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Static stability of equilibrium in strategic games differs from dynamic stability in not being
linked to any particular dynamical system. In other words, it does not make any assumptions
about off-equilibrium behavior. Examples of static notions of stability include evolutionarily
stable strategy (ESS) and continuously stable strategy (CSS), both of which are meaningful or
justifiable only for particular classes of games, namely, symmetric multilinear games or
symmetric games with a unidimensional strategy space, respectively. This paper presents a
novel, general notion of local static stability, of which the above two are essentially special
cases. It is applicable to virtually all n-person strategic games, both symmetric and
asymmetric, with “continuous” (rather than discrete) strategy spaces.
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1. Introduction

Strategic games, markets and other economic systems are said to be in equilibrium when the
participating agents do not have any incentives to act differently than they do. Stability of
the equilibrium refers to the effects that perturbations, or shocks, would have on the agents’
incentives or actual actions. Since any change in actions in turn creates new incentives, an
initial perturbation may set the system in motion, which may eventually either bring it close
to the original equilibrium state or to states further away from it. Thus stability of
equilibrium can be defined in terms of the trajectories the system would take following a
perturbation. However, such a dynamic definition is arguably less basic than a static one,
which involves only incentives. In particular, it requires making specific assumptions about
off-equilibrium behavior, i.e., the translation of incentives (e.g., to increase or lower output)
into actions (actual production adjustments).

A physical analogy illustrates this point. A body is in equilibrium at point x if the resultant
force acting on it there is zero. If the body is slightly displaced, to point y, the force may
become nonzero. The equilibrium is stable if the new force vector points approximately in
the direction of the body’s original location x, and it is unstable if the vector points in the
opposite direction (Figure 1). This definition only involves forces. It makes no mention of
motion, and hence has no use of such concepts as the body’s inertia and Newton’s second
law.
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Figure 1. a. A stable equilibrium. b. An unstable equilibrium.

Forces are analogous to incentives in economic settings. Translation of the above definition
of stability into game-theoretic language gives the requirement that, at any state y close to
the equilibrium one x, a unilateral deviation in the direction of x is more profitable (or less
costly) to the deviating player than a deviation in the opposite direction. To make this a
meaningful definition, ‘direction’ has to be defined. It also has to be specified, how large the
unilateral deviations considered are. If a player’s strategy space is ordered, e.g., if strategies
are numbers, then the direction of a strategy change has a well-defined meaning. If, in
addition, the strategy space is endowed with a metric, then there is at least a well defined
sense in which deviations in opposite directions are of equal magnitude. Such equality may
suffice, since incentives can then be compared using the notion of marginal payoffs. This,
however, essentially restricts the analysis to a special class of games, namely, games in
which the strategy spaces are unidimensional (i.e., subsets of the real line) and the payoff
functions are differentiable. This leaves out many important games, most notably, bimatrix
games and, more generally, multilinear games that are the mixed extensions of finite games.
In a multilinear game, each player’s strategy space is the unit simplex in a Euclidean space
R™ (where n is the number of pure strategies for the player), i.e., strategies are probability
vectors. The unit simplex is not ordered and it has several natural notions of distance, such
as the Lq and L, distances. However, it has another structure that may be useful in the
present context, namely, it is a convex set. Thus a natural interpretation of a unilateral
deviation of player i from y, where his strategy is y', in the direction of x, where the
strategy is x!, is that the player’s strategy changes to

axt + (1 — a)y’, (1)

for some 0 < a < 1. A deviation of the same magnitude in the opposite direction brings the
player to

z' = —ax' + (1 + a)y’, (2)

which is well defined if y' is sufficiently close to x*. This leaves one degree of freedom,
namely, the choice of a. Choosing, for example, @ = 1 gives stability the following meaning:



Following a slight perturbation of strategies," each player i would gain more (or lose less)
from unilaterally reverting to his equilibrium strategy x‘ than from a deviation of the same
magnitude in the opposite direction.” This still leaves open the question of how stability can
be defined for strategy spaces without an underlying linear structure.

A time-honored way of defining convex combinations like (1) in games without an underlying
linear structure is using mixed strategies, i.e., interpreting a as the probability that player i
plays x. However, this interpretation is not applicable to (2), where x! has a negative
coefficient. A key to overcoming this obstacle is the observation that, regardless of «,

yt = lxi + 1z".

2 2

Thus, suppose that the perturbation is probabilistic to begin with: each of the players plays
according to x with probability 1/2 and according to z with probability 1/2. Two possible
unilateral deviations for player i are playing according to x or according to z with probability
1. The former represents a unilateral reversion to x and the latter may be interpreted as
completing the move to z. If, for each of the players, reversion is the better alternative,’ and
this holds for all z close to x, than the latter will be defined as stable.*

The following sections flesh out this idea, starting with symmetric two-player games and
gradually extending the ground coverage all the way to asymmetric multiplayer games.
Special attention is given to the two kinds of games mentioned above: those with a
unidimensional strategy space and multilinear games. This reflects the importance of these
kinds of games in both the theory of strategic games and in applications. In addition, in both
cases there is at least one established notion of static stability, which can be compared with
the one proposed here. For symmetric multilinear games, this is the notion of an
evolutionarily stable strategy (ESS), and for symmetric games with a unidimensional strategy
space, the notion of a continuously stable strategy (CSS), which can be described also in
terms of the slope of the reaction curve, or the graph of the best-response function. It is
shown that, for two-player games, these two seemingly unrelated notions of static stability
are in fact essentially special cases of the general one proposed in this paper. The situation is

'The requirement that the perturbation is small, i.e., that the players’ strategies do not change much,
implicitly refers to the topological structure of the simplex, i.e., to the notion of a neighborhood of a
probability vector. L; and L,, and every other metric derived from a norm on R", give the same
metric topology. Thus c/oseness of points in the simplex has a well defined meaning even if no
particular notion of distance is specified.

% An alternative to choosing a particular value of « is to require that a similar condition holds for all
0 < a < 1. Another alternative is to require this only for a sufficiently close to 0.

* Note that reversion is not required to be the best among all possible unilateral deviations.

* The definition of stability would not be affected if ‘probability 1’ were replaced by ‘probability 5’, for
any 0.5 < 8 < 1. Since a player’s payoff is linear in the probabilities of his own mixed strategy, this
change would not affect the relative merits of the two deviations from a half-half mixture of x and z.
Compare this with the remark in footnote 2.



more complex for multiplayer games, for which more than one generalization of (two-
player) ESS exists.

For asymmetric games, definitions of stability are customarily derived from dynamic
considerations. Specifically, they refer to asymptotic stability with respect to specified
dynamics. These dynamics (e.g., asymmetric replicator dynamics) are applicable only to a
particular class of games, and even for a single class, different dynamics may give different
notions of stability. The conditions for dynamic stability can sometimes be put in a form
reminiscent of static stability, e.g., as a condition on the relative slopes of the players’
reaction curves. (This is somewhat similar to the stability condition for market equilibrium,
which is determined by the relative slopes of the supply and the demand curves; see
Samuelson, 1983.) As it turns out, none of the familiar notions of dynamic stability in the
classes of asymmetric games considered in this paper is equivalent to static stability.
However, dynamic and static stability do essentially coincide in the special case of
inessentially asymmetric games, which differ from symmetric games only in that the players
are distinguished as player 1, player 2, etc. Although seemingly minor, this difference is in
fact highly consequential for stability analysis, mainly because it allows for more
perturbations of the equilibrium state than in a truly symmetric game.

Static and dynamic stability are not the only kinds of stability considered in the game-
theoretic literature. Another kind of stability refers to the effects of perturbations of the
players’ strategy spaces, e.g., allowing only completely mixed strategies, or a combination of
perturbations of strategy spaces and of the strategies themselves. The requirement that a
strategy profile in a strategic, or normal form, game be stable against such perturbations
gives the notions of (trembling-hand) perfect equilibrium (Selten, 1975), proper equilibrium
(Myerson, 1978), strict perfection (Okada, 1981) and (strategic’) stability and full stability
(Kohlberg and Mertens, 1986). Stability may also refer to the effects on a given equilibrium
of perturbations of the payoff functions, i.e., of the game itself. Essentiality (Wu and Jiang,
1962) and strong stability (Kojima et al., 1985) are examples of this kind of stability, which is
known to have interesting connections with some of the other kinds. For example, in
multilinear games, every essential equilibrium is strictly perfect (van Damme, 1991, Theorem
2.4.3), and in symmetric n X n games, every regular ESS is essential (Selten, 1983). Another,
striking example of the connection between different kinds of stability is the finding that, in
several classes of games, the (local) degree of an equilibrium (or of a connected component
of equilibria) is equal to its index (Govindan and Wilson, 1997; Demichelis and Germano,
2000). The index of an equilibrium is connected with its asymptotic stability or instability
with respect to a large class of natural dynamics, which determine how strategies in the
game change over time. The degree, by contrast, expresses a topological property of the
same equilibrium when viewed as a point on a manifold that includes the various equilibria
of different games (Ritzberger, 2002).

> ‘Strategic stability’ is also used, informally, to describe the equilibrium, or self-enforcement,
condition that no player ever has an incentive to deviate (Kohlberg and Mertens, 1986, p. 1004). This
refers to extensive as well as normal form games.



The notion of static stability proposed in this paper is thus just one of several possible
interpretations of ‘stability’ in strategic games. It has the distinction of not being tied to any
particular structure of the strategy spaces or the payoff functions, which makes it uniquely
general and widely applicable. The only formal requirement is that the strategy spaces are
endowed with some (completely general) topology. However, since this notion of stability is
a local one, meaning that it only refers to small perturbations of the state, it is nontrivial only
in the case of infinite strategy spaces. If a game has only finitely many strategy profiles, each
of them is trivially stable. However, these (pure) strategies do not necessarily remain stable
if mixed strategies are allowed. In the mixed extension of the game, players have infinitely
many strategies.

2. Symmetric Two-Player Games

A symmetric two-player game is a function® g: X x X — R, where X is a topological space,
called the strategy space, and R is the real line. If one player uses strategy x and the other
uses y, their payoffs are g(x,y) and g(y, x), respectively. The topology on X, which defines
a neighborhood system for each strategy x (Kelly, 1955), is totally unrestricted (e.g.,
metrizability is not assumed). In principle, it should be specified as part of the definition of
the game. However, in many cases it is clear from the context that X is a subspace of some
standard topological space, most commonly a Euclidean space; its topology is thus the
relative one. For example, if strategies are numbers, X is by default viewed as a subspace of
R, with the usual topology, so that a set of strategies is a neighborhood of a strategy x if and
only if, for some € > 0, every y € X with |x — y| < g is in the set. In (the mixed extension
of) a symmetric n X n game (where n is the number of pure strategies), the strategy space,
which is the unit simplex, is viewed as a subspace of R".

A strategy x in a symmetric two-player game g is a (symmetric Nash) equilibrium strategy if
the strategy profile (x, x) is a symmetric equilibrium, i.e., for every strategy y,

g, x) < glx,x). (3)

The corresponding equilibrium payoff is g(x, x). The following definition plays a central role
in this paper.

Definition 1. A strategy x in a symmetric two-player game g is stable, weakly stable or
definitely unstable if it has neighborhood where, for all y # x, the inequality

9»x) —gl,x)+9,y) —gxy) <0, (4)
a similar weak inequality, or the reverse (strict) inequality, respectively, holds.

In general, the stability condition does not imply the equilibrium condition (but see
Section 2.1), and vice versa. Unlike equilibrium, stability is a local condition: only small

® This is usually called the payoff function. In this paper, the payoff function and the game itself are
identified.



deviations are considered. Hence, it trivially holds for every isolated strategy.” A more
substantial difference is that the equilibrium condition requires x to be at least as good an
alternative as any other strategy y, assuming that the opponent sticks with x. The stability
condition, by contrast, implicitly assumes that the opponent may deviate. Specifically, with
probability p = 1/2, the opponent plays y instead of x. Inequality (4), which is equivalent to

pg(x,x)+ (1 —plg(x,y) >pg(y,x)+ (1 —p)gy,y), (5)

requires that, against such an opponent, x yields a higher expected payoff than y. If x is a
stable equilibrium strategies, i.e., it satisfies both conditions, then it follows from (3) that (5)
actually holds for all 0 < p < 1/2. This property is somewhat in the spirit of risk dominance
of pure equilibrium strategies in 2 X 2 games (Harsanyi and Selten, 1988).2 However, it is in
fact more closely related to some other familiar notions of stability of equilibrium, which, as
shown below, are essentially special cases of the one in Definition 1. Unlike the latter, these
notions are only applicable to specific classes of symmetric two-player games: eithern X n
games or games with a unidimensional strategy space.

1.1. Symmetric n x n games

A symmetric n X n game is given by a square payoff matrix A, with these dimensions. The
strategy space X is the unit simplex in R"™. Its elements, which by default are considered
column vectors, are usually referred to as mixed strategies. The interpretation is that there
are n possible actions, and a strategy x = (xq, x, ..., X;,) is a probability vector specifying
the probability x; with which each action i is used (i = 1,2, ..., n). The set of all actions i with
x; > 0 is the support (or carrier) of x. A strategy is pure if its support includes only one
action i (in which case the strategy itself may also be denoted by i) and completely mixed if
the support includes all n actions. The game (i.e., the payoff function) g: X X X - R is
defined by

gx,y) = x"Ay.
Thus, g is bilinear, and A = (g(l,]))w_:l.
A standard notion of stability for symmetric n X n games is evolutionary stability, which can
be defined as follows.

Definition 2. In a game g, a strategy y can invade another strategy x if either (i) g(y, x) >
gQx,x) or (i) g(y,x) = g(x,x) and g(y,y) > g(x,y), and it can weakly invade x if a similar
condition holds with the strict inequality in (ii) replaced by a weak one. Strategy x is an
evolutionarily stable strategy (ESS; Maynard Smith, 1982) in g if there is no strategy y # x
that can weakly invade it, and it is a neutrally stable strategy (NSS) if there is no strategy that
can invade it.

” The discussion in this paper is therefore irrelevant to games in which the strategy space has the
discrete topology, i.e., all singletons are open sets. It is only relevant to games with infinite and
“continuous” strategy spaces.

® This similarity does not extent to asymmetric 2 X 2 games (Section 3).



As the following proposition shows, these notions of stability are in fact equivalent to
stability and weak stability in the sense of Definition 1. Since every ESS is clearly an NSS and
every NSS is an equilibrium strategy, this implies that in the class of symmetric n X n games,
every stable or (even) weakly stable strategy is automatically an equilibrium strategy.

Proposition 1. A strategy in a symmetric n X n game g is an ESS or an NSS if and only if it is
stable or weakly stable, respectively.

Proof. A strategy x is an ESS or an NSS if and only if it has a neighborhood where

gy <gxy) (6)

or a similar weak inequality, respectively, holds for all strategies y # x (Weibull, 1995,
Propositions 2.6 and 2.7). As indicated, in both cases x is an equilibrium strategy. The above
strict or weak inequality and the equilibrium condition (3) together imply that (4) or the
corresponding weak inequality, respectively, holds. This proves that every ESS or NSS is
stable or weakly stable, respectively.

To prove the converse, consider a stable strategy x. If follows from Definition 1 that for
every strategy y # x the following inequality holds for sufficiently small ¢ > 0:

9((1 —&)x + ey, x) — g(x,x) (7)
+g((—-&x+ey,(A—ex+ey)—glx,A—¢e)x+ey) <O.

It follows from the bilinearity of g that this inequality is equivalent to

2Z-9@yx)—gxx)+e(@gly,y) —gxy) <O. (8)

Inequality (8) holds for sufficiently small € > 0 if and only if either (i) g(y,x) < g(x,x) or
(i) g(y,x) = g(x,x)and g(y,y) < g(x,y). It follows that x is an ESS. Similar arguments
show that a weakly stable strategy is an NSS; the only difference is that the strict inequalities
in (7), (8) and (ii) are replaced by weak ones. [

A completely mixed equilibrium strategy x in a symmetric n X n game g is said to be
definitely evolutionarily unstable (Weissing, 1991) if every strategy y # x can invade it.
Similar arguments to those in the proof of Proposition 1 show that this condition holds if and
only if x is definitely unstable in the sense of Definition 1.

2.2. Symmetric games with a unidimensional strategy space

In a symmetric two-player game g in which the strategy space is a subset of R, i.e.,
strategies are real numbers, the stability of an equilibrium strategy has a simple, intuitive
interpretation. As shown below, if g is twice continuously differentiable, and with the
possible exception of certain borderline cases, the equilibrium strategy is stable or definitely
unstable if, at the equilibrium point, the graph of the best-response function intersects the
forty-five degree line from above or below, respectively. Stability is also very close to the
notion of continuously stable strategy (Eshel and Motro, 1981; Eshel, 1983).



Definition 3. In a symmetric two-player game g with a strategy space that is a subset of the
real line, a (symmetric) equilibrium strategy x is a continuously stable strategy (CSS) if it has
a neighborhood where for every other strategy y, for sufficiently small e > 0

91—y +ex,y) >gW,y), (9)
and a similar inequality does not hold with € replaced by - €.

In other words, a strategy x that satisfies the “global” condition of being an equilibrium
strategy’ is a CSS if it also satisfies the “local” condition that, if both players use a strategy y
that is close to x, a small unilateral deviation from y is advantageous to the deviating player
if and only if it brings him closer to x rather than further away from it. This local condition,
known as m-stability or convergence stability (Taylor, 1989; Christiansen, 1991), is very
similar to the informal description of stable strategy in the Introduction. However, the actual
definition of stability in this paper is based on the more generally-applicable probabilistic
formulation. It would therefore be reassuring to know that this does not substantially alter
the meaning of stability. The following proposition establishes this. The proposition and
subsequent discussion concern an interior equilibrium strategy, i.e., one lying in the interior
of the strategy space.

Proposition 2. Let x an interior equilibrium strategy in a symmetric two-player game g with
a strategy space that is a subset of the real line, such that g has continuous second-order
partial derivatives™ in a neighborhood of the equilibrium point (x, x). If

g11(x%,x) + g12(x,x) <0, (10)

then x is stable and a CSS. If the reverse inequality holds, then x is definitely unstable and
not a CSS.

Proof. Using Taylor’s theorem, it is easy to show that, for y tending to x, the left-hand side of
(4) can be expressed as

2(y —0)g1(%,x) + (v — 0)*(g11 (%, %) + g12(x%, %)) + o((y — x)?). (11)

Since x is an interior equilibrium strategy, the first term in (11) must be zero. Therefore,

a sufficient condition for the left-hand side of (4) to be negative or positive for all y # x in
some neighborhood of x (and, hence, for x to be stable or definitely unstable, respectively)
is that g11 (x, x) + g12(x, x) has that sign.

Dropping the factor 2 from (the first term in) (11) gives an expression for

-09:1.y), (12)

° The original definition of CSS differs slightly from the version given here in requiring a somewhat
stronger global condition.

The partial derivatives of (the payoff function) g are denoted by subscripts. For example, g1, is the
mixed partial derivative.



for y tending to x. Therefore, if (10) or the reverse inequality holds, then (12) is negative or
positive, respectively, for all y # x in some neighborhood of x. For every such y, for
(positive or negative) € tending to zero the left-hand side of (9) can be expressed as

gy —e(y —x)g1(y,y) + o(e).

Therefore, (10) or the reverse inequality implies that x is or is not a CSS, respectively. =

The connection between inequality (10) and the slope of the best-response function can be
established as follows (Eshel, 1983). If x is as in Proposition 2, then it follows from the
equilibrium condition (3), which holds for all strategies y, that g; (x,x) = 0 and g1 (x,x) <
0. If the inequality is in fact strict, then by the implicit function theorem there is a
continuously differentiable function ¢ from some neighborhood of x to the strategy space
that assigns to each strategy y in the neighborhood a strategy ¢(y) such that g; (¢(y),y) =
0 and g11(¢(y),y) < 0. Thus, strategy ¢(v) is a local best response to y. Moreover, the
values of ¢ and its derivative at the point x are given by ¢(x) = x and

Y12 (x,x) (13)

P = g11(x,x)

This implies that (10) holds at the equilibrium point (x, x) (so that x is stable) if and only if
the slope of the function ¢ at the point x is less than 1. In this case, the graph of ¢, or
reaction curve, intersects the forty-five degree line from above, implying that the (local) fix
point index (Dold, 1980) is +1 (see Figure 2). The reverse inequality holds (so that x is
definitely unstable) if and only if the slope of ¢ at x is greater than 1. In this case, the graph
of ¢ intersects the forty-five degree line from below and the fix point index is —1. (Compare
this with the stability condition at the end of Section 3.3.)

An alternative notion of stability of an equilibrium strategy x in a symmetric two-player
game with a unidimensional strategy space, called neighborhood invader strategy (NIS;
Apaloo, 1997), replaces the “local” CSS condition with the requirement that x is /ocally
superior in the sense that (6) holds for all y # x in some neighborhood of x. For symmetric
n X n games, this requirement is equivalent to stability (see Section 2.1). However, this is
not the case for the games considered here, for which local superiority of an equilibrium
strategy is a more demanding condition than stability, and thus more demanding than the
CSS condition. An NIS x is a stable equilibrium strategy in the sense of Definition 1, since (6)
and the equilibrium condition (3) together imply (4). However, the converse is not true, as
can be seen by considering the differential condition for local superiority of an equilibrium
strategy x, which differs from (10) in that the second term on the left-hand side is multiplied
by 2 (Oechssler and Riedel, 2002).
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Figure 2. An equilibrium strategy is stable (and a CSS) or definitely unstable (and not a CSS) if, at the
equilibrium point, the best-response curve (thick line) intersects the forty-five degree line (thin) from above or
below, respectively.

3. Asymmetric Two-Player Games

An asymmetric two-player game is a function h = (h!, h?): X1 x X? - R?, where X! and X?
are the strategy spaces of players 1 and 2, respectively."" If player 1 uses strategy x! and
player 2 uses x?2, their payoffs are A1 (x!, x?) and h?(x!, x?), respectively. The strategy
profile x = (xl,xz) is an equilibrium in h if each player’s strategy is a best response to that
of the other player, i.e., for all strategy profiles y = (y!,y?),

hl (yl,xz) < h'(x!,x?) and h? (xl,yz) < hz(xl,xz). (14)

The equilibrium is strict if these best responses are unique, i.e., the first inequality in (14)
is strict if y1 # x! and the second is strict if y2 # x2.

An equilibrium in an asymmetric two-player game h is a different object than an equilibrium
strategy in a symmetric game: it is a strategy profile rather than a single strategy. However,
it may be identified with an equilibrium strategy in another, symmetric two-player game g.
In that game, first one player is assigned to the role of player 1 in h and the other is assigned
to the role of player 2, and then the roles are interchanged. A strategy in g is thus a strategy
profile in h: it specifies the player’s action in each of the two roles. A player’s payoff in g is
defined as the average of his two payoffs in h — the payoff in player 1’s role and that in
player 2’s role. The following definition presents this notion of symmetrization of an
asymmetric two-player game more formally. The proposition that follows the definition,
which is proved (for an arbitrary number of players) in Section 5, asserts that the
(symmetric) equilibrium strategies in the resulting symmetric game are precisely the
equilibria in the original asymmetric one.

" 1n this paper, superscript indices always refer to players in an asymmetric game. Subscript indices
have other meanings, which depend on the context.
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Definition 4. The game obtained by symmetrizing an asymmetric two-player game
h = (h',h?): X' x X? — R? is the symmetric game g: X X X — R in which the strategy
space X is the product space’” X! x X2 and, forall x = (x1,x2),y = (y!,y?) € X,

1 1
g(x,y) = Ehl(xl.yz) + Ehz(yl,xz)-

Proposition 3. A strategy profile x = (xl,xz) in an asymmetric two-player game h is an
equilibrium if and only if it is a (symmetric) equilibrium strategy in the symmetric game g
obtained by symmetrizing h. In this case, the equilibrium payoff in g is equal to the players’
average equilibrium payoffin h.

This one-to-one correspondence between equilibria in the asymmetric game and equilibrium
strategies in the symmetric one naturally leads to the following.

Definition 5. A strategy profile x = (x1,x?) in an asymmetric two-player game h is stable,
weakly stable or definitely unstable if it has the same property as a strategy in the symmetric
game g obtained by symmetrizing h.

The definition means that inequality (4), which defines stability in the symmetric case, is
replaced in the asymmetric case by

%(hl 1, x2) — R1(xL, x2) + hL(y',y2) — hl(x!,y2)) (15)

1
+ E(h2 (1, y%) — h?(x1,x?) + R2(y1,¥?) — R*(y1,x?)) < 0.

In other words, a strategy profile x is stable if it gives a higher expected payoff than any
other, nearby profile y when (i) the opponent is equally likely to play according to x or y and
(i) both assignments of the players to the roles in h are equally likely.

A stable strategy profile is not necessarily an equilibrium. And even if it is an equilibrium, it is
not necessarily strict. However, as the following proposition shows, every stable strategy
profile is in a sense “locally strict”.

Proposition 4. If x = (x',x?) is a stable strategy profile in an asymmetric two-player game
h = (h%, h?), then player 1’s strategy x! has a neighborhood where it is the player’s unique
best response to x2, and similarily for player 2.

Proof. If x is stable in h, then it has a neighborhood where (15) holds for every other strategy
profile y = (y',y?). For y? = x?2, that inequality simplifies to

h'(y1,x?) < hl(xt, x2).

Therefore, there is neighborhood of x where this inequality holds for all y' # x!. The
argument for player 2 is similar. m

2 The topology on X is thus the product topology.

11



Although the definition of stability in an asymmetric game is based on the stability of a
strategy in an auxiliary symmetric game, Proposition 4 suggests that the former notion of
stability is more demanding than the latter. This suggestion is supported by the concrete,
exact comparison between stability in symmetric two-player games and in asymmetric
games in Section 3.3. Additional support is provided by the fact, established in the next
subsection, that for a particular, important class of games, stable strategy profiles are not
only “locally strict” but are actually strict equilibria.

3.1. Bimatrix games

A bimatrix game is given by a pair of matrices (4, B) of equal dimensions, m X n. The
strategy spaces of players 1 and 2 are the unit simplices in R™ and R", respectively. Viewing
strategies as column vectors, the game h = (h!, h?): X! x X? - R is defined by (the payoffs
functions)

h1(xt, x?) = (x1)TAx? and h?(x1,x?) = (x1)TBx2.

As the next proposition shows, stability in this class of games has a rather strong meaning.
This result, which is essentially due to Selten (1980; see also Hammerstein and Selten, 1994,
Result 17; van Damme, 1991, Theorem 9.6.2; and footnote 13 below), is proved (for an
arbitrary number of players) in Section 5.1.

Proposition 5. A strategy profile in a bimatrix game h = (h', h?) is stable if and only if it is a
strict equilibrium. In particular, every stable equilibrium is pure.

The reason why a strategy profile that is not a strict equilibrium cannot be stable is rather
simple. Stability in an asymmetric bimatrix game h is determined by reference to an auxiliary
symmetric game g, in which the two players take turns in playing the two rolls in h.” If a
strategy profile x = (x,x2) in h is not a strict equilibrium, for example, if there is some
strategy y' # x! that is a best response to x? (in which case such a strategy exists in every
neighborhood of x1), then using y! instead of x! when playing player 1’s role in h does not
decrease a player’s payoff in g. Moreover, playing according to y = (y!, x?) rather than x
does not decrease the payoff also if the opponent also plays according to y rather than x.
This is because a switch from x to y is effective only when the player is assigned to player 1’s
role in h, which is when the opponent is assigned to player 2’s role, for which both x and y
prescribe the same strategy (namely, x2). Therefore, the left-hand side of (4) is nonnegative,
so that this inequality does not hold.

The result that only strict equilibria are stable raises the question of whether it only indicates
that the present notion of stability is inadequate for analyzing asymmetric bimatrix games. If

Y Note that g is not a symmetric k X k game, for any k. A strategy in g is in a sense a behavior
strategy. By definition of symmetrization, it prescribes one (mixed) strategy for player 1’s role in h
and another one for player 2’s role, but mixing such pairs of (mixed) strategies is not allowed. This
implies that the usual notion of ESS would have to be extended somewhat to apply to g (van Damme,
1991, Definition 9.5.2). Here, such an extension is not required since the general notion of stability
(Definition 1) is applicable to g, and can be shown (using rather similar arguments to those in the
proof of Proposition 1) to coincide with that extension.
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only static stability concepts are considered, the answer seems to be negative, since in this
framework strict equilibrium is the only obvious extension of ESS to asymmetric bimatrix
games (Hammerstein and Selten, 1994, p. 965; Hofbauer and Sigmund, 1998, p. 114).
However, strictness is not a necessary condition for dynamic stability, i.e., asymptotic
stability with respect to specified dynamics. Whether a given equilibrium is dynamically
stable may depend on the choice of dynamics (Demichelis and Germano, 2000, Example 2).
However, Samuelson and Zhang (1992, Theorem 4) showed that for a large class of
reasonable (continuous) dynamics, every asymptotically stable outcome is, in some well-
defined sense, “almost” a strict equilibrium. In particular, if it is pure (which is not
necessarily the case), then it must be a strict equilibrium.

3.2. Games in the plane

Another important class of asymmetric games is two-player games in which the players’
strategy spaces X! and X? are intervals or some other subsets of the real line. Strategy
profiles are therefore points in the real plane. If the players’ payoff functions h! and h? are
differentiable, the stability condition can be expressed in terms of the partial derivatives of
these functions. The next proposition, which is proved (for an arbitrary number of players) in
Section 5.2, presents such a condition for interior equilibria, i.e., equilibria in which the
strategy of each player is an interior point in the player’s strategy space.

Proposition 6. A sufficient condition for stability or definite instability of an interior
equilibrium (x1, x%) with a neighborhood in which h! and h? have continuous second-order

H_(h}l h%2> (16)
3 %)

with the derivatives evaluated at (x!, x?), is negative definite or positive definite,

derivatives is that the matrix

respectively. A necessary condition for weak stability is that the matrix is negative
semidefinite.**

Example 1. The players’ strategy spaces are the entire real line, and their payoffs are given
by the quadratic functions

1
h'(x,y) = —x% 4+ 3xy and h?(x,y) = —Eyz. (17)
It is not difficult to check that the origin (0,0) is the unique equilibrium. Since
_(—2 3 (18)
H= ( 0 —1)'

and this matrix is not negative semidefinite, by Proposition 6 the equilibrium is not even

" A square, k X k (not necessarily symmetric) matrix 4 is negative definite if xTAx < 0 for all
nonzero x € R¥. A necessary and sufficient condition for this is that all eigenvalues A of the
symmetric matrix (1/2)(A + A") satisfy 2 < 0. The definition and characterization of negative
semidefiniteness are similar, except that the two strict inequalities are replaced by weak ones.
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weakly stable. This can also be seen directly, by considering the game g obtained by
symmetrizing h = (h', h?). The payoff from using (0,0) in g is 0 regardless of the
opponent’s strategy. Using (3,4) gives —8.5 if the opponent uses (0,0) (—9 when playing
the first role in h and —8 when playing the second role) and 9.5 if the opponent also uses
(3,4). Hence, if the opponent is equality likely to use (0,0) or (3,4), the latter is a better
response than the former (since it gives a positive expected payoff, 0.5). The same is true
also for any positive multiple of (3,4). This shows that the equilibrium (0,0) is not weakly
stable in h. However, the same strategy profile is stable in the game

1 _ .2 2 _ 15 (19)

h*(x,y) = —x* + 3xy and h*(x,y) = —Ey — Xy,

which differs from (17) only in the second term in h?, and also has (0,0) as the unique
equilibrium. This is because, in this game,

which is a negative definite matrix.

For any interior equilibrium as in Proposition 6, negative definiteness of the matrix H implies
that

h%l,h%z < 0 and h%lh%z > h%zh%l (20)

However, these inequalities by themselves are not a sufficient condition for stability of

the equilibrium, as demonstrated by the fact that they hold for (17) (as well as for (19)). On
the other hand, (20) is a sufficient (and almost necessary) condition for D-stability of the
matrix H (Hofbauer and Sigmund, 1998). As explained in Section 5.2 below, D-stability
implies that a natural myopic adjustment process in which both players simultaneously and
continuously adjust their strategies converges to the equilibrium point if it starts sufficiently
close to it. Thus, asymptotic stability with respect to this process is essentially a weaker
condition than static stability of the equilibrium as defined in this paper. For example, it
holds for both games in Example 1.

The same is not necessarily true for other kinds of adjustment processes. In particular, static
stability of the equilibrium does not imply asymptotic stability with respect to another
natural adjustment process, in which the players alternate in myopically playing best
response to each other’s strategy. As seen in Figure 3, staring from any other strategy
profile, these dynamics quickly bring the players to the (statically unstable) equilibrium (0,0)
in the game (17), but take them increasingly farther away from the same (statically stable)
equilibrium pointin (19).

This difference between the two kinds of dynamics can be understood by considering the
equivalent form of (20) in which the right inequality is replaced by

h3 hi 21
) (-5 <t Y
h22 hll
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Player 1’s
reaction curve

Strategy of player 2

Player 2’s
reaction curve
in (17)
i Strategy of player 1
: Player 2's
SR 4 reaction curve

o,

.. in(19)

Figure 3. The players’ reaction curves in the two games in Example 1. Player 1’s reaction curve (upward sloping
line) is the same in both games, but those of player 2 (horizontal and downward sloping lines) are different.
The arrows show possible trajectories under the alternating-best-responses dynamics, in which player 1 moves
first, then player 2, then player 1 again, and so on. For the game given by (17) (solid arrows), the trajectory
ends at the equilibrium point (0, 0). For the game in (19) (dotted arrows), it spirals ways.

Evaluated at the equilibrium point, where the players’ reactions curves intersect, the left-
hand side of (21) is the product of the slope of player 2’s curve and the reciprocal of player
1’s curve (cf. (13)). The condition for asymptotic stability of the equilibrium with respect to
alternating best responses is that the absolute value of this product be less than 1
(Fudenberg and Tirole, 1995). This stronger condition, which means that player 1’s reaction
curve is steeper than 2’s, is not implied by (20). The condition is also not implied by, and it
does not imply, negative definiteness of H, as demonstrated by the fact that it does not hold
for the game in (19) but holds for that in (17).

In summary, for games in the plane, the two notions of dynamic stability considered above
are not equivalent, and none of them is equivalent to the notion of static stability introduced
in this paper. As shown in the next subsection, this nonequivalence is a consequence of the
asymmetry of the games.

3.3. Inessentially asymmetric games
An asymmetric two-player game h = (h1, h?) can be essentially symmetric. This is so if the
players’ strategy spaces are identical and their roles are interchangeable, i.e., X1 = X? and

h'(xt, x?) = h?(x?,x1) (22)

for all strategy profiles (x!, x2). This condition holds, for example, for all bimatrix games

of the form (4, A7), where A is any n X n matrix. The condition is often taken to be the
definition of a symmetric game (von Neumann and Morgenstern, 1953). However, this
notion of symmetry is different from that in Section 2. To distinguish symmetric games in the
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sense of Section 2 from asymmetric games satisfying the above condition, the latter will be
referred to as inessentially asymmetric games.

The distinction between symmetry and inessentially asymmetry may seem like a mere
formality. For example, for most purposes an inessentially asymmetric bimatrix game

(4, AT) can be identified with the symmetric n x n game with payoff matrix A. More
generally, for any strategy space X, there is a one-to-one correspondence between the class
of all inessentially asymmetric two-player games h = (h!, h?): X x X — R? (satisfying (22))
and the class of all symmetric two-player games with this strategy space. The
correspondence is given by projection on the first coordinate,

h — k1. (23)

Nevertheless, for the purpose of stability analysis, inessential asymmetry is not the same

as symmetry. Whereas for symmetric games stability is defined for strategies (Definition 1),
for asymmetric games it is defined for strategy profiles (Definition 5). Hence, only the latter
covers asymmetric equilibria, i.e., equilibria (x', x?) with x! # x2. Furthermore, even for
symmetric equilibria (x1 = x?), stability of the equilibrium in the inessentially asymmetric
game is not equivalent to stability of the equilibrium strategy in the corresponding
symmetric game.” In fact, as shown below, stability of the equilibrium is a more stringent
requirement. This may seem a bit surprising, seeing that the definition of stability of
(symmetric or asymmetric) equilibrium (Definition 5) is based on that of a (symmetric)
equilibrium strategy in an auxiliary symmetric game. However, that auxiliary game is
obtained from h not by the projection (23) but rather by symmetrization. Compare the next
result, which is proved (for an arbitrary number of players) in Section 5.3, with Proposition 3
and Definition 5.

Proposition 7. A symmetric strategy profile (x, x) in an inessentially asymmetric two-player
game h = (h',h?): X x X — R? is an equilibrium if and only if it is an equilibrium in the
corresponding symmetric game h1: X x X — R. If (x, x) is stable in h, then the strategy x is
stable in k1, but the converse does not hold even if (x, x) is an equilibrium.

The second part of Proposition 7 is illustrated by the example of an equilibrium strategy x in
a symmetric n X n game with (any) payoff matrix A. By Proposition 1, x is stable if and only
if it is an ESS. By Proposition 5, the symmetric equilibrium (x, x) is stable in the
corresponding inessentially asymmetric bimatrix game (4, AT) if and only if it satisfies the
stronger condition of being strict.

The intuitive reason why stability of an equilibrium strategy x in a symmetric game does not
imply the same for the equilibrium (x, x) in the corresponding inessentially asymmetric
game is that, for (x, x) to be stable, it has to withstand more kinds of perturbations than x.
First, it has to resist changes in one coordinate only, which result in asymmetric strategy

" For bimatrix games, a related difference holds for the index and degree of the symmetric
equilibrium, which may depend on whether it is viewed as an equilibrium in the inessentially
asymmetric bimatrix game or in the corresponding symmetric n X n one (Demichelis and Germano,
2000).
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profiles like (y, x), with y # x. The use of (y, x) by both players in the game obtained by
symmetrizing the inessentially asymmetric one is tantamount to a correlated deviation from
the equilibrium in the original symmetric game: each of the players may use the strategy y,
but they do not both use it (and hence the payoff corresponding to the strategy profile
(y,y) isirrelevant, unlike in Definition 1). The equilibrium withstands such correlated
deviations if and only if it is “locally strict”, i.e., x has a neighborhood where it is the unique
rest response to itself (see Proposition 4). Second, (x, x) has to withstand perturbations in
which the two players change to different strategies, say y! and y2. Whether it satisfies this
requirement depends, inter alia, on the payoff of a player using y! against an opponent
using y2 (again unlike in Definition 1, where alternatives to x are considered one at a time).

These considerations suggest that the seemingly subtle difference between modeling a
pairwise contest as a symmetric game and modeling it as an inessentially asymmetric game
may actually translate into widely divergent predications. This, in fact, is not a novel
observation but one made long ago in the biological game theory literature, where
inessential asymmetry is often referred to by other names such as uncorrelated asymmetry
(Maynard Smith and Parker, 1976; the correlation this term refers to is between the players’
traits and their payoff functions). A symmetric pairwise contest with identical contestants,
such as two equal-size males seeking to obtain a newly vacated territory, is best modeled as
a symmetric game such as the Hawk—Dove game (or Chicken). Precedence or other
perceivable asymmetries between the contestants, which do not by themselves change the
payoffs (i.e., the stakes or the opponents’ fighting abilities), makes the contest an
inessentially asymmetric game, and, in reality, may significantly affect the contestants’
behavior (Maynard Smith, 1982; Riechert, 1998).

Another example of the difference between stability of an equilibrium strategy in a
symmetric two-player game and stability of the symmetric equilibrium in the corresponding
inessentially asymmetric game is provided by games with a unidimensional strategy space. If
the payoff functions h! and h? in an asymmetric game are twice continuously differentiable
in a neighborhood of an interior symmetric equilibrium (x, x), then the inessential
asymmetry condition (22) implies that, at that point,

h%l = h%z and h%z = h%l (24)

With these equalities, the negative definiteness condition in Proposition 6 is equivalent
to (20) (which is the condition for D-stability of the matrix H defined in (16)), which in turn is
equivalent to the simpler condition

|h31| < —h3,.

Since h%z < 0 holds automatically at any interior equilibrium, the last condition only adds
the requirements that the inequality is strict and that

2
h21

2
h22

<1 (23)
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The last inequality says that, at the equilibrium point, the slope of player 2’s reaction curve is
less than 1 but greater than —1. This is stronger than the stability condition for symmetric
games (Section 2.2), which consists of the former inequality only.

Note that, with (24), the left-hand side of (21) can be replaced by its absolute value; in both
cases the inequality is equivalent to (25). This implies that, for inessentially asymmetric
games in the plane, unlike for “truly” asymmetric ones (Section 3.2), asymptotic stability of a
symmetric equilibrium with respect to the continuous adjustment process is essentially
equivalent to stability with respect to alternating best responses. In addition, both are
essentially equivalent to static stability (since for inessentially asymmetric games D-stability
of the matrix H is equivalent to negative definiteness). Thus, dynamic and static stability of
an interior symmetric equilibrium are essentially equivalent, and both are stronger than
(static) stability of the equilibrium strategy in the corresponding symmetric game.

4. Symmetric Multiplayer Games

A symmetric n-player game (n = 1) is a real-valued function g: X X X X --- X X — R, defined
on the n-times product of a topological space X, that is invariant to permutations of its
second through nth arguments. X is the players’ common strategy space. If one player uses
strategy x and the others use y, z, ..., w (in any order), the first player’s payoff is
g(x,v,2z,...,w). Astrategy x is a (symmetric) equilibrium strategy in g if, for all strategies y,

Igx, .., x) < glxx, ..., x). (26)

Generalizing the notion of stable strategy from symmetric two-player games to an
arbitrary number of players is not straightforward. The gist of Definition 1 is that a stable
strategy x is superior to any other strategy y close to it if the opponent it equally likely to
use x or y. In an n-player game, if each of the opponents is equally likely to use x or y then
the expected number of opponents using x is equal to the expected number of opponents
using y. Denoting by p; the probability that n — j of the opponents use x (and j — 1 use y),
the condition of equal expectations can be written as

n . n—1
Z(]—l)Pj= 5
j=1

However, Eqg. (27) does not completely specify the probability vector p = (p1, P2, -, Pn)-
One way of completing the definition of stability is to require x to be superior to y for every

(27)

p satisfying (27). An alternative is to require this only for a particular, “natural” p. As shown
below, these two alternatives can differ only if n > 3. For single- and two-player games they

both give the same definition, which in the latter case coincides with that in Definition 1.

Definition 6. For a probability vector p = (py, p2, .., P ), @ Strategy x in a symmetric n-
player game g: X X X X .- X X = R is p-stable, weakly p-stable or definitely p-unstable if it
has a neighborhood where
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. (28)
ij (g(y,x, X, Ve, V) — g0, x, 0, x, Y, ...,y)) <0,

j=1 n—j times j —1 times n—j times j—1 times

a similar weak inequality or the reverse (strict) inequality, respectively, holds for all
strategies y # x. Strategy x is stable, weakly stable or definitely unstable if the
corresponding condition holds for all probability vectors p satisfying (27).

The left-hand side of (28) expresses a player’s (positive or negative) expected gain from
switching from strategy x to y, for a particular distribution of the opponents’ strategies. For
single-player games (n = 1), the latter is of course irrelevant, so that a stable strategy is
simply a strict local optimum: switching to any other, nearby strategy reduces the payoff. For
n = 2, condition (27) reads p, = 1/2, and thus implies that the left-hand side of (28) is
equal to one-half that of (4), so that these two inequalities are equivalent. Thus, stability and
p-stability can differ only for n > 3. Special cases of p-stability are dependent-stability,
defined by

1 . (29)

independent-stability, defined by

(30)

1 n—1 ,
p] = 2n_1 (]_1)) _] = 1121 "'Fnl
and uniform-stability, defined by

(31)

In each case, the corresponding notions of weak stability and definite instability are similarly
defined. Note that (29) describes the distribution of the number of opponents using strategy
x (and the number using the alternative strategy y) if either all of them use x or they all use
v, and both possibilities have probability 1/2. By contrast, (30) corresponds to independent
randomizations by the players between x and y with half-half probabilities. This symmetry
between x and y implies that both (29) and (30) actually satisfy a stronger condition than
the equal-expectations condition (27), namely,

Pj =Pnoji1,  J=12,..n (32)

This equality, which obviously holds also for (31), says that the probability that n — j of the
opponents use x and j — 1 use y is equal to the probability that it is the other way around.
In other words, the number of opponents using x and the number using y (which sum up to
n — 1) have equal distributions. Equivalently, their joint distribution is symmetric.

Foranyn = 2, (32) implies that the left-hand side of (28) is equal to the more symmetrically-
looking expression
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Gp(y,x)dé‘z <g(y.-,yx ,xX) — g%, - xy.--.y)>-

j=1 Jj times J times

Thus, for p satisfying (32), a strategy x is p-stable if and only if it has a neighborhood where
it is the unique best response to itself in the symmetric two-player zero-sum game
G X XX >R

1.1. Symmetric multilinear games

A special case of symmetric multiplayer games is symmetric multilinear games, which are
the n-player generalization of the games in Section 2.1.'® As in the latter, the strategy space
X is the unit simplex in some Euclidean space and thegame g: X X X X .- X X = Ris
multilinear, i.e., linear in each of its n arguments.

As shown in Section 2.1, for n = 2 stability as defined in this paper coincides with the
standard notion of ESS. The latter can easily be generalized to multilinear games with an
arbitrary number of players.

Definition 7. A strategy x in a symmetric multilinear game is an evolutionarily stable strategy
(ESS) if, for every other strategy y, for sufficiently smalle > 0

9 Ve Ver r Ve) < G, Yer Ver over Ve (33)
wherey, = (1 —€)x + €y.

The condition in Definition 7 is equivalent to the following (Broom et at., 1997): For every
y # x, the finite sequence

gy, x X X, y,. ,Y) — g(xx , X, y,. YY), j=12,..,n, (34)

n—j tlmes] 1 times n—j tlmeS] 1 times

has at least one nonzero entry, and the first such entry is negative. This equivalence shows
that Definition 7 is indeed an extension of Definition 2. However, it is not the only possible
extension. Another stability notion that is equivalent to ESS if n = 2 is local superiority, or

strong uninvadability, which refers to the last entry in (34) (Bomze and Potscher, 1989; van
Damme, 1991, Theorem 9.2.8; Weibull, 1995, Propositions 2.6; Bomze and Weibull, 1995).

Definition 8. A strategy x is /ocally superior if it has a neighborhood where, for every other
strategy y,

gy, - y) <gla,y, .., y). (35)

It is easy to see that every locally superior strategy is an ESS. However, as shown below,
for n > 2 not every ESS is locally superior. Thus, these two notions of stability are not
equivalent.”’ This demonstrates a point of general significance. Namely, for some classes of

'® Note that, here, n denotes the number of players, not the number of pure strategies.

Y This ostensibly contradicts Theorem 2 of Bukowski and Miekisz (2004), which asserts that local
superiority strategy and the ESS condition are equivalent even for multiplayer games. However, these
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games there is more than one reasonable notion of static stability. This underlines the
desirability of deriving such a notion from general principles, like Definition 6, rather than
from game-specific considerations. It also raises the question of which of the two definitions
in this subsection is equivalent to the restriction of the general notion of stability (Definition
6) to multilinear games. As the following theorem shows, neither of them is equivalent to it.
However, local superiority is equivalent to certain kinds of p-stability.

Theorem 1. For symmetric multilinear games, the following implications and equivalences
among the possible properties of a strategy x hold:

stable = dependently-stable & independently-stable < locally superior =
uniformly-stable = ESS = equilibrium strategy.

Proof. The first implication holds by definition of stability. To prove the second implication
(local superiority = uniform-stability), consider a locally superior strategy x. Such a strategy
has a convex neighborhood U where (35) holds for every strategy y # x. For every such y
andany0 <t <1,

gl -tx+ty,A-tx+ty, .., A —-t)x+ty) (36)
<glx,(1-t)x+ty, .., (1 -t)x+ty).

By the multilinearity of g, (36) is equivalent to

= (37)
ZBj—l,n—l(t) g, x .., x,y,..,y)—9g0, %, ...,x,y,....,y) | <0,
j=1 n—j times j —1 times n—j times j —1 times

where B;_1 ,_1(t) = (’}?:i)tj_l(l — t)" 7 is Bernstein polynomial. By the identity

1
1
f Bj—l,n—l(t) dt = -, ] = 1,2, e, n,
0 n

the inequality obtained by integrating the left-hand side of (37) over t coincides with the
special case of (28) (given by (31)) that defines uniform-stability. This proves that x is
uniformly-stable.

The penultimate implication in the theorem is a special case of the following result.

Lemma 1. For a probability vector p = (p1, D2, ..., Pn), With p,, # 0, every p-stable strategy x
is an ESS.

Proof. For a p-stable strategy x and any strategy y # x, for sufficiently small € > 0 the
following expression is negative:

authors’ definition of ESS is different from (and more demanding than) Definition 7 in that it
interchanges the two logical quantifiers and requires that, for sufficiently small € > 0, (33) holds for
all y # x. (Using standard terminology, this requirement means that there is a uniform invasion
barrier.)
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n
z <g(ye. X Yer s ¥e) =G %, s X, yg,--,ye))

j=1 n—j tlmes j—1times n—j tlmES j—1 times

where y, = (1 — €)x + €y. The expression can also be written as

n j
ZP z k 1 € g()’—x X 00X, Y — X, Y =X, X, 0, X)),

j=1 n—j tlmes k—1 times Jj—k times

where g denotes the multilinear extension of g (the domain of which consists of all n-tuples
of linear combinations of strategies). This is a polynomial in €, in which the constant term is
zero and the coefficients of the higher-order terms are

(38)
Zp] k 1 Jv—x, ..,y —x,x,..,%x), k=12,..n

k times

Since the polynomial is negative for sufficiently small € > 0, the sequence of coefficients
(38) must have the property that at least one of its entries is not zero, and the first such
entry is negative. The expression in parenthesis in (38) is the sum of nonnegative terms, and
at least the last term is positive, since p,, # 0. Therefore, that expression is positive, so that
dropping it does not affect the signs of the various entries in (38). This implies that the
sequence (34) also has the property described above, for otherwise either

IO Ys s ¥s %o X) = GV s Yy X0, X ) =0

j-1 times n—j tlmes j—1times n—j tlmes

would hold forall1 <j <nor

I Y, 0¥y %0, X) = g0 Y, 0 Yy Xy ey X) >0

] 1 tlmesn—] tlmes ] 1 times Tl—] tlmes

would hold for the smallest j for which the equality does not hold. Both possibilities
contradict the previous finding, since they imply that either

Gy —% ..,y —x,%,..,x) =0

j times
holdsforall1 <j <nor

GO =% .,y —x,%..,x) >0

j times

holds for the smallest j for which the equality does not hold. This contradiction proves that x
is an ESS. [ |

The last implication in the theorem follows from the fact that the ESS condition gives (in the
limit € = 0) an inequality similar to (33) in which y, is replaced by x and the strict inequality
is replaced by a weak one.

22



It remains to prove the two equivalences in the theorem. For 0 < t < 1, call a strategy x
t-stable if it has a neighborhood U such that (35) holds for every strategy y # x in the set

U ={1-t)x+tzlze U} (39)

Local superiority is a special case of t-stability, corresponding to t = 1. The following
lemma shows that, in fact, it is the only case.

Lemma 2. For every 0 < t < 1, a strategy x is t-stable if and only if it is locally superior.

Proof. Fix 0 < t < 1, and let x be a t-stable strategy, with a neighborhood U as in the
definition. Since the set U, defined in (39) is also a neighborhood of x, and every y # x in U,
satisfies (35), x is locally superior.

Conversely, suppose that x is locally superior, and let U be a convex neighborhood of x
where every strategy y # x satisfies (35). The convexity of U implies that the set U, defined
in (39) is a subset of U. Therefore, every y # x in U, satisfies (35), which proves that x is t-
stable. m

Since (36) and (37) are equivalent for 0 < t < 1,and By ,_1(1/2) = (*21)(1/2)**

(j = 1,2, ...,n), comparison with (30) shows that independent-stability is equivalent to 1/2-
stability. Therefore, by Lemma 2, it is also equivalent to local superiority. To prove that local
superiority is equivalent also to dependent-stability, note, first, that by Lemma 1 every
locally superior strategy (which is necessarily independently-stable) is an ESS, and hence also
an equilibrium strategy, and the same is true for every dependently-stable strategy. The
equivalence of these two conditions is therefore an immediate consequence of the following
lemma, which completes the proof of the theorem.

Lemma 3. An equilibrium strategy x has a neighborhood where, for all y # x,
9» Y, ¥) = g%y, .., y) <0 (40)
if and only if it has a neighborhood where, for all y # x,
(g(y,y, e y) —g(x,y, ...,y)) + (g(y, X, ., x) —g(x, x, ...,x)) < 0. (41)

Proof. One direction is trivial: (40) and the equilibrium condition (26) imply (41). To prove
the other direction, suppose that the equilibrium strategy x has a neighborhood of the
second kind in the lemma but does not have a neighborhood of the first kind. It has to be
shown that this assumption leads to a contradiction.

Let (¥, )k>1 be a sequence of strategies that converges to x such that, for all k, inequality
(41) holds for y = y,, but (40) does not hold, i.e.,

Ik Vier s Vi) — 9, Yy o, Vi) 2 0. (42)

If all the other players use x, none of the strategies y; is a best response (for otherwise
the left-hand sides of (40) and (41) would be equal for y = y;.). Hence, each of them can be
presented as
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Ve = (1 —ap)wy + agzy, (43)

where z, is a strategy whose support includes only pure strategies that are not best
responses when everyone else uses x, wy, is a strategy whose support includes only pure
strategies that are best responses, and 0 < a;, < 1. Since there are only finitely many pure
strategies, there is some § > 0 such that, for all k,

g(Zk! X, --';x) - g(x! X, ---!x) < _6! (44)
while
IgWwe, x, ..., x) —gx,x,...,x) = 0. (45)

By (42), (43), (44) and (45),

(GO Vi 1) = Wi % 0, ) = (906 Yies o 70) — 96, X, 0, X)) > Sy,

As k — oo, the two expressions in parentheses tend to zero, since y, = x. Therefore,

a; — 0, which by (43) implies that w;, — x. It follows that, for almost all k (i.e., all k > K,
for some integer K), either y = wy, satisfies (41) or w;, = x. By (45), in both cases

IWi, wy, o, W) — g(x, wy, ..., w;,) < 0. Therefore, for almost all k

i H(gWi s o Y1) — 96 Vies e V1))
< ai ' (gWi, Yir 0 Vi) — 900 Vi s V1))

—apl(1 - ak)n_l(g(wk,wk, o W) — glx,wy, ...,Wk))
n

= Z @i 'Bj_1n—1(a) (Wi, Wi, oo, W, Zi, o, Z1)

j=2 n—j times
— g(x, Wi, ooy Wi, Zg,, ...,Zk)).
| ———
n—j times

The right-hand side tends to zero as k — o, since w, = x. Therefore, for almost all k

1 (46)
I Wi, Vies s Vi) — 906 Vs o0 Vie) < E&lk-

On the other hand, by (44) and since y,, — x, for almost all k

1
Edak < ak[(g(x, X, ., x) — g(2p, x, ...,x)) + (g(zk,x, v X) — 92k, Vi ...,yk))
+ (g(wk,yk, w0 Vi) — g(wy, x, ...,x))].

By (43) and (45), the right-hand side is equal to g(Wy, Vi, -, Yi) — 9> Vi» - Vi), Which
by (42) is less than or equal to

Wi, Yier s Yi) — 96 Vies oy Vi)-

This contradicts (46). The contradiction proves that an equilibrium strategy x as above does
not exist. [ |
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None of the four implications in Theorem 1 holds as equivalence. For the fourth implication,
the reverse implication does not hold even in the special case of symmetric 2 X 2 games: it
is well known that not every equilibrium strategy in such a game is an ESS. For the other
three implications, the reverse implications do hold for two-player games, but as the
following example shows, this is not so in general.

Example 2. A symmetric four-player multilinear game g is defined as follows. There are
three possible actions (or pure strategies), so that the strategy space X consists of all
probability vectors x = (xq, x5, x3) (with x; + x, + x3 = 1). The payoff of a player using
strategy x against opponents using strategies y = (y1,¥,,¥3), Z = (21, 23, 23) and

w = (W1, Wy, w3) is given by

gx,y,z,w) = Z Gijkt XiYj ZkW.-
ijkl=1
The coefficients (gl-jkl )?J-,k,l:l that define the game satisfy the symmetry condition
Gijkt = 9ij' ', forall (i, j, k, 1) and (j', k', 1) such that the latter is a permutation of
(j, k,1). There are three versions of the game, with different coefficients, as detailed in the
following table:

Coefficient Version1 Version2 Version 3

92211 —2 —18 —4
92221 0 —16 —4
93221 4 4 0
92331 4 20 4
92222 3 -9 -3
92332 4 12 2
93333 -3 —15 —4
92322 4 4 0

Coefficients that are not listed in the table and cannot be deduced from it by using the
above symmetry condition are zero. In all three versions of the game, the strategy

x = (1,0,0) is an equilibrium strategy, since if all the other players use x, any strategy is a
best response. However, the stability properties of x are different for the three versions.

Claim. The equilibrium strategy x = (1,0,0) is an ESS in all three versions of the game, but it
is uniformly-stable only in versions 2 and 3, independently-stable (equivalently,
dependently-stable, locally superior) only in version 3, and stable in none of them.

In view of Theorem 1, to prove the Claim is suffices to show that x is: (i) an ESS but not
uniformly-stable in version 1, (ii) uniformly-stable but not independently-stable in version 2,
and (iii) independently-stable but not stable in version 3.

In version 1 of g, (28) reads

—2p,y% — 4p3s (Y5 — 3y — y2v5)
— 3ps(2y{yF — 4y1¥5y3 — 4v1y2Y5 — yi — 4yivi +yi — 4y3y3) <O0.
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Uniform stability corresponds to p = (1/4,1/4,1/4,1/4), for which the above inequality can
be simplified to

7, 3 272
e < (Y2—§(1—Y1) ).

There are strategies y = (4,2, ¥3) arbitrarily close to (1,0,0) for which this inequality does
not hold. For example, this is so whenever y, = (3/8)(1 — y;)?. This proves that the
equilibrium strategy is not uniformly-stable. To prove that it is nevertheless an ESS, consider
(33), which in the present case can be simplified to

2y < 2y, —e(1—y1)?)2

For every (fixed) strategy y = (y1, ¥2,v3) # (1,0,0), this inequality holds for sufficiently
small € > 0. Therefore, (1,0,0) is an ESS.

In version 2 of the game, for p = (1/4,1/4,1/4,1/4) inequality (28) can be simplified to

1 3
—@}’22 < (h‘g(l —y1)?)2.

This inequality holds for all strategies y other than (1,0,0), and therefore the latter is
uniformly-stable. However, it is not independently-stable, since forp = (1/8,3/8,3/8,1/8)
inequality (28) can be simplified to

8
gyzz < (4y, — (1 —y)H2

This inequality does not hold for strategies y with y, = (1/4)(1 — y;)?, which exist in every
neighborhood of (1,0,0).

Finally, in version 3 of the game, forp = (1/8,3/8,3/8,1/8) inequality (28) can be
simplified to

—y§ < 3(4y, — (v2 + y3)H)2

This inequality holds for all strategies y other than (1,0,0), and therefore the latter is
independently-stable. However, it is not stable. There are probability vectors p satisfying
(27) (and even (32)) for which (28) does not hold for some strategies y arbitrarily close to
(1,0,0). For examples, for p = (1/20,9/20,9/20,1/20) inequality (28) can be simplified to

1
24y% — §y§ < 8y, — (1 —y)H2

For strategies y with y, = (1/8)(1 — y;)?, this inequality is equivalent to 512 +
2048(1 —y;) — 384(1 —y,)? + 32(1 — y1)?® — (1 — y;)* < 0. Hence, it does not hold if
v, is sufficiently close to 1.
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4.2. Symmetric multiplayer games with a unidimensional strategy
space

The notion of a continuously stable strategy (CSS), originally defined only for two-player
games (see Section 2.2), extends in a straightforward way to multiplayer games.

Definition 9. In a multiplayer game g with a strategy space that is a subset of the real line, a
(symmetric) equilibrium strategy x is a continuously stable strategy (CSS) if it has a
neighborhood where for every other strategy y, for sufficiently small € > 0

g((A-ay+ex,y,..y) > gy, ...y),
and a similar inequality does not hold with € replaced by - €.

The following theorem shows that, as in the two-player case, continuous stability is
essentially equivalent to stability as defined in this paper (Definition 6). Moreover, stability,
dependent-stability, independent-stability and uniform-stability are all essentially
equivalent, unlike for multilinear games (Theorem 1).

Theorem 2. Let x be an interior equilibrium strategy in a symmetric n-player game g with a
strategy space that is a subset of the real line, such that g has continuous second-order
partial derivatives in a neighborhood of the equilibrium point (x, x, ..., x). If

91106 %, ., x)+(n—1Dgq12(x,x,...,x) #0, (47)

then for every probability vector p satisfying (27) the following conditions are
equivalent:

e xisaCSS

e the left-hand side of (47) is negative
e x is not definitely p-unstable

e xisp-stable

e x is not definitely unstable

e X isstable.

Proof. Using Taylor’s theorem, it is easy to show that, for y tending to x, the left-hand side of
(28) can be expressed as

1
0= DG @ 1) + 50 =D g (%, 2) (48)

+ 0= 220 %, 0 0) ) (= Dy +0(r = 0D,
i=1

By (27), the sum in (48) is equal to (n — 1) /2. The rest of the proof is very similar to that of
Proposition2. =
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5. Asymmetric Multiplayer Games

The definitions of asymmetric multiplayer games and symmetrization of such games are
conceptually similar to those in the two-player case (Section 3). An asymmetric n-player
game is a function h = (', h?, ...,h"): X1 X X? x - X X™ = R", where, for1 < i < n, X!
is player i’s strategy space. For a strategy profile (x1,x?, ..., x™), the payoff of player i is
hi(x!, x?%, ..., x™). The strategy profile is an equilibrium if, for every player i,

hi(xt, x?, ., y0, e, x™) < Ri(xb, x2, L, x™)
forall y* # x'in X%, and it is a strict equilibrium if these inequalities are all strict.

An asymmetric game h is symmetrized by allowing the players to take turns playing the
different roles in h. Thus, in the symmetric game, each player i has to choose a strategy
profile x; = (xil,xl-z, .., X') in h. An assignment of the n players to the n roles in h is
described by a permutation 7 of (1,2, ..., n). Player i is assigned to role (i), and the player
assigned to role j is n‘l(j). Symmetrization involves averaging a player’s payoff as i varies
over the set I of all n! permutations.

Definition 10. The game obtained by symmetrizing an asymmetric n-player game h =
(hY,h%, .., h™): XT X X% X - x X — R™ is the symmetric n-player game g: X X X X «-- X
X — R, where the strategy space X is the product space X' x X% X ---x X™ and

1 (49)
g(x1, %2, 0y X)) = nl Z hn(l)(x;—l(l)'xi—l(z)' ""xTTtl_l(n))

mell
— 1 .2 n — 1 .2 n — 1,2
forall xq = (xq, x1, ..., X1), %3 = (X2, %5, oo, X3 ), o, X = (X, X5, o, X1) € X.

Proposition 8. A strategy profile x = (x!, x?

, ., X™) in an asymmetric n-player game h is an
equilibrium if and only if it is a (symmetric) equilibrium strategy in the symmetric game g
obtained by symmetrizing h. In this case, the equilibrium payoff in g is equal to the players’

average equilibrium payoffin h.

Proof. By definition, x is an equilibrium strategy in g if and only if choosing x; = x
maximizes the expression obtained by setting x, = x3 = -+ = x,, = x in the right-hand side
of (49). That expression can be simplified by partitioning the set of permutations Il into n
parts, each of cardinality (n — 1)!, according to the value i of (1). Thus, the expression
under consideration is equal to

n
1 . . (50)
ZZ Ri(xt,x?%, ., %, ., x™).

i=1

Clearly, choosing x; = x maximizes this sum if and only if, for each i, the ith term is
maximized by choosing x! = x‘. The latter is also the condition for x to be an equilibrium in
h. If it holds, then the maximum (obtained by setting x} = x! in each of the terms in (50)) is
the players’ average equilibrium payoff in h. [

The last result suggests the following.
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Definition 11. A strategy profile x = (xl,xz, ..., X™) in an asymmetric n-player game h is
stable, weakly stable or definitely unstable if it has the same property as a strategy in the
symmetric game g obtained by symmetrizing h. Similar definitions apply to p-stability, weak
p-stability and definite p-instability, for every probability vector p.

As in the case of Definition 6, dependent-stability, independent-stability, uniform-stability
and the related notions of weak stability and definite instability are defined by specifying a
particular vector p, i.e., the one given by (29), (30) or (31).

As in the two-player case (Proposition 4), every stable strategy profile is “locally strict.” In
fact, this is true also with stability replaced by the weaker condition of p-stability.

Proposition 9. For every probability vector p = (py, py, ..., Py ) and every p-stable strategy
profile x = (x1,x2,...,x™) in an asymmetric game h, the strategy x’ of each player i has a
neighborhood where it is i’s unique best response to x.

Proof. It suffices to prove this for i = 1. (The argument for any other player is similar.) Let p,
h and x be as in the proposition, and let g be the game obtained by symmetrizing h. It
follows from Definition 11 that there is a neighborhood of x1 where, for every y1 # x1,
inequality (28) holds for y = (y1,x2, ..., x™). The expression in parenthesis in (28) is the
difference between the payoff from using y in g and the payoff from using x, when a
particular number of other players use x and the rest use y. Recall that, in g, the players are
assigned to the different roles in h, and a player’s payoff is obtained by summing up his
payoffs in all such possible assignments and dividing by their number n!. Since x and y
prescribe different strategies only for a user taking the role of player 1 in h, only the payoff
obtained in that role contributes to the above difference. If follows that it does not matter
whether each of the opponents uses x or y: both prescribe the same strategy x* for a user
taking player i’s role in h, for all i # 1. Therefore, the expression in parenthesis in (28) is
equal to

1
- (h1 (b x2, ..., x™) — hl1(x1, x?, ...,xn)).

Thus, (28) says that this expression is negative, which shows that y! is a worse response to x

than x1. [}

Working directly with the definition of stability may be possible, as the proof of Proposition
9 demonstrates. However, this is not always very convenient. The following lemma offers a
useful alternative characterization.

Lemma 4. For any probability vector p = (p1, py, -.-, Pn), @ strategy profile
x = (x1,x2,...,x™) in an asymmetric n-player game h = (h%, h?, ..., h™) is p-stable if and
only if it has a neighborhood where, for every other strategy profile y = (yl,yz, oy,

S Plsuil - (51)
D) B (50 — e () i Crse (D™ + x5 (D™, s (20
i=1 SCN (IS\{i}I

+ xs(2)y?, ., xse(Mx™ + xs(M)y™) <0,
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where N = {1,2, ..., n} and ys denotes the characteristic, or indicator, function of a subset
S € N, i.e,, the function that is 1 on S and 0 on its complement S€. The characterizations of
weak p-stability and definite p-instability are similar, except that the strict inequality in (51)
is replaced by a weak one or by the reverse (strict) inequality, respectively.

Proof. Identify the set of players in h with N, and let g be the game obtained by
symmetrizing h. Let C be the collection of all characteristic functions of subsets of N, i.e., all
functions of the form y: N = {0,1}. If y € C is the characteristic function of aset S € N (i.e.,

= ()

J#i

X = Xs), then, forevery i € N,

is equal to the cardinality of S \ {i}. Since g is a symmetric game, for any pair of strategies in
this game, x = (x1,x2,...,x™) andy = (y1,y?,...,y"),and any y € C,

g((A = xW)x + x(Dy, (1 = x@2)Nx + x(2)y, ... (1 = x(W)x + x()y) (52)
=1 -xM)glx,x, ., x, ¥, v)+ x(Dgy, x, 00, X, Y, 0,y ),
n—j times j—1 times n—j times j—1 times

where j = y; + 1. (Note that the expression on the left-hand side is well defined even if this
is not so for general convex combination of strategies in g. This is because each of the
arguments is simply either x or y.) For every 1 < j < n, the equality y; = j — 1 holds for
(;.‘:11 elements y of C with y(1) = 0 and the same number of elements with y(1) = 1.
Therefore, by (52), for any probability vector p, the left-hand side of (28) can be written as

p)(1+1

Cx() -1 g1 —xM)x+ x(Dy, A — x2)x + x(2y, ..., (1 — x(m))x

n-1

X€C (Xl
+ x(M)y).

By Definition 10, this is equal to

) 5 X = DA O ™ ()’

mell yeC “x1 )

+x(@ W)y (1 — x (1 (2))x?
+x(@ 1 (2)y% .., (1 = x(m Mm))x™ + x(m(n)y™).

For any permutation it € I1, changing y in the summand to the composed function y o
leaves the inner sum unchanged, since as y varies over all elements of C, so does y o 7.
Since (x ° ™)1 = Xr(1), the above double sum is therefore equal to

1 Py.a
nl Z Z —(X Z(_f+)1 2x(m(1)) — 1) "D (1 — x())x + x(Dy", (1 — x(2))x?

m€ell yec X (1)

+x(2)y%, .., (1 = x(M)x™ + x(n)y™).

Note that w now appears in the summand only as part of the expression w(1). As 7 varies
over all permutations, this expression returns each of the elements i of N exactly (n — 1)!
times. Therefore, the double sum is equal to
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n

1 | |
Ez ?M; Cx() = D R(A = x(W)x" + x(D)y*, (1 = x(2))x?

n-1
i=1yeC \ x;

+x(2)y?, o, (= x ()™ + x()y™),
which is equal to 1/n times the expression in (51). [

Inequality (51) is a generalization of (15). It may be interpreted as follows. All possible
partitions of the set of players in h into a set S and its complement S are considered. The
players in S play according to the strategy profile y = (y',y?, ...,y™) (i.e., each i € S uses
y') and those outside it play according to x = (x1,x?, ..., x™). Each such partition is
associated with a particular linear combination of the players’ payoffs, which assigns a
positive weight to players in S and a negative weight to those outside it. Inequality (51)
requires that the sum of all these linear combinations is negative. Roughly, this expresses
the requirement that when the players’ only choices are playing according to x and playing
according to a particular strategy profile that is different from x but close to is, those who
choose the former alternative tend to fare better.

1.1. Asymmetric multilinear games

An asymmetric game h = (h!, h?, ..., h™) is a multilinear game if for each player i the
strategy space X' is the unit simplex in some Euclidean space and h! is multilinear. As
Example 2 shows, for symmetric multilinear games there is a real difference between
stability of an equilibrium strategy and the various versions of p-stability. The following
theorem shows that this is not so for asymmetric games, for which these notions of stability
all mean the same.

Theorem 3. For every probability vector p = (py, p3, .., Py ), @ strategy profile in an
asymmetric multilinear game h = (h', h?, ..., h™) is p-stable if and only if it is a strict
equilibrium. In particular, a p-stable equilibrium is pure.

Proof. Fix p and h as in the proposition. It follows immediately from Proposition 9 and the
linearity of each payoff function h' in the ith argument that every p-stable strategy profile is
a strict equilibrium. To prove the converse, fix a strict equilibrium x = (x1,x2, ..., x™). It has
to be shown that x is p-stable.

The strategy x! of each player i is an element of i’s strategy space X', that is, a probability
vector (xi,x5, ..., xr"ll,) of some player-specific dimension n;. For every other strategy y' €
Xt

hi(xY, x2, .., yb o, x™) — R (xt, 2, ., x L, x™) < 0. (53)

Consider the collection Z¢ of all strategies z* = (z!, z, ...,Z,ill) € X' that satisfy Zji = 0 for
some j with xji > 0. This is a compact subset of X! that does not include x*, and therefore

the expression on the left-hand side of (53) is bounded away from zero for y* € Z:. In other
words, there is some § > 0 such that, for all i and z! € Z¢,

hi(x,x2, ..., Z5 ., x™) — hi(xY, %2, ..., x5, .., x™) < 6. (54)
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Given any strategy yi of any player i, there is a unique 0 < €; < 1 (which depends on yi)
such that for some (in fact, unique) z! € Z¢,

yi=(1—-¢)x! + ¢z (55)

As y' tends to x', €;(z' — x') = y' —x' > 0. This implies that ¢; tends to zero, for
otherwise it would be possible to find an example in which ¢; is bounded away from zero,
and hence z! = x!, which is impossible by the compactness of Z:.

For any strategy profile y = (y1,y?, ...,y™) # x, expressing each strategy y' as in (55) gives
the left-hand side of (51) the following form:

n

plsu{z}l

(o) (s (@) = x5e (D)) R((1 — erxs(M)x + x5 (D2, (1 — €2.05(2))x?
i=1 SCN M\

+eax5(2)z%, ..., (1 — e xs(M)x™ + €, xs(M)z™).

By multilinearity, this is equal to

= (56)
; Pis . ,
D ) ) S () = 5o D)
i=1 SCN S\{L}I
n
+ Z 2 € (hi (x4, x%,..,20, ..., x™)
i=1j=1

plsu{z}l

— hi(xh, %2, 0, ™)) (s (@D = x5 (D) xs() + o(e),

SCN IS\{l}I

where e = €; + €; + -+ €, (> 0, since y # x). In the first term in (56), the inner sum is
zero for every i, since

pISU{z}I( 5D = x5: () (57)
ScN NS\

Pisu{i}

[Gts (@ = xse ) + (xsu @ = xsuiye @)] = 0

SCN\{i} (IS\{l}I

(The expression in square parenthesis is identically zero for i and S withi € S.) In the second
term in (56), the innermost sum is zero for every i and j with i # j, since for such i and j

z plSL_J{i}l ()(s(i) — Xsc© (i)))(s(f) = Z plSU{L}l (Xs( ) — XSc(l)) =0, (58)

(85ein)
Sscn \S\{i}l {j}SSCcN IS\{l}I

where the second equality follows from an argument similar to (57). Replacing these two
sums in (56) with zeroes and simplifying gives

Dis| (59)

n
Z € (hi(xl,xz, e Zh e, x™) = hi(xt, 2, L X ...,x")) + o(e).

i=1 {yesen (5

The inner sum in (59) clearly has the same value for all i. Therefore, by (54), the first term in
(59) is negative and its absolute value is greater than
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Pis|
n—-1Y

€8 =
{1}cScN (Isl—l

Hence, if € is sufficiently small (but positive), the whole of (59) is negative. As shown above,
€ tends to zero as y tends to x. It follows that (59) is negative for all y # x in some
neighborhood of x. Since (59) is just a different form of (51), it follows from Lemma 4 that x
is p-stable. [

1.1. Asymmetric games with unidimensional strategy spaces

For an asymmetric multiplayer game h = (h', h?, ..., ™) in which the strategy space X' of
each player i is a subset of the real line, the stability condition can be presented in a
differential form, at least in the case of an interior equilibrium and sufficiently smooth payoff
functions. For symmetric games with such strategy spaces, the move from two to an
arbitrary number of players proved to be rather easy. A single condition, not much different
from that in the two-payer case, essentially characterizes stability, dependent-stability,
independent-stability and uniform-stability, which are therefore all essentially equivalent
(see Theorem 2). As the next theorem shows, the same is true for asymmetric games.

Theorem 4. A sufficient condition for stability or definite instability of an interior equilibrium
x = (x!,x?,...,x™) with a neighborhood in which h',h?, ..., ™ have continuous second-
order derivatives is that the matrix

hip - hip (60)
H=\| : N
with the derivatives computed at x, is negative definite or positive definite, respectively. A
necessary condition for weak stability is that the matrix is negative semidefinite. The same is
true with ‘stability’, ‘weak stability’ or ‘definite instability’ replaced by ‘p-stability’, ‘weak p-
stability’ or ‘definite p-instability’, respectively, for any probability vector p satisfying (27).

Proof. It suffices to prove the last part of the proposition, since this clearly implies the rest.
Thus, fix a probability vector p = (py, P2, ..., Pn) satisfying (27). For every vector y =
(v, 2, ...,y™) # x, the left-hand side of (51) can be written as

n

Pisufi . . ;
Z lnfl}l (Xs(l) — Xs© (l)) ht (Xl +erxs(1),x% + €2x5(2), ..., x™ + En)(s(n)),
i=1 SCN (IS\{i}l

where
€ =y —x, i=1,2,..,n

For y tending to x (equivalently, €; — 0 for all i), this can be presented as
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n . (61)
. S
Z hi(x1,x2, ..., x™) Z ZISUl U{l}| (Xs( ) = Xse (l))
i=1 SCN |5\{l}|
- p
S
t ZZ & hi(xt, 22, ., x™) Z SO (s () = x5 D) A5 ()
i= 1] 1 SCN 5\{l}|
+ Ez Z Z € € M (x1,x%,...,,x") Z lifl}l (Xs(i)
] =t (|S\{i}|)

= x5 ()xs(Nxs (k) + o(e?),

where € = \/e% + e% + -+ e,zl (> 0, since y # x). By (57), the first term in (61) is zero. By
(58), the innermost sum in the second term is zero for every i and j with i # j. Fori = j,

hj (xl,xz, ...,Xx™) = 0, since x is an interior equilibrium. Therefore, the second term in (61) is
zero. By an argument similar to (57), the innermost sum in the third term, which can be
written also as

PIsu{i}|

( s() — )(SC(l))

{j,k}SSCSN (IS\{t}I

is zero if i & {j, k}. Therefore, the third term in (61) is equal to 1/2 times

i 2 Z & € i X1y (D Z Pisi_ (62)

i=1j=1k=1 {j KJCSCN (|S| 1

where the partial derivatives are computed at x. The innermost sum in (62) has two possible
values. If j = k, then

n—1

Dis| _
{j,k}SSCN (ISI 1 =1 (711—11)

If j # k, then by (27)

ey 0, za-npl -

{j k}SSCN (ISI 1 =2

N| =

It follows that (62) is equal to

(63)

nonoiL ok
by + hyj
5k
=y

If H is negative definite or positive definite, then (63) is negative or positive, respective, and
its absolute value is at least |/'LO|62, where Ay # 0 is the eigenvalue closest to 0 of the matrix
(1/2)(H + H") and € is defined above. This implies that, if H is negative definite, then (61)
is negative for y # x sufficiently close to x, so that (51) holds, which proves that x is p-
stable. Similarly, if H is positive definite, then (61) is positive for y # x sufficiently close to x,
which proves that x is definitely p-unstable.
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If H is not negative semidefinite, then (1/2)(H + H™) has a positive eigenvalue 1 > 0 (see
footnote 14). If (¢4, €3, ..., €,) # 0 is a corresponding eigenvector, then (63) is positive and
equal to A€2. This implies that there are strategy profiles y arbitrarily close to x for which

the reverse inequality to that in (51) holds, which proves that x is not weakly p-stable. m

As indicated, stability as defined in this paper is based on incentives rather than motion. In
the previous sections, it is compared mainly with other, special notions of static stability,
which are defined only for particular classes of games. However, for the class of games
considered in this section, the most well-established notion of stability is a dynamic one,
namely, asymptotic stability with respect to the following equations of motion:

dxt 1o _ (64)
v dihj(x*,x*,...,x™), i=12,..,n,

where t is the time variable. This system of differential equations expresses the assumption
that, for each player i, the rate of change of strategy x! is proportional to the marginal
payoff hi The coefficient of proportionality d; is a positive and (possibly) player-specific
parameter. With these dynamics, the condition for asymptotic stability of an equilibrium

x = (xq, X3, ..., X, ) is that, at the equilibrium point, the (Jacobian) matrix

dihi; - dihi,
dnhrr;I dnhgn

is stable, i.e., all its eigenvalues have negative real parts. This is usually required to hold for
all positive adjustment speeds d4, d>, ..., d,, (Dixit, 1986). This requirement is known as D-
stability of the matrix H (defined in (60)). It is a strictly weaker condition than negative
definiteness: every negative definite matrix is D-stable (this follows immediately from
Lyapunov stability theorem), but not conversely. Unlike negative definiteness, for which a
number of useful characterizations are known, necessary and sufficient conditions for D-
stability are known only for small n (Impram et al., 2005), and they are reasonably simple
only for n = 2 (see Section 3.2). As Example 1 shows, even in the latter case D-stability of H
does not imply that the equilibrium is (statically) stable in the sense considered in this paper:
H may be D-stable but not negative semidefinite.

Negative definiteness and D-stability are equivalent in the special case of symmetric
matrices. This fact is used in the next subsection.

5.3. Inessentially asymmetric games

An asymmetric n-player game h = (h', h?, ..., i) is inessentially asymmetric if all the
players have the same strategy space and for every strategy profile (x!, x?, ..., x™) and
permutation i of (1,2, ..., n)

Ri(x™ D) 57 @)) | xm)y = gt (xL 2 xM), i=12,..,n (65)

This condition says that if the players’ strategies are shuffled, such that each player i takes
the strategy of some other player (i), then the latter’s old payoff becomes player i’s new
one. In other words, the rules of the game ignore the players’ identities, and are therefore
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completely specified by the payoff function of any single player, and in particular by hl. The
latter can be viewed as a symmetric game in the sense of Section 4. Thus, for fixed strategy
space and number of players n, the projection h +— hl, restricted to inessentially asymmetric
games, is one-to-one. By means of it, the inessentially asymmetric games can be identified
with the symmetric ones. In fact, inessentially asymmetric games are usually referred to
simply as symmetric games (von Neumann and Morgenstern, 1953). However, as the two-
player case (Section 3.3) already demonstrates, inessential asymmetry and symmetry are
actually not the same thing. In particular, they correspond to substantially different
conditions for static stability.

Proposition 10. A symmetric strategy profile (x, x, ..., x) in an inessentially asymmetric n-
player game h = (h!, h?,...,A"): X X X X -+ x X = R" is an equilibrium if and only if it is an
equilibrium in the corresponding symmetric game h1: X X X X -+ X X — R.If (x, x ..., x) is
stable in h, then the strategy x is stable in k!, but the converse does not hold even if

(x,x, ..., x) is an equilibrium and n = 2. The same is true with ‘p-stable’ instead of ‘stable’,
for every probability vector p.

Proof. The symmetric strategy profile is an equilibrium in h if and only if none of the players
can benefit from unilaterally deviating from x to some other strategy y. The inessential
asymmetry condition (65) implies that this is so if and only if player 1 cannot benefit from
such a deviation, which is the condition for x to be an equilibrium strategy in k1.

The definitions of stability and p-stability of a strategy profile in the asymmetric n-player
game h use an auxiliary symmetric n-player game, namely, the game g obtained by
symmetrizing h. The strategies in g are the strategy profiles in h, and according to Definition
11, a strategy profile in h is stable or p-stable, respectively, if and only if it is a stable or p-
stable strategy in g. Since h is inessentially asymmetric, (65) and Definition 10 give

1 66
glxy, %9, 0, xp) = EZ hl(xf(l),xg(Z), ...,xif(")), (66)

mell

for all strategies x; = (x{,x%, ..., x}),x, = (x3,x2, ..., X%), o, xy = (x1, %2, ..., x))ing (ie.,
strategy profiles in h). This formula shows that g is in a sense a richer game than h'. The
latter can be obtained from the former essentially by restricting the players in g to
symmetric strategy profiles in h. In particular, it follows from (66) that for any pair of distinct
strategies x and y in h, if all the players in g use either (x, x, ..., x) or (3, ¥, ..., y), then for a
player using the former, a switch to the latter would change the payoff by

Ry, x, ., x,9, 0, v) —ht 0, x, .., x, ¥, ., V),
6% nmesy y)—h( nmesy y)
where n — j is the number of other players using (x, x, ..., x). If (x, x, ..., x) is p-stable in g
(equivalently, in h), for a particular probability vector p = (py, py, ---, Pr), then it follows
from the definition of stability for symmetric multiplayer games (Section 4) that there is a
neighborhood of x such that, if y belongs to that neighborhood, the expected (with respect
to p) change in payoff is negative, i.e.,
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By the same definition, this shows that x is a p-stable strategy in the symmetric game h'.
Since p here is arbitrary, this also proves that stability of (x, x, ..., x) in h implies stability of x
in ht.

To complete the proof of the proposition it suffices to note that, for any stable strategy x in
a symmetric 2 X 2 game (i.e., an ESS) that is not a pure strategy, by Theorem 3 the
symmetric equilibrium (x, x) is not p-stable in the corresponding inessentially asymmetric
bimatrix game for any probability vector p. [ |

The following result, which concerns games with unidimensional strategy spaces, provides
another example of the difference between stability of a symmetric equilibrium in an
inessentially asymmetric game and stability of the equilibrium strategy in the corresponding
symmetric game. Comparison with Theorem 2 shows that the latter requires only one of the
two inequalities required for the former. The proposition generalizes a result obtained for
the two-player case in Section 3.3.

Proposition 11. Let h = (h!,h?, ..., h"™) be an inessentially asymmetric n-player game with a
unidimensional strategy space, and (x, x, ..., x) an interior symmetric equilibrium with a
neighborhood in which h', h?, ..., h™ have continuous second-order derivatives. A sufficient
condition for stability of the equilibrium is

hi; (%, x, ..., x)

hi (%, x, ..., x) < hi, (x,x, ...,x) < — —

)’

and a necessary condition is obtained by replacing the strict inequalities with weak ones.

Proof. It follows from (65) that, at (x, x, ..., x), all the diagonal entries in the matrix H
defined in (60) are equal to hi; (x, x, ..., x) and all the off-diagonal entries are equal to
hi,(x,x, ..., x). Therefore, H is symmetric and has n — 1 eigenvalues equal to

hi; (x,x, ...,x) — hi,(x,x, ..., x) and one eigenvalue equal to hi; (x, x, ..., x) + (n —
1hl, (x,x, ..., x). H is negative definite or negative semidefinite if and only if these
eigenvalues are negative or nonpositive, respectively. It remains to use Theorem 4. [ ]

As the proof shows, at a symmetric equilibrium as in Proposition 11 the matrix H is
symmetric, and is therefore negative definite if and only if it is D-stable. Thus, the differential
condition for stability of the symmetric equilibrium is essentially the same as that for
asymptotic stability with respect to the system (64), with adjustment speeds that can take
arbitrary values. As Example 1 demonstrates, the same is not true for “truly” asymmetric
games.

6. Summary
This paper presents a notion of local stability that is applicable to all strategic games with a
finite (but otherwise arbitrary) number of players and “continuous” strategy spaces. This is a
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static notion of stability, meaning that it is based on incentives rather than motion and
therefore does not involve any assumptions about dynamics, or off-equilibrium behavior.
Unlike other notions of static stability, the one presented here is not linked to any particular
kind of strategy spaces (e.g., subsets of a Euclidean space) or payoff functions (e.g.,
multilinear ones). Instead, it implicitly introduces a linear structure by considering
probabilistic perturbations of the original state. (Nevertheless, in some important classes of
games such probabilistic perturbations yield the same notion of static stability that comes
out of an analysis based on deterministic perturbations. A continuously stable strategy, or
CSS, is an example of this.) A probabilistic perturbation is specified by the joint distribution
of the players’ deviations from the original state. The marginal distributions, which describe
the deviations of individual players, do not give the whole picture, since different players’
deviations can be correlated to a lesser or greater degree. In games with three of more
players, weaker versions of static stability (i.e., the different kinds of p-stability) are defined
by specifying, or constraining, the permissible kinds of correlations.

Stability does not generally imply the equilibrium condition. It is based on a comparison of
(only) two possible unilateral deviations from the perturbed state: one in the direction of the
original state and the other in the opposite direction. The definition of stability has the
simplest form for symmetric games. The definition for asymmetric games is based on the
latter, and uses a natural notion of symmetrization of an asymmetric game. However,
stability for symmetric games is not a special case of that for asymmetric games. Nor should
it be. As argued above, symmetric games are not a subset of the asymmetric ones but rather
constitute a distinct category. In particular, stability in symmetric games refers to strategies
rather than strategy profiles or equilibria. (An evolutionarily stable strategy, or ESS, is an
example of this.) The subset of asymmetric games that correspond to the symmetric ones
are referred to in this paper as inessentially asymmetric games. The stability condition for
these games is more demanding than for their “truly” symmetric kin. For example, in an
(inessentially or otherwise) asymmetric multilinear game, stability of a strategy profile
means that it is a strict equilibrium.

In some classes of games there are several reasonable non-equivalent notions of static
stability. Restriction of the general notion of stability proposed here to such a class singles
out one of them, and indicates that this particular notion can be derived from general
principles rather than (or in addition to) considerations that are specific to the class of
games. For example, there is more than one extension of ESS to symmetric multilinear
games with three or more players. The restriction described above gives a notion of stability
that is stronger than the other alternatives proposed in the literature. However, one of the
latter (namely, local superiority) coincides with the restriction to symmetric multilinear
games of one of the weaker versions of static stability (namely, dependent- or independent-
stability).

In some classes of asymmetric games there are no well-established notions of static stability,
but only dynamic ones. Dynamic stability means asymptotic stability with respect to
specified dynamics. Different dynamical systems may yield different notions of stability,
which are not necessarily comparable with (i.e., weaker or stronger than) the static one
proposed in this paper. A well-known notion of dynamic stability that is comparable with
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static stability is that expressible by the condition of D-stability of the Jacobian matrix. This
applies to asymmetric games in which strategies are real numbers and the payoff functions
are differentiable. This condition is essentially weaker than static stability, for which the
differential condition is a negative definite matrix.

This paper does not consider the problem of the existence of stable strategies or equilibria.
Any existence result is necessarily specific to a particular structure on the strategy spaces
and involves specific assumptions about the payoff functions, which defeats the very idea of
a universal notion of stability. Examination of specific examples suggests that the stability
condition is satisfiable in many games, but this is far from being always the case. For
example, many symmetric 2 X 2 games have at least one ESS, but many others do not. There
are, however, classes of games for which the situation regarding the existence of stable
strategies is less clear. For example, this is so for symmetric multilinear games with three or
more players.
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