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Abstract

It is often the case that an expert needs to explore the state of the world before advising a decision
maker. We consider a dynamic cheap talk environment with gradual expert’s learning. Both players
know what experiments are available to the expert. We show that the gradualness in expert’s learning
can enhance informativeness in communication even when the learning process is endogenous (part of
the expert’s strategy), unobservable by the decision maker and non-verifiable. The result suggests that
even in the absence of an “objective” reason to hurry with information transmission, putting the expert

in some form of “strategic” pressure can be beneficial to both players.

1 Introduction

This paper addresses the problem of information transmission in a cheap talk environment in which the
expert’s learning is gradual and strategic. At the beginning both the expert and the decision maker are
not informed about the state of the world but the expert has the ability to explore it. The exploration
of the state may require some time and effort. To emphasize the particular effect of gradualness in the
expert’s learning we assume that the learning is costless. Also, although gradual, we assume that the
learning can be fully accomplished within a short period of time, so we also ignore discounting.

The expert’s learning process must follow some general principle, say, certain experiments can be
conducted over time. Nevertheless, it is often the case that some aspects of the exploration are left to the
expert’s discretion; e.g., the selection of a particular collection of experiments to be performed and the
ordering of these experiments. The purpose of this analysis is to show that gradualness in expert’s learning
can be exploited towards a more informative communication even when it is strategic, unobservable and
non verifiable.

The literature on costless communication (cheap-talk) between informed experts and uninformed de-
cision makers began with the seminal contributions of Crawford and Sobel (1982) and Green and Stokey
(1980)%. Many authors have studied a variety of cheap talk environments under different specifications. So-
bel (2010) provides a comprehensive literature review on communication literature. Several previous works

consider environments where the Sender is imperfectly informed. Fisher and Stocken (2001) showed that,

!Barlier literature on costly signaling can be traced back to Spance (1973) and Rothschild and Stiglitz (1976).



in equilibrium, the accuracy of the Receiver’s information is not monotonic in the quality of the Sender’s
information. This was extended by Ivanov (2010) who characterized the optimal static information struc-
ture from the Receiver’s perspective for the leading uniform-quadratic case. In a recent contribution by
Ivanov (2012) an optimal two stage learning protocol is suggested. The author assumes that the Receiver
can perfectly control the dynamic structure of the Sender’s information. By coupling distant separable
elements? at an early stage and by conditioning future experiments on early truthful communication, the
Receiver can successfully elicit full information. Although the Sender is initially uninformed, her learning
is not strategic but designed by the Receiver in these models.

Austen-Smith (1994) proposed a model in which the Sender chooses whether to (perfectly) learn the
state and has the ability to prove information acquisition. Like in our model, the choice whether to become
informed is left to the Sender’s discretion. Unlike in our model, the learning is costly, verifiable and the
expert’s choice whether to learn depends only on the realization of the cost of learning which is privately
observed by her. The author shows that in this environment the range of biases for which informative
communication is possible is extended relative to the Crawford and Sobel (1982) benchmark model.

Several recent and parallel to this work contributions also involve expert’s strategic learning. In
Argenziano et al. (2011) the Sender can affect the quality of her information by selecting how many
Bernoulli trials, parametrized with the number 6 that corresponds to the state of the world, to perform.
The trials are costly for the Sender. The authors compare between “covert” and “overt” selection of
the number of trials to be performed and show that under the overt regime it is possible to force the
Sender to over-invest in learning. In Kamenica and Gentzkow (2011) the Sender selects a “signal”, i.e.,
information structure to persuade a decision maker. Like in our model the selection of the information
structure is costless and it is left to the Sender’s discretion. Unlike in our model, the Receiver observes
both the information structure and its realization. In Gentzkow and Kamenica (2012) the Sender also
publicly selects the information structure but now it is no longer costless. A more informative information
structure is associated with a higher cost. Because the information is costly for the Sender, endogenous
information will always be disclosed in equilibrium so disclosure requirements have no effect on the set of
the equilibrium outcomes. A related result appears in Di Pei (2013). In that paper the Sender gathers
costly information before advising. Like in our model, the learning is strategic and unobservable by the
Receiver. Unlike in our model, the information is costly. In this environment, the Sender communicates
all her information and all equilibria are less informative than the most informative one in Crawford and
Sobel (1982).

All the above models that contain strategic learning are essentially static while the key feature of the
model we study is the dynamic nature of the expert’s learning. When the expert reports to the decision
maker she also provides a signal about her information quality. Frug (2013) suggested a model of gradual
exogenous learning and communication. In this model, by selecting an appropriate reporting protocol, the
players manage to exploit the gradualness of the Sender’s information arrival towards a more informative

communication. The current study suggests that players can benefit from the gradualness of the expert’s

2Similar idea also appears in Golosov et al. (2013).



learning even when the expert’s learning is strategic (endogenous), unobservable and non verifiable.

2 Environment

2.1 State Space

The platform of this study is the Crawford and Sobel (1982) model of cheap talk. To present the forces
behind our main result in the most transparent way we make two modifications on the standard state
space. First, we assume discrete rather than continuous state space. Second, we assume that there exists
a particular state ¢ which is, in some sense, “apart” from other states and often can be interpreted as
“nothing happened”. We discuss later exactly where this helps and how this designated state of the world
affects the results.

The addition of the state ¢ to the state space has clear technical implications. Even though we will
discuss the role of such a state and advocate that the general tone of the results remains even in its
absence, we claim that such a state may be quite appropriate in some environments. A fugitive can hide
in each floor 6 € {1,2,...,n} of an n—floor building, or not being inside the building at all - ¢. A person
who were left alone near n golden coins can either be honest ¢, or steal any number 6 € {1,2,..,n} of
coins and being accounted, in this case, as a thief.

Imagine a patient approaching a doctor with a headache. It can be quite natural to model this
situation as if the patient might have various problems ranging from very basic disorders to most severe
ones 0 € {1,2,...,n}. Each 6 has its best treatment, and applying another one, which is optimal for some
“close” disorder, will do only slightly worse. It is also known that, sometimes, the headache turns out to
be nothing at all. Namely, it is possible that non of the disorders {1,2,...,n} happened and, in this case,
applying any medical treatment is worse than just “doing nothing”.

We will assume that © = {¢,1,2,..,n} throughout the main part of the analysis.

2.2 Model

There are two players N = {Sender, Receiver}. A state 0 € © = {¢,1,2,..,n} is distributed according
to a common prior P. Action a € A = {¢,1,2,..,n} must be selected by the Receiver. Player i’s utility
function is
W(a,0)  a8+¢
Uia,d) = 0 a=0=¢
c a=¢pd0=¢

where ¢ < minu‘(a,f) and for each  # ¢, u’(-,0) < 0 is a single-peaked function and

a,0,i

argmaz, uf(a,0) = 0 < argmazq u®(a, 0)



The assumption that a = 6 is optimal for the Receiver is for convenience, the interpretation of the
inequality is that the Sender is positively biased.

Sender’s Learning  For each k € {1,..,n}, there is an experiment e = lg—; that reveals whether
0 = k or not. Conducting any experiment ej takes one unit of time. Only the Sender has access to the
set of experiments {eg|k € {1,..,n}} and whether she has conducted any experiment is unobservable and
non verifiable. Notice that we assume that there does not exist an experiment eg. Put differently, ¢ can
be learned by the expert only by means of a complete elimination of other states.

Sender’s Reporting ~ We assume that the Sender is allowed to submit only one report but she can
choose the report timing. Formally, let T = {1,2..,7} be a sufficiently long® (T > n) discrete time-line.
For each t € T, let M;(h;) be a set of available reports given the history of previous reports {m;} <
such that the empty report, ¢, is an element of M;, and whenever my # ¢ for some s € T, M; = {¢} for
all t > s. We assume that whenever M;(h;) # {¢} this set is rich enough to transmit any information

available for the Sender?.

2.3 Strategies and Equilibrium

The Receiver chooses an action rule a({m:}) € AA that attaches to any terminal history of reports a
distribution over actions. If |supp(a({m}))| = 1 for every proper sequence {m;}, that is, the Receiver’s
strategy is never mixed, we denote the corresponding pure strategy by a({m;}).

The Sender’s strategy is twofold. She chooses both how to explore § and how to report. Clearly, the
flexibility of the reporting component of the strategy depends on the learning component of the strategy.
To make it precise let f : T'— {0,1,..,n} be a given plan of learning, specifying which experiment e 10
is to be conducted at date t € T, where ey denotes “do nothing”. Sender’s report at date t € T must be
measurable with respect to the information collected up to this date. Formally, for each t € T a (sigma)
algebra Fi(f) = o{{f(s)}|s < t} is formulated and a pure report m;(#) must be an F;(f) - measurable
function. Since the continuation of learning is relevant only if previous experiments have not yet revealed
0 (and a non empty report has not been submitted), it is without loss to assume that the whole plan of
learning f is selected at the beginning of the interaction and is not periodically revised.

To summarize, a Sender’s strategy
o € A(f, {me(0)}ser)|f € {0,1,..,n} T, my(0) € My(hy)is Fi(f) — measurable for all t € T}

Whenever f is not random, we simply denote o = (f,{m:}), where {m;} is F;(f)-adapted and possibly
mixed.
A (Perfect Bayesian) equilibrium consists of a Sender’s strategy o*, a Receiver’s action rule a*({m;})

and a belief ¢ (0]{ms}s<¢) for each t € T', such that p; is updated according to the Bayesian rule whenever

3This assumes that, in principle, the time available for exploration places no restrictions on the expert’s ability to become
fully informed.
4For example, let M;(hi) = {4,1,2,..,2"}.



possible, a*({m;}) is optimal given the beliefs, and ¢* is optimal given o*({m;}). We call an equilibrium
e “responsive” if the Receiver attaches a distinct action to any element in his information partition induced
by e. It is easy to see that for any equilibrium €', there exists a responsive equilibrium e such that both
equilibria identically map states into actions. In this sense these equilibria are essentially the same and

therefore we confine attention to responsive equilibria.

Observation 1 For each a({m;}), there is a Sender’s best response in which f~1(k) < n for any
ke{l,.,n}.

Since our experiments are deterministic, there is no point in conducting an experiment e(k) more than
once, so we can assume without loss that |f~1(k)| = 1. Moreover, if f~1(k) > n for some k € {1,..,n},
there exists | < n with f(I) = 0. Replacing eg with ey at t = [ (and avoiding the experiment later) can

not harm the Sender as her learning is costless and private information.
Corollary 1 [t is without loss to assume that the Sender’s learning is a permutation f € S,.

3 Example - The Uniform Quadratic Case

Let the state space and the Receiver’s action space be © = A = {¢,1,2,..,9}. Assume that p() = 3 for
each 6 € ©. Player ¢’s utility function is,

—(0 + lizs — a)® a,0 # ¢
Ui<a70): 0 a=0=¢
~100 Y

Proposition 1  There exist an equilibrium in which the Receiver learns the state of the world.

Proof Consider the following Sender’s strategy: f(t) = 10 —t and m; # ¢ iff § = 10 — ¢t. Notice
that this Sender’s strategy is of full support (whenever m; # ¢ let the Sender report a random message in
My — {¢}). Therefore, the whole system of beliefs j; is pinned down by the Bayes rule. Accordingly, the
Receiver’s best response is to select a =10 —tif my Z ¢ fort <9, anda=¢ if my =¢ forall t < 9. It is
left to show that (f,{m:}) is the Sender’s best response to the above specified Receiver’s action rule.

Clearly, given f, the reporting component {m;} is optimal. So we have to show that there does not exist
other learning plan g, and an JF;(g)-adapted reporting strategy {m;} such that (g,{m}}) is a profitable
deviation.

By corollary 1, let g € Sg. We construct a transition s(g) from f to g, that will consist of a sequence
of swaps, such that each swap is a worsening (under the assumption that we adjust the reporting strategy
optimally).

Step 1 “Take care of g(1)": There exist k1 > 1 such that g(1) = f(k1). Namely, the experiment ey is



conducted at date k1 according to f. We now perform a sequential promotion of ey ,) until it occupies

the first position in the learning plan. Let,

Jr=(fQ), f(k1)) o (f(2), f(k1)) o ..o (f(k1 — 1), f(k1)) o f

Notice that f; € Sy such that fi(1) = g(1).
Let us define the fi—prefix, s1, of the transition sequence by

s1 =< (f(k1 = 1), f(k1)), (f(k1 = 2), f(k1)), -, (f (2), f(k1)), (F (1), f (k1)) >

Step j “Take care of g(j)”: Provided that sq,..,sj—1 are defined and f;_1 € Sy satisfies f;_1(i) = g(7)
for each i < j, there exist k; > j such that g(j) = f;—1(k;). Namely, the experiment e,(;y is conducted at
date k; according to fj—1. We now perform a sequential promotion of ey, () until it occupies the jth

position in the learning plan. Let,

fi = (fi=1(1), fi—1(kj)) o (fi=1(2), fi—1(kj)) o ... o (fi—1(kj — 1), fj—1(k1)) o fi—1

Observe that f; € Sy such that f;(i) = g(i) for all i < j.

Define the f;—continuation, s;, of the transition sequence by

sj =< (fj—1(k; = 1), fj=1(k1)), (fj-1(kj —2), fi—1(k1)) .., (fj=1(1), fj-1(k;)) >

Notice that fs = ¢g and s(g) =< sy, s2, ..., s§ > is the complete transition sequence from f to g.

Note 1: Every swap (I, h) in s(g), with A > [, involves a postponement of the experiment e; by one
unit of time and a promotion of e¢; by one unit of time.

Note 2: Even before performing the swap (I, h), from the Sender’s perspective, e;, was scheduled “too
late”. Only “relatively low” actions are inducible when A is inspected.

Due to the existence of ¢, the Sender prefers not to induce an action a # ¢ as long as § = ¢ is not
ruled out. Therefore the swap (I, h) affects the reporting strategy only if § € {I, h}. Thus, to evaluate the
swap (I, h) it is sufficient to calculate the total value from postponing ej from ¢ to ¢t + 1 and bringing ¢;
forward from ¢ + 1 to t.

By notes 1 and 2, the net value from postponing ey, is

%O[US(g C R —ut(10 — £, )]

as the Sender will induce the highest possible action immediately upon she finds out e;, = 1 (e, is conducted
too late both before and after the swap).
Given a learning plan f’ that is consistent with applying a prefix of s(g) on f, finding out that § =1



one period earlier will not affect Sender’s reporting strategy in the case that v*(10 — ¢,1) < u®(9 — ¢,1).

The net value of bringing e; forward from t to ¢ 4 1 is therefore,

1
0 max{0,u®(10 —¢,1) —u®(9 —t,1)}

Clearly, the swap (I, h) is a worsening if v*(10 — ¢,1) < u®*(9 —¢,1), as the Sender postponed e} and
gained nothing. So consider the case where u*(10 —¢,1) > u®(9 — ¢,1). The total value of the swap in this

case is

15 [0 = t.h) =t (10 — £, 1) + (10 —£,1) —w*(9 — £, )] <0

because of the supermodularity of Sender’s preferences. QED

4 General Result

The uniform quadratic case illustrated above is central in the literature of cheap talk because of its
tractability and the ability to derive closed form results. In this section we generalize proposition 1 to a
more general case. The proposition in this section is aimed to emphasize the sufficient condition on the
interdependence between the prior distribution over the states and the expert’s preferences, to allow for

separating equilibrium.

Definition  Local-weighted-supermodularity is satisfied if for any pair 8 # ¢,0 # ¢ with § < 6 and
any a > 1,

p(O)u®(a,0) — u(a—1,0)] = p(@)[u(a,0) —u’(a —1,0)]

Proposition 2 If local-weighted-supermodularity is satisfied then there exist an equilibrium in which

the Receiver learns the state of the world.
Proof  see Appendix.

The local-weighted-supermodularity property replaces the standard supermodularity that is often as-
sumed in an environment where the Sender is informed. Intuitively, it aims to assume that “higher” states
are sufficiently likely, or, that there do not exist experiments that it is worthwhile to give up spending
time on them as they might reveal the state with only a negligible probability.

We interpret this result as follows. Even though there is no “objective” reason to hurry with information
transmission, sometimes it is possible to put the expert in an effective form of “strategic” pressure. In
particular, it is important that the set of inducible actions will shrink with time in the direction opposite

to the bias. It is important that the pace of this shrinkage will be sufficiently fast for the expert not



to have any opportunity to inflate the report in the direction of her bias, provided that it respects her

physical ability to acquire information.

5 The Role of ¢

In this section we discuss the role of the distinguished state ¢ in this environment. We assert that, the
absence of ¢ might severely complicate the derivation of most informative equilibria. On the other hand,
its effect on the equilibrium is significant only if the bias is large relative to the range of the possible states.
When the bias is relatively small, the main force of “strategic pressure” is dominant but one can not push
it too far since a critical feature of the equilibrium is that the “residual” space shrinks with time, inflating
the relative significance of the bias.

Consider again our main example. The possibility that § = ¢ (with certain assumptions) prevents
the expert from inducing an “active” action (a # ¢) as long as she hadn’t learned 6. Assume now that
© ={1,2,..,9}. The following observation rises when examining a profile of strategies that is similar to
the above equilibrium: provided that the expert follows the same learning plan as in proposition 1, during
the early periods, as in the result above, she does not have an incentive to report “false positive” (induce
an action if the experiments did not reveal 6). By inducing a high action, she benefits in the case that 6 is
just below the induced action but she loses if # turns out to be very low. Thus, it seems that, during the
early stages, the Sender’s behavior as in proposition 1 is plausible in this environment as well. But, as we
proceed, the risk of “far low states” reduces with time. For example if e = 0 for all k£ > 1, the expert can
be better off by inducing a = 2 rather than waiting another period to find out (what she already knows!)
that e; = 1 and to induce a = 1.

This suggests that if © = {1,..,n} one can proceed with the logic of the equilibrium as in proposition
2, but not all the way down. Instead, at some point, the players must engage into another reporting
phase, which, in general, will be only partially revealing. While this principle is pretty general, the exact
tailoring of the second phase of communication can have “ad-hoc” features (that may depend on the exact
formulation of the game) and, in general, proving that a given equilibrium is the most informative one
can be much more involved. To our view, this modification of the state space cleans the ad-hoc aspects of
most informative equilibria and facilitates the exposition of the general part of the message.

For the particular example discussed above, it turns out that in the most informative equilibrium the
Receiver learns the state accurately whenever 6 ¢ {2,3}. In proposition 3 we prove it more generally for
© = {1,..,n} to illustrate that the effect of ¢ turns negligible as the state space becomes large relative to
the bias.

Standard State Space

Consider the standard (discrete) state space © = {1,2,...,n}.Assume that each state is equally likely and,

u'(a,0) = —(0 + li—g — a)?



where the indicator 1;—g captures the Sender’s positive bias of one. Assume that the Sender’s learning

technology and the reporting protocol are similar to those in previous section.
Lemma 1 Full information revelation is inconsistent with equilibrium.

Proof We say that an action a is inducible at date 7 if, given a history ms = ¢ for all s < 7, there
exists a “suffix” sequence {ms}s>, such that a*({ms}2_;)(a) = 1. First notice that in any fully revealing
equilibrium it is necessary that an action a > 1 be inducible only strictly before the Sender learns whether
0 = a — 1. Otherwise, upon learning that # = a — 1, the Sender can pretend that 6§ = a and improve over
her candidate equilibrium payoff.

In any fully revealing equilibrium, by the time of the last experiment the state is perfectly learned
by the Sender. Thus at most one experiment e is planned not to be performed. In this case whether
0 = k is learned by the expert by ruling out other possibilities. Notice that a = k is inducible when the
expert is perfectly informed about 6 because the equilibrium is fully revealing. If £ > 1, the Sender’s type
6 = k—1 can pretend § = k, a contradiction. Otherwise, if &k = 1 (or if all experiments {ex|k € {1,..,n}} are
conducted), denoting by t(ey) the date at which k is conducted, we must have t(e,,) < t(e,—1) < .. < t(ez).
By t(e2), a date when a = 2 is inducible, whether # = 1 is known to the Sender and with this information
she can be better off by pretending § = 2. QED

Proposition 3 In the most informative equilibrium the Receiver learns all 6 ¢ {2,3}.

Proof Following Lemma 1, it is sufficient to prove that the partition {{2,3},{k}|k € © — {2,3}} is
consistent with equilibrium. Consider the following profile of strategies.

n+1-—t t<n-—3
Sender: o = (f,{m}) such that f(t) = and my # ¢ iff eppy = 1.
1 t=n—2

n+1—1t mt;&d)/\tgn—3
Receiver: a({m;}) = 1 Mp—2 # ¢

3 otherwise
Note that Receiver’s beliefs are completely pinned down by the Bayes rule, and it is easy to see that
a({m;}) is a best response. We will show now that o is a best response to a({m.}).
Denote by u°[f|o] the Sender’s utility in state  given that she plays according to o (and the Receiver
plays a({m:}) ). Assume by way of contradiction that there exists an improvement over ¢ and denote it
by ¢’. In this case, there exist k € © such that u®[k|o’] > u®[k|o]. Define

ko := min{k|u’[k|o’] > u°[k|o]}

The following observations follow from the definition of kg:



I. ko > 3; as o reaches the highest possible payoff at 6 € {1,2} according to a({m.}).

1. E[u®[k|o’||k > ko] > u®[k|o]|k > ko]; since o’ is assumed to be preferred over o.

III. The Sender induces the action a = kg + 1 at state kg.

We say that a = ko+1 is directly induced at the state kg if it is induced after conducting the experiment
ek,- The action a = ko + 1 is induced indirectly if e, has not been conducted before.

In the case of direct inducement, ey, is brought forward at ¢/, relative to o, by (at least) one period.
Therefore there exist Iy > ko such that e, is postponed at o', relative to o, by (at least) one period. By
the supermodularity of uS, the net value from exploring er, earlier and postponing e;, by one period is
negative. Therefore, there must be another k1 > ko such that u”[k1|o'] > u®[ki|o]. At state ki the Sender
must induce a = ky + 1 directly so, again, there must exist {; > k; such that e;, is postponed by (at least)
one period. Notice that /1 need not be different from Iy ( if I; = lp, it is necessary to postpone e;, again
because of the promotion of ey, ). Again, by the supermodularity of u°, the improvement at 6 = k; and
the worsening at # = [; sum up to another negative change in Sender’s utility. The series {k;} is finite
(strictly increasing sequence of natural numbers bounded by n) so II is impossible if the the action in in
IIT is wnduced directly.

Assume now that the Sender induces the action a = kg + 1 in III indirectly, i.e., at date n — kg the
Sender submits a report as if e,,_g, = 1 (possibly a “false positive”). Observe that in this particular utility
function, the cost associated with any postponement of ¢; for | > kg is greater than the benefit from
bringing two experiments ej, forward, relative to f°. Therefore, any change in o before t = n — kg must
contradict IT (note that actions greater than ky+ 1 may be induced only directly). Thus, ¢’ and o coincide
for t = 1,..,n — ko — 1. Note that in this case, we have E[u’[k|o’]|k > ko] = u®[k|o]|k > ko] and a “false
positive” m,,_x, 7# ¢ is consistent with II.

Finally, from the measurability of the reporting strategy, the action a = kg + 1 is induced by all types
0 € {1,..,ko}. Notice that u°[0|o’] > u°[#]o] only for § = kg and that a strict worsening is borne by every
0 € {1,..ko — 2}, which is non empty according to I. It is easy to see that

ko—1
1= uS[kola’] — us[ko\a] <3< uS[lla] — uS[l\a’] < Z (uS[G\U} — uS[H\U'])

6=1

and therefore
E[u®[k|o’] = E[u’[k|o']|k < ko] + E[u’[k|o’]|k > ko] < E[u®[k|o]|k < ko] + E[u®[k|o]|k > ko] = E[u®[k|o]]

This contradicts the assumption on ¢’. QED

5By bringing forward two experiments the Sender saves with probability % a cost of 1, while postponing an experiment
by one period leads to an increase in loss from 1 to 4, with probability %
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6 Cut-Off Learning

A particular learning technology that consists of a collection of experiments, each of which is capable
to indicate a specific realization of the state of the world, suggests that gradualness in learning can be
exploited towards a more informative communication in this environment. This learning technology is an
extreme case where complete learning and full revelation are consistent with equilibrium. In what follows
we present an alternative learning technology that might seem realistic but, contrary to the above, it
admits the opposite extreme result. We show below that if the expert can, at each date, privately learn
whether 6 > x, for any x € O, the gradualness in experts learning can not be exploited to increase the
equilibrium informativeness relative to the static communication with a perfectly informed Sender. To
present it in the most striking and succinct way, we prove it for the original C-S environment 6.

Recall the standard C-S setting. The state of the world 6 is randomly drawn from a differentiable
probability distribution function F'(6) with positive and continuous density f(6). The utilities of both
players are given by u®(a,6) and v°(a,6) and for i = R, S, ui(a,8) = 0 for some a € R, ui;(-) < 0 and
s () > 0.

Cut-Off Learning Let T € N and let T = {1,2,..,T} be the time-line. A “cut-off p” experiment, c(p)
reveals to the Sender whether § > p. Formally, c(p) = 1p>,. The set of available reports is given
by the collection {c(p) : p € [0,1]}. Each experiment takes one unit of time and it is impossible
to conduct more than one experiment at a time. At each date the Sender chooses a cut-off, which

may depend on the results of previous experiments’. Thus, a Sender’s strategic learning is a plan

(Pt(ht))teT where hy = (C(ps))s<t-

Proposition 4  There does not exist an equilibrium that is strictly more informative than the most

informative C-S equilibrium.

Proof Let e be an equilibrium. First, observe that the Sender’s information structure at each date
t € T consists of only convex elements. Otherwise there exist 0 < p; < p2 < 1 such that ¢(p;) = 0 and
¢(p2) = 1, a contradiction. As the Sender’s preferences satisfy supermodularity and we restrict attention
to responsive equilibria, the equilibrium is monotonic. The equilibrium Receiver’s information partition at
each date is, by definition, a coarsening of the Sender’s information structure. Thus, it is given by a finite
collection of successive and non-degenerate intervals with endpoints 0 = go < @1 < @2 < ... < ¢, = 1.
Denote by a(qj,gj+1) the action chosen by the Receiver if he learns that 6 belongs to the interval with

endpoints q;, gj4+1-

5The result remains the same in the discrete state space that we used above. Incentive constraints of the “edge types’
will be required instead of the succinct indifference condition that will follow.

"Note that given any history, ¢(0) is not informative to the expert so conducting this experiment captures the expert’s
choice not to explore the state at this date.
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Let tc(qj) € T denote the point in time when the Sender conducts c(g;) according to the equilibrium
e. Because the Receiver’s information is always (weakly) coarser than the Sender’s information, the action
a(gj,qj+1) can not be induced before the Sender performed the experiments ¢(g;) and ¢(g;+1). Thus, for
each j € {1,..,m — 1}, both a(g;—1,q;) and a(gj gj+1) are inducible at t.(g;).

Given g;_1 and gj41, the cut-off ¢; must solve,

mazq | / uS(G(CIj—h qj), 0)dF(0) +

qj—1

u®(a(gj, gj41), 0)dF ()]

Q\f

Thus, a necessary condition for an equilibrium is that for each j € {1,..,m — 1},

s s
u”(a(gj-1,45),95) = u” (a(qj, 4j+1), q5)

But this condition is satisfied by all C-S equilibria®. QED

Comment: By providing the Sender with a sufficient amount of time one can easily support any finite

C-S equilibrium partition in the environment of strategic cut-off learning.

7 Appendix

Proof of Proposition 2 Consider the following Sender’s strategy: f(t) = n+ 1 —t¢ and m; # ¢ iff
6 = n+1—t. Notice that this Sender’s strategy is of full support (whenever m; # ¢ let the Sender report
a random message in M; — {¢}). Therefore, the whole system of beliefs y; is pinned down by the Bayes
rule. Accordingly, the Receiver’s best response is to select a =n+ 1 —t if my # ¢ for t <n, and a = ¢ if
my = () for all t < n. It is left to show that (f, {m;}) is the Sender’s best response to the above specified
Receiver’s action rule.

Since u”(a, ) is single-peaked for each 6, {m;} is optimal given f. So we have to show that there
is no other learning g, and an F;(g)-adapted reporting strategy {mj} such that (g, {m;}) is a profitable
deviation.

Let g € S,,. We construct a transition s(g) from f to g, that will consist of a sequence of swaps, such
that each swap is a worsening (under the assumption that we adjust the reporting strategy optimally).

Step 1 “Take care of g(1)” There exist k1 > 1 such that g(1) = f(k1). Namely, the experiment ey is
conducted at date k1 according to f. We now perform a sequential promotion of ey, ) until it occupies

the first position in the learning plan. Let,

Jir=(fQ), f(k1)) o (£(2), f(k1)) o ..o (f(k1 — 1), f(k1)) o f

8See theorem 1 in Crawford and Sobel (1982)
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Notice that f; € S, such that fi(1) = g(1).
Let us define the f;—prefix, s, of the transition sequence by

s1 =< (f(k1 = 1), f(k1)), (f(k1 = 2), f(F1)), ... (f(2), f (k1)) , (f (1), f(Ra)) >

Step j “Take care of g(j)”: Provided that si,..,s;_1 are defined and f;_; € S, satisfies f;_1(i) = ¢(7)
j) is conducted at
date k; according to f;—1. We now perform a sequential promotion of e Fio1(k;) until it occupies the jth

for each i < j, there exist k; > j such that g(j) = fj—1(k;). Namely, the experiment ey

position in the learning plan. Let,

fi = (fi=1(1), fi=1(kj)) o (fi=1(2), fi—1(kj)) o ... o (fi—1(kj — 1), fj—1(k1)) o fj—1

Observe that f; € S, such that f;(i) = g(i) for all ¢ < j.

Define the f;—continuation, s;, of the transition sequence by

§5 =< (fj—l(kj - 1)7fj—1(k1))a (fj—l(kj - 2)7fj—1(k1)) IEEY) (fj—l(l)a fj—l(kj)) >

Notice that f,—1 = g and s(g) =< s1, s2, ..., Sp—1 > is the whole transition sequence from f to g.

Note 1: Every swap (I, h) in s(g), with h > [, involves a postponement of the experiment ej by one
unit of time and a promotion of e; by one unit of time.

Note 2: Even before performing the swap (I, h), from the Sender’s perspective, e, was scheduled “too
late”. Only “relatively low” actions are inducible when A is inspected.

Due to the existence of ¢, the Sender prefers not to induce an action a # ¢ as long as § = ¢ is not
ruled out. Therefore the swap (I, h) affects the reporting strategy only if § € {/, h}. Thus, to evaluate the
swap (I, h) it is sufficient to calculate the total value from postponing ej from ¢ to ¢t + 1 and bringing e¢;
forward from ¢ + 1 to t.

By notes 1 and 2 and the Sender’s preferences being single-peaked, the net value from postponing ey,
is

p(0 = h)[u’(n —t,h) —u’(n—t+1,h)]
as the Sender will induce the highest possible action immediately upon she finds out e, = 1 (ey, is conducted
too late both before and after the swap).

Given a learning plan f’ that is consistent with applying a prefix of s(g) on f, finding out that 6 = [

one period earlier will not affect Sender’s reporting strategy in the case that u®(n —t+1,1) < u®(n —t,1).

The net value of bringing e; forward from ¢ to ¢ 4 1 is therefore,

p(0 = )maz{0,u’(n —t +1,1) —u’(n —t,1)}
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The total value of the swap is therefore

p(0 =h)[u’(n—t,h) —u’(n—t+1,h)] +p(@ = Dmaz{0,u’(n —t +1,1) —u’(n —t,1)} <

<p@=nh)u(n—th)—u’(n—t+1,h)]+pl@ =0t (n—t+1,1)—u’(n—1t1)] <0

by the “local-weighted supermodularity”. QED
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