An axiomatic characterization of the Theil inequality ordering (preliminary)

Casilda Lasso de la Vega
University of the Basque Country
Ana Urrutia
University of the Basque Country
Oscar Volij
Ben-Gurion University

February 7, 2009

Abstract

We characterize the Theil ordering of income inequality by means of a few ordinal axioms.

1 Introduction

Economists have been interested in income inequality for quite some time now. Typical issues include the evolution of income inequality in some particular country or region over time, the differences in income inequality across different regions, and the effect of different policies on income inequality, and of income inequality on different economic variables. In order to address these or other similar questions one must first be able to measure income inequality.

The literature on the measurement of income inequality offers a plethora of inequality indices but the extent to which they are appropriate is not clear. In order to compare different measures one may apply them to various examples and check if these measures do not contradict one's intuitions about income inequality. For instance, we may apply a few inequality indices to two income distributions, one of which we believe is more unequal than the other, and discard all those indices that contradict our subjective judgement. Another way to evaluate inequality measures is
not to observe their performance on particular examples but to evaluate their properties at a more abstract level. We may make a list of properties we think a reasonable inequality measure should satisfy and check which inequality measures actually satisfy them.

Some properties of inequality measures are uncontroversial. In fact, they are so uncontroversial that they are considered as defining properties of the bare concept of inequality measure. For example, the Pigou-Dalton principle of transfers, which postulates that the transfer of income from a rich individual to a poorer one increases inequality as long as the poor individual does not become richer than the rich one, is considered by Fields and Fey [2] as one of the basic axioms of inequality measurement. Other axioms are less uncontroversial, though. For example, some of them require from an inequality index that it be decomposable in some particular way into an inequality between regions, and an inequality within regions. This decomposability is definitely not an essential property of an inequality index.

This axiomatic approach has been successfully applied by Bourguignon [1], Foster [3], Shorrocks [4] and many others. In particular, Foster [3] has shown that the Theil index of income inequality is the only index that satisfies the three basic properties enumerated by Fields and Fey [2], as well as a simple decomposability property.

There is a distinction between properties that we believe to be important. Some axioms are ordinal in nature, and others are cardinal. Ordinal axioms impose restrictions on the way different income distributions are ranked. The Pigou-Dalton principle of transfers is an ordinal property in that it compares two particular distributions and tells us which one is more unequal. It does not tell us anything about the magnitude of the inequality. Cardinal axioms, on the other hand, impose restrictions on the functional form that is used to measure inequality. The decomposability property that Foster uses to characterize the Theil index is cardinal. Indeed, it requires that the total inequality of a distribution be a weighted sum of the inequalities of its regions and the inequality between these regions.

In this paper we characterize the Theil inequality measure by means of ordinal axioms only. In particular, we strip the decomposability property used by Foster (1983) from all its cardinal content, and maintain its ordinal content only.

2 Definitions

A society is a collection $\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle$ where $y_{k}, k=1, \ldots, K$ are income levels, not all of them 0 , and for each $k, n_{k}>0$ is the mass of people with income level y_{k}. Elements $\left(n_{k}, y_{k}\right)$ of a society are called social classes.

For a society $S=\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle$, we denote by $|S|$, the total level of income in S, and by $n(S)$ its total population. That is,

$$
|S|=\sum_{k=1}^{K} n_{k} y_{k} \text { and } n(S)=\sum_{k=1}^{K} n_{k}
$$

Note that $|S|>0$ and $n(S)>0$.
For any two societies S_{1} and $S_{2}, S_{1} \cup S_{2}$ denotes the union of the two.
We denote by \mathcal{S}_{n}, the set of all societies with population mass n, and by $\mathcal{S}=\cup_{n>0} \mathcal{S}_{n}$ the set of all societies.

An inequality ordering is a binary relation \succcurlyeq on \mathcal{S}. Some orderings can be represented by an inequality index. An inequality index is a function $I: \mathcal{S} \rightarrow \mathbb{R}$ that assigns to each society a real number, that represents the society's inequality level.

2.1 Examples of inequality indices

Example 1 The Theil index, $T: \mathcal{S} \rightarrow \mathbb{R}$, is defined as follows:
for all $S=\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle \in \mathcal{S}$,

$$
T(S)=\sum_{k=1}^{K} \frac{n_{k} y_{k}}{|S|} \log _{2}\left(n(S) \frac{y_{k}}{|S|}\right)
$$

The Theil ordering is the ordering represented by the Theil index.

Note that the Theil index can be written as

$$
T(S)=\log _{2} n(S)-\sum_{k=1}^{K} \frac{n_{k} y_{k}}{|S|} \log _{2}\left(\frac{|S|}{y_{k}}\right)
$$

or as the difference between the maximum entropy in a population of mass n, and the entropy of the society.

Example 2 The Gini index, $G: \mathcal{S} \rightarrow[0,1]$, is defined as follows:
for all $S=\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle \in \mathcal{S}$,

$$
G(S)=1-\frac{\left.\sum_{k=1}^{K} \frac{n_{k}}{n(S)}\left(\sum_{j=1}^{k-1} n_{j} y_{j}\right)+\sum_{j=1}^{k} n_{j} y_{j}\right)}{|S|}
$$

The Gini ordering is the ordering represented by the Gini index.

Example 3 The Atkinson index, $A: \mathcal{S} \rightarrow[0,1]$, is defined as follows:
for all $S=\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle \in \mathcal{S}$,

$$
A(S)=1-\frac{n(S)}{|S|} \prod_{k=1}^{K}\left(y_{k}\right)^{\frac{n_{k}}{n(S)}}
$$

The Atkinson ordering is the ordering represented by the Atkinson index.

Example 4 The Second Theil index, $T_{0}: \mathcal{S}_{+} \rightarrow[0, \infty)$, is defined as follows:
for all $S=\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle \in \mathcal{S}_{+}$,

$$
T_{0}(S)=\log \left(\frac{|S| / n(S)}{\prod_{k=1}^{K}\left(y_{k}\right)^{\frac{n_{k}}{n(S)}}}\right)
$$

The Second Theil ordering is the ordering represented by the Second Theil index.

Researchers are sometimes interested in decomposable inequality indices. Decomposable indices allow us to attribute total inequality to different factors. In particular, decomposable indices allow us to decompose total inequality into inequality between subsocieties and inequality within subsocieties. One general way to define decomposability is as follows.

Definition 5 We say that inequality index I is decomposable $i f$ for any two societies S_{1} and S_{2},

$$
I\left(S_{1} \cup S_{2}\right)=f\left(v_{1}, w_{1}\right) I\left(S_{1}\right)+f\left(v_{2}, w_{2}\right) I\left(S_{2}\right)+I\left(\overline{S_{1}} \cup \overline{S_{2}}\right)
$$

where $\overline{S_{i}}=\left\langle\left(n\left(S_{i}\right), \frac{\left|S_{i}\right|}{n\left(S_{i}\right)}\right)\right\rangle, v_{i}=\frac{n\left(S_{i}\right)}{n\left(S_{1} \cup S_{2}\right)}$ and $w_{i}=\frac{\left|S_{i}\right|}{\left|S_{1} \cup S_{2}\right|}$, for $i=1,2$, and f is homogeneous of degree one in both its arguments.

Note that decomposability is a cardinal axiom.

Foster (1983) used a more restrictive version of decomposability in his characterization of the Theil index.

Definition 6 We say that inequality index I is Theil-decomposable, if for any two societies S_{1} and S_{2},

$$
I\left(S_{1} \cup S_{2}\right)=\frac{\left|S_{2}\right|}{\left|S_{1} \cup S_{2}\right|} I\left(S_{1}\right)+\frac{\left|S_{2}\right|}{\left|S_{1} \cup S_{2}\right|} I\left(S_{2}\right)+I\left(\overline{S_{1}} \cup \overline{S_{2}}\right)
$$

Although Theil decomposability is a cardinal axiom, it has very strong ordinal implications. In this paper we identify some of these ordinal implications and, together with other ordinal axioms, use them to characterize the Theil income inequality ordering.

3 Axioms

We now present a set of axioms that an inequality ordering may satisfy. The first axioms embodies the idea that we are interested in relative measures of income inequality.

Definition 7 (HOM) We say that \succcurlyeq satisfies Homogeneity if for all $S=\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle \in$ \mathcal{S}, and for all $\alpha>0$, we have $\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle \sim\left\langle\left(n_{1}, \alpha y_{1}\right), \ldots,\left(n_{K}, \alpha y_{K}\right)\right\rangle$.

Homogeneity states that only the relative distribution of income determines inequality. In other words, one does not need to know the units in which income is measured (dollars, euros, etc.) to determine whether one society has a more or less equal distribution than another one.

The next axiom is similar to homogeneity in the sense that it is not the absolute number of people who has any given income level what matters, but their proportion in the population.

Definition 8 (RI) We say that \succcurlyeq satisfies replication invariance if for all $S=\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle \in$ \mathcal{S}, and for all $\alpha>0$, we have $\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle \sim\left\langle\left(\alpha n_{1}, y_{1}\right), \ldots,\left(\alpha n_{K}, y_{K}\right)\right\rangle$.

Replication invariance, which is sometimes called Dalton's principle of population, states that if we replicate a society by multiplying each individual by a fixed constant then inequality remains unaffected.

The previous two axioms state that some particular changes in the society do not affect its income inequality. The next axiom, on the other hand, states that some other changes do affect income inequality in a certain way.

Definition 9 (TP) We say that \succcurlyeq satisfies the transfer principle if for all egalitarian societies $\langle(n, y)\rangle$, and for all $\left\langle\left(n_{1}, y_{1}\right),\left(n_{2}, y_{2}\right)\right\rangle$ such that $n_{1}+n_{2}=n$ and $n y=n_{1} y_{1}+n_{2} y_{2}$ we have $\left\langle\left(n_{1}, y_{1}\right),\left(n_{2}, y_{2}\right)\right\rangle \succcurlyeq\langle(n, y)\rangle$, with equivalence (\sim) if and only if $y_{1}=y_{2}$.

According to the transfer principle, if one divides an egalitarian society into two social classes by transferring income from some individuals to others, then one obtains a new society with more unequal distribution of income. A stronger version of the transfer principle is stated in the following axiom. It requires that a division of any social class into two different social classes that results from a transfer of income from one group of individuals to another results in a society with more unequal distribution of income.

Definition 10 (SCDP) We say that \succcurlyeq satisfies social class division property if whenever S^{\prime} is obtained from S by means of a subdivision of a social class $\left(n_{k}, y_{k}\right) \in S$ into two social classes $\left(n_{k_{1}}, y_{k_{1}}\right),\left(n_{k_{1}}, y_{k_{2}}\right)$ such that $n_{k}=n_{k_{1}}+n_{k_{2}}$ and $n_{k} y_{k}=n_{k_{1}} y_{k_{1}}+n_{k_{2}} y_{k_{2}}$, then: $S^{\prime} \succcurlyeq S$, with equivalence (\sim) if and only if $y_{k_{1}}=y_{k_{2}}$.

The next axiom is an ordinal implication of the decomposability axiom used in Foster's (1983) characterization of the Theil index.

Definition 11 (IND) We say that \succcurlyeq satisfies Independence, if for all $S_{1}, S_{2} \in \mathcal{S}$ such that $\left|S_{1}\right|=$ $\left|S_{2}\right|$ and $n\left(S_{1}\right)=n\left(S_{2}\right)$, and for all societies $S \in \mathcal{S}$,

$$
S_{1} \succcurlyeq S_{2} \Leftrightarrow S_{1} \cup S \succcurlyeq S_{2} \cup S .
$$

Independence says that if a given society is composed of two regions or subsocieties, and one of its regions' income becomes more unequally distributed, then the income distribution of the whole society becomes more unequal as well.

Claim 12 If the inequality order \succcurlyeq satisfies Independence, and the transfer principle, then it also satisfies the social class division property.

Proof. Let $S=\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle$ be a society and let $S^{\prime}=S \backslash\left\langle\left(n_{k}, y_{k}\right)\right\rangle \cup\left\langle\left(n_{k_{1}}, y_{k_{1}}\right),\left(n_{k_{1}}, y_{k_{2}}\right)\right\rangle$ be the society that is obtained from S by means of a subdivision of a social class $\left(n_{k}, y_{k}\right) \in S$ into two social classes $\left(n_{k_{1}}, y_{k_{1}}\right),\left(n_{k_{1}}, y_{k_{2}}\right)$ such that $n_{k}=n_{k_{1}}+n_{k_{2}}$ and $n_{k} y_{k}=n_{k_{1}} y_{k_{1}}+n_{k_{2}} y_{k_{2}}$. By the transfer principle,

$$
\left\langle\left(n_{k_{1}}, y_{k_{1}}\right),\left(n_{k_{1}}, y_{k_{2}}\right)\right\rangle \succcurlyeq\left\langle\left(n_{k}, y_{k}\right)\right\rangle .
$$

By independence,

$$
S \backslash\left\langle\left(n_{k}, y_{k}\right)\right\rangle \cup\left\langle\left(n_{k_{1}}, y_{k_{1}}\right),\left(n_{k_{1}}, y_{k_{2}}\right)\right\rangle \succcurlyeq S \backslash\left\langle\left(n_{k}, y_{k}\right)\right\rangle \cup\left\langle\left(n_{k}, y_{k}\right)\right\rangle
$$

or, $S^{\prime} \succcurlyeq S$.
The next axiom is another ordinal implication of Theil-decomposability.

Definition 13 (DEC) We say that \succcurlyeq satisfies Decomposability, if for all four societies $S_{1}, S_{2}, S_{3}, S_{4} \in$ \mathcal{S}, such that

- $\left|S_{1}\right|=\left|S_{2}\right|$, and
- $\left|S_{3}\right|=\left|S_{4}\right|$, and $n\left(S_{3}\right)=n\left(S_{4}\right)$,
we have

$$
\left(S_{1} \cup S_{3}\right) \succcurlyeq\left(S_{2} \cup S_{3}\right) \Leftrightarrow\left(S_{1} \cup S_{4}\right) \succcurlyeq\left(S_{2} \cup S_{4}\right) .
$$

Decomposability states the following. Suppose that a given society $\left(S_{1} \cup S_{3}\right)$ is composed of two subsocieties and that the population of one of these subsocieties, S_{1}, changes (without changing its total income), resulting in the society ($S_{2} \cup S_{3}$). This population change obviously may affect the inequality of the whole society's income distribution in that the society's income might become either more or less equally distributed. Decomposability requires that this effect be independent of the distribution of income of the subsociety whose population remained unchanged.

The last axiom is a technical continuity requirement. It states that "similar" societies have "similar" levels of income inequality.

Definition 14 The inequality ordering \succcurlyeq satisfies Continuity if for all three societies S, S^{\prime} and $S^{\prime \prime}$, the sets

$$
\left\{\alpha \in[0,1]: \alpha S \cup(1-\alpha) S^{\prime} \succcurlyeq S^{\prime \prime}\right\} \quad \text { and } \quad\left\{\alpha \in[0,1]: S^{\prime \prime} \succcurlyeq \alpha S \cup(1-\alpha) S^{\prime}\right\}
$$

are closed.

3.1 Properties of The Theil Inequality Ordering

Claim 15 The Theil ordering satisfies replication invariance and homogeneity.

Proof. Left to the reader.

Claim 16 The Theil ordering satisfies Independence.

Proof. Let $S_{1}=\left\langle\left(n_{1}, x_{1}\right), \ldots,\left(n_{K_{1}}, x_{K_{1}}\right)\right\rangle$ and $S_{2}=\left\langle\left(m_{1}, y_{1}\right), \ldots,\left(m_{K_{2}}, y_{K_{2}}\right)\right\rangle$ be two societies such that $\left|S_{1}\right|=\left|S_{2}\right|$ and $n\left(S_{1}\right)=n\left(S_{2}\right)=n$, and let $S=\left\langle\left(p_{1}, z_{1}\right), \ldots,\left(p_{K_{3}}, z_{K_{3}}\right)\right\rangle \in \mathcal{S}$. Then, $\left|S_{1} \cup S\right|=\left|S_{2} \cup S\right|$. Since the Theil ordering satisfies homogeneity, we can assume without loss of generality that $\left|S_{1} \cup S\right|=\left|S_{2} \cup S\right|=1$.

$$
\begin{aligned}
S_{1} & \succcurlyeq S_{2} \Leftrightarrow \log _{2} n-\sum_{k=1}^{K_{1}} \frac{n_{k} x_{k}}{\left|S_{1}\right|} \log _{2}\left(\frac{\left|S_{1}\right|}{x_{k}}\right) \geq \log _{2} n-\sum_{k=1}^{K_{2}} \frac{m_{k} y_{k}}{\left|S_{2}\right|} \log _{2}\left(\frac{\left|S_{2}\right|}{y_{k}}\right) \\
& \Leftrightarrow \sum_{k=1}^{K_{1}} \frac{n_{k} x_{k}}{\left|S_{1}\right|} \log _{2}\left(\frac{\left|S_{1}\right|}{x_{k}}\right) \leq \sum_{k=1}^{K_{2}} \frac{m_{k} y_{k}}{\left|S_{2}\right|} \log _{2}\left(\frac{\left|S_{2}\right|}{y_{k}}\right) \\
& \Leftrightarrow \sum_{k=1}^{K_{1}} n_{k} x_{k} \log _{2}\left(\frac{\left|S_{1}\right|}{x_{k}}\right) \leq \sum_{k=1}^{K_{2}} m_{k} y_{k} \log _{2}\left(\frac{\left|S_{2}\right|}{y_{k}}\right) \\
& \Leftrightarrow \sum_{k=1}^{K_{1}} n_{k} x_{k} \log _{2}\left(\frac{1}{x_{k}}\right)+\sum_{k=1}^{K_{1}} n_{k} x_{k} \log _{2}\left(\left|S_{1}\right|\right) \leq \sum_{k=1}^{K_{2}} m_{k} y_{k} \log _{2}\left(\frac{1}{y_{k}}\right)+\sum_{k=1}^{K_{2}} m_{k} y_{k} \log _{2}\left(\left|S_{2}\right|\right) \\
& \Leftrightarrow \sum_{k=1}^{K_{1}} n_{k} x_{k} \log _{2}\left(\frac{1}{x_{k}}\right)+\left|S_{1}\right| \log _{2}\left(\left|S_{1}\right|\right) \leq \sum_{k=1}^{K_{2}} m_{k} y_{k} \log _{2}\left(\frac{1}{y_{k}}\right)+\left|S_{2}\right| \log _{2}\left(\left|S_{2}\right|\right) \\
& \Leftrightarrow \sum_{k=1}^{K_{1}} n_{k} x_{k} \log _{2}\left(\frac{1}{x_{k}}\right) \leq \sum_{k=1}^{K_{2}} m_{k} y_{k} \log _{2}\left(\frac{1}{y_{k}}\right) \\
& \Leftrightarrow \sum_{k=1}^{K_{1}} n_{k} x_{k} \log _{2}\left(\frac{1}{x_{k}}\right)+\sum_{k=1}^{K_{3}} p_{k} z_{k} \log _{2}\left(\frac{1}{z_{k}}\right) \leq \sum_{k=1}^{K_{2}} m_{k} y_{k} \log _{2}\left(\frac{1}{y_{k}}\right)+\sum_{k=1}^{K_{3}} p_{k} z_{k} \log _{2}\left(\frac{1}{z_{k}}\right) \\
& \Leftrightarrow S_{1} \cup S \succcurlyeq S_{2} \cup S
\end{aligned}
$$

Claim 17 The Theil ordering satisfies Decomposability.

Proof. Let $S_{1}=\left\langle\left(n_{1}, x_{1}\right), \ldots,\left(n_{K_{1}}, x_{K_{1}}\right)\right\rangle, S_{2}=\left\langle\left(t_{1}, w_{1}\right), \ldots,\left(t_{K_{2}}, w_{K_{2}}\right)\right\rangle \in \mathcal{S}$, and $S_{3}=\left\langle\left(m_{1}, y_{1}\right), \ldots,\left(m_{K_{3}}, y_{K_{3}}\right)\right\rangle, S_{4}=\left\langle\left(p_{1}, z_{1}\right), \ldots,\left(p_{K_{4}}, z_{K_{4}}\right)\right\rangle \in \mathcal{S}_{m}$ such that $\left|S_{1}\right|=\left|S_{2}\right|$, and $\left|S_{3}\right|=\left|S_{4}\right|$. Note then that $\left|\left(S_{1} \cup S_{3}\right)\right|=\left|\left(S_{2} \cup S_{3}\right)\right|=\left|S_{2} \cup S_{4}\right|=\left|S_{1} \cup S_{4}\right|$, which by homogeneity
can be assumed to be equal 1 .

$$
\begin{aligned}
\left(S_{1} \cup S_{3}\right) & \succcurlyeq\left(S_{2} \cup S_{3}\right) \Leftrightarrow \log _{2}\left(n\left(S_{1}\right)+m\right)-\sum_{k=1}^{K_{1}} n_{k} x_{k} \log _{2}\left(\frac{1}{x_{k}}\right)-\sum_{k=1}^{K_{3}} m_{k} y_{k} \log _{2}\left(\frac{1}{y_{k}}\right) \\
& \geq \log _{2}\left(n\left(S_{2}\right)+m\right)-\sum_{k=1}^{K_{2}} t_{k} w_{k} \log _{2}\left(\frac{1}{w_{k}}\right)-\sum_{k=1}^{K_{3}} m_{k} y_{k} \log _{2}\left(\frac{1}{y_{k}}\right) \\
& \Leftrightarrow \log _{2}\left(n\left(S_{1}\right)+m\right)-\sum_{k=1}^{K_{1}} n_{k} x_{k} \log _{2}\left(\frac{1}{x_{k}}\right) \geq \log _{2}\left(n\left(S_{2}\right)+m\right)-\sum_{k=1}^{K_{2}} t_{k} w_{k} \log _{2}\left(\frac{1}{w_{k}}\right) \\
& \Leftrightarrow \log _{2}\left(n\left(S_{1}\right)+m\right)-\sum_{k=1}^{K_{1}} n_{k} x_{k} \log _{2}\left(\frac{1}{x_{k}}\right)-\sum_{k=1}^{K_{4}} p_{k} z_{k} \log _{2}\left(\frac{1}{z_{k}}\right) \\
& \geq \log _{2}\left(n\left(S_{2}\right)+m\right)-\sum_{k=1}^{K_{2}} t_{k} w_{k} \log _{2}\left(\frac{1}{w_{k}}\right)-\sum_{k=1}^{K_{4}} p_{k} z_{k} \log _{2}\left(\frac{1}{z_{k}}\right) \\
& \Leftrightarrow\left(S_{1} \cup S_{4}\right) \succcurlyeq\left(S_{2} \cup S_{4}\right)
\end{aligned}
$$

We are now ready to state our main result.

Theorem 18 There is a unique inequality ordering defined on \mathcal{S} that satisfies, homogeneity, replication invariance, independence, decompoability, the transfer principle, and continuity. It is the Theil inequality ordering.

4 Proof of the main theorem

Let $S_{0}=\langle(1,1)\rangle$ be the society with population mass 1 and a uniformly distributed income of one.
For each $\alpha \in(0,1)$, let $S_{\alpha}=\langle(\alpha, 0),(1-\alpha, 1 /(1-\alpha)\rangle$ be the society with population mass 1 , in which a proportion α of the population has income 0 , and a proportion $1-\alpha$ of the population has income $1 /(1-\alpha)$. Note that for all α, S_{α} has population 1 and income 1.

Lemma 19 For each society $S \in \mathcal{S}$, there is $\alpha \in(0,1)$ such that $S_{\alpha} \succcurlyeq S$.

Proof. Let $S \in \mathcal{S}$. By RI we can assume that S has a population mass of 1 . By homogeneity we can assume without loss of generality that the maximum level of income in S is $1: \max \left\{y_{k}\right.$: $k=1, \ldots K\}=1$. Note that $|S|=\sum n_{k} y_{k} \leq 1$. Denote S^{\prime} the society that is obtained from S by
subdividing each bracket $\left(n_{k}, y_{k}\right)$ in S into two sub-brackets $\left\langle\left(n_{k}\left(1-y_{k}\right), 0\right),\left(n_{k} y_{k}, 1\right)\right\rangle$. By SCDP, $S^{\prime} \succcurlyeq S$. By SCDP again,

$$
S^{\prime} \sim\left\langle\left(1-\sum n_{k} y_{k}, 0\right),\left(\sum n_{k} y_{k}, 1\right)\right\rangle=\langle(1-|S|, 0),(|S|, 1)\rangle \sim\langle(1-|S|, 0),(|S|, 1 /|S|)\rangle .
$$

Therefore $\alpha=1-|S|$ is the number we are looking for.
Lemma 20 All societies where total income is uniformly distributed have the same degree of income inequality. Further for all societies $S \in \mathcal{S}, S \succcurlyeq S_{0}$.

Proof. Let S be a society with uniformly distributed income. By HOM, RI, and SCDP, $S \sim S_{0}$. Let now $S=\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle \in \mathcal{S}$ be an arbitrary society. Let S^{k} be the society that results from combining social classes 1 to k, into one bracket $\left(\sum_{i=1}^{k} n_{i}, \sum_{i=1}^{k} n_{i} y_{i} / \sum_{i=1}^{k} n_{i}\right)$. By SCDP, $S^{k} \succcurlyeq S^{k+1}$. Therefore, $S=S^{1} \succcurlyeq S^{K}$. But S^{K} has only one social class, and hence income is uniformly distributed there.

Lemma 21 Let $0 \leq \alpha<\beta<1$. Then, $S_{\beta} \succ S_{\alpha}$.

Proof.

$$
\begin{aligned}
S_{\beta} & =\left\langle(\beta, 0),\left(1-\beta, \frac{1}{1-\beta}\right)\right\rangle \\
& \sim\left\langle(\alpha, 0),(\beta-\alpha, 0),\left(1-\beta, \frac{1}{(1-\beta)}\right)\right\rangle \text { by SCDP } \\
& \succcurlyeq\left\langle(\alpha, 0),\left(1-\alpha, \frac{1}{(1-\alpha)}\right)\right\rangle=S_{\alpha} \text { by SCDP. }
\end{aligned}
$$

Lemma 22 Let $a \in(0,1)$ be such that $S_{a} \succ S_{0}$. Then, for $0 \leq \alpha<\beta<1$,

$$
\beta S_{a} \cup(1-\beta) S_{0} \succ \alpha S_{a} \cup(1-\alpha) S_{0}
$$

Proof. By SCDP applied three times,

$$
\begin{aligned}
\beta S_{a} \cup(1-\beta) S_{0} & \sim \alpha S_{a} \cup(\beta-\alpha) S_{a} \cup(1-\beta) S_{0} \\
& \succ \alpha S_{a} \cup(\beta-\alpha) S_{0} \cup(1-\beta) S_{0} \\
& \sim \alpha S_{a} \cup(1-\alpha) S_{0} .
\end{aligned}
$$

Lemma 23 Let $a \in(0,1)$ be such that $S_{a} \succ S_{0}$. For any society $S \in \mathcal{S}$ such that $S_{a} \succcurlyeq S \succcurlyeq S_{0}$, there is a unique $\alpha \in[0,1]$ such that

$$
S \sim \alpha S_{a} \cup(1-\alpha) S_{0}
$$

Proof. By C, the sets $\left\{\alpha \in[0,1]: \alpha S_{a} \cup(1-\alpha) S_{0} \succcurlyeq S\right\}$ and $\left\{\alpha \in[0,1]: S \succcurlyeq \alpha S_{a} \cup(1-\alpha) S_{0}\right\}$ are closed. Since $S_{a} \succcurlyeq S \succcurlyeq S_{0}$, they are not empty. Since \succcurlyeq is complete, their union is [0,1$]$. Therefore, since the unit interval is connected, the intersection of the two sets is not empty. By Lemma 22, this intersection must contain a single element. This single element is the α we are looking for.

Let S be a society and let $a \in(1 / 2,1)$ such that $S_{a} \succ S$ and $S_{a} \succ S_{0}$. By Lemmas 19 and 21 such a exists. Then we have $S_{a} \succ S \succcurlyeq S_{0}$. Let $\alpha(a)$ be the unique number identified in Lemma 23 that satisfies

$$
S \sim \alpha(a) S_{a} \cup(1-\alpha(a)) S_{0}
$$

Similarly, since $S_{a} \succ S_{1 / 2} \succ S_{0}$, let $\beta(a)$ the unique number that satisfies

$$
S_{1 / 2} \sim \beta(a) S_{a} \cup(1-\beta(a)) S_{0} .
$$

By Lemma $22 \beta(a)>0$. Therefore, we can define an index $r(S)$ to be the ratio

$$
r(S)=\frac{\alpha(a)}{\beta(a)}
$$

Claim 24 The ratio $r(S)$ is well-defined. Namely, it does not depend on the choice of a.
Proof. Let $a, b \in(1 / 2,1)$ such that $S_{a} \succ S$ and $S_{b} \succ S$. Let $\alpha(a)$ and $\beta(a)$ be defined by

$$
\begin{equation*}
S \sim \alpha(a) S_{a} \cup(1-\alpha(a)) S_{0} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{1 / 2} \sim \beta(a) S_{a} \cup(1-\beta(a)) S_{0} \tag{2}
\end{equation*}
$$

By Lemma 23 such numbers exist. Similarly define $\alpha(b)$ and $\beta(b)$ to satisfy

$$
\begin{equation*}
S \sim \alpha(b) S_{b} \cup(1-\alpha(b)) S_{0} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{1 / 2} \sim \beta(b) S_{b} \cup(1-\beta(b)) S_{0} \tag{4}
\end{equation*}
$$

Assume without loss of generality that $a>b$. Then $S_{a} \succcurlyeq S_{b}$. Let γ be defined by

$$
S_{b} \sim \gamma S_{a} \cup(1-\gamma) S_{0} .
$$

By Lemma 23 such γ exists. Therefore, it follows from (3) using replication invariance and independence, and then by SCDP,

$$
\begin{aligned}
S & \sim \alpha(b)\left[\gamma S_{a} \cup(1-\gamma) S_{0}\right] \cup(1-\alpha(b)) S_{0} \\
& \sim \alpha(b) \gamma S_{a} \cup(1-\alpha(b) \gamma) S_{0} .
\end{aligned}
$$

Comparing with (1), we obtain $\alpha(a)=\alpha(b) \gamma$. Similarly,

$$
\begin{aligned}
S_{1 / 2} & \sim \beta(b)\left[\gamma S_{a} \cup(1-\gamma) S_{0}\right] \cup(1-\beta(b)) S_{0} \\
& \sim \beta(b) \gamma S_{a} \cup(1-\beta(b) \gamma) S_{0} .
\end{aligned}
$$

Comparing with (2), we obtain $\beta(a)=\beta(b) \gamma$. Note that by Lemma $22 \beta(a), \beta(b), \gamma>0$. As a result we get

$$
\frac{\alpha(a)}{\beta(a)}=\frac{\alpha(b)}{\beta(b)} .
$$

Lemma 25 The ratio r represents the inequality order \succcurlyeq.
Proof. Let S and S^{\prime} be two societies and assume $S^{\prime} \succcurlyeq S$. Let $a \in(1 / 2,1)$ such that $S_{a} \succcurlyeq S$. By Lemma 19 this can be done. Let α and β be defined by

$$
S \sim \alpha S_{a} \cup(1-\alpha) S_{0}
$$

and

$$
S^{\prime} \sim \beta S_{a} \cup(1-\beta) S_{0}
$$

Then, by Lemma $22 \alpha \leq \beta$. Letting $\beta(a)$ be defined by

$$
S_{1 / 2} \sim \beta(a) S_{a} \cup(1-\beta(a)) S_{0}
$$

we obtain

$$
r(S)=\frac{\alpha}{\beta(a)} \leq \frac{\beta}{\beta(a)}=r\left(S^{\prime}\right)
$$

Proposition 26 Let S and S^{\prime} be two societies. Then

$$
r\left(S \cup S^{\prime}\right)=\frac{|S|}{\left|S \cup S^{\prime}\right|} r(S)+r\left(\left\langle\left(n(S), \frac{|S|}{n(S)}\right)\right\rangle \cup S^{\prime}\right)
$$

Proof. Let S and S^{\prime} be two societies, with populations n and m, respectively. By RI and HOM, we can assume without loss of generality that $n+m=1$, and $\left|S \cup S^{\prime}\right|=1$. Let $a \in(1 / 2,1)$ be such that $S_{a} \succcurlyeq S, S_{a} \succcurlyeq S^{\prime}$, and $S_{a} \succcurlyeq S \cup S^{\prime}$. By Lemma (20) this can be done. Let γ be defined by

$$
\begin{equation*}
\left\langle n, \frac{|S|}{n}\right\rangle \cup S^{\prime} \sim \gamma S_{a} \cup(1-\gamma) S_{0} \tag{5}
\end{equation*}
$$

Similarly, let α be defined by

$$
\begin{equation*}
S \sim \alpha S_{a} \cup(1-\alpha) S_{0} . \tag{6}
\end{equation*}
$$

It is enough to show that

$$
\begin{equation*}
S \cup S^{\prime} \sim(|S| \alpha+\gamma) S_{a} \cup((1-\gamma)-\alpha|S|) S_{0} . \tag{7}
\end{equation*}
$$

We first show the following technical lemma.

Lemma $27 \gamma \leq 1-|S| \alpha$.
Proof. Denote $S_{a}^{*}=n\left\langle(a, 0),\left(1-a, \frac{|S|}{(1-a) n}\right)\right\rangle$ and $S_{0}^{*}=\left\langle\left(n, \frac{|S|}{n}\right)\right\rangle$. Note that these two societies have a population n and an income $|S|$. That is, they have the same population and income as S. They are obtained, respectively, by multiplying the population and incomes of S_{a} and S_{0} by n and $|S| / n$. Therefore, by homogeneity and replication invariance, it follows from (6) that

$$
S \sim \alpha S_{a}^{*} \cup(1-\alpha) S_{0}^{*}
$$

By IND,

$$
\begin{equation*}
S \cup S^{\prime} \sim \alpha S_{a}^{*} \cup(1-\alpha) S_{0}^{*} \cup S^{\prime} . \tag{8}
\end{equation*}
$$

Since $S_{a} \succcurlyeq S \cup S^{\prime}$,

$$
\begin{aligned}
S_{a}^{*} & \succcurlyeq \alpha S_{a}^{*} \cup(1-\alpha) S_{0}^{*} \cup S^{\prime}
\end{aligned} \quad \begin{aligned}
& \text { by HOM, RI and (8) } \\
& \alpha S_{a}^{*} \cup \underbrace{(1-\alpha) S_{a}^{*} \cup \frac{\left|S^{\prime}\right|}{|S|} S_{a}^{*}}_{Z_{1}} \succcurlyeq \alpha S_{a}^{*} \cup \underbrace{(1-\alpha) S_{0}^{*} \cup S^{\prime}}_{Z_{2}}
\end{aligned} \quad \text { by RI and SCDP. }
$$

Since Z_{1} and Z_{2} have the same income $\left(\left|Z_{1}\right|=\left|Z_{2}\right|=(1-\alpha)|S|+\left|S^{\prime}\right|\right)$, we can apply Decomposability and replace αS_{a}^{*} in both sides of the above expression by αS_{0}^{*} (both αS_{a}^{*} and αS_{0}^{*} have the same population and income), and obtain

$$
\alpha S_{0}^{*} \cup \underbrace{(1-\alpha) S_{a}^{*} \cup \frac{\left|S^{\prime}\right|}{|S|} S_{a}^{*}}_{Z_{1}} \succcurlyeq \alpha S_{0}^{*} \cup \underbrace{(1-\alpha) S_{0}^{*} \cup S^{\prime}}_{Z_{2}} .
$$

Now,

$$
\begin{array}{rll}
\alpha S_{0}^{*} \cup\left((1-\alpha)+\frac{\left|S^{\prime}\right|}{|S|}\right) S_{a}^{*} \succcurlyeq S_{0}^{*} \cup S^{\prime} & \text { by SCDP } \\
\alpha|S| S_{0} \cup(1-\alpha|S|) S_{a} \succcurlyeq S_{0}^{*} \cup S^{\prime} & \text { by RI } \\
\alpha|S| S_{0} \cup(1-\alpha|S|) S_{a} \succcurlyeq(1-\gamma) S_{0} \cup \gamma S_{a} & & \text { by (5). }
\end{array}
$$

Consequently, by Lemma $221-\alpha|S| \geq \gamma$.
Now we are ready to show that (7) holds. Since $\gamma \in(0,1)$, there exists $k \in \mathbb{N}$ such that $\gamma \leq 1-\frac{|S|}{k}$. Denote $S_{a}^{*}=n\left\langle(a, 0),\left(1-a, \frac{|S|}{(1-a) n}\right)\right\rangle$ and $S_{0}^{*}=\left\langle\left(n, \frac{|S|}{n}\right)\right\rangle$. By (5),

$$
S_{0}^{*} \cup S^{\prime} \sim \gamma S_{a} \cup(1-\gamma) S_{0}
$$

Therefore,

$$
\begin{array}{rlrl}
S_{0}^{*} \cup \overbrace{S^{\prime} \cup(k-1)\left(\gamma S_{a} \cup(1-\gamma) S_{0}\right)}^{Z_{1}} & \sim k\left(\gamma S_{a} \cup(1-\gamma) S_{0}\right) & & \text { by IND and SCDP } \\
& \sim \frac{k}{|S|}\left(\gamma S_{a}^{*} \cup(1-\gamma) S_{0}^{*}\right) & \text { by HOM and RI } \\
& \sim S_{0}^{*} \cup \overbrace{\frac{k}{|S|}(\gamma S_{a}^{*} \cup \underbrace{\left(1-\gamma-\frac{|S|}{k}\right)}_{\geq 0} S_{0}^{*})}^{Z_{2}} & \text { by SCDP. }
\end{array}
$$

By Lemma 27, $1-\gamma-\frac{|S|}{k}>0$. Since $\left|Z_{1}\right|=\left|Z_{2}\right|=\left|S^{\prime}\right|+(k-1)$, by Decomposability,

$$
S \cup S^{\prime} \cup(k-1)\left(\gamma S_{a} \cup(1-\gamma) S_{0}\right) \sim S \cup \frac{k}{|S|}\left(\gamma S_{a}^{*} \cup\left(1-\gamma-\frac{|S|}{k}\right) S_{0}^{*}\right)
$$

and by IND $\left(S\right.$ and $\alpha S_{a}^{*} \cup(1-\alpha) S_{0}^{*}$ have the same population and income),

$$
\begin{aligned}
S \cup S^{\prime} \cup(k-1)\left(\gamma S_{a} \cup(1-\gamma) S_{0}\right) & \sim\left(\alpha S_{a}^{*} \cup(1-\alpha) S_{0}^{*}\right) \cup \frac{k}{|S|}\left(\gamma S_{a}^{*} \cup\left(1-\gamma-\frac{|S|}{k}\right) S_{0}^{*}\right) & & \\
& \sim\left(\alpha+\frac{k \gamma}{|S|}\right) S_{a}^{*} \cup\left(\frac{k}{|S|}(1-\gamma)-\alpha\right) S_{0}^{*} & & \text { by SCDP } \\
& \sim(\alpha|S|+k \gamma) S_{a} \cup(k(1-\gamma)-\alpha|S|) S_{0} & & \text { by HOM and RI }
\end{aligned}
$$

which, by SCDP, is equivalent to

$$
(\alpha|S|+\gamma) S_{a} \cup \underbrace{((1-\gamma)-\alpha|S|)}_{\geq 0} S_{0} \cup(k-1)\left(\gamma S_{a} \cup(1-\gamma) S_{0}\right) .
$$

Note that this society is well defined since, by Lemma 27, $(1-\gamma)-\alpha|S| \geq 0$. Therefore,

$$
S \cup S^{\prime} \cup(k-1)\left(\gamma S_{a} \cup(1-\gamma) S_{0}\right) \sim(\alpha|S|+\gamma) S_{a} \cup((1-\gamma)-\alpha|S|) S_{0} \cup(k-1)\left(\gamma S_{a} \cup(1-\gamma) S_{0}\right)
$$

By IND $\left(S \cup S^{\prime}\right.$ and $(\alpha|S|+\gamma) S_{a} \cup((1-\gamma)-\alpha|S|) S_{0}$ have the same population and income),

$$
S \cup S^{\prime} \sim(\alpha|S|+\gamma) S_{a} \cup((1-\gamma)-\alpha|S|) S_{0}
$$

Corollary 28 Let S_{1}, \ldots, S_{K} be K societies. And let $S=\bigcup_{k=1}^{K} S_{k}$. Then

$$
r(S)=\sum_{k=1}^{K} \frac{\left|S_{k}\right|}{|S|} r\left(S_{k}\right)+r\left(\bigcup_{k=1}^{K}\left\langle\left(n\left(S_{k}\right), \frac{\left|S_{k}\right|}{n\left(S_{k}\right)}\right)\right\rangle\right) .
$$

Proof. Left to the reader.

Proposition 29 For all $\alpha \in(0,1], r\left(S_{1-\alpha}\right)=-\log _{2} \alpha$.
Proof. Let $h:[0,1) \rightarrow \mathbb{R}$ be defined by $h(\alpha)=r\left(S_{1-\alpha}\right)$. By definition of r,

$$
\begin{equation*}
h(\alpha) \geq 0 \quad \text { for all } \alpha \in(0,1] . \tag{9}
\end{equation*}
$$

Also,

$$
\begin{equation*}
h(1 / 2)=r(1 / 2)=1 . \tag{10}
\end{equation*}
$$

We will now show that

$$
\begin{equation*}
h(p q)=h(p)+h(q) \quad \text { for all } p, q \in(0,1] . \tag{11}
\end{equation*}
$$

To see this, note that

$$
\begin{aligned}
S_{1-p q} & =\left\langle(1-p q, 0),\left(p q, \frac{1}{p q}\right)\right\rangle \\
& \sim\left\langle(1-q, 0), q(1-p, 0),\left(p q, \frac{1}{p q}\right)\right\rangle \quad \text { by SCDP } \\
& =\left\langle q(1-p, 0),\left(p q, \frac{1}{p q}\right)\right\rangle \cup\langle(1-q, 0)\rangle .
\end{aligned}
$$

Therefore, by Proposition 26,

$$
\begin{aligned}
r\left(S_{1-p q}\right) & =r\left(\left\langle q(1-p, 0),\left(p q, \frac{1}{p q}\right)\right\rangle\right)+r\left(\left\langle\left(q, \frac{1}{q}\right),(1-q, 0)\right\rangle\right) \\
& =r\left(\left\langle(1-p, 0),\left(p, \frac{1}{p}\right)\right\rangle\right)+r\left(\left\langle\left(q, \frac{1}{q}\right),(1-q, 0)\right\rangle\right) \quad \text { by HOM and RI } \\
& =r\left(S_{1-p}\right)+r\left(S_{1-q}\right)
\end{aligned}
$$

which shows that (11) holds. It is known that the only function on $(0,1]$ that satisfies (9-11) is $-\log _{2} .{ }^{1}$

Proposition 30 The index r is the Theil index.

Proof. Let $S=\left\langle\left(n_{1}, y_{1}\right), \ldots,\left(n_{K}, y_{K}\right)\right\rangle \in \mathcal{S}$ be a society. We need to show that $r(S)=T(S)$. If $K=1$, the result is obvious. So assume $K \geq 2$. By RI we can assume without loss of generality that $n(S)=1$. Similarly, by homogeneity we can assume without loss of generality that $\sum y_{k}=1$. Therefore $|S|^{2}<|S|=\sum n_{k} y_{k}<1$. Also, $y_{k}|S|<1$ for $k=1, \ldots K$. Let $S^{0}=S$, and define recursively,

$$
\left.S^{K}=\bigcup_{k=1}^{K}\left\langle\left(n_{k}\left(1-y_{k}|S|\right)\right), 0\right),\left(n_{k} y_{k}|S|, \frac{1}{|S|}\right)\right\rangle
$$

That is, S^{K} is the result of replacing brackets $\left(n_{k}, y_{k}\right), k=1, \ldots, K$, in S by $\left.\left\langle\left(n_{k}\left(1-y_{k}|S|\right)\right), 0\right),\left(n_{k} y_{k}|S|, \frac{1}{|S|}\right)\right\rangle$. Therefore, by Corollary 28,

$$
\left.r\left(S^{K}\right)=r(S)+\sum_{k=1}^{K} \frac{n_{k} y_{k}}{|S|} r\left(\left\langle\left(n_{k}\left(1-y_{k}|S|\right)\right), 0\right),\left(n_{k} y_{k}|S|, \frac{1}{|S|}\right)\right\rangle\right)
$$

and

$$
r(S)=r\left(S^{K}\right)-\sum_{k=1}^{K} \frac{n_{k} y_{k}}{|S|} r\left(\left\langle\left(n_{k}\left(1-y_{k}|S|\right), 0\right),\left(n_{k} y_{k}|S|, \frac{1}{|S|}\right)\right\rangle\right)
$$

Note that by RI, and homogeneity,

$$
\begin{aligned}
\left\langle\left(n_{k}\left(1-y_{k}|S|\right), 0\right),\left(n_{k} y_{k}|S|, \frac{1}{|S|}\right)\right\rangle & \sim\left\langle\left(1-y_{k}|S|, 0\right),\left(y_{k}|S|, \frac{1}{|S|}\right)\right\rangle \\
& \left.\sim\left\langle\left(1-y_{k}|S|\right), 0\right),\left(y_{k}|S|, \frac{1}{y_{k}|S|}\right)\right\rangle=S_{1-y_{k}|S|}
\end{aligned}
$$

[^0]Also,

$$
\begin{aligned}
S^{K} & \left.=\cup_{k=1}^{K}\left\langle\left(n_{k}\left(1-y_{k}|S|\right)\right), 0\right),\left(n_{k} y_{k}|S|, \frac{1}{|S|}\right)\right\rangle \\
& \sim\left\langle\left(\sum_{k=1}^{K} n_{k}\left(1-y_{k}|S|\right), 0\right),\left(\sum_{k=1}^{K} n_{k} y_{k}|S|, \frac{1}{|S|}\right)\right\rangle \\
& \left.\sim\left\langle\left(\sum_{k=1}^{K} n_{k}-\sum_{k=1}^{K} n_{k} y_{k}|S|\right), 0\right),\left(\sum_{k=1}^{K} n_{k} y_{k}|S|, \frac{1}{|S|}\right)\right\rangle \\
& \left.\sim\left\langle\left(1-|S|^{2}\right), 0\right),\left(|S|^{2}, \frac{1}{|S|}\right)\right\rangle=S_{1-|S|^{2}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
r(S) & =r\left(S_{1-|S|^{2}}\right)-\sum_{k=1}^{K} \frac{n_{k} y_{k}}{|S|} r\left(S_{1-y_{k}|S|}\right) \\
& =\sum_{k=1}^{K} \frac{n_{k} y_{k}}{|S|}\left(r\left(S_{1-|S|^{2}}\right)-r\left(S_{1-y_{k}|S|}\right)\right) \\
& =\sum_{k=1}^{K} \frac{n_{k} y_{k}}{|S|}\left(\log _{2} \frac{1}{|S|^{2}}-\log _{2} y_{k}|S|\right) \\
& =\sum_{k=1}^{K} \frac{n_{k} y_{k}}{|S|}\left(\log _{2} \frac{y_{k}}{|S|}\right) \\
& =T(S)
\end{aligned}
$$

References

[1] Bourguignon, F., 1979. "Decomposable Income Inequality Measures." Econometrica, Vol. 47, No. 4. (Jul., 1979), pp. 901-920.
[2] Fields, Gary S. and John C. H. Fey, 1978. "On Inequality Comparisons." Econometrica, Vol. 46, No. 2. (Mar., 1978), pp. 303-316.
[3] Foster, James E., 1983. "An Axiomatic Characterization or the Theil Measure of Income Inequality." Journal of Economic Theory 31: 105-121.
[4] Shorrocks, Antony F., 1980. "The Class of Additively Decomposable Inequality Measures." Econometrica, Vol. 48, pp. 613-625.

[^0]: ${ }^{1}$ See Theorem 0.2.5 in Aczél and Daróczy (1975).

