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Abstract

We study infinitely repeated games in which players are limited to subsets of their action

space in each stage – a generalization of asynchronous games (where these subsets are

singletons). We show that such rigidity in the actions facilitates the creation and sus-

tainment of coordination and identify the stage games that are prone to asynchronous

behaviour. Consequently, publicly announcing prices, which is considered legal and even

encouraged in many countries, can lead to tacit collusion and non-competitive results.

Moreover, we indicate which of the players should be the asynchronous ones and identify

a wide family of games in which tacit collusion via asynchronous play will arise. We use

the worst case rational payoff, the effective minimax, to evaluate the collusive result and

compare the outcome of different durations of inactivity.
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1 Introduction

In many economic situations players can cooperate. For example, in oligopolistic markets

firms may hinder competition and increase their revenue close to the monopolistic level by

coordinating production capacities or prices. The simplest method to achieve such agreement

is by explicit communication (cheap talk), which is illegal under antitrust laws, such as The

Sherman Act (USA) and Article 101 (EU). Instead, firms can tacitly collude and communicate

through actions or public signals (e.g., commercials). Typically, the collusive outcome is the

same and the two types of collusion are indistinguishable in real-life and in mathematical

models. Nonetheless, while explicit collusion is illegal, the legality (as well as the definition)

of tacit collusion varies: in some countries collusion is forbidden altogether while in others

the formation of a cartel is prohibited but not the collusive behaviour [Harrington, 2012].

Commonly, collusion consists of two stages: initiation and implementation [Green et al.,

2014]. We focus on the implementation stage as the initiation is done before the game and

requires the definition of a meta-game that would include signalling, negotiation mechanism

and so forth. One of the main methods to tacitly collude is to play asynchronously by

replaying the same action for several stages. This allows other players to coordinate on

the repeated action to achieve a cooperative result without communication, as in the price

leadership mechanism [MacLeod, 1985] and other economic examples (see Maskin and Tirole

[1988], Lagunoff and Matsui [1997], Libich and Stehĺık [2010, 2011] to name a few). Although

this method lacks a commitment power, it allows the players to signal collusive intent, as

done in the “initial capital investment” mechanism [Green et al., 2014]. If the collusion is

not achieved, the players can always revert to non-collusive actions and outcomes.

The purpose of this paper is to expand asynchronous play to situations where the actions

are not fixed but still cannot be freely altered. We achieve this goal by introducing a new class

of games, Sub-Actions Repeated (SAR) Games, which generalize standard repeated games.

In our model, the players are limited to play a certain subset of the mixed actions set in each

stage and not necessarily a singleton containing the action from the previous stage. We show

how tacit collusion can be achieved in this relaxed version of asynchronous games and that

the flexibility of the players relative to standard asynchronous games yields a better collusive

payoff.

SAR games arise is many real-life scenarios. One example is price rigidity that is caused

by publishing the price in a commercial or a catalogue. For some time after the price was

published, the vendor cannot raise it because it is illegal (false advertisement) or costly in

terms of reputation. Here, the set of available prices includes only prices that are lower than

1



the price in the commercial. Another example is portfolio management. In some cases, it is

cumbersome and costly prohibited to change the entire portfolio in one instance, while small

deviations from a certain position are feasible. Thus, one can model portfolio management

as a SAR game where each new diverse action must be close enough to the previous one,

according to some metric.

The solution concept we use to evaluate different SAR games is the worst-case rational

payoff, namely the effective minimax value, a version of which was first presented by Wen

[2002], Takahashi and Wen [2003] and Yoon [2004]. For each player the effective minimax

is defined as the lowest possible payoff in the feasible and individually rational set, i.e. the

worst-case payoff as long as the other players receive more than their (standard) minimax

value. The effective minimax value is a better lower bound on equilibrium payoffs than

the standard minimax value, as it is tight.We show that playing asynchronously can have

opposite effects on these values: the standard minimax value of the asynchronous players

is lower while their effective minimax value might rise, which improves their situation. We

conclude that whenever the effective minimax value in a SAR game is larger than in the

simultaneous-move game for all the players, they will collude on the SAR game by somehow

limiting their ability to revise their actions.

Our contribution is twofold. First we introduce the notion of colluding on an asynchronous

game instead of on a particular strategy profile. This is equivalent to colluding on a set

of outcomes instead of one particular outcome in the simultaneous-move game. This idea

significantly simplifies the ability to create and maintain collusion as small deviations are

not regarded as defecations and would not trigger penalizing reactions, which extends the

“punishments proportional to defections” approach presented by Kalai and Stanford [1985].

Second, we show how the shape of the feasible set in the stage game can facilitate cooper-

ation in the asynchronous game. This allows us to characterize the games in which collusion

via asynchronous games is more plausible. In these games, the structure of the game itself

limits the ability of the players to deviate from the collusive set, which results in simpler

collusive strategies. We thereby expand the notion of players with equivalent utilities (see

Yoon [2001, 2004]) to situation where the equivalence is partial.

Moreover, our model is applicable to the asymmetric case, in which collusion is harder

to achieve and sustain [Ivaldi et al., 2003], and resolves the issue of choosing the leader in

price leadership mechanisms. We show that players whose effective minimax value is strictly

larger than their standard minimax value, i.e. punishing them lowers the payoff of other

players below their worst-case payoff, should play asynchronously to form a collusive result.
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It follows that publicly announcing prices, which is considered legal and even encouraged in

many countries, can lead to tacit collusion and non-competitive results, and we predict which

of the firms should announce its prices.

1.1 Literature Review

While the definition of explicit collusion is straightforward, the definition of tacit collusion

varies between economists and legislators in different countries. For example, Green and

Porter [1984] allow communication between the players before the game starts, in the initi-

ation stage, and consider tacit collusion as coordination that is achieved without communi-

cation during the implementation stage of the agreed agreement. Alternatively, Green et al.

[2014] defines tacit collusion as a long-run mutual interdependence among actors that gener-

ates an excessive outcome relative to the myopic interaction without direct communication.

In this paper we follow the idea of the last definition and define collusion as a situation in

which an asynchronous game yields a higher worst-case payoff than the simultaneous-move

game, encouraging them to impose self-limitation on their ability to revise the actions.

Rees [1993] identifies four steps in the process of forming a stable collusion in oligopolistic

market. First, the set of all possible agreements should be identified. Second, one of them

should be chosen as the agreement to follow. Third, the agreement should be carried out by

all the firms. Fourth, credible and effective punishments should be carried out against firms

that deviate from the agreement, usually in the form of limited-time price wars.

Each of the above steps is challenging in the absence of direct communication and infor-

mation exchange. For example, in the absence of communication and information about the

profits of other firms, it is difficult to identify the set of all possible collusion opportunities

and to agree upon a particular one. In the third stage, the lack of information has a direct

impact on revenue, as firms might misinterpret random demand shocks as deviations and

carry out unnecessary punishments. In fact, Garrod and Olczak [2017] show that under im-

perfect monitoring and stochastic price shocks, price wars are part of the equilibrium path.

It follows that sophisticated collusion schemes that exists according to the Folk Theorem are

too complicated to maintain, so simple strategies should be chosen to prevent the breakdown

of the collusion. Our model facilitates collusion by limiting the strategy spaces of the players

and by removing the requirement to play an equilibrium – the worst-case payoff of the players

will be larger in the SAR game regardless of the exact strategies used. This can come on

expense of maximizing the payoff but it is a well known result that players select a non-payoff

maximizing equlibrium to avoid deviations and maintain collusion [Green and Porter, 1984].
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One common method to collude is price leadership or conscious parallelism [MacLeod,

1985] in which one firm sets prices first and the rest follow. By following this practice, the

firms can react to possible demand changes in the market and still maintain a collusive result.

Nevertheless, some coordination is needed to determine which firm is the leader; when the

price should be set; and what should be the new price. Our model resolves this issue and

determines which of the firms should be asynchronous and by doing so, take the leadership

and choose its actions “first”.

Another problem, presented by Carlton and Gertner [1989], is that any price change bears

a risk of starting a price war. To deal with this issue, different pooling schemes [Ivaldi et al.,

2003, Hanazono and Yang, 2007, Garrod, 2012] suggest “rigid prices” for long periods of time

to reduce the frequency of interaction. On the downside, prices are set non-optimally since

they fail to respond to the demand level [Athey et al., 2004]. Our model lets the firms make

small adaptations in their actions while maintaining the collusive result.

In this paper we study the effective minimax value which is the worst-case payoff a

player receives as long as other players are rational. This extends equivalent utilities to

situations where the utility functions are not equal upto an affine transformation. Typically,

non-equivalent utilities (NEU condition) is assumed in the Folk Theorem with sub-game

perfect equilibria in simultaneous-move games [Friedman, 1971, Abreu et al., 1994] and in

asynchronous games [Yoon, 2001], since players with equivalent utilities will refrain from

punishing each other – any punishment will lower both the payoff of the punishee and the

punisher without the ability to compensate the punisher in the future. To generalize the

Folk Theorem in the presence of equivalent utilities, Wen [2002] and Yoon [2004] defined the

effective minimax value as the payoff of a player when he and all his equivalent maximize his

utility while the rest of the players minimize it, and showed that this is the lowest possible

equilibrium payoff. We generalize their work, and define the effective minimax value when

the NEU condition holds but there exists some equivalence between the utility functions of

the players which prevents them to minimize each other “too much”. Thus, our effective

minimax is a tighter lower bound on the equilibrium payoff of each player.

To exemplify our main result we consider a two-player game with complete information

where one player plays in each stage and the other plays asynchronously. A deterministic

version of this model was studied by Wen [2002] (see also Takahashi and Wen [2003]) and

largely inspired this paper. He showed how the effective minimax value depends not only on

the possible payoffs but also on the order of play and we extend his result to stochastic order

of play. We show that if the asynchronous game is better in terms of effective minimax for
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both players for a particular intra-revision timing, it is better for all intra-revision timings,

which makes collusion very easy to achieve and maintain.

We also consider a slightly different model, in which the players do not know the timings

of the revisions of the asynchronous players. Similarly to Spiegler [2015], we show that when

the revision probability is large enough, the value of the such zero-sum games remains the

same, despite the lack of agility and the inherit disadvantage of the asynchronous player. In

the second game we show that this is not true and that for some intra-revision timings the

effective minimax in the asynchronous game remains the same as in the simultaneous-move

game, so collusion is prevented.

The rest of the paper is organized as follows. Section 2 presents the model, our extension

of repeated games and formally defines our figure of merit – the effective minimax. In section

3 we discuss the main result and present the conditions for collusion. The main result is

applied to two versions of two-player games with different information structures in Section

4. Conclusions and extensions are presented in Section 5. To improve readability, all the

proofs were relegated to the appendix.

2 The model

2.1 The stage game

Let G � pI, pAiq
n
i�1, puiq

n
i�1q denote a strategic-form game where I � t1, . . . , nu is the set of

players, Ai is the finite set of pure actions for player i and ui :
�n

i�1Ai Ñ R is the stage

game payoff function for player i. A mixed action αi of player i is a distribution over Ai,

i.e. an element of ∆pAiq, the set of all mixed actions. The expected stage payoff of player i,

given the action profile α � pα1, . . . , αnq P ∆pA1q � . . .�∆pAnq is

uipαq �
¸

aP�n
i�1 Ai

αpaquipaq. (1)

We write �i to denote all players except player i, and define the (standard) minimax value

of the stage game for player i by

vi � min
α�iP∆pA�iq

max
αiP∆pAiq

uipαi, α�iq. (2)

The standard minimax value is the lower bound on the payoff that player i can guarantee

when all players try to minimize his payoff in a single stage. Finally, let F be the convex hull

of the set of feasible payoff vectors and FIR the set of individually rational feasible payoffs,

i.e. FIR � tpx1, . . . , xnq P F |xi ¥ viu.
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2.2 Sub-Actions Repeated (SAR) Games

To model asynchronous play we introduce a generalization of the standard repeated game

model, namely the sub-actions repeated (SAR) game. In this game, the set of available

actions in each stage for each player is a subset of the set of mixed actions. The SAR game

unfolds as follows: The stage game is repeated infinitely many times. In stage t � 0, each

player chooses his respective action from ∆pAiq. In period t ¥ 1, a non-empty convex and

closed subset Aiptq � ∆pAiq is randomly chosen for each player who is confined to choose a

mixed action from the set Aiptq.

To keep the definition applicable to many models, we do not impose here any restrictions

on the stochastic processes Aiptq or their co-dependence. A model with specific restrictions

will be presented in the examples bellow. We assume that each player knows at time t his

own Aiptq and has a belief over Aj�iptq, given the history of his own Aiptq upto stage t, and

possibly the history of other signals. Players observe past actions, but might not know the

realizations of past sub-action sets of other players. A SAR game with a common discount

factor δ is denoted by Γ � pG, tAiptqu
tPN
iPI , δq and for simplicity will be referred to as the

repeated game. This formulation is a generalization of many existing models:

1. Simultaneous-move game: For each player and every t, Aiptq � ∆pAiq. This is the

standard repeated game, denoted by Γ0.

2. One-shot game: For each player, Aiptq is a singleton containing only the pure action

played at stage t � 0. We will refer to this game as Γ1.

3. Alternating-moves game [Maskin and Tirole, 1988, Lagunoff and Matsui, 1997]: A two-

player game in which A1p2t� 1q � ∆pA1q, A2p2tq � ∆pA2q for t ¥ 1 and in any other

stage Aiptq is a singleton containing the pure action played in the previous stage.

4. Asynchronous-moves game with mixed actions [Yoon, 2001, 2004]: At each stage, a

random set of players It � I is chosen and only they can revise their action: AiPItptq �

∆pAiq. The rest of the players play the mixed action they played in the previous stage.

2.3 The standard and effective minimax values

Denote by Σi the set of all possible (behavioural) strategies of player i in the repeated game.

Each strategy specifies the action αti P Aiptq of player i after every t-length history, which

includes both the actions of the players and the realizations of Aiptq which he observed.
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Player 2

B S

Player 1

B p2, 1q p0, 0q

S p0, 0q p1, 2q

P p0,�1q p0,�1q

Table 1: A modified “Battle of the Sexes” where the effective minimax of player 2 is strictly

greater than his standard minimax.

Given the strategy profile σ P
�n

i�1 Σi, the expected δ-discounted payoff of player i is

uipσq � p1� δq
8̧

t�0

δtEpuipαt1, ..., αtnqq. (3)

For each player the standard minimax value of the repeated game is defined according to

vipΓq � min
σ�iPΣ�i

max
σiPΣi

uipσi, σ�iq. (4)

The standard minimax is the worst case payoff that a player can guarantee, in case that

other players act as adversaries. However, in the presence of possible partial equivalence of

the utility functions such behaviour can harm them and lower their payoff as well, sometimes

even below their minimax value. Thus, we define the effective minimax value as the minimum

payoff that a player receives when the strategy profile produces an individually rational payoff

for all the players:

vei pΓq � min
σPΣ

tuipσi, σ�iq|ujpσi, σ�iq ¥ vjpΓq for all j P Iu. (5)

When vei pΓq ¡ vipΓq, player i cannot guarantee the effective minimax by himself and must

rely on the rationality of other players to obtain this value.

Example 1. Effective minimax for a simultaneous-move game

Consider a modified version of the “Battle of the Sexes” game which is shown in Table

1. In this game, the row player has an additional action, P , which is dominated by the other

actions and does not affect his standard minimax value: v1pΓ0q �
2
3 . This action can serve

as a minimizing strategy against the column player, setting v2pΓ0q � �1. Playing P too

often is not individually rational for the row player as it will lower his payoff below 2
3 . Thus,

whenever the row player receives at least 2
3 , the outcome of the game lies inside the grey

shaded area in Figure 1, which results in a payoff of at least ve2pΓ0q � �1
3 for the column
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1 2

�1

1

2

v2pΓ0q

ve2pΓ0q

v1pΓ0q

Figure 1: The set of feasible payoffs and the effective minimax of player 2 in the modified

“Battle of the Sexes” (Table 1).

player. The column player cannot guarantee a payoff higher than �1 by himself, but thanks

to the rationality of the row player and the partial equivalence of the payoff functions, he

receives at least �1
3 . 4

3 The Main Result

A tacit collusion on a SAR game takes place when all players prefer the SAR game over the

simultaneous-move game in terms of the effective minimax. Tacitly colluding on a particular

SAR game is challenging, as information needs to be shared between the agents regarding

the sets Aiptq. Instead, we focus on studying situations where a wide class of SAR games is

better than a simultaneous-move game rather than a particular one. In this case, it is enough

for agents to announce that they play asynchronously without providing too many details,

to insure that the simultaneous-move game is no longer played and their effective minimax

value is increased. Such information can be conveyed in practice using commercials or other

public signals. This increase does not necessarily lead to increase in the equilibrium payoff,

but since the effective minimax value is the lower bound on equilibrium payoffs, it leads to

an increase of the worst-case equilibrium payoff.

In order to o demonstrate the main ideas, we start by considering a general two-player

game. Clearly, a collusion will take place when the utility functions of both players are

equivalent, i.e. one is an affine transformation of the other (Definition 1 in Yoon [2001]).

Such strict equivalence is not required, and also partial equivalence of the utility functions
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A

F

B

epxq

FIR for vG P A

FIR for vG P B

Figure 2: All possible locations of the standard minimax point vG � pv1, v2q in the payoff

space. The location of vG determines the feasible individually rational set and the effective

minimax value of the players.

might create collusion. This partial equivalence can be studied by examining the feasible set

F , and the location of the standard minimax point vG � pv1, v2q relative to it. Generally

speaking, this point can lie in one of three areas (A,B and F ), as shown in Figure 2.

When vG is in the interior of F , according to the Folk Theorem, there are equilibria

where the payoff for both players is arbitrary close to their respective standard minimax

values. Different SAR games will exhibit different behaviours regarding the standard and

effective minimax values. Our main result cannot be applied here and we leave this analysis

to future studies.

When the minimax point is below the feasible set in region A,1 any payoff that is indi-

vidually rational for player 1 will result in a payoff for player 2 which is strictly larger than

his standard minimax. Therefore, the effective minimax of player 1 is equal to his standard

minimax (ve1 � v1) while for player 2 the former is larger, i.e., ve2 ¡ v2. Since the lower

envelope of the feasible set, epxq � minty|px, yq P F u, for x ¥ v1 is an increasing function,

any SAR game in which the standard minimax value of player 1 is higher than v1 will result

in a higher than ve2 worst-case rational payoff for player 2 – an improvement for both players.

This is the type of partial equivalence between utility functions that we are studying in this

paper – player 2 will prefer self-imposed limitations, such as asynchronous play, to prevent

himself from lowering the payoff of player 1, increase the minimax of player 1 and in return,

increase his own effective minimax value.

1Region B is equivalent to A with the roles of the players are reversed.
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When generalizing this idea to the n-player game, we impose only one requirement on

the SAR game – the standard minimax will rise in the SAR game for all the players whose

effective minimax is equal to the standard minimax in the stage game. When there are players

that satisfy vei pΓ0q ¡ vipΓ0q, the minimax point has to be in the region A and an opportunity

to collude arises. These players should play asynchronously, increase the minimax value of

the other players and consequently, increase their own effective minimax value.

Theorem 1. Fix Γ �
�
G, tAiptqu

tPN
iPI , δ

�
to be a SAR game and let Γ0 be the corresponding

simultaneous-move game. Denote the set of players whose effective minimax in Γ0 is equal

to the standard minimax value in Γ0 by I1.

If vipΓq ¥ vipΓ0q for every i P I1 then vei pΓq ¥ vei pΓ0q for all the players.

Theorem 1 divides the players into two groups. The first group, I1, is the group of players

whose effective minimax value is equal to the standard minimax value in the simultaneous-

move game. When these players play individually rational strategies, they help the players

of the second group to receive at least their effective minimax payoff. In any SAR game

where the first group receives even higher worst-case payoffs, the effective minimax value of

the second group will surely rise as well. In a two-player case, the theorem can be applied

to simultaneous-move game the effective minimax of one of the players is strictly greater

than its standard minimax. If the latter occurs, any modification of the repeated game that

strictly increases the standard minimax of the other player will also increase the effective

minimax of the first player, making this modified game favourable for both players.

Verifying the conditions of Thoerem 1 is not trivial in the general case as the effective

minimax value of all the players might be complicated to compute. Nonetheless, the theorem

has two major applications. First, it transforms the problem from a question regarding

SAR games to a simpler question regarding the stage game and the geometry of its feasible

set. Second, when limiting the scope to only particular types of SAR games, applying the

Theorem leads to case specific conditions that are more applicable. To demonstrate this,

we study two models of two-player games where only one of the players is asynchronous.

When applying Theorem 1, we get a condition on the inter-revision timings for which the

asynchronous game is more favourable than the simultaneous-move game.

4 Two-Player Games with One-Sided Asynchronicity

We study a two-player game in which player 1 can revise her actions in every stage while player

2 receives revision opportunities according to some exogenous random variable. Whenever
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player 2 cannot revise his action, he is forced to repeat the same pure action from the

previous stage. We consider two possibilities for the information the players have. In the

first model, player 1 knows the schedule of revisions while in the second model she knows

only the distribution of the timing of the next revision. This knowledge gap between the

models affects the effective minimax value of both players and their ability to collude.

Formally, let G be a two-player stage game, X P ∆pNq a random variable with finite

support,2 and x1, x2, ... iid realizations of X. A repeated game with one-sided asynchronous

play is a SAR game where player 1 can revise her action in any stage, A1ptq � ∆pA1q, and

player 2 can revise his action only in stages t � x1, x1 � x2, . . .. In the rest of the stages,

A2ptq � tapt� 1qu, where apt� 1q is the pure action player by player 2 in stage t� 1.

We assume that both players know the distribution of X and consider two different models

with respect to the information about its realizations. In the complete information model,

denoted by ΓX , the realizations of X are known to both players in the outset of the game. In

the unknown realizations model, denoted by Γ̃X , player 1 does not know the realizations of

X, so she does not know if a revision will be possible in each stage or not. Regardless, based

on T , the number of stages since the previous revision, she can compute the conditional

probability of a revision in the current stage, qpT q � PrpX � T |X ¥ T q, and base her

strategy on it.

Our models are an extension of an example shown by Wen [2002] in the exposition of his

paper. Wen discussed the regular “Battle of the Sexes” game (Table 1 without the action

“P”) where player 1 can revise her actions in every stage while player 2 can revise his action

only at the stages 0, T, 2T, . . . for some constant known 1   T . In these settings, player 2

can be lowered to an undiscounted average payoff of v2 �
2

3T per stage, while the minimax

value of player 1 rises to v1 � 1 regardless of T . Nevertheless, due to the structure of the

feasibility set, the equilibrium payoff of player 2 cannot be lower than ve2 �
1
2 .

4.1 One-Sided Asynchronous Games with Complete Information

We first develop a formula to compute the standard minimax value of each player in this

model by analysing the corresponding zero-sum game. This formula is essential as one of

the conditions of Theorem 1 is that the standard minimax value of some of the players is

larger in the SAR game relative to the simultaneous-move game. Second, we apply Theorem

1 and find the class of stage games for which the effective minimax value of both players is

larger in the asynchronous game relative to the simultaneously repeated game. Games that

2This is equivalent to the Finite Period of Inaction condition from Yoon [2001] and Wen [2002]. This

assumption is not needed for our results but necessary for the Folk Theorem to hold [Dutta, 1995].
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fulfil this condition are prone to tacit collusion via asynchronous play. The collusive result

is easily maintained as player 2 announces the revision dates and deviation from these dates

are easily detectable.

4.1.1 The Value of the Zero-Sum Repeated Game

Suppose that the underlying stage game is a zero-sum game. Naturally the value of the

SAR game is strictly larger than the value of the simultaneous-move game (as player 2 has

less strategies available). Whenever player 2 has no revision opportunity, player 1 will best

respond to the anticipated pure action. Thus, in stages where there is a revision opportunity,

player 2 needs to choose an action that will maximize his payoff in this stage while minimizing

his losses in the upcoming stages of inactivity (except for trivial stage games where player 2

can achieve the value in pure actions). The result is the algorithms to compute the optimal

strategies and the value of the game, as shown in Proposition 1.

Proposition 1. The game ΓX � pG,X, δq where G is a zero-sum stage game has the value

VΓX
�
p1� δqEpVXq

1� EpδXq
, (6)

where Vn is the value of the one-shot zero-sum auxiliary game with the payoff function

unpa1, a2q � upa1, a2q �
δ � δn

1� δ
u
�
bpa2q, a2

	
, (7)

bp�q : A2 Ñ A1 is the best response function and EpVXq �
°
n Vn � PrpX � nq.

The auxiliary game represents the situation a player faces when a revision opportunity

is given – player 2 chooses an action for his entire period of inactivity and player 1 needs

only to choose an action for this stage; afterwards, the pure action is fixed and she can best

respond to it. W.l.o.g. player 1 is the maximizer, her stage payoffs in the auxiliary game are

larger than the payoffs in the original game, with strict inequality unless player 2 has a pure

maximining action. Otherwise, the minimax value of the repeated game strictly increases for

player 1 and strictly decreases for player 2 relative to the simultaneous-move games.

For large realizations of X and sufficiently patient players, the first term in Eq. (7) is

insignificant relative to the second term, which means that the play is in-effect sequential:

player 2 chooses first and player 1 responds. Therefore, when X is a “large” random variable

(in the sense that EpδXq is very small) the value of the game reaches its limit – the minimax

value of the stage game in pure actions.
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Player 2

B S

Player 1

B 2 0

S 0 1

P 0 0

Player 2

B S

B 2p1� δ � δ2q δ � δ2

S 2pδ � δ2q 1� δ � δ2

P 2pδ � δ2q δ � δ2

Table 2: The payoffs of the row player in the auxiliary one-shot zero-sum game derived from

“Battle of the Sexes” presented in Table 1 for n � 1 (left) and n � 3 (right).

Example 1 (Continued). The minimax values in “Battle of the Sexes” when the realizations

of X are common knowledge.

Consider the non-zero-sum game presented in Example 1 and assume player 2 revises his

actions according to the random variable

X �

$&
%1 w.p. 1

2 ,

3 w.p. 1
2 .

(8)

Again, the row player can play “P” in every stage, setting v2pXq � �1. To compute the

standard minimax of the row player, we consider only her payoffs and, according to Propo-

sition 1, compute the value of two one-shot auxiliary games presented in Table 2. For n � 1

this is the regular one-shot game with V1 � 2
3 . For n � 3 and for large enough discount

factor (δ ¡
?

5�1
2 � 0.61) the optimal strategies are rS, Ss and the value is V3 � 1 � δ � δ2.

Plugging these numbers into Eq. (6) leads to the standard minimax of the row player in the

repeated zero-sum game:

v1pXq � p1� δq
5
3 � δ � δ2

2� δ � δ3
. (9)

For patient enough players (δ Ñ 1) the standard minimax value is v1pXq �
11
12 which is also

the result in the undiscounted case: when X � 1 the payoff is 2
3 during one stage and when

X � 3 the payoff per stage is 1 and is given during 3 stages. The total payoff in these 4

stages is 3� 2
3 and the expected payoff per stage is

3� 2
3

4 � 11
12 . 4

4.1.2 Effective Minimax Value of the Non-Zero-Sum Game

As shown in the previous section, the standard minimax value of player 1 can be directly

calculated and, expect for trivial games, is larger in the asynchronous game relative to the

simultaneous-move game. Therefore, Theorem 1 can be applied only when the effective

minimax value of player 2 in the stage game is larger than his standard minimax value.

13



This happens only if the minimax point in the stage game lies in the region “A”, shown in

Figure 2. The combination of these conditions defines the class of games where one-sided

asynchronous play is better than the simultaneous-move repeated game for both players in

terms of effective minimax.

Corollary 1. If G is a two-player stage game such that

1. Player 2 has no pure minimaxing strategy against player 1; and

2. v2   epv1q � minty|pv1, yq P F u (i.e., pv1, v2q P A),

then for every random variable X P ∆pNq and every discount factor δ P p0, 1q, the effec-

tive minimax value for both players in ΓX is larger than the effective minimax value in the

simultaneous-move game.

The proof is omitted as it is a direct result of Theorem 1, Proposition 1 and the discussion

above. Instead, we show the implication of this corollary on the “Battle of the Sexes” example

shown before.

Example 1 (Continued). The effective minimax values in “Battle of the Sexes”.

Both conditions of Corollary 1 are satisfied for the game shown in Table 1. Thus, for any

X, the effective minimax of both players in ΓX is larger than the effective minimax value

in Γ0. For example, when considering X presented in Eq. (8) we showed that for patient

enough players ve1pΓXq �
11
12 , which yields ve2pΓXq � � 1

12 ¡ ve2pΓ0q. 4

Note that this result does not hold in the symmetric version of the “Battle of the Sexes”,

where the action P is unavailable since the minimax point lies within F . This statement is

true for all symmetric games – if the game is symmetric, the standard minimax value for

all the players is equal and vG must lie inside F . Thus, the effective minimax is also the

standard minimax and the conditions of Corollary 1 (and Theorem 1 in the general case)

never hold. Our main contribution is studying tacit collusion in the asymmetric case and not

the more discussed symmetric case.

4.2 One-Sided Asynchronous Games with Partial Information

We now consider the second model, where the realizations of X are unknown and only

the distribution of X is common knowledge. We assume that revision opportunities are

observable after the actions were chosen and start by studying the value of zero-sum games.In

this case, unlike Section 4.1.1, there is no simple formula for the new value of the game.
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Moreover, it is not clear that the value changes, even if the optimal strategy of player 2 in

the zero-sum stage game is mixed.

Consider some stage t � 0 and suppose that the pure action a was played in the T � 1

previous stages by player 2. The action a will be played in this stage either if player 2 has

no revision (with probability 1� qpT q) or has a revision and decides to replay it (with some

probability). Thus, this stage is equivalent to a stage game where player 2 can choose any

action in ∆pA2q that satisfies Prpaq ¥ 1� qpT q. If there exists an optimal strategy in which

this condition is satisfied, player 2 can secure the value of the one-shot game for stage t.

Otherwise, he must choose a mixed action from a set that does not contain any optimal

action and will get a lower payoff for this stage and for the entire repeated game.

The existence of a maximin strategy that chooses a with probability larger than 1� qpT q

for any T is not enough to secure the one-shot value. It is possible that the maximin strategy

has a non-zero probability to choose an action that is never played in an optimal strategy with

probability higher than 1� qpT q for some T . In this case, there is some positive probability

that this action will be chosen and in one of the following stages player 2 will be forced to

play non-optimally. To guarantee the value in each stage it is essential that every action that

is chosen by the optimal strategy can be played by some optimal strategy with probability

larger than 1� qpT q for all possible T s. Therefore, the maximin strategies should choose this

action with probability larger than

pX � sup
T¤maxpsupppXqq

�
1� qpT q

�
. (10)

The next definition formally defines the set of pure actions that can be used in this manner.

Definition 1. A non-empty set of actions, Bi � Ai, is said to be a p-min optimal set (for

player i) in the one-shot zero-sum game G if for every a P Bi there exists an optimal strategy

α P ∆pBiq that satisfies αpaq ¥ p.

Following the discussion, the existence of a pX -min optimal set for player 2 is sufficient to

achieve the value of the one-shot game in the repeated game. The next proposition formalizes

this discussion and proves that this is also a necessary condition. Otherwise, player 2 will

receive less in the repeated game relative to the stage game.

Proposition 2. Let G be a zero-sum two-player stage game, X P ∆pNq and Γ̃X the corre-

sponding repeated game where the realizations of X are unknown. The value of the repeated

game, VΓ̃X
is equal to the value of the one-shot stage game, vpΓ1q, iff player 2 has a pX-min

optimal set, where pX is defined in Eq. (10). Otherwise, VΓ̃X
¡ VΓ1.
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Finally, consider a repeated game Γ̃X where G is a non-zero sum stage game. According

to Proposition 2, the standard minimax value of player 1 can remain the same as in the

one-shot game whenever player 2 has a pX -min optimal set against player 1, despite the

advantage she has. In this case Theorem 1 cannot be applied and the effective minimax

value of player 2 might remain the same as well. This gap of knowledge prevents collusion

from taking place and player 2 should do something to close it – either change his schedule to

a different one that does not satisfy the conditions of Proposition 2 or publicly announce the

dates of the next revisions (if possible). Only by revealing this information the tacit collusion

will be possible and the situation will return to the one described in Section 4.1.

Example 2. “Battle of the Sexes” with unknown realizations of X.

We return to Example 1, this time assuming that the realizations of X are unknown. For

the standard minimax value of the row player to rise, it is necessary and sufficient to show

that in the zero-sum game shown in Table 2, the column player has no pX -min action set.

This is true, for example, for the X defined in Eq. (8) since 1�qp2q � PrpX ¡ 2|X ¥ 2q � 1.

In every stage that the column player did not receive a revision opportunity, the row player

knows that X � 3 and the revision will take place only in the next stage. She will best

respond to the anticipated pure action and the value of the game increases.

On the other hand, for X � Geomp2
3q and for every T P N, the probability to keep the

previous action is at least 1 � qpT q � 1
3 , thus pX � 1

3 . The optimal strategy in the stage

game is
�

1
3pBq,

2
3pSq

�
thus tB,Su is 1

3 -min action set and player 2 can obtain the value by

using the following strategy: in every revision opportunity: always switch from S to B and

switch from B to S with probability 0.5.Thus, neither the standard minimax value of the

row player nor the effective minimax of both players change for this X. 4

5 Concluding Remarks

In this paper we introduce a new solution concept, the effective minimax, and use it to

compare different asynchronous games. This solution concept leads to a new definition of

collusion in which the coordination is on a set of results rather than on a particular result.

This allows firms to tacitly collude in a method that is easier to maintain as close inspection

others’ actions is no longer needed and punishing deviators rarely occurs. Moreover, this

definition gives the players some flexibility if needed to change their actions, without loosing

utility due to unnecessary rigidity in the prices or due to the provocation of a price war.
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We showed that such collusion can take place in situations where some of the players

commit to asynchronous play or to making only small adjustments in the mixed strategy.

This phenomena of self imposed rigidity occurs naturally in the markets, for example, either

when firms publish commercials or catalogues, or when there is not enough information

available to justify a price change. Our model allows the firms to identify the ones that

should act as price leaders in an asymmetric market, when executing an unspoken agreement

which improves the worst-case payoff of all the firms.

Moreover, in the two-player scenario, we analysed two distinct models of information

regarding the timing of price changes of the asynchronous player, and showed that it is

better to publish not only that the action is fixed but also for how long. These results

contribute to our understandings of the structure of the market that facilitate collusion and

identify the conditions under which rigid prices emerge.

A key feature of our model is that it applies to asymmetric games, which are generally

considered to be less prone to tacit collusion. We show that collusion can occur in these

cases via asynchronous play, as long as there is coordination between the payoff functions

of the players. This is achieved, in part, by abandoning symmetric solution concepts such

as symmetric perfect public equilibrium (SPPE) in favour of the effective minimax value

solution concept, which is more suitable in this case.

Our work applies to any n-player repeated game.As the framework of SAR games is

general, so are the results. We leave the work of testing our model and its results in particular

cases, such as Cornout competition with demand shocks to future papers, in which we shall

extract more model-specific results and insights.
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A Proof of Theorems

Theorem 1. Fix Γ �
�
G, tAiptqu

tPN
iPI , δ

�
to be a SAR game and let Γ0 be the corresponding

simultaneous-move game. Denote the set of players whose effective minimax in Γ0 is equal

to the standard minimax value in Γ0 by I1.

If vipΓq ¥ vipΓ0q for every i P I1 then vei pΓq ¥ vei pΓ0q for all the players.

Proof of Theorem 1. If I1 � I, the result trivially holds, so assume that I1 � I and

let j be a player for whom vej pΓ0q ¡ vej pΓq. Therefore, there exists a feasible and individually

rational payoff x in the game Γ so that vej pΓ0q ¡ xj ¥ vej pΓq. In addition, by the closedness

of the feasible and individually rational set of the game Γ0, there exists a payoff y P FIR so

that yj � vej pΓ0q.

Define z � εy�p1�εqx. Since F is convex, z P F for any ε P r0, 1s. For the players in I1, the

payoff z is individually rational in Γ0 since zi � εyi�p1�εqxi ¥ εvipΓ0q�p1�εqvipΓq ¥ vipΓ0q.

It is possible to choose ε very close to 1 so that the payoff will be rational also for the rest

of the players, since zi � εyi � p1� εqxi ¥ εvei pΓ0q � p1� εqxi and vei pΓ0q ¡ vipΓ0q. However,

zj � εvej pΓ0q � p1� εqxj   vej pΓ0q which is a contradiction since z is an individually rational

payoff in Γ0 with a lower payoff for player j than its effective minimax value.

Therefore, in the game Γ the effective minimax of all the players in IzI1 is greater than

in Γ0. Trivially, vei pΓq ¥ vipΓq ¥ vipΓ0q � vei pΓ0q for i P I1, so the effective minimax in Γ is

greater than the effective minimax in Γ0 for all.

Proposition 1. The game ΓX � pG,X, δq where G is a zero-sum stage game has the value

VΓX
�
p1� δqEpVXq

1� EpδXq
, (6)

where Vn is the value of the one-shot zero-sum auxiliary game with the payoff function

unpa1, a2q � upa1, a2q �
δ � δn

1� δ
u
�
bpa2q, a2

	
, (7)

bp�q : A2 Ñ A1 is the best response function and EpVXq �
°
n Vn � PrpX � nq.

Proof of Proposition 1. First, note that the SAR game has a value according to

standard arguments of contraction, so the rest of the proof deals with finding it. Second,

note that if the realization of X at t � 0 is n, then starting from t � n the situation is the

same situation as the in t � 0, so the continuation payoff is δnVΓX
, where VΓX

is the value

of the game. In the first n stages the actions and payoffs can be found by writing explicitly

20



the minimax of the payoff:

p1� δq min
α2P∆pA2q

�
max

α0
1P∆pA1q

upα0
1, α2q �

¸
a2PA2

α2pa2q
� n�1̧

t�1

max
at1PA1

δtupat1, a2q
��

, (11)

where a2 is the pure action that was chosen by the mixed action α2 with probability α2pa2q

at t � 0 and at1 is the pure action of player 1 in stage t. For 1 ¤ t ¤ n � 1 the maximizing

action would be the best response to a2, bpa2q P A1, since a2 is known in advance in those

stages. We can rewrite the payoff of the mixed actions as the expected value of the pure

actions and use the fact that every α1 P ∆pA1q is a probability distribution over A1 to turn

the last formula into

p1� δq min
α2P∆pA2q

max
α1P∆pA1q

¸
a2PA2

¸
a1PA1

α2pa2qα1pa1q

�
upa1, a2q �

δ � δn

1� δ
u
�
bpa2q, a2q

	

. (12)

For every n P N, consider the auxiliary zero-sum stage game with the same players and

actions with the modified payoff function

unpa1, a2q � upa1, a2q �
δ � δn

1� δ
u
�
bpa2q, a2

	
. (13)

This auxiliary game has a value in mixed actions, Vn, and it is exactly the minimax value from

Eq. (12). Therefore, the payoff of the first n stages is p1� δqVn. The expected δ-discounted

payoff from t � 0 until the next revision opportunity is therefore EpVXq �
°
n Vn �PrpX � nq

and the continuation payoff from this revision onward is EpδXqVΓX
.

To conclude, the value of the repeated zero-sum game must satisfy

VΓX
� p1� δqEpVXq � EpδXqVΓX

, (14)

which is equivalent to Eq. (6) and the proof is complete.

Proposition 2. Let G be a zero-sum two-player stage game, X P ∆pNq and Γ̃X the corre-

sponding repeated game where the realizations of X are unknown. The value of the repeated

game, VΓ̃X
is equal to the value of the one-shot stage game, vpΓ1q, iff player 2 has a pX-min

optimal set, where pX is defined in Eq. (10). Otherwise, VΓ̃X
¡ VΓ1.

Proof of Proposition 2. Suppose that player 2 has a pX -min action set B and consider

the following strategy for it:

1. At t � 0 choose an action according to some maximin strategy with support over B.
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2. Whenever a revision opportunity arrives after T consecutive stages playing the pure

action a, play each pure action with the probability:

α12pa
1q � 1a1�a

α�2pa
1q

qpT q
� 1a1�a

α�2pa
1q � p1� qpT qq

qpT q
, (15)

where α�2 is some minimax strategy with support over B. 3

Assume a was played T stages in a row, and player 2 follows this strategy. The probability

that the pure action a1 will be played next is

Prpa1q � Prpa1|no revisionqPrpno revisionq � Prpa1|revisionqPrprevisionq

� 1la1�ap1� qpT qq � α12pa
1qqpT q � α�2pa

1q. (16)

In this stage, player 1 plays against the mixed action α�2 which yields the expected payoff of

at least VΓ1 . This is true for every stage, so the payoff for player 2 in the repeated game is

at least VΓ1 as well. Player 1, however, can make sure to pay at most VΓ1 by playing the

minimaxing action of the stage game in every stage, which sets the value of the game to be

exactly VΓ̃X
� VΓ1 .

The existence of a pX -min action set for player 2 is also a necessary condition. Otherwise,

there is a positive probability to play in one of the stages an action that is played in maxmin

strategies in lower than pX probability. When such action is played, for large enough real-

ization of X, there will be a stage in which 1 � qpT q is greater than the probability to play

this action in equilibrium, forcing player 2 to choose this action with probability higher than

the maxmin probability. In this stage, the best response of player 1 to the subset of mixed

actions in which the former action is played with probability of at least 1� qpT q would yield

a higher payoff than VΓ1 , resulting in VΓ̃1
¡ VΓ1 .

3Thus α�2 paq ¥ p1� qpT qq and α�2 is indeed a probability function over B.
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