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1 Introduction

The recognition of the significance of monotonicity properties in economic models has been
steadily growing in recent decades (Tirole, 1988; Fudenberg and Tirole, 1991; Topkis,
1998). Bulow et al. (1985) coined the terms “strategic complements” and “strategic
substitutes.” From the viewpoint of economics, both properties are equally natural and
important; from the technical viewpoint, there is a big difference.

Under strategic complements, i.e., increasing best responses, the existence of Nash
equilibria can be derived, under reasonable assumptions, from the famous Tarski (1955)
fixed point theorem; the idea was introduced into game-theoretic literature by Topkis
(1979), see also Topkis (1998) and references therein. There are also nice comparative
statics properties.

On the other hand, the straightforward analogue of Tarski’s theorem for decreasing
mappings is just wrong, and examples of games with strategic substitutes, but without
equilibria, are easy to produce. No comparative statics results in this context have been
obtained so far.

Nonetheless, Novshek (1985) showed that decreasing best responses ensure the exis-
tence of a Nash equilibrium provided the strategy sets are closed intervals on the real
line and the partners’ choices affect each player’s utility only through their sum. Doubts
seem legitimate as to whether the original text contains a “proof” in the true sense of
the word, but the mysterious beauty of the construction is above such trifles. Kukushkin
(1994) modified Novshek’s argument, obtaining a rigorous proof fit for discrete models as
well (actually, even better).

This paper concerns with conditions for more than the mere existence of a Nash
equilibrium, viz. for nice best response improvement dynamics. A systematic investigation
of games where the convergence of unilateral improvement dynamics is ensured was started
by Monderer and Shapely (1996). Milchtaich (1996) suggested similar treatment of best
response improvements. Kukushkin (1999) showed the usefulness of the language of binary
relations in the studies.

In the context of games with strategic complements, certain convergence results con-
cerning best response improvements were established by Topkis (1979) and Vives (1990),
but those results lacked a universal character. Kandori and Rob (1995) proved the con-
vergence to a Nash equilibrium of all best response paths in every finite, symmetric, and
strictly supermodular game with scalar strategies. Kukushkin (2004) established the con-
vergence to equilibria of all best response improvement paths in every finite game with
strategic complements or strategic substitutes and with additive aggregation. Dubey et
al. (2004) suggested an alternative approach to the last situation, building on an idea de-
veloped first by Huang (2002) for somewhat different purposes. A very interesting feature
of the approach was a perfect symmetry between strategic complements and strategic
substitutes.

This paper has originated from a surprise at this unusual symmetry. The explanation
found is that there is just one general theorem rather than two. The key condition is
that each player’s best responses should increase in an aggregate of other players’ choices,
which is affine in every one of them. The slopes may be either upward or downward,
but there must be reciprocity in them. Every game from the class admits a “Cournot
potential,” i.e., Nash equilibria exist and all best response improvement paths, in a sense,
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lead towards them. In particular, every best response improvement path in every finite
game reaches an equilibrium in a finite number of steps.

A striking feature of the result is that strategic substitutability and complementarity
may be both present in the same game from the class; moreover, optimal response of
player i to player j’s strategy may be increasing, decreasing, or constant, depending on
the choices of the other players. Hence the tentative term “strategic supplements” in
the title of the paper. Games with additive aggregation and strategic complements or
substitutes (Kukushkin, 2004, Theorems 1 and 2) are just two tiny islands in a vast sea
of newly discovered (or rather, tamed) models.

In comparison with Dubey et al. (2004), much more general aggregates are allowed (see
Examples 1 and 2 below); the existence of a potential (rather than “pseudo-potential”)
is established; all superfluous technical restrictions are dropped.

The next section contains definitions related to strategic games and best response
dynamics. Our basic model as well as the main result are formulated in Section 3. A
simpler version of the theorem, assuming upper hemicontinuous best responses, is proven
in Section 4. A proof for the general case is given in Section 5. Several extensions of our
basic model, broadening the scope of potential applications considerably, are presented
in Sections 6 and 7. A discussion of several related questions in Section 8 concludes the
paper.

2 Basic Notions

A strategic game Γ is defined by a finite set of players N (we denote n = #N), and
strategy sets Xi and utility functions ui on X =

∏
i∈N Xi for all i ∈ N . The best response

correspondence Ri : X−i → 2Xi for each i ∈ N is defined in the usual way:

Ri(x−i) = Argmax
xi∈Xi

ui(xi, x−i).

We always assume that each Xi, hence X too, is a compact metric space; we do
not assume the continuity of utilities, but require that Ri(x−i) 6= ∅ for all i ∈ N and
x−i ∈ X−i (the upper semicontinuity of ui in own strategy xi is sufficient though by no
means indispensable).

We introduce the Cournot relation . on X as in Kukushkin (2004) (y, x ∈ X, i ∈ N):

y .i x ⇐⇒ [y−i = x−i & xi /∈ Ri(x−i) 3 yi];

y . x ⇐⇒ ∃i ∈ N [y .i x].

A strategy profile x ∈ X is a Nash equilibrium if and only if x is a maximizer for ., i.e.,
if y . x does not hold for any y ∈ X; the assumed existence of the best replies is crucial
here.

For a finite game, the acyclicity of the Cournot relation obviously means that every best
response improvement path, if continued whenever possible, ends at a Nash equilibrium,
the existence of which is thus implied. In an infinite game, the role of acyclicity can, to
some extent, be played by an order potential as defined in Kukushkin (1999, 2000).
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A Cournot potential of a strategic game is an irreflexive and transitive binary relation
Â on X such that:

y . x ⇒ y Â x; (1)
[
xω = lim

k→∞
xk & ∀k ∈ IN [xk+1 Â xk]

] ⇒ xω Â x0. (2)

It is essential that (2) implies xω Â xk for all k = 0, 1, . . . as well. The property seems to
have been considered first by Smith (1974), but only for preference relations, i.e., complete
orderings. In Kukushkin (2003), it was called “ω-transitivity.”

The main theorem of Kukushkin (1999) implies that every game admitting a Cournot
potential possesses a Nash equilibrium (provided the strategy sets are compact and the
best responses exist everywhere). For a finite game, (2) holds by default, so the presence
of a Cournot potential is equivalent to the acyclicity of the Cournot relation. In the gen-
eral case, if we consider best response improvement paths parameterized with transfinite
numbers, where best response improvement steps are combined with taking limit points,
then the presence of a Cournot potential prevents us from ever coming back; it seems
intuitively plausible that, on a compact set X, we will reach an equilibrium eventually. A
formalization of the idea and a rigorous proof of “transfinite convergence” can be found
in Kukushkin (2003).

3 Main Theorem

Our first subject are games with reciprocal polylinear interactions (RPLI games). Such
games are characterized by the following properties: all strategies xi are scalar; the part-
ners’ choices affect each player’s utility only through their scalar aggregate, σi(x−i), which
is affine in every single partner’s choice xj; if the choices of all players but two are fixed,
then both functions expressing the dependence of one player’s aggregate on the other’s
strategy have the same slope.

To be more formal and exact, we impose these assumptions:

1. Xi ⊂ IR for every i ∈ N ;

2. ui(x) = Ui(σi(x−i), xi) for all i ∈ N and x ∈ X, where

σi(x−i) =
n−1∑
m=1

∑

j1,...,jm∈N\{i}
jh 6=jh′ (h6=h′)

α
(m)
ij1...jm

× xj1 × · · · × xjm (3)

(the addition of α
(0)
i would not change anything);

3. each α
(m)
i0i1...im

is invariant under all permutations of i0, i1, . . . , im (invariance under
all permutations of i1, . . . , im could be assumed without restricting generality).

Considering an RPLI game, we denote Si = σi(X−i) for each i ∈ N ; clearly, Si is
compact too. We redefine the best response correspondence:

Ri(si) = Argmax
xi∈Xi

Ui(si, xi);

our assumption Ri(x−i) 6= ∅ implies Ri(si) 6= ∅ for each si ∈ Si.
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We also assume that every player’s best responses are increasing in si:

[s′i > si & x′i ∈ Ri(s
′
i) & xi ∈ Ri(si)] ⇒ x′i ≥ xi (4)

for all i ∈ N and s′i, si ∈ Si. The standard argument (Milgrom and Shannon, 1994;
Topkis, 1998) shows that the following strict single crossing condition is sufficient for (4):

[x′i > xi & s′i > si & Ui(si, x
′
i) ≥ Ui(si, xi)] ⇒ Ui(s

′
i, x

′
i) > Ui(s

′
i, xi) (5)

for all i ∈ N , x′i, xi ∈ Xi, and s′i, si ∈ Si. The conditions (4) or (5) cannot be called
either strategic substitutes or strategic complements because si = σi(x−i) can be either
decreasing or increasing in each xj, depending on α’s and perhaps on the other players’
choices.

Remark. Dubey et al. (2004) showed awareness of the fact that even their results are valid
for some games that are not characterized by strategic complements or substitutes (p. 9,
top). However, they did not pay proper attention to the matter.

Theorem 1. Every RPLI game satisfying (4) admits a Cournot potential.

The proof is deferred to Sections 4 and 5.

If α
(m)
i0i1...im

= 0 for m > 1 and α
(1)
ij = 1, we obtain a game with strict strategic

complements and additive aggregation; for finite games from the class, the acyclicity of
best response improvements was established in Kukushkin (2004, Theorem 1), under even

weaker monotonicity conditions. If α
(m)
i0i1...im

= 0 for m > 1, while α
(1)
ij = −1, we obtain a

game with strict strategic substitutes and additive aggregation; for finite games from the
class, our Theorem 1 is equivalent to Theorem 2 from Kukushkin (2004).

Example 1. Each player owns a small commercial parking lot in an area. The decision
problem for each of them is how much lighting, xi, to provide at her lot at night. The
higher xi, the higher expenses; on the other hand, the more light, the lower insurance costs.
There is a positive externality effect: each player’s lamps add something to the light at
other lots. It seems reasonable to assume that insurance costs decrease in xi +

∑
j 6=i αijxj,

where 0 ≤ αij < 1. Each coefficient αij depending primarily on the distance between
i’s and j’s lots, the reciprocity condition, αij = αji, seems natural. If we assume the
insurance-cost-reduction effect of light to be subject to strictly diminishing returns, then
(5) becomes valid, for σi(x−i) = −∑

j 6=i αijxj, regardless of the production costs.

Theorem 1 implies that the game possesses a Nash equilibrium and the behaviour
of best response improvements is nice enough. In particular, if we assume that only a
finite number of xi’s are technologically feasible, then every best response improvement
path reaches an equilibrium in a finite number of steps. It is impossible to derive either
statement from the previous literature.

Example 2. The players are music fans living in the same apartment block. Each player
chooses the volume xi of his own music, the others providing a negative externality, noise,∑

j 6=i αijxj (0 ≤ αij < 1). It seems reasonable to assume αij = αji and that each player’s
optimal volume increases in the outside noise. The existence of an equilibrium, certainly,
follows from Tarski’s fixed point theorem, but the acyclicity of best response improvements
can only be derived from our Theorem 1.

This author is yet unprepared to produce specific models with more general aggregates
allowed by Theorem 1, but such aggregates do not seem redundant. For instance, α

(1)
ij of

5



different signs could appear in a monopolistic competition model if xi describes the level
of advertising by firm i. It seems natural to expect strategic complementarity, α

(1)
ij > 0

when the products of the two firms are substitutes, strategic substitutability, α
(1)
ij < 0

when the products are complements, and “strategic indifference,” α
(1)
ij = 0 when they are

independent.

The possibility to include nonlinear terms increases the scope of potential applications.

4 Best Responses with Closed Graphs

Here we formulate and prove a less general statement, sufficient for many purposes. In
particular, it is equivalent to Theorem 1 for finite games.

Proposition 4.1. Every RPLI game satisfying (4) admits a Cournot potential if the best
response correspondences have closed graphs.

Proof. For every i ∈ N , we define X0
i =

⋃
si∈Si

Ri(si); the compactness of Si and upper
hemicontinuity of Ri imply that X0

i is closed in Xi, hence compact too. We denote
s−i = min Si and s+

i = max Si. For each si ∈ Si, we define r−i (si) = min Ri(si) and
r+
i (si) = max Ri(si); by (4), s′i > si ⇒ r−i (s′i) ≥ r+

i (si) and r+
i (si) = r−i (si) for all

si ∈ Si except for a countable subset. Then we extend r+
i to the whole [s−i , s+

i ] with the
following construction. For every si ∈ [s−i , s+

i ] we define ξ+
i (si) = min{ξi ∈ Si| ξi ≥ si}

and ξ−i (si) = max{ξi ∈ Si| ξi ≤ si}. Obviously, ξ+
i (si) = ξ−i (si) = si if and only if

si ∈ Si; otherwise, ξ−i (si) < si < ξ+
i (si). Now for every si ∈ [s−i , s+

i ] \ Si we define
r+
i (si) = r+

i (ξ−i (si)) if si − ξ−i (si) ≤ ξ+
i (si)− si, and r+

i (si) = r−i (ξ+
i (si)) otherwise.

For each xi ∈ Xi, we define a function

Fi(xi) =

∫ s+
i

s−i

min{xi, r
+
i (si)} dsi.

For each x ∈ X, we define a set N0(x) = {i ∈ N | xi ∈ X0
i } and a function

P (x) =
n−1∑
m=1

[ ∑
i0,i1,...,im∈N
ih 6=ih′ (h6=h′)

1

m + 1
α

(m)
i0i1...im

× xi0 × xi1 × · · · × xim

]
+

∑
i∈N

[
Fi(xi)− s+

i · xi

]
. (6)

Finally, we define a binary relation on X (the potential):

y Â x ⇐⇒ [
N0(y) ⊃ N0(x) or [N0(y) = N0(x) & P (y) > P (x)]

]
.

Obviously, Â is irreflexive and transitive. Checking (2) is straightforward: the situation
N0(xk+1) ⊃ N0(xk) can only happen for a finite number of k; without restricting gen-
erality, N0(xk+1) = N0(xk) for all k, hence P (xk+1) > P (xk); since each X0

i is closed,
N0(xω) = N0(x0); since P is continuous, P (xω) > P (x0).

Let us check (1); let y .i x. Denoting s̄i = σi(x−i), we have yi ∈ Ri(s̄i) by definition,
hence yi ∈ X0

i ; therefore, N0(y) ⊇ N0(x). If the inclusion is strict, we are home. Let
xi ∈ Ri(s

∗
i ) for s∗i ∈ S∗i ; then s∗i 6= s̄i because xi /∈ Ri(s̄i). We have to show P (y) > P (x).

6



Combining the terms containing xi (respectively, yi), we obtain:

P (x) = −xi · (s+
i − s̄i) + Fi(xi) + C;

P (y) = −yi · (s+
i − s̄i) + Fi(yi) + C;

where C only depends on xj = yj for j 6= i.

Now yi ∈ Ri(s̄i) implies r+
i (si) ≥ yi for all si ≥ s̄i and r+

i (si) ≤ yi for all si < s̄i, hence

Fi(yi) =
∫ s̄i

s−i
min{yi, r

+
i (si)} dsi +

∫ s+
i

s̄i
min{yi, r

+
i (si)} dsi =

∫ s̄i

s−i
r+
i (si) dsi + yi · (s+

i − s̄i),

hence P (y) =
∫ s̄i

s−i
r+
i (si) dsi + C.

We have assumed xi ∈ Ri(s
∗
i ); arguing exactly as in the previous paragraph, we see

that Fi(xi) =
∫ s∗i

s−i
r+
i (si) dsi + xi·(s+

i −s∗i ). Therefore, P (x) = xi·(s̄i−s∗i )+
∫ s̄i

s−i
r+
i (si) dsi +

∫ s∗i
s̄i

r+
i (si) dsi + C, hence

P (y)− P (x) =

∫ s∗i

s̄i

[xi − r+
i (si)] dsi.

If s∗i > s̄i, then the integrand is nonnegative on the whole interval and strictly positive
in an open neighbourhood of s̄i, because xi /∈ Ri(s̄i) and the graph of Ri is closed. If
s∗i < s̄i, then the integrand is nonpositive on the whole interval and strictly negative in
an open neighbourhood of s̄i, but dsi < 0 (the lower limit is greater than the upper one).
In either case, P (y) > P (x), hence y Â x.

5 General Proof

It is worthwhile to ponder on exactly what makes the above proof unfit for the general
situation. If we try to apply it “as is,” our proof of (2) will fail because now X0

i need not
be closed. This obstacle can be overcome by replacing X0

i in the definition of N0(x) with
its closure (which coincides with the projection to Xi of the closure of the graph of Ri);
however, we shall be unable to assert that s∗i 6= s̄i.

Example 3. Let N = {1, 2}, X1 = X2 = [0, 1], and the utilities be

ui(xi, xj) = min{xi + β1
i (xj),−xi + β2

i (xj)},
where β1

1(x2) ≡ 0, β2
2(x1) ≡ 1,

β2
1(x2) =





2, x2 = 0,

2− 1/2k−1, 1/2k+1 < x2 ≤ 1/2k (k = 1, 2, . . . ),

1− 1/2k, 1/2 + 1/2k+1 < x2 ≤ 1/2 + 1/2k (k = 1, 2, . . . ),

and

β1
2(x1) =





−1/2k−1, 1/2− 1/2k ≤ x1 < 1/2− 1/2k+1 (k = 1, 2, . . . ),

1− 1/2k, 1− 1/2k ≤ x1 < 1− 1/2k+1 (k = 1, 2, . . . ),

1, x1 = 1.

Assuming σi(xj) = −xj, we easily check (5), hence (4); therefore, Theorem 1 applies.
Actually, the existence of a Cournot potential in the game follows from Theorem 5.3 of
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Figure 1: Best responses in Example 3

Kukushkin (2000) since n = 2. The existence of an equilibrium even follows straight from
Tarski’s theorem as Vives (1990, p. 310) has noted.

The best response correspondences are these (see Fig. 1):

R1(x2) =





{1}, x2 = 0,

{1− 1/2k}, 1/2k+1 < x2 ≤ 1/2k (k = 1, 2, . . . ),

{1/2− 1/2k+1}, 1/2 + 1/2k+1 < x2 ≤ 1/2 + 1/2k (k = 1, 2, . . . );

R2(x1) =





{1/2 + 1/2k}, 1/2− 1/2k ≤ x1 < 1/2− 1/2k+1 (k = 1, 2, . . . ),

{1/2k+1}, 1− 1/2k ≤ x1 < 1− 1/2k+1 (k = 1, 2, . . . ),

{0}, x1 = 1.

Since they are singletons, we denote them by ri in the following rather than Ri.

The convergence to the unique equilibrium, (1, 0), may require taking a limit twice:
Suppose the players start at x0 = (0, 1); then they switch to (r1(1) = 1/4, 1); then to
(1/4, r2(1/4) = 3/4); ... to (1/2−1/2k+1, 1/2+1/2k); then to (1/2−1/2k+1, 1/2+1/2k+1);
... in the limit, to (1/2, 1/2); then to (1/2, r2(1/2) = 1/4); then to (r1(1/4) = 3/4, 1/4);
... to (1 − 1/2k, 1/2k); then to (1 − 1/2k, 1/2k+1); ... in the limit, to (1, 0). On the first
step of the process, we have N0(x0) = {2} ⊂ N = N0(x1). Later on, neither N0(x) = N
nor P (x) = 1/2 = maxx′∈X P (x′) change. This fact shows the inadequacy of the potential
from Section 4 in the general situation. It also shows that an equilibrium here could
hardly be produced by local modifications of an arbitrary maximizer of P as in the proof
of Theorem 3 of Dubey et al. (2004). By the way, that theorem is inapplicable: the
reaction functions are not strictly decreasing; r1 is left continuous; r2 is right continuous.

Remark. For every countable ordinal number α (Natanson, 1974, Chapter XIV), a similar
construction provides an example where the convergence to an equilibrium may require
“α” steps, cf. Theorem 4.3 of Kukushkin (2000).

To start a proof fit for the general situation, we define R̄i(si) = {xi ∈ Xi| (si, xi) ∈
cl(graph Ri)} and replace Ri with R̄i in the definitions of X0

i , r−i , r+
i , ξ−i (si), and ξ+

i (si).
Each X0

i is still compact, and monotonicity properties of r−i and r+
i remain intact. Then
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we reproduce the same definitions of N0(x) and P (x), which now have a new meaning
(actually, P remains the same).

We add a third lexicographic component in the definition of Â so that the move-
ment from the northwestern to the southeastern corner of Figure 1 be accompanied with
increases in the component.

For every i ∈ N , we define binary relations on Xi:

yi ..i xi ⇐⇒ ∃s̄i ∈ Si [yi ∈ Ri(s̄i) & xi ∈ R̄i(s̄i) \Ri(s̄i)]

(in the following, we say “yi ..i xi holds with si = s̄i”);

yi ..+
i xi ⇐⇒ [yi ..i xi & yi > xi];

yi ..−i xi ⇐⇒ [yi ..i xi & yi < xi].

An i-singular upward chain is a well ordered subset ∆ ⊆ Xi (inevitably countable)
such that (1) yi ..+

i xi whenever yi ∈ ∆ and xi = max{x′i ∈ ∆| yi > x′i} (then yi =
min{y′i ∈ ∆| y′i > xi}), and (2) yi = sup{xi ∈ ∆| yi > xi} whenever yi ∈ ∆ and
∀xi ∈ ∆ [yi > xi ⇒ ∃zi ∈ ∆(yi > zi > xi)].

An i-singular downward chain is defined dually as a subset ∆ ⊆ Xi, well ordered in
the reversed order on IR (i.e., where every subset contains a greatest point) and such that
(1) yi ..−i xi whenever yi ∈ ∆ and xi = min{x′i ∈ ∆| yi < x′i} (then yi = max{y′i ∈ ∆| y′i <
xi}), and (2) yi = inf{xi ∈ ∆| yi < xi} whenever yi ∈ ∆ and ∀xi ∈ ∆ [yi < xi ⇒ ∃zi ∈
∆(yi < zi < xi)].

It is worth noting that ∆∩ [ai, bi], for ai, bi ∈ IR, remains an i-singular upward (down-
ward) chain if so was ∆.

We define two more relations on Xi: yi ÂÂ+
i xi (yi ÂÂ−i xi) iff yi > xi (yi < xi) and

there is an i-singular upward (downward) chain containing both yi and xi. Then, we
define

yi ÂÂ xi ⇐⇒ yi ÂÂ+
i xi or yi ÂÂ−i xi.

Clearly, all the three relations are irreflexive. Checking transitivity and (2) for the last
relation needs some effort.

Step 1. Both relations ÂÂ+
i and ÂÂ−i are transitive and satisfy (2).

Proof. It is obviously sufficient to consider one of the relations, say, ÂÂ+
i . Let zi ÂÂ+

i

yi ÂÂ+
i xi. By definition, there are two i-singular upward chains, ∆′ and ∆′′, such that

yi, zi ∈ ∆′′ and xi, yi ∈ ∆′. Defining ∆ =
(
[xi, yi] ∩∆′) ∪ (

[yi, zi] ∩∆′′), we see that ∆ is
an i-singular upward chain – when checking each condition in the definition, we will find
ourselves either totally inside [xi, yi] ∩∆′ or totally inside [yi, zi] ∩∆′′. Since xi, zi ∈ ∆,
we have zi ÂÂ+

i xi.

The proof of (2) is quite similar. Let xk
i → xω

i and xk+1
i ÂÂ+

i xk
i for all k; let ∆k

be an i-singular upward chain containing both xk
i and xk+1

i (k = 0, 1, . . . ). Denoting
∆ = {xω

i } ∪
⋃

k∈IN

(
[xk

i , x
k+1
i ]∩∆k

)
, we again obtain that ∆ is an i-singular upward chain

(the condition xω
i = supk∈IN xk

i is essential here) containing both x0
i and xω

i .

Step 2. Let zi ..+
i yi hold with si = s̄i, and y′i ∈ [yi, zi[; then y′i ..−i xi is only possible,

for any xi ∈ Xi, with si = s̄i (in particular, yi ..−i xi is impossible for any xi ∈ Xi).
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Proof. By definition, y′i ..−i xi would imply y′i < xi. For si > s̄i, we have r−i (si) ≥
r+
i (s̄i) ≥ zi > y′i, hence y′i /∈ Ri(si); for si < s̄i, r+

i (si) ≤ r−i (s̄i) ≤ yi ≤ y′i < xi, hence
xi /∈ R̄i(si). Therefore, both conditions in the definition of y′i ..i xi could only be satisfied
with si = s̄i.

Step 3. If zi ..+
i yi, then yi ÂÂ−i xi is impossible for any xi ∈ Xi.

Proof. Supposing the contrary, let zi ..+
i yi hold with si = s̄i and let ∆ be an i-singular

downward chain containing both yi and xi > yi. By Step 2, yi ..−i x′i cannot hold
for any x′i; therefore, condition (1) from the definition of an i-singular downward chain
cannot be applicable to yi, hence condition (2) must hold, implying ∆∩]yi, zi[6= ∅. Let
z′i = max{x′i ∈ ∆| x′i < zi}, y′i = max{x′i ∈ ∆| x′i < z′i}, and y′′i = max{x′i ∈ ∆| x′i < y′i},
the maxima existing because ∆ is well ordered in the reversed order. By the definition of
an i-singular downward chain [condition (1)], we have y′′i ..−i y′i ..−i z′i. By the findings of
Step 2, both relation must hold with si = s̄i, i.e., we must have y′i ∈ Ri(s̄i) and y′i /∈ Ri(s̄i)
simultaneously.

Step 4. If zi ÂÂ+
i yi, then yi ÂÂ−i xi is impossible for any xi ∈ Xi.

Proof. Let ∆ be an i-singular upward chain containing both zi and yi. Denoting y′i =
min{x′i ∈ ∆| x′i > yi}, we see that condition (1) from the definition of an i-singular upward
chain holds for y′i and yi, hence y′i ..+

i yi. Now the previous step applies.

Step 5. If zi ÂÂ−i yi, then yi ÂÂ+
i xi is impossible for any xi ∈ Xi.

Proof. The proof is exactly dual to the proofs of Steps 2, 3, and 4.

Step 6. The relation ÂÂi is transitive and satisfies (2).

Proof. Taking into account Steps 4 and 5, Step 1 immediately implies the statement.

Remark. Returning to the path from the northwestern to the southeastern corner of
Figure 1, it is easy to see that the projection of the path to X1 (X2) is an i-singular
upward (downward) chain. Therefore, all the changes in x1 (x2) are upwards in the sense
of ÂÂ+

1 (ÂÂ−2 ) [except for the first step, where N0(x1) ⊃ N0(x0)].

Finally, we define the potential:

y Â x ⇐⇒ [
N0(y) ⊃ N0(x) or [N0(y) = N0(x) & P (y) > P (x)] or(

N0(y) = N0(x) & P (y) = P (x) &

∀i ∈ N [yi = xi or yi ÂÂi xi] & ∃i ∈ N [yi ÂÂi xi]
)]

.

Step 7. The relation Â is irreflexive and transitive, and satisfies (2).

Proof. The irreflexivity of Â is obvious; checking transitivity is very easy. Checking (2) is
done similarly to Section 4: without restricting generality, N0(xk+1) = N0(xk) for all k; if
P (xk+1) > P (xk) for a single k, then P (xω) > P (x0) and we are home. If P (xk+1) = P (xk)
for all k, then, for each i ∈ N , either xk+1

i ÂÂi xk
i for some k, or xk+1

i = xk
i for all k. In

the first case, Step 6 applies, producing xω
i ÂÂi x0

i ; in the second, xω
i = x0

i .

Step 8. If y . x, then y Â x.
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Proof. Let y .i x and s̄i = σi(x−i). Exactly as in Section 4, we obtain y Â x if xi /∈ R̄i(s̄i).

Let xi ∈ R̄i(s̄i) \Ri(s̄i); then N0(y) = N0(x). We have r−i (s̄i) ≤ xi, yi ≤ r+
i (s̄i), hence

Fi(yi) =
∫ s̄i

s−i
r+
i (si) dsi + yi · (s+

i − s̄i) and Fi(xi) =
∫ s̄i

s−i
r+
i (si) dsi + xi · (s+

i − s̄i) exactly

as in Section 4; therefore, P (y) = P (x).

By definition, we have yi ..i xi. If yi > xi (yi < xi), we have yi ..+
i xi (yi ..−i xi).

Picking ∆ = {xi, yi}, we obtain yi ÂÂ+
i xi (yi ÂÂ−i xi), hence yi ÂÂi xi. Since xj = yj for

all j 6= i, we have y Â x.

Thus, Â is a Cournot potential and Theorem 1 is proved.

6 Abstract Reactions

The proper subject of this paper are “systems of reactions” (Kukushkin, 2000) rather than
games as such; Vives (1990) called virtually the same objects “abstract games.” There
is no big difference between the best response correspondences of a strategic game and
abstract reactions, but the latter concept provides a greater flexibility.

A system of reactions S is defined by a finite set of indices N , and sets Xi and mappings
Ri : X−i → 2Xi \ {∅} for all i ∈ N . A point x0 ∈ X =

∏
i∈N Xi is called a fixed point of

S if x0
i ∈ Ri(x

0
−i) for all i ∈ N .

With every system S, one can associate binary relations on X: y .Si x ⇐⇒ [y−i =
x−i & xi /∈ Ri(x−i) 3 yi], y .S x ⇐⇒ ∃i ∈ N [y .S

i x]. Obviously, x ∈ X is a maximizer
for .S if and only if x is a fixed point of S. We omit the superscript S at . when the
system is clear from the context.

A potential for a system of reactions is an irreflexive and transitive binary relation
Â on X such that (1) and (2) hold (with the new interpretation of .). As in Section 2,
the main theorem of Kukushkin (1999) implies that every system of reactions admitting
a potential possesses a fixed point (provided the sets Xi are compact). And again, the
iteration of reactions leads towards fixed points, reaching one in a finite number of steps
if all Xi are finite.

A system of reactions with reciprocal polylinear aggregates (an RPLA system) is char-
acterized by these assumptions: Xi ⊂ IR and Ri = Ri ◦ σi for every i ∈ N , where
σi : X−i → IR is defined by (3), and Ri is a correspondence from Si = σi(X−i) to Xi;

α
(m)
i0i1...im

is invariant under all permutations of i0, i1, . . . , im.

Theorem 2. Every RPLA system where every mapping Ri satisfies (4) admits a potential.

There are two ways to prove the theorem. The first is to repeat Sections 4 and 5:
the utility functions were never mentioned there (Example 3 can easily be reformulated
without them). The second is to define an RPLI game by Ui(si, xi) = 1 if xi ∈ Ri(si),
and Ui(si, xi) = 0 otherwise. The same Ri become the best response correspondences
(actually, even (5) holds), so Theorem 1 implies Theorem 2.

The following obvious statement shows an advantage of the new formulation.

Corollary. Let, in an RPLA system, there exist correspondences R′
i : X−i → 2Xi \ {∅}

satisfying (4) and such that R′
i(x−i) ⊆ Ri(x−i) for all i ∈ N and x−i ∈ X−i. Then the

system has a fixed point.
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Remark. Actually, we have a “restricted potential” in this situation, which is more than
the mere existence of a fixed point (Nash equilibrium), cf. Kukushkin (2004, Sections 6
and 7.7).

The conditions of the Corollary hold if the original reactions Ri are monotonic in a
weaker sense than (4). For instance,

[s′i ≥ si & xi ∈ Ri(si) & x′i ∈ Ri(s
′
i)] ⇒ x′i ∨ xi ∈ Ri(s

′
i), (7a)

or
[s′i ≥ si & xi ∈ Ri(si) & x′i ∈ Ri(s

′
i)] ⇒ x′i ∧ xi ∈ Ri(si). (7b)

Proposition 6.1. Let, for every i ∈ N in an RPLA system, each Ri(si) be closed and
either (7a) be satisfied for all x′i, xi ∈ Xi and s′i, si ∈ Si, or (7b) be satisfied for all
x′i, xi ∈ Xi and s′i, si ∈ Si. Then there is a fixed point.

Proof. If (7a) is satisfied for a given i ∈ N , we define R′
i(si) = {max Ri(si)}; otherwise,

we define R′
i(si) = {min Ri(si)}. The standard argument (Topkis, 1998) shows that R′

i

satisfies (4). Now Corollary to Theorem 2 applies.

Conditions (7) for the best response correspondences in a strategic game are ensured
by the weak single crossing conditions:

[x′i ≥ xi & s′i ≥ si & Ui(si, x
′
i) ≥ Ui(si, xi)] ⇒ Ui(s

′
i, x

′
i) ≥ Ui(s

′
i, xi); (8a)

[x′i ≥ xi & s′i ≥ si & Ui(s
′
i, xi) ≥ Ui(s

′
i, x

′
i)] ⇒ Ui(si, xi) ≥ Ui(si, x

′
i). (8b)

As is well known, (8a) implies (7a), whereas (8b) implies (7b).

Corollary. Let, for every i ∈ N in an RPLI game, each Ri(si) be closed (which holds,
e.g., if Ui is upper semicontinuous in own strategy xi) and either (8a) be satisfied for all
x′i, xi ∈ Xi and s′i, si ∈ Si, or (8b) be satisfied for all x′i, xi ∈ Xi and s′i, si ∈ Si. Then the
game possesses a Nash equilibrium.

The theorem on monotone selections ascribed by Milgrom and Shannon (1994, Theo-
rem A2) to A. Veinott implies that the monotonicity conditions in Proposition 6.1 could
be weakened even further; however, the weaker condition admits no clear interpretation
in terms of utility functions.

If the existence of neither greatest nor least best response is ensured, the existence
of a Nash equilibrium can be obtained if we assume (8a) and (8b) together, which is
Milgrom and Shannon’s (1994) single crossing condition. The condition ensures that the
best response correspondence is ascending, i.e.,

[s′i ≥ si & xi ∈ Ri(si) & x′i ∈ Ri(s
′
i)] ⇒ [x′i ∨ xi ∈ Ri(s

′
i) & x′i ∧ xi ∈ Ri(si)]. (9)

The use of the property is based on the following technical result.

Lemma 6.2. Let R be a mapping S → 2X \ {∅}, where S is a partially ordered set and
X is a chain; let R satisfy (9). Then there exists a monotone selection from R, i.e., a
mapping r : S → X such that (1) r(s) ∈ R(s) and (2) s′ ≥ s ⇒ r(s′) ≥ r(s), for all
s, s′ ∈ S.
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Proof. We use the Axiom of Choice to the full extent. The set S can be well ordered;
to avoid considering two independent orders on the same set, we assume that there is
a bijection λ : A → S, where A is a well ordered set (of the same cardinality as S).
We define r(λ(α)) by (transfinite) induction in α ∈ A. First, we pick r(λ(0)) ∈ R(λ(0))
arbitrarily.

Let r(λ(β)) be defined for all β < α. We define B(α) = {β < α| r(λ(β)) ∈ R(λ(α))}.
If B(α) = ∅, we pick r(λ(α)) ∈ R(λ(α)) arbitrarily. Otherwise, we define r(λ(α)) =
r(λ(min B(α))), the minimum existing because A is well ordered.

Since there is no possibility that r(λ(α)) could be left undefined, we obtain r(λ(α))
for all α ∈ A eventually. Clearly, r(λ(α)) ∈ R(λ(α)) for all α ∈ A, so we only have to
check monotonicity.

Suppose to the contrary that λ(α′) < λ(α) whereas r(λ(α′)) > r(λ(α)); the assumption
that X is a chain is essential here. By (9), r(λ(α)) ∈ R(λ(α′)) and r(λ(α′)) ∈ R(λ(α)).
Without restricting generality, α′ < α, hence α′ ∈ B(α) 6= ∅. The assumption that
r(λ(α′)) 6= r(λ(α)) implies that min B(α) = β < α′ and r(λ(α)) = r(λ(β)). Now β ∈
B(α′) 6= ∅, so the assumption that r(λ(α′)) 6= r(λ(β)) implies that min B(α′) = β′ < β and
r(λ(α′)) = r(λ(β′)). However, now we have β′ ∈ B(α), hence β ≤ β′. The contradiction
proves the monotonicity of r.

Remark. If S ⊆ IR, there exists a countable subset order dense in S; then the transfinite
induction can be replaced with ordinary one where parameters are natural numbers.

Proposition 6.3. Every RPLA system where every mapping Ri satisfies (9) has a fixed
point.

Proof. By Lemma 6.2, each Ri admits a monotone selection, which satisfies (4). Now
Corollary to Theorem 2 applies.

Proposition 6.3 is applicable to RPLI games where the best response correspondences
are ascending (e.g., both conditions (8) hold), but the sets Ri(si) need not be closed.

7 Further Extensions

7.1. The reciprocity condition can be replaced with a hierarchy of players; moreover, even
polylinearity can be weakened considerably in this case. In this subsection we introduce
the concept of a system of reactions with hierarchic-reciprocal polylinear aggregates (an
HRPLA system). Such a system satisfies the first two conditions from the definitions of
an RPLA system, viz. Xi ⊂ IR and Ri = Ri ◦ σi for every i ∈ N , but the restrictions on
σi : X−i → IR are different.

We assume that N is partitioned into a number of subsets, N =
⋃ q

k=1 Nk with Nk ∩
Nh = ∅ whenever h 6= k. For each k = 1, . . . , q, we denote Mk =

⋃ q
h=k+1 Nh (so Mq = ∅);

we define the rank ρ(i) of a player i by i ∈ Nρ(i). Now we assume that

σi(x−i) =

#Nρ(i)−1∑
m=1

∑

j1,...,jm∈Nρ(i)\{i}
jh 6=jh′ (h6=h′)

α
(m)
ij1...jm

(xMρ(i)
)× xj1 × · · · × xjm ,
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where α
(m)
i0i1...im

(xMk
) is invariant under all permutations of i0, i1, . . . , im ∈ Nk for each

k = 1, . . . , q, 1 ≤ m < #Nk, and xMk
∈ XMk

.

In other words, every player is indifferent to the choices of partners with lower ranks,
there is reciprocity between peers, and players with higher ranks may affect their inferiors
in an arbitrary way.

Proposition 7.1. Every HRPLA system where every mapping Ri satisfies (4) admits a
potential.

Proof. If q = 1, Theorem 2 applies, providing the basis for an induction process. Assuming
the statement valid for some q, we have to prove it for q + 1. We denote I = Nq+1 and
J = N \ I (=

⋃ q
k=1 Nk).

The correspondences Ri with i ∈ I form an RPLA system; by Theorem 2, it admits a
potential ÂI defined on XI =

∏
i∈I Xi. For every xI ∈ XI , the correspondences Ri with

i ∈ J form an HRPLA system; by the induction hypothesis, it admits a potential ÂxI

defined on XJ =
∏

i∈J Xi. Now we define our (global) potential as

y Â x ⇐⇒ [
yI ÂI xI or [yI = xI & yJ ÂxI xJ ]

]

Let y .i x; then y Â x by the first lexicographic component if i ∈ I and by the second
if i ∈ J . Condition (2) holds for Â because it holds for both ÂI and every ÂxI .

7.2. Essentially the same aggregates may work when strategy sets are not necessarily
subsets of the real line. In this subsection we introduce the concept of a system of
reactions with reciprocal quasi-polylinear aggregates (an RQPLA system). Such a system
is characterized by these assumptions: each Xi is a metric compact with a partial order;
there is a continuous and increasing mapping νi : Xi → IR for each i ∈ N ; Ri = Ri ◦ σi

for every i ∈ N , where

σi(x−i) =
n−1∑
m=1

∑

j1,...,jm∈N\{i}
jh 6=jh′ (h6=h′)

α
(m)
ij1...jm

× νj1(xj1)× · · · × νjm(xjm), (10)

and Ri : Si → 2Xi \{∅} for Si = σi(X−i); each α
(m)
i0i1...im

is invariant under all permutations
of i0, i1, . . . , im.

Proposition 7.2. Every RQPLA system where every mapping Ri satisfies (4) admits a
potential.

Remark. The only requirement on concord between topology and order on each Xi is the
existence of a continuous and increasing function.

Proof. For every i ∈ N , we define Ξi = νi(Xi) ⊂ IR and σ∗i (ξ−i) = σi(x−i), where
ξj = νj(xj) for all j 6= i; equality (10) implies that the choice of xj in the pre-image of ξj

does not matter. It is easy to see that σ∗i (Ξ−i) = Si. Then we define R∗
i = νi ◦ Ri. Since

Ri satisfies (4) and ν is increasing, R∗
i satisfies (4) too.

Now the sets Ξi and correspondences R∗
i define an RPLA system; by Theorem 2,

it admits a potential Â∗ defined on Ξ =
∏

i∈N Ξi ⊂ IRN . For every x ∈ X, we define
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N0(x) = {i ∈ N | xi ∈ Ri(σi(x−i))}. We denote ν : X → Ξ the product of all νi. Finally,
we define our potential as

y Â x ⇐⇒ [
ν(y) Â∗ ν(x) or [ν(y) = ν(x) & N0(y) ⊃ N0(x)]

]

Checking (1), we suppose that y .i x; then yj = xj, hence νj(yj) = νj(xj) for all j 6= i.
We consider two alternatives. If νi(yi) 6= νi(xi), we have ν(y) Â∗ ν(x), hence y Â x. If
νi(yi) = νi(xi), we have ν(y) = ν(x) and i ∈ N0(y)\N0(x); moreover, ν−j(y−j) = ν−j(x−j)
for each j 6= i, hence N0(y) ∩ (N \ {i} = N0(x) ∩ (N \ {i}. Thus, y Â x.

Condition (2) holds for Â because it holds for Â∗ and ν is continuous.

This extension is useful when the players also have decision variables free of any
external effect. For instance, in Example 1, the players could also decide on how much
to spend on signalization, pavement, drainage, etc., and these variables could enter into
any restrictions together with the original xi. However, the applicability of our approach
cannot survive another external effect, e.g., price competition.

8 Concluding Remarks

8.1. The Cournot relation is purely ordinal, i.e., invariant under any strictly increasing
transformation of the utility function. The same is true of the definition of an RPLI game
and of our conditions (5) and (4). Therefore, this paper belongs to the ordinal strand in
the theory of potential games.

8.2. The class of RPLI games (as well as its generalizations) can be viewed as a natural
extension of the class of games with additive aggregation, considered in Kukushkin (2004):
we just defined σi(x−i) in a more general way. There is a principal difference, however:
In a game from the latter class, there is a single aggregate characteristic,

∑
i∈N xi, which

enters into each player’s utility. In this paper, each player is affected by his “personal”
aggregate, and there is no analogue of the total sum. In a sense, aggregation here is not
separable.

8.3. As was noted in Section 3, for finite games with additive aggregation Theorem 2 of
Kukushkin (2004) requires the same monotonicity condition as our Theorem 1. Mean-
while, Theorem 1 from the same paper only requires (8a) above, which is much weaker
than (5). The difference is not due to any technical shortcomings.

Example 4. Let N = {1, 2, 3}, X1 = {0, 1, 2, 3, 4}, X2 = {0, 1, 2, 3, 4, 5}, X3 = {0, 1},
α

(m)
i0i1...im

= 0 for m > 1, and α
(1)
ij = −1 (i.e., we actually have a game with strategic

substitutes and additive aggregation), hence S1 = {0,−1, . . . ,−6}, S2 = {0,−1, . . . ,−5},
S3 = {0,−1, . . . ,−9}. Let the utilities be:

U1 : U2 : U3 :



0 2 2 2 2 2 4
1 3 3 3 3 3 3
1 3 3 3 3 3 3
1 3 3 3 3 3 3
2 2 2 2 2 2 2







0 0 0 2 2 2
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 1 1 1




[
0 0 0 0 0 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1

]
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where own choice, xi, is on the ordinates axis, and si (= minus the sum of the partners’
choices), on the abscissae axis.

The best responses are easily seen in the matrices. Condition (4) holds for players 2
and 3, but not for player 1, so our Theorem 1 does not apply. Actually, every utility
function satisfies Topkis’s (1979) increasing differences condition in xi and si, hence the
best responses satisfy (9). Nonetheless, there is a best response improvement cycle:

(3, 0, 0)
1−−−→ (4, 0, 0)

3−−−→ (4, 0, 1)
1−−−→ (1, 0, 1)x2

y2

(3, 5, 0)
1←−−− (0, 5, 0)

3←−−− (0, 5, 1)
1←−−− (1, 5, 1)

.

Therefore, the strict condition (4) in our Theorem 1 cannot be replaced with (9), to

say nothing of (8a). This could be possible under some restrictions (all α
(m)
i0i1...im

≥ 0 or all

α
(m)
i0i1...im

> 0), but so far there is no result to the effect beyond Theorem 1 of Kukushkin
(2004).

There is a very peculiar manifestation of this asymmetry between strategic comple-
ments and substitutes. Consider finite three person RPLI games with linear aggregates
σi(xj, xk) = αijxj + αikxk. The reciprocity condition implies that we have three inde-
pendent parameters αij; let none of them be zero. Rescaling (and perhaps reversing)
the axes, we can transform the game into that with additive aggregation and strategic
complements or substitutes (i.e., with all αij = 1 or all αij = −1). Thus we come to the
conclusion that if the number of negative coefficients αij in the original game is even (0 or
2), then condition (8a) ensures acyclicity; if the number is odd (1 or 3), a stricter version,
(5) above, must be imposed. How could such a conclusion have been expected?

8.4. It goes without saying that the extensions from Sections 6 and 7 can be combined
together.

8.5. Proposition 7.1 does not imply the possibility to replace α
(m)
i0i1...im

with zeros in an
arbitrary way.

Example 5. Let N = {1, 2, 3}, Xi = {0, i} for all i ∈ N , σ1(x2, x3) = −x2 − x3,
σ2(x1, x3) = −x1, σ3(x1, x2) = −x1 − x2, R1(s1) = {0} for s1 ≤ −3, R1(s1) = {1} for
s1 ≥ −2, R2(−1) = {0}, R2(0) = {2}, R3(s3) = {0} for s3 ≤ −2, and R3(s3) = {3} for
s3 ≥ −1. A fixed point x0 would have to satisfy the equations:

sign(x0
1) = 1− sign(x0

3), sign(x0
2) = 1− sign(x0

1), sign(x0
3) = 1− sign(x0

2),

which is clearly impossible.

8.6. Example 3 raises a natural question: Is a transfinite best response improvement
path possible in an RPLI game with strict strategic supplements, in other words, can an
infinite path fail to find an equilibrium in the limit, if all best response correspondences
have closed graphs (e.g., if the utilities are continuous)? If the path converges, a negative
answer is obvious: the limit must belong to each graph. If n = 2 and x0, x1, . . . , xk, . . . is
an infinite best response improvement path, then each sequence x0

i , x
1
i , . . . , x

k
i , . . . is either

increasing or decreasing; in either case, it converges. For n > 2, there is neither proof nor
counterexample to the statement that every infinite best response improvement path has a
Nash equilibrium among its limit points, nor even counterexample to the hypothesis that
every limit point of every infinite best response improvement path is a Nash equilibrium.
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8.7. S. Takahashi (personal communication) has discovered another asymmetry between
strategic complements and substitutes: The exact analogue of Theorem 2 from Kandori
and Rob (1995), establishing the acyclicity of best responses in symmetric strictly super-
modular games, does not hold for submodular games. Interestingly, no situation is known
where best response improvements would behave nicer under strategic substitutes than
under strategic complements. At a first glance, this seems quite natural; however, if one
starts looking for more or less formal arguments why it should be so, none presents itself.

8.8. A fastidious reader may feel dissatisfaction with the use, in the definition of Fi in
Section 4, of the extension of r+

i beyond Si, as if events in the real world are supposed to
depend on what happens in purely imaginary worlds. Actually, the extension was only
needed to simplify notations. For a compact subset Si ⊂ IR, we can define a measure
µi = µL

i + µS
i on Si, where µL

i is the usual Lesbegue measure on Si (induced from IR),
while µS

i assigns one half of the length of each constituent interval of [s−i , s+
i ]\Si to either

endpoint (thus, supp(µS
i ) is the set of the endpoints). It is a simple exercise to show

that µi(Si) = s+
i − s−i and Fi(xi) =

∫
Si

min{xi, r
+
i (si)}µi(dsi) for all i ∈ N and xi ∈ Xi.

The piecemeal linear interpolation used by Dubey et al. (2004) seems to admit no similar
interpretation of Fi.

8.9. Among the proofs of the acyclicity of best response improvements in the existing
literature, a certain number are “relatively straightforward,” i.e., given the assumptions,
one can more or less convincingly explain the choice of arguments: Theorem 2 of Kandori
and Rob (1995); Theorems 1 and 3 of Kukushkin (2004); Theorems 7 and 8 of Kukushkin
(2003). There are also two tricks defying any explanation: Novshek’s construction used
in the proof of Theorem 2 from Kukushkin (2004) and the Huang–Dubey–Haimanko–
Zapechelnyuk definition of the function P , somewhat modified in (6) above. Both are
logically independent in the sense that there is a situation where one works but the other
does not: finite games with separable, but non-additive, aggregation rules for Novshek’s
trick; e.g., linear aggregates with arbitrary coefficients as in Examples 1 and 2 for the
function P . However, if one takes into account the relative importance of the domain of
applicability of either approach, the latter appears a clear winner.

If the principle tres faciunt collegium can be relied upon, we should expect a third
trick to spring up; perhaps it will prove acyclicity wherever it holds.
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