmetric, i.e., b(x, y) = b(y, x) (cf. the proof

of Theorem 2 in Appendix A above). Thus E(s) = E(xbx + yby − b) = E(2xbx − b), and

so

R(b, F × F ) =

∫ ∞

a

∫ ∞

a

(2xbx(x, y) − b(x, y)) f(x) dx f(y) dy = sup
M>a

rM(b),

where

rM(b) :=

∫ M

a

∫ M

a

(2xbx(x, y) − b(x, y)) f(x) dx f(y) dy. (8)
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For each y we integrate by parts the 2xbx(x, y)f(x) term:

∫ M

a

2bx(x, y)xf(x) dx = [2b(x, y)xf(x)]Ma −
∫ M

a

2b(x, y) (f(x) + xf ′(x)) dx

= 2b(M, y)Mf(M) − 2b(a, y)af(a)

−
∫ M

a

2b(x, y) (f(x) + xf ′(x)) dx.

Substituting this in (8) yields

rM(b) = 2Mf(M)

∫ M

a

b(M, y)f(y) dy − 2af(a)

∫ M

a

b(a, y)f(y) dy

+2

∫ M

a

∫ M

a

b(x, y)

(

−3

2
f(x) − xf ′(x)

)

f(y) dx dy.

Define b̃(x, y) := b(x + y − a, a) = b(a, x + y − a) for every (x, y) with x, y ≥ a, then

b̃ is a convex function on [a,∞) × [a,∞) with 0 ≤ b̃x, b̃y ≤ 1, and so it corresponds to

a two-dimensional IC & IR mechanism. Moreover, since b is convex we have for every

x, y ≥ a

b(x, y) ≤ λ b(x + y − a, a) + (1 − λ) b(a, x + y − a) = b̃(x, y),

where λ = (x − a)/(x + y − 2a). Therefore replacing b with b̃ can only increase rM ,

i.e., rM(b) ≤ rM(b̃); indeed, in the first and third terms the coefficients of b(x, y) are

nonnegative (recall our assumption (3)); and in the second term, b(a, y) = b̃(a, y). Hence

R(b, F × F ) = supM rM(b) ≤ supM rM(b̃) = R(b̃, F × F ).

It only remains to observe that b̃(x, y) is a function of x + y, and so it corresponds

to a bundled mechanism. Formally, put β(t) := b̃(t − a, a), then β : [2a,∞) → R+ is a

one-dimensional convex function with 0 ≤ β′(t) ≤ 1. For all x, y ≥ a with x + y = t we

have b̃(x, y) = β(t) and xb̃x(x, y)+yb̃y(x, y)− b̃(x, y) = tβ′(t)−β(t), and so R(b̃, F ×F ) =

R(β, F ∗ F ) ≤ Rev(F ∗ F ) = BRev(F × F ).

C Multiple Buyers

We prove here Theorem 30 (see Section 4.5): selling separately two independent items to

n buyers yields at least one half of the optimal revenue.

Let Xmax = max1≤j≤n Xj and Y max = max1≤j≤n Y j be the highest values for the two

items. Define Val[n](X) = E(Xmax) and Val[n](Y ) = E(Y max) (these are the values

obtained by always allocating each item to the highest-value buyer).

We proceed along the same lines as the proof of Theorem 20 in Section 4.2. In the

lemmas below, X and Y are independent n-dimensional random variables, Z is a 2n-
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dimensional random variable (for instance, (X,Y )), and S and T are sets of values of

Z.

Lemma 33 Rev[n](X,Y ) ≤ Val[n](Y ) + Rev[n](X).

Proof. The proof is similar to the case of a single buyer (Lemma 21), except that the

amount of money we need to return to compensate for the y’s is exactly Val[n](Y ) since

if each buyer j gets qj
2 units (or probability) of the y item then we have

∑

j qj
2 ≤ 1 and

thus
∑

j qj
2y

j ≤ ymax. We emphasize that if the original mechanism for (X,Y ) was a

dominant-strategy mechanism, so will be the conditional-on-y mechanism for X; and the

same for Bayes-Nash mechanisms.

Lemma 34 Rev[n](1Z∈S · Z) ≤ Rev[n](Z).

The proof is identical to the case n = 1 (Lemma 22).

Lemma 35 If S∪T contains the support of Z then Rev[n](1Z∈S ·Z)+Rev[n](1Z∈T ·Z) ≥
Rev[n](Z).

The proof is identical to the case n = 1 (Lemma 23).

Lemma 36 Rev[n](1(X,Y )∈S · (X,Y )) ≤ Val[n](1(X,Y )∈S · Y ) + Rev[n](X).

The proof is identical to the case n = 1 (Lemma 24).

The set according to which we will cut our space will be the following one:

Lemma 37 Val[n](1Y max≤Xmax · Y ) ≤ Rev[n](X).

Proof. Here is a possible mechanism for X: choose a random y = (y1, . . . , yn) according

to Y and offer ymax as the take-it-or-leave-it price to the buyers sequentially (the first

one in lexicographic order to accept gets it). The expected revenue of this mechanism is

exactly Val[n](1Y max≤Xmax · Y ) so this is a lower bound on Rev[n](X).

We can now complete our proof.

Proof of Theorem 30. Using lemma 35 we cut the space into two parts, Rev[n](X,Y ) ≤
Rev[n](1Y max≤Xmax ·(X,Y ))+Rev[n](1Xmax≤Y max ·(X,Y )), and bound the revenue in each

one. By Lemma 36, the revenue on the first part is bounded by Val[n](1Y max≤Xmax ·Y ) +

Rev[n](X) which using Lemma 37 is bounded from above by 2Rev[n](X). The revenue

in the second part is bounded similarly by 2Rev[n](Y ).

Remark. The problem when trying to extend this method to more than 2 items is that

when Y is a set of items we do not have a “Smaller Value” counterpart to Lemma 37

(recall also Lemma 25).
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D Many I.I.D. Items

It turns out that when the items are independent and identically distributed, and their

number k tends to infinity, then the bundling revenue approaches the optimal revenue.

Even more, essentially all the buyer’s surplus can be extracted by the bundling auction.

The logic is quite simple: the law of large numbers tells us that there is almost no

uncertainty about the sum of many i.i.d. random variables, and so the seller essentially

knows this sum and may ask for it as the bundle price. For completeness we state this

result and provide a short proof, which also covers the case where the expectation E(F )

is infinite.

Theorem 38 (Armstrong [1999], Bakos and Brynjolfsson [1999]) For every one-

dimensional distribution F ,

lim
k→∞

BRev(F×k)

k
= lim

k→∞

Rev(F×k)

k
= E(F ).

Proof. We always have BRev(F×k) ≤ Rev(F×k) ≤ k E(F ) (the second inequality

follows from NPT). Let us first assume that our distribution F has finite expectation

and finite variance. In this case if we charge price (1 − ǫ)k E(F ) for the bundle then

by Chebyshev’s inequality the probability that the bundle will not be bought is at mostVar(F )/(ǫ2
E(F )

√
k), where Var(F ) is the variance of F , and this goes to zero as k

increases.

If the expectation or variance are infinite, then just consider the truncated distribution

where values above a certain M are replaced by M , which certainly has finite expectation

and variance. We can choose the finite M so as to get the expectation of the truncated

distribution as close as we desire to the original one (including as high as we desire, if

the original distribution has infinite expectation).

Despite the apparent strength of this theorem, it does not provide any approximation

guarantees for any fixed value of k. In particular, for k = 2 we have already seen an

example where the bundling auction gets only 2/3 of the revenue of selling the items

separately (Example 17), and for every large enough k we have seen an example where

the bundling auction’s revenue is less than 57% than that of selling the items separately

(Example 19); of course, as a fraction of the optimal revenue this can only be smaller.

The results of Section 4 provide approximation bounds for each fixed k.
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E Summary of Approximation Results

The table below summarizes the approximation results of this paper. The four main

results are in bold, and the arrows [→ ] and [← ] indicate that the result in that box is

a special case of the one in the next box to the right or left, respectively.

F = F1 × F2 F × F F1 × · · · × Fk F×k

∀F SRev(F)

Rev(F)
≥ 1

2

e

e + 1
≈ 0.73 Ω

(
1

log2k

)

Ω

(
1

log2 k

)

[Th 1] [Th 2] [Th 3] [← ]

∃F SRev(F)

Rev(F)
≤ 1

1 + w
≈ 0.78

1

1 + w
≈ 0.78 O

(
1

log k

)

O

(
1

log k

)

[→ ] [Co 29] [→ ] [Le 8]

∀F BRev(F)

Rev(F)
≥ 1

2
· 1

2
=

1

4

2

3
· e

e + 1
Ω

(
1

k

)

Ω

(
1

log k

)

[Th 1 + Le 14] [Th 2 + Le 16] [Le 31] [Th 4]

∃F BRev(F)

Rev(F)
≤ 1

2
+ ε

2

3

1

k
+ ε ≈ 0.57 + o(1)

[Ex 15] [Ex 17] [Ex 15] [Ex 19]
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Abstract

We consider the menu size of auctions as a measure of auction complexity and

study how it affects revenue. Our setting has a single revenue-maximizing seller

selling k ≥ 2 heterogenous items to a single buyer whose private values for the items

are drawn from a (possibly correlated) known distribution, and whose valuation for

sets of items (“bundles”) is additive over the items. We show that the revenue may

increase arbitrarily with menu size and that a bounded menu size can not ensure

any positive fraction of the optimal revenue. (For bounded valuations, we show

that a finite menu size can ensure an arbitrarily good additive approximation of

revenue.)

The menu size turns out to “nail down” the revenue properties of deterministic

auctions: their menu size may be at most exponential in the number of items and

indeed their revenue may be larger than that achievable by the simplest types of

auctions by a factor that is exponential in the number of items but no larger. In

particular our results imply an infinite separation between the revenues achievable

by deterministic and general randomized auctions even when selling two items,

answering a question left open in Briest et al. [2010].

1 Introduction

Are complex auctions better than simple ones? Myerson’s classic result (Myerson [1981])

shows that if you are aiming to maximize revenue when selling a single item, then the

∗Center for the Study of Rationality, Institute of Mathematics, and Department of Economics, He-
brew University of Jerusalem. Research partially supported by a European Research Council Advanced
Investigator grant.

†Microsoft Research and Hebrew University of Jerusalem. Research partially supported by a grant
from the Israeli Science Foundation and by a Google grant on Electronic Markets and Auctions.
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answer is “no.” The optimal auction is very simple, allocating to the highest bidder

(using either 1st or 2nd price) as long as he bids above a single deterministically chosen

reserve price.

However, when selling multiple items the situation turns out to be more complex.

There has been significant work both in the economics literature and in the computer

science literature showing that, when selling multiple items, simple auctions are no longer

optimal. Specifically, it is known that randomized auctions may yield more revenue than

deterministic ones1 and that bundling the items may yield higher (or lower) revenue than

selling each of them separately. This is true even in the very simple setting where there

is a single bidder (buyer) and where his valuation is additive over the different items.

In this paper we consider such a simple setting: a single seller, who aims to maximize

his expected revenue, is selling k heterogenous items to a single buyer whose private

values for the items are drawn from an arbitrary (possibly correlated) but known prior

distribution, and whose value for bundles is additive over the items in the bundle. Since

we are considering only a single buyer, this work may alternatively be interpreted as

dealing with monopolist pricing for multiple items.2

In a previous paper (Hart and Nisan [2012]) we considered the case where the buyer’s

values for the different items are independent, in which case we showed that simple auc-

tions are approximately optimal: Selling each item separately (deterministically) for its

Myerson price extracts a constant fraction of the optimal revenue. Specifically, for the

case of two items, it gives at least a half of the optimal revenue, and when selling k items,

at least a Ω(1/ log2 k) fraction of the optimal revenue. In this paper we start by showing

that the picture changes completely when the item valuations are correlated.

For a prior distribution F on ℜk
+, let us denote by Rev(F) the optimal revenue

achievable by an auction when selling k items to a single buyer whose values for the items

are jointly distributed according to the distribution F . We would like to compare this

revenue to the one achievable by “simple” auctions. For start let us take “deterministic”

as an “upper bound” of modeling “simple”; denote by DRev(F) the optimal revenue

achievable by any deterministic auction. We have:

Theorem A For every k ≥ 2 there exists a k-item distribution F on ℜk
+ such that

Rev(F) = ∞ and DRev(F) = 1.

Notice the contrast with the independent case for which, as mentioned above, for

1See Hart and Reny [2012] for a most simple and transparent such example, together with a discussion
of why this phenomenon can occur only when there are two or more items.

2Our main separation results obtained in the single-buyer setting apply directly also to multiple-buyer
auctions. In Appendix 4 we discuss the multiple-buyer case further.
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every k ≥ 2 there exists a fixed ck such that Rev(F) ≤ ck ·DRev(F) (for two items we

have c2 ≤ 2).

In Briest et al. [2010] a similar question was considered in a combinatorially simpler

model where the buyer has a unit demand. They gave an infinite separation for the

case k ≥ 3 and left the case k = 2 as an open problem, providing some partial results

indicating that for this case the gap may be bounded. While the models are different,

we show in Appendix 1 that the gap between our models is at most exponential in the

number of items and thus our infinite separation carries over to their model as well,

answering the open problem.

Of course, to get infinite revenue the support of F must be unbounded. However, by

truncating and then rescaling the distribution one immediately gets a similar result for

distributions with bounded support: deterministic auctions may get only an arbitrarily

small fraction of the optimal revenue.

Corollary 1.1 For every k ≥ 2 and every ε > 0 there exists a k-item distribution F on

[0, 1]k such that

DRev(F) < ε · Rev(F).

Looking at the proof of this separation as well as the earlier one in Briest et al.

[2010], one observes that having a large menu size seems to be the crucial attribute of

the high-revenue auctions: it enables the sophisticated screening between different buyer

types required for high revenue extraction. So, in the rest of this paper we focus on the

menu size as a complexity measure of auctions and study the revenue extraction

capabilities of auctions that are limited in their menu size. The menu size of an auction

is simply the number of possible outcomes of the auction, where an outcome is a vector

(q1, . . . , qk) in which qi specifies the probability of allocating item3 i. It is well known

(“the taxation principle”) that in our setting any auction can be put into the normal

form of offering a fixed menu with a fixed price for every menu item and letting the buyer

choose among these options. Notice that while deterministic auctions can have a menu

size of at most 2k − 1 (since each qi must be 0 or 1, and we are not counting (0, . . . , 0)),

randomized auctions may have either finite or infinite menu size.

For a prior distribution F on ℜk
+, we will use [m]-Rev(F) to denote the optimal

revenue achievable by an auction whose menu size is at most m (when selling k items

to a single buyer whose values for the items are distributed according to the distribution

F .) For a single item, k = 1, Myerson’s result implies that [1]-Rev(F) = Rev(F), but

this is not true for more than a single item: the revenue may increase as we allow the

menu size to increase.
3Our menu-size measure does not count the “empty” allocation (0, . . . , 0) that we assume without

loss of generality is always available, by individual rationality.
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We start by looking at the simplest auctions according to this complexity measure,

those with a single menu item. It is not difficult to verify that the optimal single-menu-

item auction is always a bundling auction that sells the whole bundle (i.e., qi = 1 for all i)

for the optimal (Myerson) bundle-price: [1]-Rev(F) = BRev(F), where BRev denotes

the optimal bundling revenue. Next, one easily observes that the revenue may increase

at most linearly in the menu size; thus

[m]-Rev(F) ≤ m · [1]-Rev(F) = m · BRev(F). (1)

Our proof of Theorem A implies that the revenue may indeed strictly increase with the

menu size. A more precise estimate is the following:4

Theorem B For every k ≥ 2 there exists a k-item distribution F on ℜk
+ with 0 <

[1]-Rev(F) < ∞ such that for all m ≥ 1,

[m]-Rev(F) ≥ Ω(m1/7) · [1]-Rev(F).

The proof constructs the distribution together with the menu of allocations: for every

menu entry it puts a mass point on a valuation that chooses that menu entry. The trick

is to have a large number of menu entries, and to extract a significant amount of revenue

from each one—while not letting the simple bundling auction, which uses a single price,

do the same.

As mentioned above, deterministic auctions on k items can have menu size of at

most 2k − 1 and thus we have DRev(F) ≤ (2k − 1) · [1]-Rev(F) while Rev(F) ≥
limm→∞[m]-Rev(F) = ∞ so this theorem actually implies Theorem A. We continue

by showing that the limited menu size—rather than not using lotteries—is the main

bottleneck of deterministic auctions. Specifically we show that the exponential-in-k upper

bound on deterministic revenue implied by menu size (see (1)),

DRev(F) ≤ [2k − 1]-Rev(F) ≤ (2k − 1) · [1]-Rev(F),

is essentially tight:

Theorem C For every k ≥ 2 there exists a k-item distribution F on [0, 1]k with 0 <

[1]-Rev(F) < ∞ such that

DRev(F) ≥ Ω

(
2k

k

)

· [1]-Rev(F).

4The increase is at a polynomial rate in m. For menu sizes that are at most exponential in the number
of items, the proof of Theorem C below actually shows that the growth can be almost linear.
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This again is in contrast to the independent case studied in Hart and Nisan [2012] for

which5 DRev(F) ≤ O(k) · [1]-Rev(F).

Extending the results of Hart and Nisan [2012] to the case of correlated valuations,

we compare the revenue of such single-menu-item auctions to that of the other type of

“simple” auctions, those that sell the items separately in completely separate auctions,

whose revenue is denoted SRev. As opposed to the previous theorems, the bounds that

we get here are the same as in the independent case and as Hart and Nisan [2012] shows

are tight. Specifically, single-menu-item auctions (i.e. bundling auctions) may raise at

most O(log k) times more revenue than selling the items separately and at least a 1/k

fraction of that: Ω(1/ log k) · [1]-Rev(F) ≤ SRev(F) ≤ k · [1]-Rev(F). The linear upper

bound on the gap holds despite the fact that, technically, the separate auction may have

exponential menu size since any subset of the items may be acquired. This suggests a more

refined complexity measure, presented in section 8, which we term “additive-menu-size,”

a measure to which all previous results extend as well.

While we have seen that auctions with bounded menu size cannot guarantee any fixed

fraction of revenue, it turns out that they can provide a good additive approximation of

revenue. For an additive approximation to make sense we need of course to normalize the

range of values, so we consider without loss of generality distributions F on [0, 1]k. As in

Corollary 1.1, this bounded domain does not matter for multiplicative approximation as

one can easily modify the distribution of Theorem B (by truncating and then rescaling)

to get, for every m ≥ 1 and ε > 0, a distribution Fm,ε on [0, 1]2 such that

[m]-Rev(Fm,ε) < ε · Rev(Fm,ε).

Yet, for additive approximation we show:

Theorem D For every k ≥ 2 and δ > 0 there is m0 = (k/δ)O(k) such that for every

k-item distribution F on [0, 1]k and every m ≥ m0,

[m]-Rev(F) ≥ Rev(F) − δ.

One may get a multiplicative version of this theorem if F ’s support is bounded both

from below and from above, that is, if the ratio between the highest and the lowest values

is bounded. In particular if F is a distribution on, say, [1, H]k then this theorem implies

that [m]-Rev(F) ≥ (1 − δ)Rev(F) whenever6 m > m0 for m0 = (kH/δ)O(k).

5If one looks at the gap between DRev(F) and the revenue obtained by selling the items separately
SRev(F), then the same exponential gap holds, a rare doubly-exponential contrast with the independent
case considered in Hart and Nisan [2012] where DRev(F) ≤ O(log2 k) · SRev(F).

6In Appendix 2, we tighten the dependence on H to be poly-logarithmic, for the case of two items.

5



Organization of the Paper

Next, in Section 2, we briefly go over related previous work; and then in Section 3 we

define our model and notations. We start in Section 4 by listing the basic properties of the

menu-size complexity measure. Next, in Section 5 we describe our basic reduction from

questions of auction revenue to combinatorial constructions and as a demonstration we

also provide a construction that implies Theorem C. The heart of the paper, which is the

combinatorial construction implying Theorems A and B, appears in Section 6. Section

7 provides positive results on approximation by simple auctions and proves Theorem

D. Finally, in section, 8, we prove the relations between the menu-size notion of simple

auctions and the separate auction, and introduce the more refined “additive menu size”

complexity measure. Several additional results are postponed to appendices. In Appendix

1, we prove the close relationship between our model and that of Briest et al. [2010]

showing why our results answer their question as well. Appendix 2 gives the tighter

multiplicative approximation when the items’ values are bounded both from below and

from above. Appendix 3 is devoted to precise comparisons between the bundling auction

and other classes of auctions, and Appendix 4 deals with multiple buyers.

2 Existing Work

Within the economics literature the issue of simple vs. complex auctions is mostly im-

plicit in the study of randomized vs. deterministic auctions. This was first studied in

McAfee and McMillan [1988] who identified sufficient conditions for the optimal mecha-

nism to be deterministic. However, Thanassoulis [2004] and Manelli and Vincent [2006]

found a technical error in the paper and exhibited counter-examples. Other examples

where randomization helps, including in the case where the values of the two items are

independent and identically distributed, are provided in Pavlov [2011] and Hart and Reny

[2012] (the latter is essentially the simplest possible such example). In general, it is still

not clear what optimal mechanisms for selling two items look like and, in particular, it is

not clear when they are deterministic. Good surveys of the work within economic theory

on such questions appear in Thanassoulis [2004] and Manelli and Vincent [2006], with

more recent work in Fang and Norman [2006], Jehiel et al. [2007], Hart and Reny [2010],

Lev [2011], Hart and Reny [2012].

This question was studied more explicitly in a line of work in computer science (Chawla

et al. [2007], Chawla et al. [2010a], Chawla et al. [2010b], Daskalakis and Weinberg [2011])

that considered approximating the optimal revenue by simple mechanisms and quantified

the amount of the loss incurred by simple mechanisms relative to the optimal. This was

done for various settings, especially unit-demand settings and some generalizations. In
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particular, in unit-demand settings, Briest et al. [2010] show that the gap between the

revenue of randomized and deterministic mechanisms may be unbounded for three or

more items, and leave the case of two items open, while showing that for a restricted

class of randomized auctions, the gap is only constant.

3 Notation and Preliminaries

3.1 Mechanisms

A mechanism for selling k items specifies a (possibly randomized) protocol for interaction

between a seller (who has no private information and commits to the mechanism) and a

buyer who has a private valuation for the items. The outcome of the mechanism is an

allocation specifying the probability of getting each of the k items and an (expected)7

payment that the buyer gives to the seller. We will use the following notations:

• Buyer valuation: x = (x1, . . . , xk) where xi ≥ 0 denotes the value of the buyer

for getting item i.

• Allocation: q = (q1, . . . , qk) ∈ [0, 1]k, where qi = qi(x) denotes the probability

that item i is allocated to the buyer when his valuation is x (alternatively, one may

interpret qi as the fractional quantity of item i that the buyer gets).

• Seller revenue: s = s(x) denotes the expected payment8 that the seller receives

from the buyer when the buyer’s valuation is x.

• Buyer utility: b = b(x) denotes the utility of the buyer when his valuation is x,

i.e., b(x) =
∑

i xiqi(x) − s(x) = x · q(x) − s(x).

We will be discussing mechanisms that are:

• IR – (Ex-post) Individually Rational: b(x) ≥ 0 for all x.

• IC – Incentive Compatible: For all x, x′:
∑

i xiqi(x)−s(x) ≥
∑

i xiqi(x
′)−s(x′).

The IC requirement simply captures the notion that the buyer acts strategically in the

mechanism. Since we are discussing a single buyer, this is in a simple decision-theoretic

sense and in particular there is no distinction between the dominant strategy and the

Bayes-Nash implementation notions.

7We only consider risk-neutral agents.
8In the literature this is also called transfer, cost, price, revenue, and denoted by p, t, c, etc. We

hope that using the mnemonic s for the Seller’s final payoff and b for the Buyer’s final payoff will avoid
confusion.
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The following lemma gives well known and easily proven equivalent conditions for

incentive compatibility. A short proof using our notations can be found in Hart and

Nisan [2012] (see also Hart and Reny [2012] for a slightly tighter characterization).

Lemma 3.1 The following three definitions are equivalent for a mechanism with b(x) =

x · q(x) − s(x) =
∑

i xiqi(x) − s(x):

1. The mechanism is IC.

2. The allocation q is weakly monotone, in the sense that for all x, x′ we have (x −
x′) · (q(x) − q(x′)) ≥ 0, and the payment to the seller satisfies x′ · (q(x) − q(x′)) ≤
s(x) − s(x′) ≤ x · (q(x) − q(x′)) for all x, x′.

3. The buyer’s utility b is a convex function of x and for all x the allocation q(x) is

a subgradient of b at x, i.e., for all x′ we have b(x′) − b(x) ≥ q(x) · (x′ − x). In

particular b is differentiable almost everywhere and there qi(x) = ∂b(x)/∂xi.

Note that this in particular implies that any convex function b with 0 ≤ ∂b(x)/∂xi ≤ 1

for all i defines an incentive compatible mechanism by setting qi(x) = ∂b(x)/∂xi (at non-

differentiability points take q to be an arbitrary subgradient of b) and s(x) = x·q(x)−b(x).

When x1, . . . , xk are distributed according to the joint cumulative distribution function

F on9 ℜk
+, the expected revenue of the mechanism given by b is

R(b;F) = Ex∼F(s(x)) =

∫

· · ·
∫

(
k∑

i=1

xi
∂b(x)

∂xi

− b(x)

)

dF(x1, . . . , xk).

3.2 Revenue

For a cumulative distribution F on ℜk
+ (for k ≥ 1), we consider the optimal revenue

obtainable from selling k items to a (single, additive) buyer whose valuation for the k

items is jointly distributed according to F :

• Rev(F) is the maximal revenue obtainable by any incentive compatible and indi-

vidually rational mechanism. Formally, Rev(F) = supbR(b;F) where b ranges over

all convex functions with 0 ≤ ∂b(x)/∂xi ≤ 1 for all i and b(0) = 0.

• DRev(F) is the maximum revenue obtainable by a deterministic auction, i.e., in

our notation when qi(x) ∈ {0, 1} for all i and x.

9We write this as x = (x1, . . . , xk) ∼ F .
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• SRev(F) is the maximal revenue obtainable by selling each item separately. For-

mally, by Myerson’s characterization, this means considering those deterministic

auctions where there are single-item prices p1, . . . , pk such that s(x) =
∑

i qi(x)pi

for all x.

• BRev(F) is the maximal revenue obtainable by bundling all items together. By

Myerson’s characterization, this means that for each x, q(x) is either (1, . . . , 1) or

(0, . . . , 0).

• [m]-Rev(F) is the maximal revenue obtainable by an auction whose menu size is

at most m; that is, by auctions that have at most m possible outcomes, i.e., such

that10 |{q(x) : x ∈ ℜk
+}\{(0, . . . , 0)}| ≤ m.

4 Basic Results for Menu Size

In this section we list the basic relations related to menu-size complexity. All the state-

ments here are immediate.

We start by showing that the optimal auction with menu of size 1 is a bundling one.

Recall the notation [m]-Rev(F) for the revenue achievable by an auction whose menu

size is at most m.

Proposition 4.1 [1]-Rev(F) = BRev(F).

Proof. Consider the optimal single-item-menu auction selling some fractions of items for

some price p, and now consider selling the whole bundle for the same price p. The buyer

will buy whenever he did in the original auction, so the revenue can only increase.

For higher menu complexities, the revenue can increase at most linearly.

Proposition 4.2 [m]-Rev(F) ≤ m · BRev(F).

Proof. Just consider the menu entry that brings in the largest fraction of revenue.

This is essentially tight e.g. for the case of a distribution that puts value 2i on item i

with probability 2−i (and zero otherwise), where these events are disjoint. The bundling

auction can get revenue of at most 2, while for each 1 ≤ m ≤ k selling each of the items

i = 1, . . . ,m for a price of 2i gets revenue m. We will later see that the increase with

m need not be bounded by k, and in fact even for 2 items, increasing m can increase

revenue by a factor of at least m1/7.

10In our counting m does not include the pay-nothing-get-nothing outcome that we always assume
without loss of generality is available, by individual rationality.

9



This directly implies the basic relation between deterministic auctions and simple

ones.

Proposition 4.3 DRev(F) ≤ (2k − 1) · BRev(F).

Proof. A deterministic auction has at most 2k − 1 menu items, one for each non-empty

set of items.

For the special case of k = 2 we will show in Appendix 3 the tight bound DRev(F) ≤
5/2 · BRev(F).

5 Combinatorial Constructions for the Support of

Distributions

Our main results are gaps between the revenue achievable by different types of auctions.

To find distributions for which this gap materializes we will use various combinatorial

constructions for the support of the distribution.

Let q1, q2, . . . be a finite or countably infinite sequence of points in [0, 1]k. Define

gapn := qn · qn − max
j<n

qj · qn,

(q′ · q′′ is the scalar product
∑k

i=1 q′iq
′′
i ).

Proposition 5.1 For every (finite or countably infinite) sequence q1, q2, . . . of points in

[0, 1]k there exists a distribution F on ℜk
+ such that SRev(F) ≤ 2k, BRev(F) ≤ 2k, and

Rev(F) ≥
∑

n gapn. Moreover, in the auction yielding revenue of
∑

n gapn, for each n

there is a menu item that gives allocation qn and extracts expected revenue of gapn from

buyer types that choose it.

In Appendix 3 we will state and prove a somewhat tighter relation between BRev(F)

and Rev(F), again in terms of
∑

n gapn.

Proof. Without loss of generality assume that gapn > 0 for all n (remove all points with

non-positive gap; this can only increase the gaps for the remaining points). For each n,

let Mn = (2k)n/(Πn
j=1 gapj) (so Mn ≥ 2Mn−1 since gapn ≤ k). For every n, let F be the

distribution that for each n puts probability 1/Mn on the point xn := Mn qn ∈ ℜk
+ (these

probabilities sum up to at most 1 since Mn ≥ 2n), and puts the remaining probability

on the point 0.
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First notice that the revenue obtainable from any single item xi is at most 2. This is

a direct consequence of the fact that for every n the probability that xi is at least Mn is

at most
∑

j≥n 1/M j (since xj
i = M j qj

i ≤ M j < Mn for j < n), and this sum is at most

2/Mn because the M j grow by a factor of at least 2. A similar reasoning shows that

BRev(F) ≤ 2k, as the probability that
∑

i xi is at least kMn is at most 2/Mn.

Now consider the auction whose menu contains, for all n in the sequence, the allocation

qn with payment sn := Mn gapn. The utility that a buyer with valuation xn gets from the

j-th menu entry (qj, sj) is Mn(qj · qn)−M j gapj. First, for j < n this utility is bounded

from above by Mn(qj · qn), which by the definition of gapn is bounded from above by

Mn(qn·qn)−Mn gapn, which is precisely the utility that the buyer gets from the n-th menu

item (qn, sn). Second, for j > n we have Mn(qj · qn) − M j gapj ≤ Mn k − M j−1 2k < 0.

Thus the buyer with valuation xn will choose the n-th menu item and pay for it Mn gapn,

and since this happens with probability 1/Mn, the expected revenue from this type of

buyer is exactly gapn.

To demonstrate the use of this result let us show that the separation between the

simple auctions of bundling or selling separately and an arbitrary deterministic auction

may be exponential in the number of items; a statement that includes that of Theorem

C.

Lemma 5.2 There exists a k-item distribution F such that SRev(F) ≤ 2k, BRev(F) ≤
2k, and DRev(F) ≥ 2k − 1.

Proof. Let us enumerate the 2k − 1 non-empty subsets Ln of {1, . . . , k} such that the

size of Ln is weakly increasing in n, and let qn be the indicator vector of Ln (i.e., qn
i = 1

for i ∈ Ln and qn
i = 0 for i 6∈ Ln). For j < n we have qj · qn = |Lj ∩ Ln| < |Ln| = qn · qn,

and thus gapn ≥ 1. Use the “moreover” statement of Proposition 5.1.

6 Complex Auctions May Be Infinitely Better

We will construct the sequence of points qn for Proposition 5.1, in order to prove an

infinite separation between the revenue of an arbitrary auction for k = 2 items and that

of selling the items separately (for larger k one may add items with zero values).

Proposition 6.1 There exists an infinite sequence q1, q2, . . . of points in [0, 1]2 with

||qn|| ≤ 1 such that for all n, gapn = Ω(n−6/7).

Proof. The sequence of points that we will build is composed of a sequence of “shells”,

each containing multiple points. The shells will be getting closer and closer to each other,
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approaching, as the shell, N , goes to infinity, the unit sphere: All the points qj in the

N -th shell will be of length ||qj|| =
∑N

ℓ=1 ℓ−3/2/α, where α =
∑∞

ℓ=1 ℓ−3/2 (which indeed

converges). Each shell N will contain N3/4 different points in it so the angle between any

two of them is at least Ω(N−3/4).

Now we estimate qj · qj′ = ||qj|| · ||qj′|| · cos(θ) where θ is the angle between qj and

qj′ . Let N denote j’s shell. For j′ < j there are two possibilities, either qj′ is in the same

shell as qj or it is in a smaller shell. In the first case we have θ ≥ Ω(N−3/4) and thus

cos(θ) ≤ 1−Ω(N−3/2) (since cos(x) = 1− x2/2 + x4/24− . . .) and since ||qj|| = Θ(1) we

have qj ·qj −qj′ ·qj ≥ Ω(N−3/2). In the second case, ||qj||− ||qj′|| ≥ N−3/2 , so again since

||qj|| = Θ(1) we have (qj · qj − qj′ · qj ≥ Ω(N−3/2). Thus for any point qj in the N -th shell

we have gapj = Ω(N−3/2). Since the first N shells contain together
∑N

ℓ=1 ℓ3/4 = Θ(N7/4)

points, we have j = Θ(N7/4) and thus gapj = Ω(N−3/2) = Ω(j−6/7).

This directly implies Theorems A and B.

Proof of Theorems A and B and Corollary 1.1. Take the countably infinite

sequence of points qn constructed in Proposition 6.1, and apply Proposition 5.1 to get

the distribution F . An auction that has only the first m menu items q1, . . . , qm will

extract
∑m

j=1 gapj = Ω(
∑m

j=1 j−6/7) = Ω(m1/7) from F (by the “moreover” statement of

Proposition 5.1), and thus [m]-Rev(F) ≥ Ω(m1/7). However for this F , SRev(F) ≤ 4

and BRev(F) ≤ 4, so this proves Theorem B. As DRev(F) ≤ 3 · BRev(F) ≤ 12

by Proposition 8.5, scaling F by the constant factor 12 yields Theorem A. Finally, for

Corollary 1.1 we take the distribution Fn generated by Proposition 5.1 for the finite

sequence q1, . . . , qn with large enough n.

7 Additive Approximation

Theorem D is a direct corollary of the following lemma.

Lemma 7.1 Let n be a positive integer and m = (n+1)k−1. Then for every distribution

F on [0, 1]k we have [m]-Rev(F) ≥ Rev(F) − (2k)/
√

n.

Proof. Let F have support in [0, 1]k, and let b be a mechanism with corresponding (q, s).

Define a new mechanism b̃ as follows: for each x ∈ [0, 1]n, let q̃(x) be the rounding up

of q(x) to the 1/n-grid on11 [0, 1]k, and let s̃(x) := (1 − 1/
√

n)s(x). Since q̃ can take at

most (n + 1)k different values, the menu size of b̃ is at most (n + 1)k − 1 = m.

If q̃(x)·x−s̃(x) ≤ q̃(y)·x−s̃(y) then (recall that q(x)·x−s(x) ≥ q(y)·x−s(y)) we must

have (1/n)
∑k

i=1 xi ≥ (1/
√

n)(s(x) − s(y)), hence s(y) ≥ s(x) − k/
√

n (since
∑

i xi ≤ k),

11I.e., q̃i(x) = ⌈nqi(x)⌉/n for each i and x.
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which implies that the seller’s revenue at x from b̃ must be ≥ (1− 1/
√

n)(s(x)− k/
√

n).

Therefore R(b̃;F) ≥ (1 − 1/
√

n)R(b;F) − k/
√

n ≥ R(b;F) − 2k/
√

n (since R(b;F) ≤
∑

i xi ≤ k).

One may get a relative approximation result from this one by bounding the values

both from above and from below. Specifically by letting F be a distribution on [1, H]k.

In this case, the following variant of Theorem D may be stated:

Theorem 7.2 For every k ≥ 2, δ > 0, and H > 0 there is m0 ≥ (kH/δ)O(k) such that

for every k-item distribution F on [1, H]k and every m ≥ m0,

[m]-Rev(F) ≥ (1 − δ) · Rev(F).

Proof. We first scale [1, H] to [1/H, 1], which for multiplicative approximation is the

same. We then design an auction which gives an additive approximation to within ε/H,

which using Theorem D requires a menu size m as stated. Now, since F is bounded

from below by 1/H, its revenue is similarly bounded Rev(F) ≥ 1/H, and thus an ε/H

additive approximation is also a (1 − ε) multiplicative approximation as required.

We do not know whether the dependence on k needs to be exponential, however we

do show, in appendix 2, that, at least for k = 2 items, the dependence on H may in fact

be poly-logarithmic rather than polynomial.

8 The Separate Auction and Additive Menu Size

In this section we study the separate auction and its relationship to the bundling auction.

Proposition 8.1 BRev(F) ≤ k · SRev(F).

Proof. Let BRev be achieved with price p. If the separate auction offers price p/k for

each item then whenever
∑

i Xi ≥ p we have Xi ≥ p/k for some i, and so one of the k

items will be acquired in the separate auction.

This is tight for k = 2 and correlated values. Consider the distribution of (x, 1−x) ∈
ℜ2

+ where x is chosen uniformly in [0, 1]. The bundling auction can get all the value by

offering price 1 and selling always. Each item is distributed uniformly in [0, 1] so the best

obtainable revenue for each is 1/4, obtained at price 1/2.

For larger values of k, we can get a stronger result.

Proposition 8.2 BRev(F) ≤ O(log k) · SRev(F).
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Proof. Let BRev(F) be achieved with price p. We can first assume without loss of

generality that for each x in the support of F , either
∑

i xi = p or
∑

i xi = 0. (This is

without loss of generality since for this new “truncated distribution” F ′, BRev(F ′) =

BRev(F) while SRev(F ′) ≤ SRev(F) using Myerson’s characterization.) We can now

make another assumption without loss of generality, that in fact we always have that
∑

i xi = p in the support of F (so in fact BRev(F) = p). (This is without loss of

generality as if we look at the conditional distribution on those x’s with
∑

i xi = p, both

BRev and SRev increase by a factor of exactly Pr[
∑

i xi = p].)

At this point there are two different ways to proceed; we present both, as they may

lead to different extensions.

Proof 1: Denote ei = EX∼F(Xi) be the expected value of the i’th item, so now (using

our assumptions)
∑

i ei = p. The claim is that the i’th item can be sold in a separate

auction yielding a revenue of at least (ei − p/(2k))/(2(1 + log2k)). The lemma is implied

by summing over all i. Consider the distribution of Xi and split the range of values

of Xi into (2 + log2 k) sub-ranges: A “low” range for which Xi ≤ p/(2k) and for each

j = 0 . . . log2 k a subrange where: p/(2j+1) < Xi ≤ p/(2j) (notice that since Xi ≤ p we

have covered the whole support of Xi). The low subrange contributes at most p/(2k)

to the expectation of Xi, and thus one of the other 1 + log2 k sub-ranges contributes at

least ((ei − p/(2k))/(1 + log2 k) to this expectation. The lower bound of this sub-range,

p/(2j+1), is smaller by a factor of at most 2 than any value in the subrange, so asking

it as the item price will yield revenue which is at least half of the contribution of this

sub-range to the expectation, i.e. at least ((ei − p/(2k))/(2(1 + log2 k)).

Proof 2: Let ri := Rev(Xi) = supt t(1 − Fi(t)) (where Fi is the i-th marginal of F),

then 1 − Fi(t) ≤ min{ri/t, 1} and so

E [Xi] =

∫ ∞

0

(1 − Fi(t))dt ≤
∫ ri

0

1dt +

∫ p

ri

ri

t
dt = ri(1 + log p − log ri).

The function r(1 + log p − log r) is concave in r, hence

p

k
=

1

k

k∑

i=1

E [Xi] ≤ r̄ (1 + log p − log r̄) ,

where r̄ := (1/k)
∑

i ri. Thus p/(kr̄) ≤ 1 + log k + log(p/(kr̄)), from which it follows

that12 BRev(F)/SRev(F) = p/(kr̄) < 4 log k.

The relation in the opposite direction is simple and given by:

Proposition 8.3 SRev(F) ≤ k · BRev(F).

12The function f(x) = x − log x − 1 − log k is increasing, and f(4 log k) > 0 for every k ≥ 2.
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Proof. Let Fi denote the marginal distribution on the i’th item, so by definition

SRev(F) =
∑

i Rev(Fi). But the optimal auction for item i separately has, by My-

erson, a single menu entry so is at most [1]-Rev(F) = BRev(F).

This is tight for every k, even for independent items; see Hart and Nisan [2012].

Combining with Proposition 4.3 we get the following corollary, which by Theorem C

is essentially tight.

Corollary 8.4 DRev(F) ≤ O(2k log k) · SRev(F).

For the special case of k = 2 items, we have the somewhat tighter

Proposition 8.5 For k = 2, DRev(F) ≤ 3 · SRev(F).

Proof. Take the optimal deterministic auction which has three menu items: either selling

just one of the items, or selling the bundle. Its revenue is the sum of that obtained for a

single item and that obtained for the bundle, thus DRev(F) ≤ SRev(F) + BRev(F).

The proof is completed using Proposition 8.1.

Notice that the separate auction has menu size 2k − 1 (the buyer can buy any set

L ⊂ {1, . . . , k} for
∑

i∈L pi), and yet its revenue is bounded by only k times that of the

bundling revenue rather than 2k − 1 (as is the case for general deterministic auctions;

recall Proposition 4.3). Intuitively, this seems connected to the fact that the separate

auction only has k “degrees of freedom” or “parameters” (the k prices). This may be

formalized by defining a more refined “additive-menu-size” complexity:

• An auction has additive menu size m if it offers at most m “basic” menu entries to

the buyer, each with its own price, but here the buyer may buy any combination of

basic menu entries, provided that no item is allocated more than once in total, for

the sum of the entry prices.13

• [m]∗-Rev(F) is the maximal revenue obtainable by an auction whose additive menu

size is at most m.

Clearly [m]∗-Rev(F) ≥ [m]-Rev(F), and [1]∗-Rev(F) = [1]-Rev(F) = BRev(F)

(cf. Proposition 4.1). Interestingly, the linear bound of Proposition 4.2 holds here too:

Proposition 8.6 [m]∗-Rev(F) ≤ m · BRev(F).

13Formally, (q, s) is a combination of (q1, s1), . . . , (qn, sn) if q = q1 + · · · + qn, s = s1 + · · · + sn, and
q ∈ [0, 1]k (i.e., (q, s) is a feasible choice).
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Proof. For each n = 1, . . . ,m, let sn be the seller’s payment from the n-th basic menu

item, and let αn be the total probability that the buyer takes this menu item (thus
∑

n αn

may be as high as k). The total revenue is
∑

n snαn, and, as in the proofs of Propositions

4.1 and 4.2, each term is bounded from above by BRev(F).

This essentially implies that the results in this paper apply also to this more refined

complexity measure as well. This complexity measure really captures the power of selling

the items separately as the additive menu complexity of the separate auction is at most

k (cf. Propositions 8.3 and 8.6).

Acknowledgments

The authors would like to thank Motty Perry and Phil Reny for introducing us to the

subject and for many useful discussions.

Appendix 1: The Unit Demand Model

In this section we shortly compare our model to the unit-demand model considered in

several papers, in particular in Briest et al. [2010]. There are k items for sale and a

single buyer. There are two basic differences between our model and the unit-demand

one. First, in the unit-demand model, the buyers are modelled as having unit-demand

valuations. Additionally, the unit-demand model was defined to only allow the auction

to offer single items rather than bundles of items as in our model. This second restriction

does not turn out to matter.

More formally, in the unit demand model there is a single buyer with a unit demand

valuation, i.e., for a set L ⊂ {1, . . . , k} of items, its value is maxi∈S xi (rather than
∑

i∈L xi). A deterministic auction is this setting would offer a price pi for each item i.

For unit-demand buyers this is equivalent to a completely general deterministic auction

as there is no need to offer prices for bundles since the buyer is not interested in them.

Thus for example an auction offering price p1 for item 1, p2 for item 2 and p12 for both

items, would be the same as asking price min(p1, p12) for item 1 and price min(p1, p12)

for item 2.

A randomized auction in this model is allowed to offer a set of lotteries, each with its

own price, where a lottery is a vector of probabilities α1, . . . , αk of getting the items, with
∑

i αi ≤ 1 (in contrast to our additive buyer, where qi ≤ 1 for each i). Again, for unit-

demand buyers this is equivalent to general randomized auctions that are also allowed to

offer lotteries for bundles of items. For example a menu item offering the lottery ”item 1
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with probability 2/9; item 2 with probability 3/9; and both items with probability 4/9”

for a certain price can be replaced by the two menu items ”item 1 with probability 6/9;

item 2 with probability 3/9” and ”item 1 with probability 2/9; item two with probability

7/9”, each for the same price as the original menu item.

Let us use the notation RevUD(F) to denote the revenue obtainable from a unit

demand buyer whose valuation for the k single items is distributed according to F .

Similarly DRevUD(F) will denote the revenue achievable by deterministic auctions. We

can compare these revenues to those achievable in our model from an additive buyer

whose valuation for the k single items is distributed according to the same F .

Proposition 9.1 For every k ≥ 2 and every k-item distribution F on ℜk
+,

• Rev
UD(F) ≤ Rev(F) ≤ k · Rev

UD(F).

• DRevUD(F) ≤ DRev(F) ≤ k2k · DRevUD(F).

Proof. The lower bounds in both cases follow since any auction in the unit-demand

model offers only unit-demand menu entries, and on these the unit-demand buyer and

the additive buyer have the same preferences; thus offering the same menu in our setting

would give exactly the same revenue as it does in the unit-demand setting.

For the upper bound for randomized algorithms notice that if we replace each menu

entry of an auction in our model that asks price s for allocation (q1, . . . , qk) (where

0 ≤ qi ≤ 1 for each i) by a menu entry asking price s/k for the allocation (q1/k, . . . , qk/k),

then we do not change the preferences of the buyer between the different menu items,

and thus the revenue drops by a factor of exactly k. However, the new auction only gives

unit-demand allocations, and moreover the unit-demand buyer and the additive buyer

behave the same.

For the deterministic upper bound we start with a deterministic auction in our model.

Since it has at most 2k − 1 menu entries, a fraction of at least 2−k of the revenue must

come when allocating one of them to, say, the set L of items. An auction that only offers

to sell the set L of items for the same price s as the original one did, will thus make at

least a 2−k fraction of the revenue of the original one. Now consider the unit-demand

auction that offers the price s/|L| for each of the items in L: whenever the additive buyer

in the additive auction bought L we are guaranteed that his value for at least one of the

items in L was at least s/|L|, in which case the unit-demand buyer will also acquire an

item.

The interesting gap in the above lemma is the exponential one for deterministic auc-

tions, and indeed we can show that this is tight.
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Lemma 9.2 There exists a k-item distribution F such that DRev(F) ≥ Ω(2k/k) ·
DRevUD(F).

Proof. Take the distribution F constructed in the proof of Lemma 5.2 that satisfies

SRev(F) ≤ 2k and DRev(F) ≥ 2k − 1. Now DRevUD(F) ≤ SRev(F) as the item

prices used in any deterministic auction in the unit-demand model can only yield more

revenue in our additive model where the buyer may buy more than a single item.

Despite the exponential separation, for finite k it is still constant, and so a super-

constant separation between randomized and deterministic auctions in our setting is

equivalent to the same separation in the unit-demand setting.

Appendix 2: Multiplicative Approximation with Bounded

Domains

In this appendix we give a stronger version of Theorem 7.2, with a poly-logarithmic

dependence on H, for the case of two items.

Theorem 10.1 For every δ > 0 and H > 0 there is m0 ≥ Ω(δ−5 log2 H) such that for

every two-item distribution F on [1, H]2 and every m ≥ m0,

[m]-Rev(F) ≥ (1 − δ) · Rev(F).

This is a direct corollary of the following lemma.

Lemma 10.2 For every two-item mechanism (q, s), every H > 1 and every δ > 0, there

exists a mechanism (q̃, s̃) with menu size at most O(δ−5 log2 H), such that for every x

with 1 ≤ s(x) ≤ H we have s̃(x) ≥ (1 − δ)s(x).

Proof. We will discretize the menu of the the original mechanism. Our first step will be

to discretize the payments s, and the second to discretize the allocations q = (q1, q2).

We start by splitting the range [1, H] into K sub-ranges, each of them with ratio

at most H1/K between its end-points, where K is chosen so that H1/K ≤ δ2, i.e. K =

O(δ−2 log H). We define a real function φ(s) by rounding s up to the top of its range and

then multiplying by 1 − δ. So we have (1 − δ)s < φ(s) < (1 − δ)(1 + δ2)s. Then for any

s′ ≤ s(1 − δ) we have φ(s) − φ(s′) ≤ (1 − δ)(s − s′ + sδ2) ≤ (s − s′) − sδ2 + sδ2 = s − s′.

Now we take every menu entry (q, s) of the original mechanism and replace s with φ(s).

The previous property of φ ensures that any buyer who previously preferred (q, s) to some

other menu item (q′, s′) with s′ < (1− δ)s will still prefer (q, φ(s)) in the new menu; thus
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in the new menu he will pay φ(s′) for some s′ ≥ (1−δ)s, and φ(s′) > (1−δ)s′ ≥ (1−δ)2s;

his payment in the new menu is therefore at least (1−δ)2 times his payment in the original

menu.

We now have a menu with only K distinct price levels s1 < · · · < sK . Before we

continue, we scale it down by a factor of (1 − δ), i.e. multiply both the q’s and the s’s

by (1− δ). This does not change the menu choice of any buyer; reduces the payments by

a factor of exactly 1 − δ; and ensures that q1, q2 ≤ 1 − δ. We now round down each q1

and each q2 to an integer multiple of δ/K, and then add δi/K to each menu entry whose

price is si. Notice that rounding down reduced each q by at most δ/K, and since higher

paying menu entries got a boost which is larger by at least δ/K than any lower paying

menu entry, any buyer that previously chose an entry paying s, can now only choose an

entry paying some s′ ≥ s.

All in all we have reached a new mechanism whose payment is at least (1−δ)3 ≥ 1−3δ

times that of the original one (so redefine the δ in the proof to be 1/3 of the δ in the

statement). There are K = O(δ−2 log H) price levels and δ−1K = O(δ−3 log H) different

allocation levels for both q1 and for q2. However notice that for a fixed price level s and a

fixed q1 there can only be a single value of q2 that is actually used in the menu (as lower

ones will be dominated), and so the total number of possible allocations is O(δ−5 log2 H).

Notice that the poly-logarithmic dependence of m on H is “about right” since the

distribution F induced by the first m0 points in the construction used for proving theorem

A has H = m
O(m0)
0 , and the m

1/7
0 gap between Rev(F) and [1]-Rev(F) implies that for

m = O((log H)1/8) we have [m]-Rev(F) = o(Rev(F)).

Appendix 3: Exact Comparisons to Bundling

In this section we will provide bounds on the bundling revenue: on the one hand, it

can be arbitrarily low relative to the optimal revenue, and on the other hand it guar-

antees a certain fixed fraction (such as 2/3, or 1/2, or 5/2) of the optimal revenue over

certain interesting subclasses of mechanisms (such as deterministic, or separate prices,

mechanisms).

The following proposition provides a precise tool for all these comparisons.

Proposition 11.1 Let b(x) = max0≤n≤m{qn · x − sn} be a finite k-dimensional mecha-

nism, where qn ∈ [0, 1]k, sn ≥ 0, q0 = (0, . . . , 0), s0 = 0, and the indices are such that
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sn−1 ≤ sn for all n ≥ 1. For each n ≥ 1 let tn := inf{∑k
i=1 xi : s(x) ≥ sn}, and define

T (b) :=
m∑

n=1

sn − sn−1

tn

(where we take (0 − 0)/0 as 0, and the inf of an empty set as14 ∞). Then:

(i) For any k-item distribution F on ℜk
+,

R(b;F) ≤ T (b) · BRev(F). (2)

(ii) There exists a k-item distribution F on [0, 1]k such that

R(b;F) = T (b) · BRev(F). (3)

Moreover, if b is symmetric (i.e., b(x) = b(πx) for every x ∈ ℜk
+ and every permutation of

the indices15 π, then F can be taken to be a symmetric distribution16 (i.e., F(x) = F(πx)

for every x ∈ ℜk
+ and every permutation of the indices π).

Before proving the proposition it is instructive to see the computation of T (b) in a

few examples with k = 2 items.

• For b(x) = max{0, x1−1, x2−2, x1 +x2−4} we have (s0, s1, s2, s3) = (0, 1, 2, 4) and

(t1, t2, t3) = (1, 2, 5) (attained at the points (1, 0), (0, 2), and (2, 3), respectively),

and so T (b) = (1 − 0)/1 + (2 − 1)/2 + (4 − 2)/5 = 12/5.

• For b(x) = max{0, x1−2, x2−2, x1 +x2−4} we have (s0, s1, s2, s3) = (0, 2, 2, 4) and

(t1, t2, t3) = (2, 2, 4) (t1 = t2 = 2 is attained at both (2, 0) and (0, 2), and t3 = 4 at

(2, 2)), and so T (b) = (2 − 0)/2 + (2 − 2)/2 + (4 − 2)/4 = 3/2.

• For b(x) = max{0, x1 − 5, x2 − 2, x1 + x2 − 4} we have (s0, s1, s2, s3) = (0, 2, 4, 5)

and (t1, t2, t3) = (2, 4,∞), and (t1 = 2 is attained at (0, 2) and t2 = 4 at (x1, 4−x1)

with 2 ≤ x1 ≤ 4), and so T (b) = (2 − 0)/2 + (4 − 2)/4 + (5 − 4)/∞ = 3/2.

In general, the tn are computed as follows: First, for each n ≥ 1 let τn be the minimum

of x1 + · · · + xk over the set {x ≥ 0 : qn · x − sn ≥ qj · x − sj for all j}; this is a linear

programming problem. Then, for each n ≥ 1 put tn = min{τ j : sj ≥ sn}.
14tn = 0 if and only if sn = 0 (and then sn−1 = 0). The sum in T (b) can thus be started with n = n0,

the first index with sn0 > 0, and ending at n = m0, the first index with tm0+1 = ∞, where we put
tm+1 := ∞.

15I.e., π is a one-to-one mapping from {1, . . . , k} onto itself, and π(x1, . . . , xk) = (xπ(1), . . . , xπ(k)).
16Also known as an “exchangeable” distribution.
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Proof of Proposition 11.1. If sn = 0 for all n then R(b; F ) = 0 for all F and

T (b) = 0 and there is nothing to prove. Otherwise T (b) > 0, and, as in footnote 14, we

only consider those n between n0 and m0 for which 0 < tn < ∞; for simplicity assume

that these are all n, i.e., 1 ≤ n ≤ m. Let X be a k-dimensional random variable with

distribution F . By definition of tn we have [
∑

i Xi ≥ tn] ⊃ [s(X) ≥ sn], and so

BRev(F) ≥ tn · P
[

k∑

i=1

Xi ≥ tn

]

≥ tn · P [s(X) ≥ sn] = tn ·
m∑

j=n

σj,

where σj := P [sj ≤ s(X) < sj+1] (thus σj = 0 when sj = sj+1, and σj = P [s(X) = sj]

when sj < sj+1). Therefore

m∑

i=1

sn − sn−1

tn
BRev(F) ≥

m∑

i=1

(sn − sn−1)
m∑

j=i

σj =
m∑

j=1

σj

j
∑

i=1

(sn − sn−1)

=
m∑

j=1

σjsj = E [s(X)] = R(b;F).

(recall that s0 = 0). The left-hand side is precisely T (b) ·BRev(F), and we have proved

(2).

To construct a distribution for which we have equality, for each n let xn ∈ ℜk
+ be

a point where the minimum tn is attained; thus
∑

i x
n
i = tn and s(xn) ≥ sn. Let Fb

put probability αn := t1/tn − t1/tn+1 ≥ 0 on the point xn; note that
∑

j≥n αj = t1/tn,

(recall that tm+1 = ∞) and in particular
∑∞

j=1 αj = 1. The sequence tn is nondecreasing

(since the sequence sn is nondecreasing), and so the revenue of the bundled mechanism

bn(x) = max{0,∑i xi − tn} is R(bn;Fb) = tn
∑

j≥n αj = tn(t1/tn) = t1. Therefore

BRev(Fb) = t1 (prices different from some tn can only yield lower revenues). For the

original mechanism b, its revenue at xn is s(xn) ≥ sn, and so

R(b;Fb) =
m∑

n=1

s(xn) αn ≥
m∑

n=1

sn

(
t1

tn
− t1

tn+1

)

= t1
m∑

n=1

(
sn

tn
− sn−1

tn

)

= T (b) t1 = T (b) BRev(Fb) ≥ R(b;Fb)

(recall that s0/t1 = sm/tm+1 = 0), where the last inequality is (2). We thus have equality

throughout.

Now rescaling all sn by λ > 0 rescales all the tn, and thus the support of Fb, by

λ, while it does not affect T. Specifically, let b̂ be the mechanism {(q̂n, ŝn)}m
n=0 where

q̂n = qn and ŝn = λsn; then tn = λtn, and so T (b̂) = T (b). Thus the distribution Fb̂

constructed above for b̂ also satisfies (3) (with the same T (b)), and its support is included
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in {∑i xi ≤ t̂m = λtm}; take λ = 1/tm.

Finally, the revenue of any symmetric mechanism b remains the same when we “sym-

metrize” F ; i.e., R(b; F̃) = R(b;F), where F̃(x) := (k!)−1
∑

π F(πx) for all x. Bundled

mechanisms are symmetric, thus BRev(F̃) = BRev(F), and so one can use the sym-

metric distribution F̃b instead of Fb in (3).

As we will see below (Proposition 11.3), the bound T (b) can be arbitrarily large.

However, there are various interesting classes of mechanisms for which T (b) is uniformly

bounded, and then Proposition 11.1 yields uniform bounds.

For a class C of k-dimensional mechanisms (for instance: all mechanisms, or all

deterministic mechanisms), we denote by C-Rev(F) the maximal revenue obtainable

over all mechanisms in C; i.e., C-Rev(F) := supb∈C R(b;F).

Corollary 11.2 Let C be a class of finite k-dimensional mechanisms, and define

T (C) := sup
b∈C

T (b).

Then for every k-item distribution F on ℜk
+

C-Rev(F) ≤ T (C) · BRev(F); (4)

moreover, the bound T (C) is tight.

Proof. By (2) and the definition of T (C), we have R(b;F)/BRev(F) ≤ T (b) ≤ T (C)

for every mechanism b ∈ C; taking sup over b ∈ C gives (4).

To see that the bound T (C) is tight, take any T ′ < T (C), then there exists b ∈ C

with T (b) > T ′. Let Fb be a distribution satisfying (3), then C-Rev(Fb)/BRev(Fb) ≥
R(b;Fb)/BRev(Fb) = T (b) > T ′; thus no T ′ < T (C) can serve as an upper bound in (4).

Proposition 11.3 Let [m]-Fin be the class of all k-dimensional mechanisms with menu

of size at most m, then

T ([m]-Fin) = Ω(m1/7).

Proof. Let q1, q2, . . . , qm ∈ [0, 1]k be given by Proposition 6.1 so gapn = Ω(n−6/7). Let b

be given by the menu of size m consisting of (qn, sn) for 1 ≤ n ≤ m, where sn := 2n.

For each n ≥ 1 let µn := sn/gapn and xn := µnqn. We have

qn · xn − sn = µn(qn · qn − gapn) = µn max
j<n

qj · qn = max
j<n

qj · xn ≥ max
j<n

(qj · xn − sj),
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and so a buyer with valuation xn will choose only among those menu items (qj, sj) with17

j ≥ n, and all these sj are ≥ sn; thus s(xn) ≥ sn.

Therefore tn = inf{x · e : s(x) ≥ sn} ≤ xn · e = µn qn · e ≤ µnk = k2n/gapn, and we

get

T (b) =
m∑

n=1

sn − sn−1

tn
≥

m∑

n=1

2n − 2n−1

k2n/gapn
=

1

2k

m∑

n=1

gapn = Ω(m1/7).

Remark. One can easily modify the construction of the mechanism above as to

obtain a symmetric mechanism b with T (b) = Ω(m1/7). Indeed, the menu will include

each (qn, sn) together with all its permutations (πqn, sn), which increases its size by a

factor of at most 2k and does not affect T (b) (since all permutations of qn come with the

same sn).

Corollary 11.4

sup
F

[m]-Rev(F)

BRev(F)
≥ Ω

(
m1/7

)
and sup

F

Rev(F)

BRev(F)
= ∞,

where the supremum is over all k-item distributions F on ℜk
+, or over all symmetric such

distributions.

We will now provide precise bounds on how good the bundling auction is relative to

deterministic auctions and to separate-items auctions when there are two items.

Proposition 11.5 (i) For every two-item distribution F on ℜ2
+,

BRev(F) ≥ 2

5
DRev(F) and BRev(F) ≥ 1

2
SRev(F).

(ii) For every two-item symmetric distribution F on ℜ2
+,

BRev(F) ≥ 2

3
DRev(F) and BRev(F) ≥ 2

3
SRev(F).

Moreover, all four bounds are tight.

Proof. We will compute T (C) for the four appropriate classes of mechanisms: (2) and

(4) give (i), and (1) and (3) give (ii) (when F is symmetric we can limit ourselves to

symmetric mechanisms).

17When indifferent, the buyer chooses the menu item with highest payment to the seller s; this can be
assumed without loss of generality, see Hart and Reny [2012].
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(1) A symmetric deterministic mechanism is of the form b(x1, x2) = max{0, x1 −
p1, x2 − p1, x1 + x2 − p2} with pi ≥ 0.

If p1 ≤ p2 then s1 = p1 and s2 = p2, and we get t1 = p1 and t2 ≤ 2(p2 − p1) (since

x1 +x2−p2 ≥ x1−p1 implies x2 ≥ p2−p1, and x1 +x2−p2 ≥ x2−p1 implies x1 ≥ p2−p1,

and so x1 + x2 ≥ 2(p2 − p1)); therefore T (b) ≤ (p1 − 0)/p1 + (p2 − p1)/(2(p2 − p1)) ≤ 3/2

(when p1 = 0 the first term is 0 and then T (b) ≤ 1/2).

If p1 > p2 then b(x1, x2) = max{0, x1 + x2 − p2} (which is bundled) and then T (b) =

(p2 − 0)/p2 ≤ 1.

Thus T (b) ≤ 3/2. A mechanism b with T (b) = 3/2 is, for example, b(x1, x2) =

max{0, x1 − 1, x2 − 1, x1 + x2 − 3}.
(2) A deterministic mechanism is of the form b(x1, x2) = max{0, x1 − p1, x2 − p2, x1 +

x2 − p3}; without loss of generality assume that p1 ≤ p2.

If 0 ≤ p1 ≤ p2 ≤ p3 then si = pi and we have: t1 ≥ p1 (since x1 − p1 ≥ 0 implies

x1 + x2 ≥ p1); next, t2 ≥ p2 ≥ p2 − p1 (since x2 − p2 ≥ 0 implies x1 + x2 ≥ p2); and

finally t3 ≥ 2(p3 − p2) (since x1 + x2 − p3 ≥ x1 − p1 implies x2 ≥ p3 − p1 ≥ p3 − p2, and

x1 + x2 − p3 ≥ x2 − p2 implies x1 ≥ p3 − p2, and thus x1 + x2 ≥ 2(p3 − p2)). Therefore

T (b) ≤ 1 + 1 + 1/2 = 5/2.

If 0 ≤ p1 ≤ p3 ≤ p2 then b(x1, x2) = max{x1 − p1, x1 +x2 − p3} and then s1 = p1, s2 =

p3, t1 = p1, and t2 ≥ p3 − p1 (since x1 + x2 − p3 ≥ x1 − p1 implies x2 ≥ p3 − p1), thus

T (b) ≤ 1 + 1 = 2.

If 0 ≤ p3 ≤ p1 ≤ p2 then b(x1, x2) = max{0, x1 + x2 − p3} and T (b) = 1.

Thus T (b) ≤ 5/2. The computations above show that the bound 5/2 cannot be at-

tained; to approach it, for large M take b(x1, x2) = max{0, x1 −1, x2 −M,x1 +x2 −M2},
then T (b) > 5/2 − 2/M .

(3) A symmetric separate-price mechanism is of the form b(x1, x2) = max{0, x1−p, x2−
p, x1 + x2 − 2p}.We have s1 = p1 = t1 (attained at (p, 0) and (0, p)) and s2 = 2p = t2

(attained at (p, p); therefore T (b) = p/p + (2p − p)/2p = 3/2.

(4) A separate-price mechanism is of the form b(x1, x2) = max{0, x1 −p1, x2 −p2, x1 +

x2−p1−p2}; without loss of generality assume that p1 ≤ p2. As above, we get: s1 = p1 = t1

(attained at (p1, 0)); s2 = p2 = t2 (attained at (0, p2)); and s3 = p1 + p2 = t3 (attained at

(p1, p2)). Therefore T (b) = p1/p1 +(p2 −p1)/p2 +p1/(p1 +p2) = 2−p2
1/((p2(p1 +p2)) < 2,

and the sup is 2 (take p2/p1 → ∞).

Examples of distributions for which these bounds are tight are easily obtained from

the above proof together with the construction in Proposition 11.1 (ii) (we have slightly

simplified them):

• For DRev, take the distribution FM that puts probabilities c, c/M, and c/(2M2),
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on the points (1, 0), (0,M), and (M2,M2), respectively, where c = (1 + 1/M +

1/(2M2))−1 (note that c → 1 as M → ∞). Then BRev(FM) = max{1 · 1, M ·
(c/M +c/(2M2)), 2M2 ·c/2M2} → 1, and the deterministic mechanism b(x1, x2) =

max{0, x1−1, x2−M,x1+x2−M2} yields R(b;FM) = 1·c+M ·c/M+M2·c/(2M2) =

5/2c → 5/2.

• For SRev, take X1 and X2 to be independent, P [X1 = 0] = P [X1 = 2] = 1/2,

P [X2 = 0] = 1 − 1/M, P [X2 = M ] = 1/M (where M > 2), then Rev(X1) =

2 · 1/2 = 1, Rev(X2) = M · 1/M = 1, and so SRev(X) = 2; and BRev(X) =

max{0 · 1, 2 · (1/2 + 1/(2M),M · 1/M, (M + 1) · 1/(2M)} = 1 + 1/M → 1.

• For the symmetric case, take the distribution F that puts probability 1/4 on each

of (1, 0) and (0, 1) and probability 1/2 on (1, 1). We have BRev(F) = max{1 · 1, 2 ·
1/2} = 1, and the mechanism b(x1, x2) = max{0, x1 − 1, x2 − 1, x1 + x2 − 2} yields

DRev(F) = SRev(F) = R(b;F) = 3/2.

Appendix 4: Multiple Buyers

This paper has concentrated on a single-buyer scenario that may also be interpreted to

be a monopolist pricing setting. One may naturally ask the same questions for more

general auction settings involving multiple buyers. An immediate observation is that

since our main results (Theorems A, B, and C) are separations, they apply directly also

to multiple-buyer settings, simply by considering a single “significant” buyer together

with multiple “negligible” (in the extreme, 0-value for all items) buyers. The issue of

extending the results to the multiple-buyer settings is thus relevant for the upper bounds

in the paper, both the significant ones (Theorem D and Proposition 8.2) and the simple

ones (Propositions 4.1, 4.2, and 4.3). In this appendix we discuss why these can all be

extended to the multi-buyer scenario, at least if we are willing to incur a loss that is

linear in the number of buyers. It is not completely clear where and how this loss may

be avoided.

In the case of multiple buyers, we must first choose our notion of implementation:

Bayes-Nash or Dominant-strategy. Also, we need to specify whether we are assuming

independence between buyers’ valuations or allow them to be correlated. The discussion

here will be coarse enough as to apply to all these variants at the same time, with

differences noted explicitly.

The next issue is how should we define the menu size for the case of multiple buyers. In

the single-buyer case we defined it to be simply the size of the outcome space: |{q(x)|x ∈
ℜk

+}\{(0, . . . , 0)}| and interpreted it as the number of options from which the buyer may
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choose. In the case of multiple buyers, these are two separate notions. For example

consider deterministic auctions of k items among n buyers. There are a total of (n + 1)k

different outcomes (each item may go to any buyer or to no one), but each buyer only

considers 2k possibilities (whether he gets each item or not). Moreover, the total set of

outcomes cannot be interpreted as a menu from which the buyers may choose, since each

buyer can only choose among the possibilities that he sees in front of him (and these

choices need not be overall feasible). It takes the combined actions of all the buyers

together in order for the auction outcome to be determined. For this reason we prefer to

define the menu size of a multi-buyer auction by considering its menu size from the point

of view of the different buyers. Since the menu that a buyer sees is a function of the bids

of the others, we will take the maximum.

• An n-buyer auction has menu size at most m if for every buyer j = 1, . . . , n and

every (direct) bids of the other buyers18 x−j ∈ (ℜk
+)n−1, the number of non-zero

choices that buyer j faces is at most m, i.e., |{qj(xj, x−j) : xj ∈ ℜk
+}\{(0, . . . , 0)}| ≤

m.

Note: If the original mechanism was incentive compatible in dominant strategies then

the mechanism induced by x−j on player j is also incentive compatible. If the original

mechanism was incentive compatible in the Bayesian sense then this need not be the case,

but we will still have individual rationality19 of the induced mechanism which suffices for

what comes next.

Let us first analyze the simplest auctions, those with a single non-trivial menu item

for each buyer. Clearly bundling auctions satisfy this property, however not every auction

that has a single non-trivial menu-item for each buyer can be converted to a bundling

auction. Let us also be careful with the meaning of bundling auction. Clearly in the

case of correlated buyer valuations, the optimal auction for selling even a single item (the

whole bundle in our case) is not necessarily to sell it to the highest bidder, but rather use

the bids of the others as to set the reserve price to each bidder. (Consider for example the

case of two buyers with a common value, where the bid of one of them should be used as

the asking price from the other.) Thus in the rest of the discussion below we used BRev

to denote the best auction that always sells the bundle as a whole – not necessarily to

the highest bidder or with a uniform reserve price. For the case of independent buyer

values, the simpler version that sells it to the highest bidder with a fixed reserve price

will do too.

18Superscripts are used here for the buyers.
19This assumes that the original mechanism was ex-post individually rational, which one may verify

does not really loose generality relative to ex-ante individual rationality.
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What can be easily observed is that by focusing solely on the buyer that yields the

largest fraction of revenue we can reduce back to the single-buyer case and extract at

least 1/n fraction of revenue by selling the bundle to that single buyer. A full bundling

auction can only make more, so this gives us the analog to Proposition 4.1 for the case of

n buyers:20 BRev[n](F) ≤ [1]-Rev[n](F) ≤ n · BRev[n](F). The loss of the factor of n

can be seen to be justified when considering independent buyer values and the restricted

definition of bundling auctions even when there is one good (i.e., k = 1) by considering the

distribution where each buyer j gets value M j with probability M−j, and zero otherwise

(all independently), for a large enough but fixed M .

A similar argument that focuses on the single buyer that provides the largest frac-

tion of revenue provides the generalization of Proposition 4.2: [m]-Rev
[n](F) ≤ nm ·

BRev[n](F), and of Proposition 4.3: DRev[n](F) ≤ n · (2k − 1) · BRev[n](F). It turns

out that the linear loss in n is required here too, again for independent buyer values and

the restricted interpretation of bundling auctions: take the construction of Theorem C on

each of the n different buyers and combine it with the argument above. That is, whenever

the construction has a valuation x with probability p, let buyer j have valuation M jx

with probability M−jp (independently over the buyers).

Versions of Theorem D and Proposition 8.2 that incur a linear loss in n are also easily

implied, but do not seem to be interesting. It would seem that in both cases one might

get sharper results that avoid the additional loss due to the number of buyers.
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Abstract

Consider the problem of maximizing the revenue from selling a

number of goods to a single buyer. We show that, unlike the case of

one good, when the buyer’s values for the goods increase the seller’s

maximal revenue may well decrease. We also provide a characteri-

zation of revenue-maximizing mechanisms (more generally, of “seller-

favorable” mechanisms) that circumvents nondifferentiability issues.

Finally, through simple and transparent examples, we clarify the need

for and the use of randomization when maximizing revenue in the
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1 Introduction

Consider the problem of a seller who wishes to maximize the revenue from

selling multiple goods to a single buyer with private information about his

value for the goods.

In Section 3, we exhibit the surprising phenomenon that the seller’s maxi-

mal revenue may well decrease when the buyer’s values for the goods increase.

This revenue nonmonotonicity can occur only when there is more than one

good : revenue is easily seen to be nondecreasing in the buyer’s value when

there is only a single good.

In Section 2, we restrict attention to “seller-favorable” mechanisms and

characterize their revenue using directional derivatives, which exist every-

where (and therefore circumvent nondifferentiability issues arising from in-

centive compatibility).

In Section 4, we present a simple example where randomization is neces-

sary for revenue maximization, and clarify why randomization is needed only

when there are multiple goods.

Since the maximal revenue problem appears significantly less well be-

haved when the values of the goods are correlated (cf.1 Hart and Nisan

2012a, 2012b), it is important to obtain examples with independent, and

even independent and identically distributed, values. We do so both for

revenue-nonmonotonicity and for randomization.

1.1 Preliminaries

The seller possesses k ≥ 1 goods (or “items”), which are worth nothing to

him (and there are no costs). The valuation of the goods to the buyer is

given by a vector2 x = (x1, x2, ..., xk) ∈ R
k, where xi is his value for good i.

The valuation is assumed to be additive over the goods: the value of a set

L ⊂ {1, 2, ..., k} of goods is
∑

i∈L xi. The buyer knows the valuation vector

1For instance, deterministic mechanisms always ensure at least one half of the maxi-
mal revenue in the independent case, versus an arbitrarily small fraction in the general
(correlated) case.

2
R denotes the real line, R

k the k-dimensional Euclidean space, and R
k
+ = {x ∈ R

k :
x ≥ 0} its nonnegative orthant. Negative valuations are not ruled out.
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x, whereas the seller knows only that x is drawn from a given probability

distribution F on R
k with support D. We make no further assumptions on

F . In particular, F may possess atoms and its support D may be finite or

infinite and hence need not be convex or even connected. The seller and the

buyer are each risk-neutral and have quasilinear utilities.

A (direct) mechanism for selling the k goods is given by a pair of functions

(q, s), where q : D → [0, 1]k and s : D → R. If the buyer reports that his

valuation is x, then qi(x) ∈ [0, 1] is the probability that he receives good i

(for i = 1, ..., k), and s(x) is the payment that the seller receives from the

buyer. When the buyer reports his valuation x truthfully, his payoff is b(x) =
∑k

i=1 qi(x)xi − s(x) = q(x) · x− s(x), where q(x) ≡ (q1(x), ..., qk(x)), and the

seller’s payoff is3 s(x). A mechanism (q, s) is individually rational (IR) if

b(x) ≥ 0 for all x ∈ D and it is incentive compatible (IC ) if b(x) ≥ q(y) ·
x − s(y) for all x, y ∈ D. By the Revelation Principle, the maximal revenue

from the distribution F is Rev(F) := sup EF [s(x)] , where x is distributed

according to F , and the supremum is over all IC and IR mechanisms (q, s).

If (q, s) is IC, then it is useful to extend the buyer’s payoff function b from

D to all R
k by b(x) := sup(p,t)∈R(p · x− t), where R := {(q(x), s(x)) : x ∈ D}

is the range of (q, s). So defined, b is a convex function, being the pointwise

supremum of affine functions. The IC property of (q, s) ensures that the

values of b remain unchanged on D, and also ensures that b is finite for every

x ∈ R
k. Henceforth, “the buyer’s payoff function b” will mean the above

extension of b to all of4 R
k.

Let f be a real convex function defined on R
k. The directional derivative

at x ∈ R
k in the direction y ∈ R

k is f ′(x; y) := limδ→0+(f(x + δy)− f(x))/δ.

Since f is convex, f ′(x; y) always exists. If 0 ≤ f(x + z) − f(x) ≤ ∑k
i=1 zi

holds for every x, z ∈ R
k with z ≥ 0 then the function f is nondecreasing

and nonexpansive.5

3In the literature this is called transfer, cost, price, or revenue, and denoted by t, c, p,
and so on. We hope that using the mnemonic s for the seller’s final payoff and b for the
buyer’s final payoff will avoid confusion.

4The domain D is irrelevant, as any IC mechanism can be extended to the whole space
R

k (see footnote 10 below).
5For convex f, this is equivalent to 0 ≤ ∂f(x)/∂xi ≤ 1 for all i and all x where the

derivative exists (i.e., a.e.).
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Let Bk be the collection of all real functions on R
k that are nondecreasing,

nonexpansive, and convex.

2 Seller-Favorable Mechanisms

When maximizing revenue one may without loss of generality consider only

mechanisms that are “seller-favorable,” which means that whenever the buyer

is indifferent he chooses an outcome that maximizes the seller’s revenue (i.e.,

ties are broken by the buyer in favor of the seller). Formally, an incentive-

compatible mechanism (q, s) with buyer’s payoff function b is seller-favorable

if there is no other incentive-compatible mechanism (q̄, s̄) having the same

payoff function b for the buyer (i.e., q̄(x) · x − s̄(x) = b(x) for all x in D)

and such that s̄(x) ≥ s(x) for every x ∈ D, with strict inequality for some x.

In this section we will see that the restriction to seller-favorable mechanisms

simplifies the analysis (it circumvents nondifferentiability issues); moreover,

seller-favorable mechanisms arise not only from revenue-maximization con-

siderations, but also from strict implementation.6

The characterization of IC mechanisms (q, s) as being those whose as-

signment function, q, is a subgradient of the buyer’s convex payoff function

is well known (starting with Rochet 1985). It is an inconvenient and often

technically annoying fact that the buyer’s convex payoff function, while dif-

ferentiable almost everywhere, need not be differentiable everywhere. Proofs

that are otherwise simple and elegant often require detours through subgra-

dient selection arguments.7

Such detours can be avoided when one restricts attention to seller-favorable

mechanisms. The reason is that the buyer’s payoff function is not differen-

tiable only when he is indifferent between a number of reports. But if the

mechanism (q, s) is seller-favorable, the buyer’s truthful report must max-

imize the seller’s payoff among all of the buyer’s optimal reports. As we

show, this implies that q(x) · x = b′(x; x) for every buyer valuation8 x ∈ D.

6See the last paragraph of Remark (a) at the end of this section.
7E.g., Lemma A.4 in Manelli and Vincent (2007).
8This formula holds even when D is a finite set since b is a convex function defined on
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Consequently, in a seller-favorable mechanism the buyer’s payoff function, b,

completely determines the seller’s payoff function s at every x ∈ D, whether

a point of differentiability of b or not, and s(x) = b′(x; x)−b(x) for all x ∈ D.

Lemma 1 If (q, s) is IC then the buyer’s payoff function b belongs to Bk and

s(x) ≤ b′(x; x) − b(x) for every x ∈ D.

Proof. Recall (Section 1.1) that b is a convex function and b(x) = sup(p,t)∈R(p·
x− t), where R = {(q(x), s(x)) : x ∈ D} is the range of (q, s). IC also implies

that the range of s(·) is bounded. Thus, R̄, the closure of R, is a compact

subset of [0, 1]k × R, and so for every x ∈ R
k there is (p∗(x), t∗(x)) ∈ R̄ such

that b(x) = p∗(x) · x − t∗(x) (for x ∈ D take (p∗(x), t∗(x)) = (q(x), s(x)).

Therefore, for every x, y ∈ R
k we get

b(y) − b(x) ≥ (p∗(x) · y − t∗(x)) − (p∗(x) · x − t∗(x)) = p∗(x) · (y − x), (1)

which says that p∗(x) is a subgradient of9 b at x. Thus, p∗(x) ·x ≤ sup{p ·x :

p ∈ ∂b(x)} = b′(x; x) and so s(x) = q(x) ·x−b(x) ≤ b′(x; x)−b(x) for every10

x ∈ D.

Taking y = x+ z with z ≥ 0 in (1) implies that 0 ≤ p∗(x) · z ≤ b(x+ z)−
b(x) ≤ p∗(x + z) · z ≤ ∑k

i=1 zi, and so b is nondecreasing and nonexpansive.

Lemma 2 Let b ∈ Bk. Then there is an IC mechanism (q̄, s̄) such that the

buyer’s payoff function is b and the seller’s payoff is s̄(x) = b′(x; x) − b(x)

for all x.

Proof. Being nondecreasing, nonexpansive, and convex on R
k, the function

b satisfies 0 ≤ b(x) − b(x − z) ≤ p · z ≤ b(x + z) − b(x) ≤
∑k

i=1 zi for

all of R
k. Hence b′(x;x) is well defined for every x ∈ R

k, and in particular for x ∈ D.
9For a convex function f on R

k, a vector p ∈ R
k is a subgradient of f at x ∈ R

k if
f(y) − f(x) ≥ p · (y − x) for all y ∈ R

k. Letting ∂f(x) denote the set of subgradients of
f at x (which is always a nonempty closed set), we have f ′(x; y) = sup{p · y : p ∈ ∂f(x)}
(see Rockafellar 1970).

10Note that (p∗, t∗) is an IC mechanism on all of R
k that extends the given IC mecha-

nism (q, s) on D. This shows that it is without loss of generality to require the incentive
constraints to hold on all of R

k, and not merely on D.
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every x ∈ R
k, every p ∈ ∂b(x), and every z ∈ R

k
+. In particular, ∂b(x) ⊂

[0, 1]k and so b′(x; x) = supp∈∂b(x) p · x is attained at some q̄(x) ∈ [0, 1]k, i.e.,

b′(x; x) = q̄(x) · x. Define s̄(x) := b′(x; x) − b(x) = q̄(x) · x − b(x). Then

q̄(y) · y − s̄(y) = b(y) ≥ q̄(x) · (y − x) + b(x) = q̄(x) · y − s̄(x) (using the

definitions of s̄(y) and s̄(x), and q̄(x) ∈ ∂b(x)), and so (q̄, s̄) is IC.

Together, Lemmas 1 and 2 imply the following.

Corollary 3 Let (q, s) be an IC mechanism with buyer’s payoff function b.

Then (q, s) is seller-favorable if and only if q(x) · x = b′(x; x) and s(x) =

b′(x; x) − b(x) for every x.

Consider now the problem of maximizing the seller’s expected revenue

subject to individual rationality (IR) for the buyer (i.e., b ≥ 0). Since it is

without loss of generality to restrict attention to seller-favorable mechanisms,

a consequence of Corollary 3 is the following.

Corollary 4 The seller’s maximal expected revenue is

Rev(F) = sup
b∈Bk,b≥0

EF [b′(x; x) − b(x)] . (2)

Remarks. (a) Strict implementation. Given any IC mechanism (q, s), there

are numerous ways to eliminate, at arbitrarily small cost, the problem of the

buyer having only weak incentives to report truthfully. For example, one

can introduce an arbitrarily small positive probability that, after the buyer

reports his valuation, the given (IC) mechanism is replaced by a random

reserve price on each good.

Another alternative is to choose any arbitrarily small ε > 0, and use

instead the mechanism (q, (1 − ε)s) (it need not be IC), which amounts

to giving a constant discount (fraction ε) on all prices. This mechanism

guarantees to the seller, for any optimal choices of the buyer, a payoff of

at least (1 − ε)s(x) for every valuation x of the buyer.11 Thus, the seller is

11If y is an optimal report of a buyer with valuation x (as in the proof of Lemma 1, one
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guaranteed at least 1−ε times his payoff in the original mechanism, regardless

of which optimal report the buyer makes.12

In fact, the (q, (1 − ε)s) mechanism guarantees to the seller not merely

(1−ε)s(x) for every x, but (1−ε)s̄(x) = (1−ε)(b′(x; x)−b(x)), the maximal

seller-favorable payoffs, for every13 x (indeed, in the argument of footnote

11 replace (q(x), s(x)) with a (q(z), s(z)) that satisfies b′(x; x) = q(z) · x and

s(z) = q(z) · x − b(x)).

(b) Boundary points. Let C ⊂ R
k be a convex set that includes D, the

support of F , let x̄ be a boundary point of C, and let λ 6= 0 belong to the

normal cone to C at x̄, i.e., λ·x̄ ≥ λ·x for every x ∈ C. If λ·x̄ ≥ 0 and (q, s) is

seller-favorable, then we can assume w.l.o.g. that q̄ := q(x̄) is maximal in the

direction λ, i.e., q̃ := q̄ + ελ /∈ [0, 1]k for every ε > 0. Indeed, q̃ ∈ ∂b(x̄) (since

λ ·(x− x̄) ≤ 0 and q̄ ∈ ∂b(x̄)), and so b′(x̄; x̄) ≥ q̃ · x̄; but q̃ · x̄ ≥ q̄ · x̄ = b′(x̄; x̄)

(by Corollary 3) and so b′(x̄; x̄) = q̃ · x̄ and we can replace q̄ by q̃. Moreover,

if λ · x̄ > 0 then q̃ · x̄ > q̄ · x̄ = b′(x̄; x̄), a contradiction, and so q̄ must be

maximal in the direction λ.

In particular, we have:

• w.l.o.g. qi(x̄) = 0 when x̄i = 0 (take λ = −e(i), where e(i) ∈ R
k
+ is the

i-th unit vector);

• qi(x̄) = 1 when x̄i = max{xi : x ∈ C} > 0 (for instance, if C = [0, 1]k,

then qi(x̄) = 1 when x̄i = 1; take λ = e(i));

may need to consider the closure of the range of (q, (1 − ε)s)), then

q(y) · x − (1 − ε)s(y) ≥ q(x) · x − (1 − ε)s(x)

= [q(x) · x − s(x)] + εs(x)

≥ [q(y) · x − s(y)] + εs(x)

(by IC of (q, s)). Hence s(y) ≥ s(x) (subtract and divide by ε), and so the seller’s payoff,
(1 − ε)s(y), is at least (1 − ε)s(x).

12Thus the possibility of multiple optimal reports for the buyer, which is sometimes
described as problematic (see for instance footnote 3 in Manelli and Vincent 2007), in fact
isn’t.

13Thus the tie-breaking rule in favor of the seller is obtained as the limit of any optimal
behavior of the buyer in the perturbed mechanisms.
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• maxi qi(x̄) = 1 when
∑

i x̄i = max{∑i xi : x ∈ C} > 0 (for instance, if

C is the unit simplex in R
k
+; take λ = (1, 1, ..., 1)).

(c) b′(x; x) = limδ→0+(b((1 + δ)x) − b(x))/δ is the right-derivative of the

function t → b(tx) at14 t = 1, and s(x) = b′(x; x)−b(x) is the right-derivative

of the function t → b(tx)− tb(x) at t = 1 (these functions relate to the local

returns to scale of b). If b(0) = 0 (which, when maximizing revenue, can

always be assumed when15 C ⊂ R
k
+), then b′(x; x) ≥ b(x) and16 s(x) ≥ 0

(i.e., there are no positive transfers from seller to buyer).

3 Nonmonotonicity: Increasing Values May

Decrease Revenue

When the buyer’s values for the goods increase, what happens to the seller’s

maximal revenue? It stands to reason that the revenue should also increase,

as there is now more value for the seller to “extract.”17 While this can easily

be seen to be true when there is one good,18 it is perhaps a surprise that

it no longer holds when there are multiple goods. As a consequence, if the

distribution F of the buyer’s valuation is not precisely known, but a certain

lower bound F0 to F is given (in the first-order stochastic dominance sense),

then computing the optimal revenue for F0 does not necessarily yield a lower

bound on the optimal revenue for F .

3.1 Monotonicity for one good

When there is only one good, i.e., k = 1, incentive compatibility (IC) implies

that a buyer with a higher valuation pays no less than a buyer with a lower

14In the one-dimensional case (k = 1) we have b′(x;x) = xb′+(x). A useful property is
∫ t2

t1
b′(tx; tx)dt = b(t2x) − b(t1x) (cf. Rockafellar 1970, Corollary 24.2.1).

15If b(0) > 0 then the revenue from b̃(x) = b(x)− b(0) is higher by the amount b(0) than
the revenue from b.

16Since 0 = b(0) ≥ b(x) + q(x) · (0 − x) = −s(x).
17What we compare is the maximal revenue from two given distributions, one having

higher values than the other (formally, this means first-order stochastic dominance).
18Another case where the revenue is easily seen to increase is when all valuations increase

uniformly by the same amount (i.e., each x is replaced by x + z for a fixed vector z ¢ 0).
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valuation. Thus increasing the valuation of the buyer can only increase the

revenue.

Proposition 5 When there is one good, i.e., k = 1, if F2 fist-order stochas-

tically dominates F1 then Rev(F2) ≥Rev(F1).

Proof. First, we claim that every IC mechanism is monotonic in the sense

that the seller’s payoff increases weakly with the buyer’s value: if x > y

then s(x) ≥ s(y). Indeed, for all x, y, the IC inequalities at x and at y imply

(q(x) − q(y))x ≥ s(x) − s(y) ≥ (q(x) − q(y))y; when x > y it follows that

q(x) − q(y) ≥ 0 and thus s(x) − s(y) ≥ 0.

Second, the first-order stochastic dominance implies that EF1
[s(x)] ≤

EF2
[s(x)] for every IC mechanism, since s is a nondecreasing function.

Remark. Note that Proposition 5 also follows easily from Myerson’s

(1981) characterization of the optimal revenue when there is one good as

Rev(F ) = supp≥0 p · (1 − F (p)); however, the proof above shows that the

monotonicity of the revenue holds not only for optimal mechanisms, but also

for any incentive-compatible mechanism.

3.2 Nonmonotonicity for multiple goods

Now, does the above hold when there are more goods? That is, does increas-

ing the buyer’s valuations yield higher revenue to the seller? The surprising

answer is that this is no longer true when there is more than one good.

When there are multiple goods one can construct examples of IR and

IC mechanisms that are not monotonic.19 Take for instance the mechanism

where the buyer is offered a choice among the following four outcomes: get

nothing and pay nothing (with payoff = 0); or get good 1 for price 1 (with

payoff = x1 − 1); or get good 2 for price 2 (with payoff = x2 − 2); or get both

goods for price 4 (with payoff = x1 + x2 − 4); thus,

b(x1, x2) = max{0, x1 − 1, x2 − 2, x1 + x2 − 4}. (3)

19The first such example was constructed with Noam Nisan.
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x1

x2

21 3

1

2

3

0

x1 − 1

x2 − 2

x1 + x2 − 4

Figure 1: The nonmonotonic mechanism (3)

See Figure 1 for the regions in the buyer’s valuation space where each outcome

is chosen. If the valuation of the buyer is, say, (1.3, 2.4), then his optimal

choice is to pay 2 for good 2, whereas if his values increase to, say, (1.7, 2.6),

then his optimal choice is to pay 1 for good 1. Thus the seller receives a

lower payment (1 instead of 2) when the buyer’s values increase.

The more difficult question is whether this nonmonotonicity can also oc-

cur for the maximal revenue. The two examples below, a simpler one where

the unique optimal mechanism is precisely the above deterministic mecha-

nism20 (3) but the valuations of the two goods are correlated, and a more

complicated one where the valuations of the two goods are independent and

identically distributed, show that the maximal revenue can indeed be non-

monotonic.

Example E1. For every 0 ≤ α ≤ 1/4, let Fα be the following distribution

20This explains the reason for including the outcome x1 + x2 − 4 in the mechanism.
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on R
2:

Fα =







(1, 1), with probability 1/4,

(1, 2), with probability 1/4 − α,

(2, 2), with probability α,

(2, 3), with probability 1/2.

As α increases, probability mass is moved from (1, 2) to (2, 2), and so Fα first-

order stochastically dominates Fα′ when α > α′. Nevertheless, the maximal

revenue Rev(Fα) decreases with α (in the region 0 ≤ α ≤ 1/12).

Proposition 6 In Example E1: for every 0 ≤ α ≤ 1/12,

Rev(Fα) = 11/4 − α.

Proof. First, the revenue of 11/4 − α is achieved by the mechanism with b

given by (3): (1/4) · 1 + (1/4 − α) · 2 + α · 1 + (1/2) · 4 = 11/4 − α.

Second, we show that a higher revenue cannot be obtained. Consider the

following inequalities:

q11
1 + q11

2 − s11 ≥ 0 1

q12
1 + 2q12

2 − s12 ≥ q11
1 + 2q11

2 − s11 1/2

2q22
1 + 2q22

2 − s22 ≥ 2q11
1 + 2q11

2 − s11 3α

2q23
1 + 3q23

2 − s23 ≥ 2q11
1 + 3q11

2 − s11 1/4 − 3α

2q23
1 + 3q23

2 − s23 ≥ 2q12
1 + 3q12

2 − s12 1/4 + α

2q23
1 + 3q23

2 − s23 ≥ 2q22
1 + 3q22

2 − s22 2α

(4)

(the first inequality is IR at (1, 1), and the others are various IC constraints).

Multiplying these inequalities by the multipliers on the right (which are all

nonnegative when 0 ≤ α ≤ 1/12) and then adding them up yields:

− (3/4 − 3α) q11
2 − 2αq12

1 + (1/4 − 3α) q12
2 + 2αq22

1 + q23
1 + (3/2)q23

2

≥ (1/4)s11 + (1/4 − α) s12 + αs22 + (1/2)s23.

The right-hand side is precisely the expected revenue at Fα, and the left-hand

side is at most 0+0+(1/4−3α)+2α+1+3/2 = 11/4−α (since q11
2 , q12

1 ≥ 0
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and q12
2 , q22

1 , q23
1 , q23

2 ≤ 1). Therefore the revenue cannot exceed 11/4−α, and

so the revenue of 11/4 − α achieved by b of (3) is indeed maximal.

To get some intuition: the mechanism of (3) is:

Valuation Outcome

x = (x1, x2) q(x) = (q1(x), q2(x)) s(x)

(1, 1) (0, 0) 0

(2, 2) (1, 0) 1

(1, 2) (0, 1) 2

(2, 3) (1, 1) 4

(5)

When the value of good 1 goes up (e.g., from x = (1, 2) to x′ = (2, 2)), the

probability of getting good 1 also goes up (i.e., q1(x
′) = 1 > 0 = q1(x));

this is always so, as it is a consequence of the convexity of the buyer’s payoff

function b). However, at the same time the probability of getting good 2 may

go down (e.g., q2(x
′) = 0 < 1 = q2(x)); moreover, it can do so in such a

way that the allocation is worth less to the buyer, and so his payment to the

seller goes down (i.e., s(x′) = 1 < 2 = s(x)).

Remarks. (a) The mechanism (5) is the unique optimal mechanism at

each Fα with 0 ≤ α < 1/12; indeed, in order to get the revenue of 11/4 − α

one needs all relevant inequalities to become equalities (thus q11
2 = q12

1 = 0

and q12
2 = q23

1 = q23
1 = q23

2 = 1, which together with (4) as equalities can be

easily shown to yield q11
1 = 1, q22

2 = 0, s11 = 1, s12 = 2, s22 = 1, s23 = 4—

which is precisely (5)).

(b) Any small enough perturbation of the example—such as having full

support on a square like [0, 3]2, or increasing all valuations as α increases—

will not affect the nonmonotonicity, since the inequality Rev(F0) > Rev(F1/12)

is strict.
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3.3 Nonmonotonicity for independent and identically

distributed goods

We now provide an example of nonmonotonicity where the goods are inde-

pendent and identically distributed.

Example E2. Let F1 and F2 be the following one-dimensional distributions:

F1 =







10, with probability 4
15

,

46, with probability 1
90

,

47, with probability 1
3
,

80, with probability 7
30

,

100, with probability 7
45

.

F2 =







10, with probability 2399
9000

,

13, with probability 1
9000

,

46, with probability 1
90

,

47, with probability 1
3
,

80, with probability 7
30

,

100, with probability 7
45

.

Clearly F2 first-order stochastically dominates F1 (since F2 is obtained from

F1 by moving a probability mass of 1/9000 from 10 to 13), which of course

implies that F2 × F2 first-order stochastically dominates F1 × F1. However,

the optimal revenue from F1 × F1 turns out to be higher than the optimal

revenue from F2 × F2.

Proposition 7 In Example E2:

Rev(F1 × F1) ≈ 69.47145 > Rev(F2 × F2) ≈ 69.47126.

Proof. Maximizing revenue for a distribution with finite support is a linear

programming problem (the unknowns are the qi(x) and s(x) for all x in the

support, the constraints are the IR and IC inequalities, and the objective

function is the expected revenue). Using Maple yields the following.

The unique21 optimal mechanism for F2 × F2 consists of 11 outcomes

21Uniqueness is proved using the dual linear progamming problem, as in the previous
sections.
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(ordered in the table below according to increasing payment to the seller s):

Valuations Outcome

x q(x) s(x)

(10, 10), (10, 13), (13, 10), (13, 13),

(10, 46), (46, 10), (13, 46), (46, 13), (46, 46),

(13, 47), (47, 13), (10, 47), (47, 10)

(0, 0) 0

(46, 47) ( 32
1187

, 384
13057

) 34240
13057

≈ 2.6

(47, 46) ( 384
13057

, 32
1187

) 34240
13057

≈ 2.6

(47, 47) ( 35
1187

, 35
1187

) 3258
1187

≈ 2.7

(13, 80) ( 32
1187

, 5647
5935

) 90672
1187

≈ 76.4

(80, 13) (5647
5935

, 32
1187

) 90672
1187

≈ 76.4

(46, 80) ( 35
1187

, 5647
5935

) 90810
1187

≈ 76.5

(80, 46) (5647
5935

, 35
1187

) 90810
1187

≈ 76.5

(10, 80), (10, 100), (13, 100) (0, 1) 80

(80, 10), (100, 10), (100, 13) (1, 0) 80

(46, 100), (100, 46),

(47, 80), (80, 47), (47, 100), (100, 47),

(80, 80), (80, 100), (100, 80), (100, 100)

(1, 1) 126

For F1×F1 the same mechanism is optimal; however, the 5th and 6th outcomes

are not used (the value 13 has probability 0) and may be dropped. This

yields:

Rev(F1 × F1) =
408189937

5875650
= 69.47145... ,

Rev(F2 × F2) =
30614162731

440673750
= 69.47126... .

The nonmonotonicity of the payments is seen at s(10, 80) > s(13, 80), s(46, 80)

and s(80, 10) > s(80, 13), s(80, 46).
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4 Lotteries and Revenue

In the case of a single good (i.e., k = 1), in order to maximize revenue

it suffices to consider deterministic mechanisms (specifically, “posted-price”

mechanisms; see Myerson 1981). That is not so in the multi-good case.

Examples where the optimal mechanism requires randomization (i.e., in some

of the outcomes the probability of getting a good is strictly between 0 and 1)

have been provided by Thanassoulis (2004) (in the slightly different context

where the buyer’s demand is limited to one good), Pycia (2006), Manelli

and Vincent (2006, 2007),22 and Pavlov (2011, Example 3(ii)). However,

most of these examples are relatively complicated and require non-trivial

computations, and it is not clear why and how randomization helps only

when there are multiple goods.

We will provide two examples that are simple and transparent enough

that the need for randomization becomes clear. In the first, the values of

the two goods are correlated; in the second, the values are independent and

identically distributed.

4.1 Lotteries for multiple goods

Consider the following example with two goods and three possible valua-

tions23 (the values of the two goods are correlated).

Example E3. Let F be the following two-dimensional probability distribu-

22Manelli and Vincent (2007) provide an example (Example 1) of an “undominated
mechanism” that requires lotteries. While it is clear that an undominated mechanism is
optimal for some distribution F , it is claimed there (Theorem 9) that any undominated
mechanism is optimal for some distribution with independent goods (i.e., a product dis-
tribution). However, there is an error in the proof of Theorem 9, as the set of product
distributions (specifically, the set G in their proof) is not convex.

23Pycia (2006) solves the seller’s problem when there are exactly two valuations and
shows that randomizations may be needed. For instance, when the valuations are (2, 3)
and (6, 1) with equal probabilities, the unique optimal mechanism gives buyer (2, 3), for
the total price of 4, good 2 and a 1/2 chance of getting good 1; and gives buyer (6, 1)
both goods for the total price of 7. However, we have found that Example E1, with
three possible valuations, provides slightly more transparent insights (as there is a clearer
separation between the IC and IR constraints).
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tion:

F =







(1, 0), with probability 1/3,

(0, 2), with probability 1/3,

(3, 3), with probability 1/3.

Proposition 8 The mechanism (q, s) defined by

Valuation Outcome

x q(x) s(x)

(1, 0) (1
2
, 0) 1

2

(0, 2) (0, 1) 2

(3, 3) (1, 1) 5

(6)

with

b(x1, x2) = max

{

0,
1

2
x1 −

1

2
, x2 − 2, x1 + x2 − 5

}

(7)

is the unique revenue-maximizing IC and IR mechanism for F of Example

E3.

Thus, the buyer can get both goods for price 5, or get good 2 for price

2, or get good 1 with probability 1/2 for price 1/2; the optimal revenue is

5/2 = 2.5. It can be shown24 that if the seller were restricted to deterministic

mechanisms (where each qi is either 0 or 1), then the optimal revenue would

decrease to 7/3 = 2.33... (which is attained for instance by selling separately,

at the optimal-single-good prices of 3 for good 1 and 2 for good 2). A

detailed explanation of the role of randomization, and why it is needed only

when there are multiple goods, follows the proof below.

Proof. Let 〈(α1, β1); σ1〉, 〈(α2, β2); σ2〉, and 〈(α3, β3); σ3〉 be the outcome

〈(q1(x), q2(x)); s(x)〉 at x = (1, 0), (0, 2), and (3, 3), respectively (thus αi, βi ∈
[0, 1]). The objective function is S := σ1 + σ2 + σ3 (this is 3 times the

revenue). Consider the relaxed problem of maximizing S subject only to the

24See footnote 25.
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individual rationality constraints at (1, 0) and (0, 2), and to the two incentive

compatibility constraints at (3, 3), i.e.,

α1 − σ1 ≥ 0,

2β2 − σ2 ≥ 0,

3α3 + 3β3 − σ3 ≥ 3α1 + 3β1 − σ1,

3α3 + 3β3 − σ3 ≥ 3α2 + 3β2 − σ2.

These inequalities can be rewritten as:

σ3 + 3α1 + 3β1 − 3α3 − 3β3 ≤ σ1 ≤ α1,

σ3 + 3α2 + 3β2 − 3α3 − 3β3 ≤ σ2 ≤ 2β2.

Therefore, in order to maximize S = σ1 + σ2 + σ3 we must take σ1 = α1 and

σ2 = 2β2, which gives:

σ3 ≤ 3α3 + 3β3 − 2α1 − 3β1,

σ3 ≤ 3α3 + 3β3 − 3α2 − β2.

Thus we must take α3 = β3 = 1, β1 = α2 = 0, and then σ3 = min{6 −
2α1, 6 − β2}, and so S = α1 + 2β2 + min{6 − 2α1, 6 − β2} = min{2β2 −
α1, β2 + α1} + 6. Since S is increasing in β2 we must take β2 = 1, and then

S = min{2−α1, 1 + α1}+ 6 is maximized at25 α1 = 1/2. This is pecisely the

mechanism (6), which is easily seen to satisfy also all the other IR and IC

constraints.

To understand the use of randomization, consider the outcome

〈(1/2, 0); 1/2〉 at x = (1, 0) in (6): it is a lottery ticket that costs 1/2 and gives

a 1/2 probability of getting good 1; alternatively,26 it is a 1/2 − 1/2 lottery

between getting good 1 for the price 1 (i.e., 〈(1, 0); 1〉), and getting nothing

25For deterministic mechanisms (i.e., αi, βi ∈ {0, 1}), everything is the same up to this
point, but now S is maximized at both α1 = 0 and α1 = 1; the optimal revenue for
deterministic mechanisms is thus S/3 = 7/3.

26Because of risk-neutrality.
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and paying nothing (i.e., 〈(0, 0); 0〉). It is thus the average of these two deter-

ministic outcomes, and we now consider what happens when we replace the

lottery by either one of them (see Table 1 below). It turns out that in both

cases the revenue strictly decreases. In the first case, replacing 〈(1/2, 0); 1/2〉
by 〈(1, 0); 1〉 forces the price of the bundle to decrease to 4 (otherwise the

(3, 3)-buyer would switch from paying 5 for the bundle to paying 1 for good

1); therefore the net change in the revenue is 1/3 · (1 − 1/2) + 1/3 · (4 − 5),

which is negative.27 In the second case, replacing 〈(1/2, 0); 1/2〉 by 〈(0, 0); 0〉
results in the loss of the revenue from the (1, 0)-buyer, without, however,

increasing the revenue from the (3, 3)-buyer: indeed, if we were to increase

the bundle price, then (3, 3) would switch to 〈(0, 1); 2〉, i.e., would get good 2

for price 2 (and, if we were to drop this outcome 〈(0, 1); 2〉 altogether in order

to increase the bundle price to 6, the total revenue would again decrease).28

x q(x) s(x) q(1)(x) s(1)(x) q(2)(x) s(2)(x)

(1, 0) (1
2
, 0) 1

2
(1, 0) 1 (0, 0) 0

(0, 2) (0, 1) 2 (0, 1) 2 (0, 1) 2

(3, 3) (1, 1) 5 (1, 1) 4 (1, 1) 5

Table 1: Replacing a lottery outcome when there are two goods

It is instructive to compare this with a similar example but with a single

good. Assume the values are x = 1, 0, 3, with equal probabilities of 1/3

each (just like good 1 in Example E3). Take the mechanism with outcomes

〈1/2; 1/2〉, 〈0; 0〉, 〈1; 2〉 (see Table 2 below); it is easy to see that it is IC and

IR, and its revenue is 5/6. The lottery item 〈1/2; 1/2〉—get the good with

probability 1/2 for price 1/2—is the average of 〈0; 0〉 and 〈1; 1〉. Replacing the

lottery 〈1/2; 1/2〉 by 〈1; 1〉 lowers the revenue to 2/3: the 3-buyer switches

to 〈1; 1〉. Replacing the lottery 〈1/2; 1/2〉 by 〈0; 0〉 increases the revenue to

1: the 3-buyer is now offered, and chooses, 〈1; 3〉. The revenue of 5/6 of

27The buyer’s payoff function in this mechanism is b(1)(x) = max{x1 − 1, x2 − 2, x1 +
x2 − 4}.

28The buyer’s payoff function in this mechanism is b(2)(x) = max{0, x2−2, x1 +x2−5}.
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the original mechanism with the lottery item is precisely the average of the

revenues from these two resulting mechanisms, 2/3 and 1 (this averaging

property holds at each valuation x).

x q s q(1) s(1) q(2) s(2)

1 1
2

1
2

1 1 0 0

0 0 0 0 0 0 0

3 1 2 1 1 1 3

Table 2: Replacing a lottery outcome when there is one good

This is a general phenomenon when there is only one good: the revenue

from a mechanism that includes an outcome that is a probabilistic mixture

of two outcomes (a “lottery outcome”) is the average of the revenues ob-

tained by replacing the lottery with each one of these two outcomes and

then adapting the remaining outcomes.29 Formally, this is the counterpart of

expressing the corresponding b ∈ B1 as an average of two functions in B1; in

the example above, b(x) = max{0, x/2− 1/2, x− 2} is the 1/2− 1/2 average

of b(1)(x) = max{0, x − 1} and b(2)(x) = max{0, x − 3}. Thus lotteries are

indeed not needed when there is only one good.

Example E3 illustrates why this is not the case for multiple items: re-

placing the lottery outcome with 〈(0, 0); 0〉 yields the mechanism (q(2), s(2)),

whose revenue is lower than that of (q, s) (whereas replacing 〈1/2; 1/2〉 with

〈0; 0〉 yields a higher revenue). In fact, the function b of (7) is an extreme

point in B2 (in particular, it is not the average of b(1) and b(2)).

This is exactly where having more than one good matters. In the case

of one good there is only one binding constraint per value x, namely, the

outcome chosen by the next lower value. Consequently, dropping an outcome

(such as a lottery outcome) chosen by x enables the seller to increase the rev-

enue obtained from all higher-valuation buyers, as they can no longer switch

to the outcome that has been removed and they strictly prefer their own

29This statement, which is easily proved in general, provides another proof of Myerson’s
result that in the one-good case it suffices to consider deterministic mechanisms.
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outcome to any of the outcomes chosen by values below x. In contrast, when

there are multiple goods, such an increase in revenue may not be possible be-

cause there may be multiple binding constraints per each valuation x (in our

example, buyer (3, 3) is indifferent between reporting truthfully and report-

ing either (1, 0) or (0, 2)). These buyer types may switch to other outcomes

that involve other goods, and so the total revenue may well decrease.

Next, how does a lottery outcome increase revenue? The seller would like

to earn positive revenue from selling good 1 to the (1, 0) buyer, but without

jeopardizing the higher revenue obtained from selling the bundle of both

goods to the (3, 3) buyer (and, as we have seen, he cannot increase the price

of the bundle because of the “good 2 for price 2,” alternative, i.e., 〈(0, 1); 2〉).
If the price of good 1 is above 1 then (1, 0) will not buy it; if it is below

1, then (3, 3) will switch from buying the bundle to buying good 1 (since

his payoff will increase from 1 to 2 or more).30 Thus selling good 1 does not

help. What does help is selling only a fractional part of good 1, which has the

effect of making this option less attractive to the high-valuation buyer (3, 3)

(since his possible gain is smaller: it is only that fraction of the difference in

values). Thus, the two conflicting desiderata—getting some revenue from a

low-valuation buyer, and not jeopardizing the higher revenue from a higher-

valuation buyer—are reconciled by offering for sale fractions of the goods, i.e.,

lotteries. In the present example, that optimal fraction turns out to be 1/2;

it comes from balancing the incentives between the two goods (specifically,

it is the ratio of two value differences, 3− 2 for good 2 and 3− 1 for good 1;

see the Proof of Proposition 8 above).31

Finally, we note that mechanism design is a sequential game, with the

seller moving first. In such games, the use of randomization may in general

be strictly advantageous to the first mover (take for instance the sequential

“matching pennies” game). Thus, the surprising fact here is not that ran-

domizations can increase revenue (when there are multiple goods), but that

30As we saw above, lowering the price of the bundle to 4 (while keeping the price of
good 1 at 1) will not help either, because the total revenue decreases.

31Thus one can easily get other probabilities by changing the values. Moreover, the
example is highly robust: it has a large neighborhood where the optimal mechanisms
always require lotteries.
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they cannot do so when there is only one good.32,33

4.2 Lotteries for independent and identically distributed

goods

We now provide a simple example where lotteries are necessary to achieve

the maximal revenue for two goods that are independent and identically

distributed.

Example E4. Let F be the following one-dimensional probability distribu-

tion:

F =







1, with probability 1/6,

2, with probability 1/2,

4, with probability 1/3,

and take two independent F -distributed goods, i.e., F = F × F.

Proposition 9 The mechanism (q, s) defined by

Valuations Outcome

x q(x) s(x)

(1, 1) (0, 0) 0

(2, 1) (1
2
, 0) 1

(1, 2) (0, 1
2
) 1

(1, 4), (4, 1), (2, 2), (2, 4), (4, 2), (4, 4) (1, 1) 4

(8)

with

b(x1, x2) = max

{

0,
1

2
x1 − 1,

1

2
x2 − 1, x1 + x2 − 4

}

(9)

is the unique optimal mechanism for F = F × F of Example E4.

Proof. First, the revenue from the mechanism (8) is easily computed: it

equals 61/18.

32We thank Bob Aumann for this comment.
33Pycia (2006) shows how in the multiple-goods case non-deterministic mechanisms are

generically needed to maximize revenue.
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Second, take the following inequalities, which are various individual ra-

tionality and incentive compatibility constraints34:

q11
1 + q11

2 − s11 ≥ 0 3

q12
1 + 2q12

2 − s12 ≥ 0 8

2q21
1 + q21

2 − s21 ≥ 0 8

2q22
1 + 2q22

2 − s22 ≥ 0 17

q12
1 + 2q12

2 − s12 ≥ q11
1 + 2q11

2 − s11 1

2q21
1 + q21

2 − s21 ≥ 2q11
1 + q11

2 − s11 1

2q22
1 + 2q22

2 − s22 ≥ 2q12
1 + 2q12

2 − s12 3

2q22
1 + 2q22

2 − s22 ≥ 2q21
1 + 2q21

2 − s21 3

q14
1 + 4q14

2 − s14 ≥ q12
1 + 4q12

2 − s12 3

4q41
1 + q41

2 − s41 ≥ 4q21
1 + q21

2 − s21 3

2q22
1 + 2q22

2 − s22 ≥ 2q14
1 + 2q14

2 − s14 1

2q22
1 + 2q22

2 − s22 ≥ 2q41
1 + 2q41

2 − s41 1

2q24
1 + 4q24

2 − s24 ≥ 2q22
1 + 4q22

2 − s22 8

4q42
1 + 2q42

2 − s42 ≥ 4q22
1 + 2q22

2 − s22 8

4q44
1 + 4q44

2 − s44 ≥ 4q24
1 + 4q24

2 − s24 2

4q44
1 + 4q44

2 − s44 ≥ 4q42
1 + 4q42

2 − s42 2

(10)

Multiplying each inequality by the weight on the right and adding up yields:

s11 + 3s12 + 3s21 + 9s22 + 2s14 + 2s41 + 6s24 + 6s42 + 4s44

≤ 2q22
1 + q14

1 + 10q41
1 + 8q24

1 + 24q42
1 + 16q44

1 (11)

+ 2q22
2 + 10q14

2 + q41
2 + 24q24

2 + 8q42
2 + 16q44

2 .

The left-hand side turns out to be precisely 36 times the expected revenue of

the seller for the distribution F = F×F , i.e., 36EF [s(x)] , and the right-hand

side is bounded from above by 122 (replace all q1 and q2 there by their upper

bound of 1). Therefore EF [s(x)] ≤ 122/36 = 61/18. Recalling that 61/18 is

precisely the revenue of the mechanism (8) shows that (8) is optimal.

Finally, to see that (8) is the only optimal mechanism: by the proof above,

34These specific inequalities and their corresponding multipliers below were obtained by
solving the dual of the linear programming problem of maximizing the revenue.
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for the maximal revenue of 61/18 to be achieved, all the inequalities must

become equalities. First, all the q1 and q2 appearing on the right-hand side

of (11) must equal 1:

1 = q22
1 = q14

1 = q41
1 = q24

1 = q42
1 = q44

1 (12)

= q22
2 = q14

2 = q41
2 = q24

2 = q42
2 = q44

2 .

Second, the inequalities in (10), which are now equalities, yield after substi-

tuting (12):

s44 = s24 = s42 = s22 = s14 = s41 = 4, s12 = s21 = 1, s11 = 0,

q11
1 = q11

2 = q12
1 = q21

2 = 0, q21
1 = q12

2 =
1

2
.

Together with (12) this yields precisely the mechanism (8).

It can be checked that the maximal revenue achievable by a deterministic

mechanism is 10/3 (obtained by the mechanism with price 2 for each good).
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