
1 

 

Static Stability in Games 

Igal Milchtaich 

Department of Economics, Bar-Ilan University, Ramat Gan 52900, Israel 
Email: milchti@mail.biu.ac.il Home Page: http://faculty.biu.ac.il/~milchti 

December 2007 

Static stability of equilibrium in strategic games differs from dynamic stability in not being 

linked to any particular dynamical system. In other words, it does not make any assumptions 

about off-equilibrium behavior. Examples of static notions of stability include evolutionarily 

stable strategy (ESS) and continuously stable strategy (CSS), both of which are meaningful or 

justifiable only for particular classes of games, namely, symmetric multilinear games or 

symmetric games with a unidimensional strategy space, respectively. This paper presents a 

novel, general notion of local static stability, of which the above two are essentially special 

cases. It is applicable to virtually all 𝑛-person strategic games, both symmetric and 

asymmetric, with “continuous” (rather than discrete) strategy spaces. 
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1. Introduction 
Strategic games, markets and other economic systems are said to be in equilibrium when the 

participating agents do not have any incentives to act differently than they do. Stability of 

the equilibrium refers to the effects that perturbations, or shocks, would have on the agents’ 

incentives or actual actions. Since any change in actions in turn creates new incentives, an 

initial perturbation may set the system in motion, which may eventually either bring it close 

to the original equilibrium state or to states further away from it. Thus stability of 

equilibrium can be defined in terms of the trajectories the system would take following a 

perturbation. However, such a dynamic definition is arguably less basic than a static one, 

which involves only incentives. In particular, it requires making specific assumptions about 

off-equilibrium behavior, i.e., the translation of incentives (e.g., to increase or lower output) 

into actions (actual production adjustments). 

A physical analogy illustrates this point. A body is in equilibrium at point 𝑥 if the resultant 

force acting on it there is zero. If the body is slightly displaced, to point 𝑦, the force may 

become nonzero. The equilibrium is stable if the new force vector points approximately in 

the direction of the body’s original location 𝑥, and it is unstable if the vector points in the 

opposite direction (Figure 1). This definition only involves forces. It makes no mention of 

motion, and hence has no use of such concepts as the body’s inertia and Newton’s second 

law. 
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Figure 1. a. A stable equilibrium. b. An unstable equilibrium. 

Forces are analogous to incentives in economic settings. Translation of the above definition 

of stability into game-theoretic language gives the requirement that, at any state 𝑦 close to 

the equilibrium one 𝑥, a unilateral deviation in the direction of 𝑥 is more profitable (or less 

costly) to the deviating player than a deviation in the opposite direction. To make this a 

meaningful definition, ‘direction’ has to be defined. It also has to be specified, how large the 

unilateral deviations considered are. If a player’s strategy space is ordered, e.g., if strategies 

are numbers, then the direction of a strategy change has a well-defined meaning. If, in 

addition, the strategy space is endowed with a metric, then there is at least a well defined 

sense in which deviations in opposite directions are of equal magnitude. Such equality may 

suffice, since incentives can then be compared using the notion of marginal payoffs. This, 

however, essentially restricts the analysis to a special class of games, namely, games in 

which the strategy spaces are unidimensional (i.e., subsets of the real line) and the payoff 

functions are differentiable. This leaves out many important games, most notably, bimatrix 

games and, more generally, multilinear games that are the mixed extensions of finite games. 

In a multilinear game, each player’s strategy space is the unit simplex in a Euclidean space 

ℜ𝑛  (where 𝑛 is the number of pure strategies for the player), i.e., strategies are probability 

vectors. The unit simplex is not ordered and it has several natural notions of distance, such 

as the 𝐿1 and 𝐿2 distances. However, it has another structure that may be useful in the 

present context, namely, it is a convex set. Thus a natural interpretation of a unilateral 

deviation of player 𝑖 from 𝑦, where his strategy is 𝑦𝑖 , in the direction of 𝑥, where the 

strategy is 𝑥𝑖 , is that the player’s strategy changes to  

𝛼𝑥𝑖 +  1 − 𝛼 𝑦𝑖 , 

for some 0 < 𝛼 ≤ 1. A deviation of the same magnitude in the opposite direction brings the 

player to  

𝑧𝑖 = −𝛼𝑥𝑖 +  1 + 𝛼 𝑦𝑖 , 

which is well defined if 𝑦𝑖  is sufficiently close to 𝑥𝑖 . This leaves one degree of freedom, 

namely, the choice of 𝛼. Choosing, for example, 𝛼 = 1 gives stability the following meaning: 

(1) 

(2) 
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Following a slight perturbation of strategies,1 each player 𝑖 would gain more (or lose less) 

from unilaterally reverting to his equilibrium strategy 𝑥𝑖  than from a deviation of the same 

magnitude in the opposite direction.2 This still leaves open the question of how stability can 

be defined for strategy spaces without an underlying linear structure. 

A time-honored way of defining convex combinations like (1) in games without an underlying 

linear structure is using mixed strategies, i.e., interpreting 𝛼 as the probability that player 𝑖 

plays 𝑥𝑖 . However, this interpretation is not applicable to (2), where 𝑥𝑖  has a negative 

coefficient. A key to overcoming this obstacle is the observation that, regardless of 𝛼,  

𝑦𝑖 =
1

2
𝑥𝑖 +

1

2
𝑧𝑖 . 

Thus, suppose that the perturbation is probabilistic to begin with: each of the players plays 

according to 𝑥 with probability 1/2 and according to 𝑧 with probability 1/2. Two possible 

unilateral deviations for player 𝑖 are playing according to 𝑥 or according to 𝑧 with probability 

1. The former represents a unilateral reversion to 𝑥 and the latter may be interpreted as 

completing the move to 𝑧. If, for each of the players, reversion is the better alternative,3 and 

this holds for all 𝑧 close to 𝑥, than the latter will be defined as stable.4  

The following sections flesh out this idea, starting with symmetric two-player games and 

gradually extending the ground coverage all the way to asymmetric multiplayer games. 

Special attention is given to the two kinds of games mentioned above: those with a 

unidimensional strategy space and multilinear games. This reflects the importance of these 

kinds of games in both the theory of strategic games and in applications. In addition, in both 

cases there is at least one established notion of static stability, which can be compared with 

the one proposed here. For symmetric multilinear games, this is the notion of an 

evolutionarily stable strategy (ESS), and for symmetric games with a unidimensional strategy 

space, the notion of a continuously stable strategy (CSS), which can be described also in 

terms of the slope of the reaction curve, or the graph of the best-response function. It is 

shown that, for two-player games, these two seemingly unrelated notions of static stability 

are in fact essentially special cases of the general one proposed in this paper. The situation is 

                                                           
1
 The requirement that the perturbation is small, i.e., that the players’ strategies do not change much, 

implicitly refers to the topological structure of the simplex, i.e., to the notion of a neighborhood of a 

probability vector. 𝐿1  and 𝐿2, and every other metric derived from a norm on ℜ𝑛 , give the same 

metric topology. Thus closeness of points in the simplex has a well defined meaning even if no 

particular notion of distance is specified.   

2
 An alternative to choosing a particular value of 𝛼 is to require that a similar condition holds for all 

0 < 𝛼 ≤ 1. Another alternative is to require this only for 𝛼 sufficiently close to 0. 

3
 Note that reversion is not required to be the best among all possible unilateral deviations.  

4
 The definition of stability would not be affected if ‘probability 1’ were replaced by ‘probability 𝛽’, for 

any 0.5 < 𝛽 < 1. Since a player’s payoff is linear in the probabilities of his own mixed strategy, this 

change would not affect the relative merits of the two deviations from a half-half mixture of 𝑥 and 𝑧. 

Compare this with the remark in footnote 2. 
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more complex for multiplayer games, for which more than one generalization of (two-

player) ESS exists.  

For asymmetric games, definitions of stability are customarily derived from dynamic 

considerations. Specifically, they refer to asymptotic stability with respect to specified 

dynamics. These dynamics (e.g., asymmetric replicator dynamics) are applicable only to a 

particular class of games, and even for a single class, different dynamics may give different 

notions of stability. The conditions for dynamic stability can sometimes be put in a form 

reminiscent of static stability, e.g., as a condition on the relative slopes of the players’ 

reaction curves. (This is somewhat similar to the stability condition for market equilibrium, 

which is determined by the relative slopes of the supply and the demand curves; see 

Samuelson, 1983.) As it turns out, none of the familiar notions of dynamic stability in the 

classes of asymmetric games considered in this paper is equivalent to static stability. 

However, dynamic and static stability do essentially coincide in the special case of 

inessentially asymmetric games, which differ from symmetric games only in that the players 

are distinguished as player 1, player 2, etc. Although seemingly minor, this difference is in 

fact highly consequential for stability analysis, mainly because it allows for more 

perturbations of the equilibrium state than in a truly symmetric game.  

Static and dynamic stability are not the only kinds of stability considered in the game-

theoretic literature. Another kind of stability refers to the effects of perturbations of the 

players’ strategy spaces, e.g., allowing only completely mixed strategies, or a combination of 

perturbations of strategy spaces and of the strategies themselves. The requirement that a 

strategy profile in a strategic, or normal form, game be stable against such perturbations 

gives the notions of (trembling-hand) perfect equilibrium (Selten, 1975), proper equilibrium 

(Myerson, 1978), strict perfection (Okada, 1981) and (strategic5) stability and full stability 

(Kohlberg and Mertens, 1986). Stability may also refer to the effects on a given equilibrium 

of perturbations of the payoff functions, i.e., of the game itself. Essentiality (Wu and Jiang, 

1962) and strong stability (Kojima et al., 1985) are examples of this kind of stability, which is 

known to have interesting connections with some of the other kinds. For example, in 

multilinear games, every essential equilibrium is strictly perfect (van Damme, 1991, Theorem 

2.4.3), and in symmetric 𝑛 × 𝑛 games, every regular ESS is essential (Selten, 1983). Another, 

striking example of the connection between different kinds of stability is the finding that, in 

several classes of games, the (local) degree of an equilibrium (or of a connected component 

of equilibria) is equal to its index (Govindan and Wilson, 1997; Demichelis and Germano, 

2000). The index of an equilibrium is connected with its asymptotic stability or instability 

with respect to a large class of natural dynamics, which determine how strategies in the 

game change over time. The degree, by contrast, expresses a topological property of the 

same equilibrium when viewed as a point on a manifold that includes the various equilibria 

of different games (Ritzberger, 2002).  

                                                           
5
 ‘Strategic stability’ is also used, informally, to describe the equilibrium, or self-enforcement, 

condition that no player ever has an incentive to deviate (Kohlberg and Mertens, 1986, p. 1004). This 

refers to extensive as well as normal form games.  
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The notion of static stability proposed in this paper is thus just one of several possible 

interpretations of ‘stability’ in strategic games. It has the distinction of not being tied to any 

particular structure of the strategy spaces or the payoff functions, which makes it uniquely 

general and widely applicable. The only formal requirement is that the strategy spaces are 

endowed with some (completely general) topology. However, since this notion of stability is 

a local one, meaning that it only refers to small perturbations of the state, it is nontrivial only 

in the case of infinite strategy spaces. If a game has only finitely many strategy profiles, each 

of them is trivially stable. However, these (pure) strategies do not necessarily remain stable 

if mixed strategies are allowed. In the mixed extension of the game, players have infinitely 

many strategies.  

2. Symmetric Two-Player Games 
A symmetric two-player game is a function6 𝑔: 𝑋 × 𝑋 → ℜ, where 𝑋 is a topological space, 

called the strategy space, and ℜ is the real line. If one player uses strategy 𝑥 and the other 

uses 𝑦, their payoffs are 𝑔(𝑥, 𝑦) and 𝑔(𝑦, 𝑥), respectively. The topology on 𝑋, which defines 

a neighborhood system for each strategy 𝑥 (Kelly, 1955), is totally unrestricted (e.g., 

metrizability is not assumed). In principle, it should be specified as part of the definition of 

the game. However, in many cases it is clear from the context that 𝑋 is a subspace of some 

standard topological space, most commonly a Euclidean space; its topology is thus the 

relative one. For example, if strategies are numbers, 𝑋 is by default viewed as a subspace of 

ℜ, with the usual topology, so that a set of strategies is a neighborhood of a strategy 𝑥 if and 

only if, for some 𝜀 > 0, every 𝑦 ∈ 𝑋 with |𝑥 − 𝑦| < 𝜀 is in the set. In (the mixed extension 

of) a symmetric 𝑛 × 𝑛 game (where 𝑛 is the number of pure strategies), the strategy space, 

which is the unit simplex, is viewed as a subspace of ℜ𝑛 .  

A strategy 𝑥 in a symmetric two-player game 𝑔 is a (symmetric Nash) equilibrium strategy if 

the strategy profile (𝑥, 𝑥) is a symmetric equilibrium, i.e., for every strategy 𝑦, 

𝑔 𝑦, 𝑥 ≤ 𝑔 𝑥, 𝑥 . 

The corresponding equilibrium payoff is 𝑔(𝑥, 𝑥). The following definition plays a central role 

in this paper. 

Definition 1. A strategy 𝑥 in a symmetric two-player game 𝑔 is stable, weakly stable or 

definitely unstable if it has neighborhood where, for all 𝑦 ≠ 𝑥, the inequality 

𝑔 𝑦, 𝑥 − 𝑔 𝑥, 𝑥 + 𝑔 𝑦, 𝑦 − 𝑔 𝑥, 𝑦 < 0, 

a similar weak inequality, or the reverse (strict) inequality, respectively, holds.  

In general, the stability condition does not imply the equilibrium condition (but see 

Section ‎2.1), and vice versa. Unlike equilibrium, stability is a local condition: only small 

                                                           
6
 This is usually called the payoff function. In this paper, the payoff function and the game itself are 

identified.   

(3) 

(4) 
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deviations are considered. Hence, it trivially holds for every isolated strategy.7 A more 

substantial difference is that the equilibrium condition requires 𝑥 to be at least as good an 

alternative as any other strategy 𝑦, assuming that the opponent sticks with 𝑥. The stability 

condition, by contrast, implicitly assumes that the opponent may deviate. Specifically, with 

probability 𝑝 = 1/2, the opponent plays 𝑦 instead of 𝑥. Inequality (4), which is equivalent to  

𝑝𝑔 𝑥, 𝑥 +  1 − 𝑝 𝑔 𝑥, 𝑦 > 𝑝𝑔 𝑦, 𝑥 +  1 − 𝑝 𝑔 𝑦, 𝑦 , 

requires that, against such an opponent, 𝑥 yields a higher expected payoff than 𝑦. If 𝑥 is a 

stable equilibrium strategies, i.e., it satisfies both conditions, then it follows from (3) that (5) 

actually holds for all 0 < 𝑝 ≤ 1/2. This property is somewhat in the spirit of risk dominance 

of pure equilibrium strategies in 2 × 2 games (Harsanyi and Selten, 1988).8 However, it is in 

fact more closely related to some other familiar notions of stability of equilibrium, which, as 

shown below, are essentially special cases of the one in Definition 1. Unlike the latter, these 

notions are only applicable to specific classes of symmetric two-player games: either 𝑛 × 𝑛 

games or games with a unidimensional strategy space.  

1.1. Symmetric n × n games 
A symmetric 𝑛 × 𝑛 game is given by a square payoff matrix 𝐴, with these dimensions. The 

strategy space 𝑋 is the unit simplex in ℜ𝑛 . Its elements, which by default are considered 

column vectors, are usually referred to as mixed strategies. The interpretation is that there 

are 𝑛 possible actions, and a strategy 𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑛) is a probability vector specifying 

the probability 𝑥𝑖  with which each action 𝑖 is used (𝑖 = 1,2, … , 𝑛). The set of all actions 𝑖 with 

𝑥𝑖 > 0 is the support (or carrier) of 𝑥. A strategy is pure if its support includes only one 

action 𝑖 (in which case the strategy itself may also be denoted by 𝑖) and completely mixed if 

the support includes all 𝑛 actions. The game (i.e., the payoff function) 𝑔: 𝑋 × 𝑋 → ℜ is 

defined by 

𝑔 𝑥, 𝑦 = 𝑥T𝐴𝑦. 

Thus, 𝑔 is bilinear, and 𝐴 =  𝑔 𝑖, 𝑗  
𝑖,𝑗=1

𝑛
. 

A standard notion of stability for symmetric 𝑛 × 𝑛 games is evolutionary stability, which can 

be defined as follows.  

Definition 2. In a game 𝑔, a strategy 𝑦 can invade another strategy 𝑥 if either (i) 𝑔(𝑦, 𝑥) >

𝑔(𝑥, 𝑥) or (ii) 𝑔(𝑦, 𝑥) = 𝑔(𝑥, 𝑥) and 𝑔(𝑦, 𝑦) > 𝑔(𝑥, 𝑦), and it can weakly invade 𝑥 if a similar 

condition holds with the strict inequality in (ii) replaced by a weak one. Strategy 𝑥 is an 

evolutionarily stable strategy (ESS; Maynard Smith, 1982) in 𝑔 if there is no strategy 𝑦 ≠ 𝑥 

that can weakly invade it, and it is a neutrally stable strategy (NSS) if there is no strategy that 

can invade it.  

                                                           
7
 The discussion in this paper is therefore irrelevant to games in which the strategy space has the 

discrete topology, i.e., all singletons are open sets. It is only relevant to games with infinite and 

“continuous” strategy spaces. 

8
 This similarity does not extent to asymmetric 2 × 2 games (Section ‎3). 

(5) 
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As the following proposition shows, these notions of stability are in fact equivalent to 

stability and weak stability in the sense of Definition 1. Since every ESS is clearly an NSS and 

every NSS is an equilibrium strategy, this implies that in the class of symmetric 𝑛 × 𝑛 games, 

every stable or (even) weakly stable strategy is automatically an equilibrium strategy.  

Proposition 1. A strategy in a symmetric 𝑛 × 𝑛 game g is an ESS or an NSS if and only if it is 

stable or weakly stable, respectively.  

Proof. A strategy 𝑥 is an ESS or an NSS if and only if it has a neighborhood where 

 𝑔(𝑦, 𝑦) < 𝑔(𝑥, 𝑦) 

or a similar weak inequality, respectively, holds for all strategies 𝑦 ≠ 𝑥 (Weibull, 1995, 

Propositions 2.6 and 2.7). As indicated, in both cases 𝑥 is an equilibrium strategy. The above 

strict or weak inequality and the equilibrium condition (3) together imply that (4) or the 

corresponding weak inequality, respectively, holds. This proves that every ESS or NSS is 

stable or weakly stable, respectively.  

To prove the converse, consider a stable strategy 𝑥. If follows from Definition 1 that for 

every strategy 𝑦 ≠ 𝑥 the following inequality holds for sufficiently small 𝜀 > 0: 

 𝑔  1 − 𝜀 𝑥 + 𝜀𝑦, 𝑥 − 𝑔 𝑥, 𝑥 

+ 𝑔  1 − 𝜀 𝑥 + 𝜀𝑦,  1 − 𝜀 𝑥 + 𝜀𝑦 − 𝑔 𝑥,  1 − 𝜀 𝑥 + 𝜀𝑦 < 0. 

It follows from the bilinearity of 𝑔 that this inequality is equivalent to 

(2 − 𝜀)(𝑔(𝑦, 𝑥) − 𝑔(𝑥, 𝑥)) + 𝜀(𝑔(𝑦, 𝑦) − 𝑔(𝑥, 𝑦)) < 0. 

Inequality (8) holds for sufficiently small 𝜀 > 0 if and only if either (i) 𝑔(𝑦, 𝑥) < 𝑔(𝑥, 𝑥) or 

(ii) 𝑔(𝑦, 𝑥) = 𝑔(𝑥, 𝑥) and 𝑔(𝑦, 𝑦) < 𝑔(𝑥, 𝑦). It follows that 𝑥 is an ESS. Similar arguments 

show that a weakly stable strategy is an NSS; the only difference is that the strict inequalities 

in (7), (8) and (ii) are replaced by weak ones.  ∎ 

A completely mixed equilibrium strategy 𝑥 in a symmetric 𝑛 × 𝑛 game g is said to be 

definitely evolutionarily unstable (Weissing, 1991) if every strategy 𝑦 ≠ 𝑥 can invade it. 

Similar arguments to those in the proof of Proposition 1 show that this condition holds if and 

only if 𝑥 is definitely unstable in the sense of Definition 1. 

2.2. Symmetric games with a unidimensional strategy space 
In a symmetric two-player game 𝑔 in which the strategy space is a subset of ℜ, i.e., 

strategies are real numbers, the stability of an equilibrium strategy has a simple, intuitive 

interpretation. As shown below, if g is twice continuously differentiable, and with the 

possible exception of certain borderline cases, the equilibrium strategy is stable or definitely 

unstable if, at the equilibrium point, the graph of the best-response function intersects the 

forty-five degree line from above or below, respectively. Stability is also very close to the 

notion of continuously stable strategy (Eshel and Motro, 1981; Eshel, 1983).  

(6) 

(7) 

(8) 
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Definition 3. In a symmetric two-player game 𝑔 with a strategy space that is a subset of the 

real line, a (symmetric) equilibrium strategy 𝑥 is a continuously stable strategy (CSS) if it has 

a neighborhood where for every other strategy 𝑦, for sufficiently small 𝜖 > 0 

𝑔  1 − 𝜖 𝑦 + 𝜖𝑥, 𝑦 > 𝑔 𝑦, 𝑦 , 

and a similar inequality does not hold with 𝜖 replaced by – 𝜖. 

In other words, a strategy 𝑥 that satisfies the “global” condition of being an equilibrium 

strategy9 is a CSS if it also satisfies the “local” condition that, if both players use a strategy 𝑦 

that is close to 𝑥, a small unilateral deviation from 𝑦 is advantageous to the deviating player 

if and only if it brings him closer to 𝑥 rather than further away from it. This local condition, 

known as m-stability or convergence stability (Taylor, 1989; Christiansen, 1991), is very 

similar to the informal description of stable strategy in the Introduction. However, the actual 

definition of stability in this paper is based on the more generally-applicable probabilistic 

formulation. It would therefore be reassuring to know that this does not substantially alter 

the meaning of stability. The following proposition establishes this. The proposition and 

subsequent discussion concern an interior equilibrium strategy, i.e., one lying in the interior 

of the strategy space. 

Proposition 2. Let 𝑥 an interior equilibrium strategy in a symmetric two-player game 𝑔 with 

a strategy space that is a subset of the real line, such that 𝑔 has continuous second-order 

partial derivatives10 in a neighborhood of the equilibrium point (𝑥, 𝑥). If 

 𝑔11(𝑥, 𝑥) + 𝑔12(𝑥, 𝑥) < 0, 

then 𝑥 is stable and a CSS. If the reverse inequality holds, then 𝑥 is definitely unstable and 

not a CSS. 

Proof. Using Taylor’s theorem, it is easy to show that, for 𝑦 tending to 𝑥, the left-hand side of 

(4) can be expressed as  

2 𝑦 − 𝑥 𝑔1(𝑥, 𝑥) +  𝑦 − 𝑥 2(𝑔11(𝑥, 𝑥) + 𝑔12(𝑥, 𝑥)) + 𝑜( 𝑦 − 𝑥 2). 

Since 𝑥 is an interior equilibrium strategy, the first term in (11) must be zero. Therefore, 

a sufficient condition for the left-hand side of (4) to be negative or positive for all 𝑦 ≠ 𝑥 in 

some neighborhood of 𝑥 (and, hence, for 𝑥 to be stable or definitely unstable, respectively) 

is that 𝑔11(𝑥, 𝑥) + 𝑔12(𝑥, 𝑥) has that sign.  

Dropping the factor 2 from (the first term in) (11) gives an expression for  

 𝑦 − 𝑥 𝑔1 𝑦, 𝑦 , 

                                                           
9
 The original definition of CSS differs slightly from the version given here in requiring a somewhat 

stronger global condition. 

10
 The partial derivatives of (the payoff function) 𝑔 are denoted by subscripts. For example, 𝑔12  is the 

mixed partial derivative. 

(9) 

(10) 

(11) 

(12) 
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for 𝑦 tending to 𝑥. Therefore, if (10) or the reverse inequality holds, then (12) is negative or 

positive, respectively, for all 𝑦 ≠ 𝑥 in some neighborhood of 𝑥. For every such 𝑦, for 

(positive or negative) 𝜖 tending to zero the left-hand side of (9) can be expressed as 

𝑔 𝑦, 𝑦 − 𝜖 𝑦 − 𝑥 𝑔1 𝑦, 𝑦 + 𝑜(𝜖). 

Therefore, (10) or the reverse inequality implies that 𝑥 is or is not a CSS, respectively. ∎ 

The connection between inequality (10) and the slope of the best-response function can be 

established as follows (Eshel, 1983). If 𝑥 is as in Proposition 2, then it follows from the 

equilibrium condition (3), which holds for all strategies 𝑦, that 𝑔1(𝑥, 𝑥) = 0 and 𝑔11 𝑥, 𝑥 ≤

0. If the inequality is in fact strict, then by the implicit function theorem there is a 

continuously differentiable function 𝜙 from some neighborhood of 𝑥 to the strategy space 

that assigns to each strategy 𝑦 in the neighborhood a strategy 𝜙(𝑦) such that 𝑔1 𝜙 𝑦 , 𝑦 =

 0 and 𝑔11 𝜙 𝑦 , 𝑦 < 0. Thus, strategy 𝜙(𝑦) is a local best response to 𝑦. Moreover, the 

values of 𝜙 and its derivative at the point 𝑥 are given by 𝜙 𝑥 = 𝑥 and 

𝜙′ 𝑥  = −
𝑔12 𝑥, 𝑥 

𝑔11 𝑥, 𝑥 
. 

This implies that (10) holds at the equilibrium point (𝑥, 𝑥) (so that 𝑥 is stable) if and only if 

the slope of the function 𝜙 at the point 𝑥 is less than 1. In this case, the graph of 𝜙, or 

reaction curve, intersects the forty-five degree line from above, implying that the (local) fix 

point index (Dold, 1980) is +1 (see Figure 2). The reverse inequality holds (so that 𝑥 is 

definitely unstable) if and only if the slope of 𝜙 at 𝑥 is greater than 1. In this case, the graph 

of 𝜙 intersects the forty-five degree line from below and the fix point index is −1. (Compare 

this with the stability condition at the end of Section ‎3.3.) 

An alternative notion of stability of an equilibrium strategy 𝑥 in a symmetric two-player 

game with a unidimensional strategy space, called neighborhood invader strategy (NIS; 

Apaloo, 1997), replaces the “local” CSS condition with the requirement that 𝑥 is locally 

superior in the sense that (6) holds for all 𝑦 ≠ 𝑥 in some neighborhood of 𝑥. For symmetric 

𝑛 × 𝑛 games, this requirement is equivalent to stability (see Section ‎2.1). However, this is 

not the case for the games considered here, for which local superiority of an equilibrium 

strategy is a more demanding condition than stability, and thus more demanding than the 

CSS condition. An NIS 𝑥 is a stable equilibrium strategy in the sense of Definition 1, since (6) 

and the equilibrium condition (3) together imply (4). However, the converse is not true, as 

can be seen by considering the differential condition for local superiority of an equilibrium 

strategy 𝑥, which differs from (10) in that the second term on the left-hand side is multiplied 

by 2 (Oechssler and Riedel, 2002). 

(13) 
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Figure 2. An equilibrium strategy is stable (and a CSS) or definitely unstable (and not a CSS) if, at the 
equilibrium point, the best-response curve (thick line) intersects the forty-five degree line (thin) from above or 
below, respectively. 

3. Asymmetric Two-Player Games 
An asymmetric two-player game is a function ℎ =  ℎ1 , ℎ2 : 𝑋1 × 𝑋2 → ℜ2, where 𝑋1 and 𝑋2 

are the strategy spaces of players 1 and 2, respectively.11 If player 1 uses strategy 𝑥1 and 

player 2 uses 𝑥2, their payoffs are ℎ1(𝑥1 , 𝑥2) and ℎ2(𝑥1 , 𝑥2), respectively. The strategy 

profile 𝑥 = (𝑥1 , 𝑥2) is an equilibrium in ℎ if each player’s strategy is a best response to that 

of the other player, i.e., for all strategy profiles 𝑦 = (𝑦1 , 𝑦2), 

ℎ1(𝑦1, 𝑥2) ≤ ℎ1 𝑥1, 𝑥2   and ℎ2(𝑥1 , 𝑦2) ≤ ℎ2(𝑥1 , 𝑥2). 

The equilibrium is strict if these best responses are unique, i.e., the first inequality in (14) 

is strict if 𝑦1 ≠ 𝑥1 and the second is strict if 𝑦2 ≠ 𝑥2. 

An equilibrium in an asymmetric two-player game ℎ is a different object than an equilibrium 

strategy in a symmetric game: it is a strategy profile rather than a single strategy. However, 

it may be identified with an equilibrium strategy in another, symmetric two-player game 𝑔. 

In that game, first one player is assigned to the role of player 1 in ℎ and the other is assigned 

to the role of player 2, and then the roles are interchanged. A strategy in 𝑔 is thus a strategy 

profile in ℎ: it specifies the player’s action in each of the two roles. A player’s payoff in 𝑔 is 

defined as the average of his two payoffs in ℎ – the payoff in player 1’s role and that in 

player 2’s role. The following definition presents this notion of symmetrization of an 

asymmetric two-player game more formally. The proposition that follows the definition, 

which is proved (for an arbitrary number of players) in Section ‎5, asserts that the 

(symmetric) equilibrium strategies in the resulting symmetric game are precisely the 

equilibria in the original asymmetric one.  

                                                           
11

 In this paper, superscript indices always refer to players in an asymmetric game. Subscript indices 

have other meanings, which depend on the context. 

(14) 
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Definition 4. The game obtained by symmetrizing an asymmetric two-player game 

ℎ =  ℎ1 , ℎ2 : 𝑋1 × 𝑋2 → ℜ2 is the symmetric game 𝑔: 𝑋 × 𝑋 → ℜ in which the strategy 

space 𝑋 is the product space12 𝑋1 × 𝑋2 and, for all 𝑥 =  𝑥1 , 𝑥2 , 𝑦 =  𝑦1 , 𝑦2 ∈ 𝑋, 

𝑔 𝑥, 𝑦 =
1

2
ℎ1 𝑥1, 𝑦2 +

1

2
ℎ2 𝑦1, 𝑥2 . 

Proposition 3. A strategy profile 𝑥 = (𝑥1 , 𝑥2) in an asymmetric two-player game ℎ is an 

equilibrium if and only if it is a (symmetric) equilibrium strategy in the symmetric game 𝑔 

obtained by symmetrizing ℎ. In this case, the equilibrium payoff in 𝑔 is equal to the players’ 

average equilibrium payoff in ℎ. 

This one-to-one correspondence between equilibria in the asymmetric game and equilibrium 

strategies in the symmetric one naturally leads to the following. 

Definition 5. A strategy profile 𝑥 = (𝑥1 , 𝑥2) in an asymmetric two-player game ℎ is stable, 

weakly stable or definitely unstable if it has the same property as a strategy in the symmetric 

game 𝑔 obtained by symmetrizing ℎ. 

The definition means that inequality (4), which defines stability in the symmetric case, is 

replaced in the asymmetric case by 

1

2
 ℎ1 𝑦1, 𝑥2 − ℎ1 𝑥1 , 𝑥2 + ℎ1 𝑦1, 𝑦2 − ℎ1 𝑥1 , 𝑦2  

+
1

2
 ℎ2 𝑥1 , 𝑦2 − ℎ2 𝑥1 , 𝑥2 + ℎ2 𝑦1, 𝑦2 − ℎ2 𝑦1 , 𝑥2  < 0. 

In other words, a strategy profile 𝑥 is stable if it gives a higher expected payoff than any 

other, nearby profile 𝑦 when (i) the opponent is equally likely to play according to 𝑥 or 𝑦 and 

(ii) both assignments of the players to the roles in ℎ are equally likely. 

A stable strategy profile is not necessarily an equilibrium. And even if it is an equilibrium, it is 

not necessarily strict. However, as the following proposition shows, every stable strategy 

profile is in a sense “locally strict”. 

Proposition 4. If 𝑥 = (𝑥1 , 𝑥2) is a stable strategy profile in an asymmetric two-player game 

ℎ =  ℎ1 , ℎ2 , then player 1’s strategy 𝑥1 has a neighborhood where it is the player’s unique 

best response to 𝑥2, and similarily for player 2. 

Proof. If 𝑥 is stable in ℎ, then it has a neighborhood where (15) holds for every other strategy 

profile 𝑦 =  𝑦1 , 𝑦2 . For 𝑦2 = 𝑥2, that inequality simplifies to  

 ℎ1 𝑦1, 𝑥2 < ℎ1 𝑥1, 𝑥2 . 

Therefore, there is neighborhood of 𝑥1 where this inequality holds for all 𝑦1 ≠ 𝑥1. The 

argument for player 2 is similar. ∎ 
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 The topology on 𝑋 is thus the product topology. 

(15) 
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Although the definition of stability in an asymmetric game is based on the stability of a 

strategy in an auxiliary symmetric game, Proposition 4 suggests that the former notion of 

stability is more demanding than the latter. This suggestion is supported by the concrete, 

exact comparison between stability in symmetric two-player games and in asymmetric 

games in Section ‎3.3. Additional support is provided by the fact, established in the next 

subsection, that for a particular, important class of games, stable strategy profiles are not 

only “locally strict” but are actually strict equilibria.  

3.1. Bimatrix games  
A bimatrix game is given by a pair of matrices (𝐴, 𝐵) of equal dimensions, 𝑚 × 𝑛. The 

strategy spaces of players 1 and 2 are the unit simplices in ℜ𝑚  and ℜ𝑛 , respectively. Viewing 

strategies as column vectors, the game ℎ =  ℎ1 , ℎ2 : 𝑋1 × 𝑋2 → ℜ is defined by (the payoffs 

functions) 

ℎ1 𝑥1 , 𝑥2 =  𝑥1 T𝐴𝑥2 and ℎ2 𝑥1, 𝑥2 =  𝑥1 T𝐵𝑥2 . 

As the next proposition shows, stability in this class of games has a rather strong meaning. 

This result, which is essentially due to Selten (1980; see also Hammerstein and Selten, 1994, 

Result 17; van Damme, 1991, Theorem 9.6.2; and footnote 13 below), is proved (for an 

arbitrary number of players) in Section ‎5.1. 

Proposition 5. A strategy profile in a bimatrix game ℎ =  ℎ1, ℎ2  is stable if and only if it is a 

strict equilibrium. In particular, every stable equilibrium is pure. 

The reason why a strategy profile that is not a strict equilibrium cannot be stable is rather 

simple. Stability in an asymmetric bimatrix game ℎ is determined by reference to an auxiliary 

symmetric game 𝑔, in which the two players take turns in playing the two rolls in ℎ.13 If a 

strategy profile 𝑥 =  𝑥1 , 𝑥2  in ℎ is not a strict equilibrium, for example, if there is some 

strategy 𝑦1 ≠ 𝑥1 that is a best response to 𝑥2 (in which case such a strategy exists in every 

neighborhood of 𝑥1), then using 𝑦1 instead of 𝑥1 when playing player 1’s role in ℎ does not 

decrease a player’s payoff in 𝑔. Moreover, playing according to 𝑦 =  𝑦1 , 𝑥2  rather than 𝑥 

does not decrease the payoff also if the opponent also plays according to 𝑦 rather than 𝑥. 

This is because a switch from 𝑥 to 𝑦 is effective only when the player is assigned to player 1’s 

role in ℎ, which is when the opponent is assigned to player 2’s role, for which both 𝑥 and 𝑦 

prescribe the same strategy (namely, 𝑥2). Therefore, the left-hand side of (4) is nonnegative, 

so that this inequality does not hold. 

The result that only strict equilibria are stable raises the question of whether it only indicates 

that the present notion of stability is inadequate for analyzing asymmetric bimatrix games. If 

                                                           
13

 Note that 𝑔 is not a symmetric 𝑘 × 𝑘 game, for any 𝑘. A strategy in 𝑔 is in a sense a behavior 

strategy. By definition of symmetrization, it prescribes one (mixed) strategy for player 1’s role in ℎ 

and another one for player 2’s role, but mixing such pairs of (mixed) strategies is not allowed. This 

implies that the usual notion of ESS would have to be extended somewhat to apply to 𝑔 (van Damme, 

1991, Definition 9.5.2). Here, such an extension is not required since the general notion of stability 

(Definition 1) is applicable to 𝑔, and can be shown (using rather similar arguments to those in the 

proof of Proposition 1) to coincide with that extension.  
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only static stability concepts are considered, the answer seems to be negative, since in this 

framework strict equilibrium is the only obvious extension of ESS to asymmetric bimatrix 

games (Hammerstein and Selten, 1994, p. 965; Hofbauer and Sigmund, 1998, p. 114). 

However, strictness is not a necessary condition for dynamic stability, i.e., asymptotic 

stability with respect to specified dynamics. Whether a given equilibrium is dynamically 

stable may depend on the choice of dynamics (Demichelis and Germano, 2000, Example 2). 

However, Samuelson and Zhang (1992, Theorem 4) showed that for a large class of 

reasonable (continuous) dynamics, every asymptotically stable outcome is, in some well-

defined sense, “almost” a strict equilibrium. In particular, if it is pure (which is not 

necessarily the case), then it must be a strict equilibrium. 

3.2. Games in the plane 
Another important class of asymmetric games is two-player games in which the players’ 

strategy spaces 𝑋1 and 𝑋2 are intervals or some other subsets of the real line. Strategy 

profiles are therefore points in the real plane. If the players’ payoff functions ℎ1 and ℎ2 are 

differentiable, the stability condition can be expressed in terms of the partial derivatives of 

these functions. The next proposition, which is proved (for an arbitrary number of players) in 

Section ‎5.2, presents such a condition for interior equilibria, i.e., equilibria in which the 

strategy of each player is an interior point in the player’s strategy space.  

Proposition 6. A sufficient condition for stability or definite instability of an interior 

equilibrium (𝑥1 , 𝑥2) with a neighborhood in which ℎ1 and ℎ2 have continuous second-order 

derivatives is that the matrix 

𝐻 =  
ℎ11

1 ℎ12
1

ℎ21
2 ℎ22

2  , 

with the derivatives evaluated at (𝑥1 , 𝑥2), is negative definite or positive definite, 

respectively. A necessary condition for weak stability is that the matrix is negative 

semidefinite.14  

Example 1. The players’ strategy spaces are the entire real line, and their payoffs are given 

by the quadratic functions 

ℎ1 𝑥, 𝑦 = −𝑥2 + 3𝑥𝑦  and  ℎ2 𝑥, 𝑦 = −
1

2
𝑦2 . 

It is not difficult to check that the origin  0,0  is the unique equilibrium. Since 

𝐻 =  
−2 3
0 −1

 , 

and this matrix is not negative semidefinite, by Proposition 6 the equilibrium is not even 

                                                           
14

 A square, 𝑘 × 𝑘 (not necessarily symmetric) matrix 𝐴 is negative definite if 𝑥T𝐴𝑥 < 0 for all 

nonzero 𝑥 ∈ ℜ𝑘 . A necessary and sufficient condition for this is that all eigenvalues 𝜆 of the 

symmetric matrix (1/2)(𝐴 + 𝐴T) satisfy 𝜆 < 0. The definition and characterization of negative 

semidefiniteness are similar, except that the two strict inequalities are replaced by weak ones.  

(16) 

(17) 

(18) 
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weakly stable. This can also be seen directly, by considering the game 𝑔 obtained by 

symmetrizing ℎ = (ℎ1 , ℎ2). The payoff from using  0,0  in 𝑔 is 0 regardless of the 

opponent’s strategy. Using (3,4) gives −8.5 if the opponent uses  0,0  (−9 when playing 

the first role in ℎ and −8 when playing the second role) and 9.5 if the opponent also uses 

 3,4 . Hence, if the opponent is equality likely to use  0,0  or  3,4 , the latter is a better 

response than the former (since it gives a positive expected payoff, 0.5). The same is true 

also for any positive multiple of  3,4 . This shows that the equilibrium  0,0  is not weakly 

stable in ℎ. However, the same strategy profile is stable in the game  

ℎ1 𝑥, 𝑦 = −𝑥2 + 3𝑥𝑦  and  ℎ2 𝑥, 𝑦 = −
1

2
𝑦2 − 𝑥𝑦, 

which differs from (17) only in the second term in ℎ2, and also has  0,0  as the unique 

equilibrium. This is because, in this game, 

𝐻 =  
−2 3
−1 −1

 , 

which is a negative definite matrix.   

For any interior equilibrium as in Proposition 6, negative definiteness of the matrix 𝐻 implies 

that  

ℎ11
1 , ℎ22

2 < 0  and  ℎ11
1 ℎ22

2 > ℎ12
1 ℎ21

2 . 

However, these inequalities by themselves are not a sufficient condition for stability of 

the equilibrium, as demonstrated by the fact that they hold for (17) (as well as for (19)). On 

the other hand, (20) is a sufficient (and almost necessary) condition for D-stability of the 

matrix 𝐻 (Hofbauer and Sigmund, 1998). As explained in Section ‎5.2 below, D-stability 

implies that a natural myopic adjustment process in which both players simultaneously and 

continuously adjust their strategies converges to the equilibrium point if it starts sufficiently 

close to it. Thus, asymptotic stability with respect to this process is essentially a weaker 

condition than static stability of the equilibrium as defined in this paper. For example, it 

holds for both games in Example 1. 

The same is not necessarily true for other kinds of adjustment processes. In particular, static 

stability of the equilibrium does not imply asymptotic stability with respect to another 

natural adjustment process, in which the players alternate in myopically playing best 

response to each other’s strategy. As seen in Figure 3, staring from any other strategy 

profile, these dynamics quickly bring the players to the (statically unstable) equilibrium  0,0  

in the game (17), but take them increasingly farther away from the same (statically stable) 

equilibrium point in (19).  

This difference between the two kinds of dynamics can be understood by considering the 

equivalent form of (20) in which the right inequality is replaced by  

 −
ℎ21

2

ℎ22
2   −

ℎ12
1

ℎ11
1  < 1. 

(19) 

(20) 

(21) 
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Figure 3. The players’ reaction curves in the two games in Example 1. Player 1’s reaction curve (upward sloping 
line) is the same in both games, but those of player 2 (horizontal and downward sloping lines) are different. 
The arrows show possible trajectories under the alternating-best-responses dynamics, in which player 1 moves 
first, then player 2, then player 1 again, and so on. For the game given by (17) (solid arrows), the trajectory 
ends at the equilibrium point (𝟎, 𝟎). For the game in (19) (dotted arrows), it spirals ways.  

Evaluated at the equilibrium point, where the players’ reactions curves intersect, the left-

hand side of (21) is the product of the slope of player 2’s curve and the reciprocal of player 

1’s curve (cf. (13)). The condition for asymptotic stability of the equilibrium with respect to 

alternating best responses is that the absolute value of this product be less than 1 

(Fudenberg and Tirole, 1995). This stronger condition, which means that player 1’s reaction 

curve is steeper than 2’s, is not implied by (20). The condition is also not implied by, and it 

does not imply, negative definiteness of 𝐻, as demonstrated by the fact that it does not hold 

for the game in (19) but holds for that in (17).  

In summary, for games in the plane, the two notions of dynamic stability considered above 

are not equivalent, and none of them is equivalent to the notion of static stability introduced 

in this paper. As shown in the next subsection, this nonequivalence is a consequence of the 

asymmetry of the games.  

3.3. Inessentially asymmetric games 
An asymmetric two-player game ℎ =  ℎ1 , ℎ2  can be essentially symmetric. This is so if the 

players’ strategy spaces are identical and their roles are interchangeable, i.e., 𝑋1 = 𝑋2 and 

ℎ1 𝑥1 , 𝑥2 = ℎ2 𝑥2, 𝑥1  

for all strategy profiles  𝑥1 , 𝑥2 . This condition holds, for example, for all bimatrix games 

of the form  𝐴, 𝐴T , where 𝐴 is any 𝑛 × 𝑛 matrix. The condition is often taken to be the 

definition of a symmetric game (von Neumann and Morgenstern, 1953). However, this 

notion of symmetry is different from that in Section ‎2. To distinguish symmetric games in the 

(22) 
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sense of Section 2 from asymmetric games satisfying the above condition, the latter will be 

referred to as inessentially asymmetric games. 

The distinction between symmetry and inessentially asymmetry may seem like a mere 

formality. For example, for most purposes an inessentially asymmetric bimatrix game 

 𝐴, 𝐴T  can be identified with the symmetric 𝑛 × 𝑛 game with payoff matrix 𝐴. More 

generally, for any strategy space 𝑋, there is a one-to-one correspondence between the class 

of all inessentially asymmetric two-player games ℎ =  ℎ1 , ℎ2 : 𝑋 × 𝑋 → ℜ2 (satisfying (22)) 

and the class of all symmetric two-player games with this strategy space. The 

correspondence is given by projection on the first coordinate, 

ℎ ↦ ℎ1 . 

Nevertheless, for the purpose of stability analysis, inessential asymmetry is not the same 

as symmetry. Whereas for symmetric games stability is defined for strategies (Definition 1), 

for asymmetric games it is defined for strategy profiles (Definition 5). Hence, only the latter 

covers asymmetric equilibria, i.e., equilibria  𝑥1 , 𝑥2  with 𝑥1 ≠ 𝑥2. Furthermore, even for 

symmetric equilibria (𝑥1 = 𝑥2), stability of the equilibrium in the inessentially asymmetric 

game is not equivalent to stability of the equilibrium strategy in the corresponding 

symmetric game.15 In fact, as shown below, stability of the equilibrium is a more stringent 

requirement. This may seem a bit surprising, seeing that the definition of stability of 

(symmetric or asymmetric) equilibrium (Definition 5) is based on that of a (symmetric) 

equilibrium strategy in an auxiliary symmetric game. However, that auxiliary game is 

obtained from ℎ not by the projection (23) but rather by symmetrization. Compare the next 

result, which is proved (for an arbitrary number of players) in Section ‎5.3, with Proposition 3 

and Definition 5. 

Proposition 7. A symmetric strategy profile (𝑥, 𝑥) in an inessentially asymmetric two-player 

game ℎ =  ℎ1 , ℎ2 : 𝑋 × 𝑋 → ℜ2 is an equilibrium if and only if it is an equilibrium in the 

corresponding symmetric game ℎ1: 𝑋 × 𝑋 → ℜ. If (𝑥, 𝑥) is stable in ℎ, then the strategy 𝑥 is 

stable in ℎ1, but the converse does not hold even if (𝑥, 𝑥) is an equilibrium. 

The second part of Proposition 7 is illustrated by the example of an equilibrium strategy 𝑥 in 

a symmetric 𝑛 × 𝑛 game with (any) payoff matrix 𝐴. By Proposition 1, 𝑥 is stable if and only 

if it is an ESS. By Proposition 5, the symmetric equilibrium (𝑥, 𝑥) is stable in the 

corresponding inessentially asymmetric bimatrix game  𝐴, 𝐴T  if and only if it satisfies the 

stronger condition of being strict.  

The intuitive reason why stability of an equilibrium strategy 𝑥 in a symmetric game does not 

imply the same for the equilibrium (𝑥, 𝑥) in the corresponding inessentially asymmetric 

game is that, for (𝑥, 𝑥) to be stable, it has to withstand more kinds of perturbations than 𝑥. 

First, it has to resist changes in one coordinate only, which result in asymmetric strategy 
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 For bimatrix games, a related difference holds for the index and degree of the symmetric 

equilibrium, which may depend on whether it is viewed as an equilibrium in the inessentially 

asymmetric bimatrix game or in the corresponding symmetric 𝑛 × 𝑛 one (Demichelis and Germano, 

2000). 

(23) 
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profiles like (𝑦, 𝑥), with 𝑦 ≠ 𝑥. The use of (𝑦, 𝑥) by both players in the game obtained by 

symmetrizing the inessentially asymmetric one is tantamount to a correlated deviation from 

the equilibrium in the original symmetric game: each of the players may use the strategy 𝑦, 

but they do not both use it (and hence the payoff corresponding to the strategy profile 

(𝑦, 𝑦) is irrelevant, unlike in Definition 1). The equilibrium withstands such correlated 

deviations if and only if it is “locally strict”, i.e., 𝑥 has a neighborhood where it is the unique 

rest response to itself (see Proposition 4). Second, (𝑥, 𝑥) has to withstand perturbations in 

which the two players change to different strategies, say 𝑦1 and 𝑦2. Whether it satisfies this 

requirement depends, inter alia, on the payoff of a player using 𝑦1 against an opponent 

using 𝑦2 (again unlike in Definition 1, where alternatives to 𝑥 are considered one at a time).  

These considerations suggest that the seemingly subtle difference between modeling a 

pairwise contest as a symmetric game and modeling it as an inessentially asymmetric game 

may actually translate into widely divergent predications. This, in fact, is not a novel 

observation but one made long ago in the biological game theory literature, where 

inessential asymmetry is often referred to by other names such as uncorrelated asymmetry 

(Maynard Smith and Parker, 1976; the correlation this term refers to is between the players’ 

traits and their payoff functions). A symmetric pairwise contest with identical contestants, 

such as two equal-size males seeking to obtain a newly vacated territory, is best modeled as 

a symmetric game such as the Hawk–Dove game (or Chicken). Precedence or other 

perceivable asymmetries between the contestants, which do not by themselves change the 

payoffs (i.e., the stakes or the opponents’ fighting abilities), makes the contest an 

inessentially asymmetric game, and, in reality, may significantly affect the contestants’ 

behavior (Maynard Smith, 1982; Riechert, 1998). 

Another example of the difference between stability of an equilibrium strategy in a 

symmetric two-player game and stability of the symmetric equilibrium in the corresponding 

inessentially asymmetric game is provided by games with a unidimensional strategy space. If 

the payoff functions ℎ1 and ℎ2 in an asymmetric game are twice continuously differentiable 

in a neighborhood of an interior symmetric equilibrium (𝑥, 𝑥), then the inessential 

asymmetry condition (22) implies that, at that point, 

ℎ11
1 = ℎ22

2  and ℎ12
1 = ℎ21

2 . 

With these equalities, the negative definiteness condition in Proposition 6 is equivalent 

to (20) (which is the condition for D-stability of the matrix 𝐻 defined in (16)), which in turn is 

equivalent to the simpler condition 

 ℎ21
2  < −ℎ22

2 . 

Since ℎ22
2 ≤ 0 holds automatically at any interior equilibrium, the last condition only adds 

the requirements that the inequality is strict and that  

 
ℎ21

2

ℎ22
2  < 1. 

(24) 

(25) 
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The last inequality says that, at the equilibrium point, the slope of player 2’s reaction curve is 

less than 1 but greater than −1. This is stronger than the stability condition for symmetric 

games (Section ‎2.2), which consists of the former inequality only. 

Note that, with (24), the left-hand side of (21) can be replaced by its absolute value; in both 

cases the inequality is equivalent to (25). This implies that, for inessentially asymmetric 

games in the plane, unlike for “truly” asymmetric ones (Section ‎3.2), asymptotic stability of a 

symmetric equilibrium with respect to the continuous adjustment process is essentially 

equivalent to stability with respect to alternating best responses. In addition, both are 

essentially equivalent to static stability (since for inessentially asymmetric games D-stability 

of the matrix 𝐻 is equivalent to negative definiteness). Thus, dynamic and static stability of 

an interior symmetric equilibrium are essentially equivalent, and both are stronger than 

(static) stability of the equilibrium strategy in the corresponding symmetric game. 

4. Symmetric Multiplayer Games 
A symmetric 𝑛-player game (𝑛 ≥ 1) is a real-valued function 𝑔: 𝑋 × 𝑋 × ⋯ × 𝑋 → ℜ, defined 

on the 𝑛-times product of a topological space 𝑋, that is invariant to permutations of its 

second through 𝑛th arguments. 𝑋 is the players’ common strategy space. If one player uses 

strategy 𝑥 and the others use 𝑦, 𝑧, … , 𝑤 (in any order), the first player’s payoff is 

𝑔(𝑥, 𝑦, 𝑧, … , 𝑤). A strategy 𝑥 is a (symmetric) equilibrium strategy in 𝑔 if, for all strategies 𝑦,  

𝑔 𝑦, 𝑥, … , 𝑥 ≤ 𝑔 𝑥, 𝑥, … , 𝑥 . 

Generalizing the notion of stable strategy from symmetric two-player games to an 

arbitrary number of players is not straightforward. The gist of Definition 1 is that a stable 

strategy 𝑥 is superior to any other strategy 𝑦 close to it if the opponent it equally likely to 

use 𝑥 or 𝑦. In an 𝑛-player game, if each of the opponents is equally likely to use 𝑥 or 𝑦 then 

the expected number of opponents using 𝑥 is equal to the expected number of opponents 

using 𝑦. Denoting by 𝑝𝑗  the probability that 𝑛 − 𝑗 of the opponents use 𝑥 (and 𝑗 − 1 use 𝑦), 

the condition of equal expectations can be written as 

  𝑗 − 1 𝑝𝑗 =
𝑛 − 1

2
.

𝑛

𝑗 =1

 

However, Eq. (27) does not completely specify the probability vector 𝑝 = (𝑝1 , 𝑝2 , … , 𝑝𝑛). 

One way of completing the definition of stability is to require 𝑥 to be superior to 𝑦 for every 

𝑝 satisfying (27). An alternative is to require this only for a particular, “natural” 𝑝. As shown 

below, these two alternatives can differ only if 𝑛 ≥ 3. For single- and two-player games they 

both give the same definition, which in the latter case coincides with that in Definition 1.  

Definition 6. For a probability vector 𝑝 = (𝑝1 , 𝑝2 , … , 𝑝𝑛), a strategy 𝑥 in a symmetric 𝑛-

player game 𝑔: 𝑋 × 𝑋 × ⋯ × 𝑋 → ℜ is 𝑝-stable, weakly 𝑝-stable or definitely 𝑝-unstable if it 

has a neighborhood where  

 

(26) 

(27) 
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 𝑝𝑗  𝑔(𝑦, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦   
𝑗−1 times

) − 𝑔(𝑥, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦   
𝑗−1 times

) 

𝑛

𝑗 =1

< 0, 

a similar weak inequality or the reverse (strict) inequality, respectively, holds for all 

strategies 𝑦 ≠ 𝑥. Strategy 𝑥 is stable, weakly stable or definitely unstable if the 

corresponding condition holds for all probability vectors 𝑝 satisfying (27). 

The left-hand side of (28) expresses a player’s (positive or negative) expected gain from 

switching from strategy 𝑥 to 𝑦, for a particular distribution of the opponents’ strategies. For 

single-player games (𝑛 = 1), the latter is of course irrelevant, so that a stable strategy is 

simply a strict local optimum: switching to any other, nearby strategy reduces the payoff. For 

𝑛 = 2, condition (27) reads 𝑝2 = 1/2, and thus implies that the left-hand side of (28) is 

equal to one-half that of (4), so that these two inequalities are equivalent. Thus, stability and 

𝑝-stability can differ only for 𝑛 ≥ 3. Special cases of 𝑝-stability are dependent-stability, 

defined by 

𝑝𝑗 =  

1

2
, 𝑗 = 1, 𝑛             

0, 𝑗 = 2, … , 𝑛 − 1

 , 

independent-stability, defined by  

𝑝𝑗 =
1

2𝑛−1
 

𝑛−1

𝑗−1
 , 𝑗 = 1,2, … , 𝑛, 

and uniform-stability, defined by 

𝑝𝑗 =
1

𝑛
, 𝑗 = 1,2, … , 𝑛. 

In each case, the corresponding notions of weak stability and definite instability are similarly 

defined. Note that (29) describes the distribution of the number of opponents using strategy 

𝑥 (and the number using the alternative strategy 𝑦) if either all of them use 𝑥 or they all use 

𝑦, and both possibilities have probability 1/2. By contrast, (30) corresponds to independent 

randomizations by the players between 𝑥 and 𝑦 with half-half probabilities. This symmetry 

between 𝑥 and 𝑦 implies that both (29) and (30) actually satisfy a stronger condition than 

the equal-expectations condition (27), namely, 

𝑝𝑗 = 𝑝𝑛−𝑗+1 , 𝑗 = 1,2, … , 𝑛. 

This equality, which obviously holds also for (31), says that the probability that 𝑛 − 𝑗 of the 

opponents use 𝑥 and 𝑗 − 1 use 𝑦 is equal to the probability that it is the other way around. 

In other words, the number of opponents using 𝑥 and the number using 𝑦 (which sum up to 

𝑛 − 1) have equal distributions. Equivalently, their joint distribution is symmetric.  

For any 𝑛 ≥ 2, (32) implies that the left-hand side of (28) is equal to the more symmetrically-

looking expression 

(28) 

(29) 

(30) 

(31) 

(32) 
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𝐺𝑝(𝑦, 𝑥) ≝  𝑝𝑗  𝑔(𝑦, … , 𝑦   ,
𝑗  times

𝑥, … , 𝑥) − 𝑔(𝑥, … , 𝑥   ,
𝑗  times

𝑦, … , 𝑦) .

𝑛

𝑗 =1

 

Thus, for 𝑝 satisfying (32), a strategy 𝑥 is 𝑝-stable if and only if it has a neighborhood where 

it is the unique best response to itself in the symmetric two-player zero-sum game 

𝐺𝑝 : 𝑋 × 𝑋 → ℜ.  

1.1. Symmetric multilinear games 
A special case of symmetric multiplayer games is symmetric multilinear games, which are 

the 𝑛-player generalization of the games in Section ‎2.1.16 As in the latter, the strategy space 

𝑋 is the unit simplex in some Euclidean space and the game 𝑔: 𝑋 × 𝑋 × ⋯ × 𝑋 → ℜ is 

multilinear, i.e., linear in each of its 𝑛 arguments.  

As shown in Section ‎2.1, for 𝑛 = 2 stability as defined in this paper coincides with the 

standard notion of ESS. The latter can easily be generalized to multilinear games with an 

arbitrary number of players.  

Definition 7. A strategy 𝑥 in a symmetric multilinear game is an evolutionarily stable strategy 

(ESS) if, for every other strategy 𝑦, for sufficiently small 𝜖 > 0 

𝑔 𝑦, 𝑦𝜖 , 𝑦𝜖 , … , 𝑦𝜖 < 𝑔 𝑥, 𝑦𝜖 , 𝑦𝜖 , … , 𝑦𝜖 , 

where 𝑦𝜖 =  1 − 𝜖 𝑥 + 𝜖𝑦.  

The condition in Definition 7 is equivalent to the following (Broom et at., 1997): For every 

𝑦 ≠ 𝑥, the finite sequence 

𝑔(𝑦, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦   
𝑗−1 times

) − 𝑔(𝑥, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦   
𝑗−1 times

), 𝑗 = 1, 2, … , 𝑛,  

has at least one nonzero entry, and the first such entry is negative. This equivalence shows 

that Definition 7 is indeed an extension of Definition 2. However, it is not the only possible 

extension. Another stability notion that is equivalent to ESS if 𝑛 = 2 is local superiority, or 

strong uninvadability, which refers to the last entry in (34) (Bomze and Pötscher, 1989; van 

Damme, 1991, Theorem 9.2.8; Weibull, 1995, Propositions 2.6; Bomze and Weibull, 1995).  

Definition 8. A strategy 𝑥 is locally superior if it has a neighborhood where, for every other 

strategy 𝑦, 

𝑔 𝑦, 𝑦, … , 𝑦 < 𝑔 𝑥, 𝑦, … , 𝑦 . 

It is easy to see that every locally superior strategy is an ESS. However, as shown below, 

for 𝑛 > 2 not every ESS is locally superior. Thus, these two notions of stability are not 

equivalent.17 This demonstrates a point of general significance. Namely, for some classes of 

                                                           
16

 Note that, here, 𝑛 denotes the number of players, not the number of pure strategies. 

17
 This ostensibly contradicts Theorem 2 of Bukowski and Miekisz (2004), which asserts that local 

superiority strategy and the ESS condition are equivalent even for multiplayer games. However, these 

(33) 

(34) 

(35) 
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games there is more than one reasonable notion of static stability. This underlines the 

desirability of deriving such a notion from general principles, like Definition 6, rather than 

from game-specific considerations. It also raises the question of which of the two definitions 

in this subsection is equivalent to the restriction of the general notion of stability (Definition 

6) to multilinear games. As the following theorem shows, neither of them is equivalent to it. 

However, local superiority is equivalent to certain kinds of 𝑝-stability. 

Theorem 1. For symmetric multilinear games, the following implications and equivalences 

among the possible properties of a strategy 𝑥 hold:  

stable ⇒ dependently-stable ⇔ independently-stable ⇔ locally superior ⇒ 

uniformly-stable ⇒ ESS ⇒ equilibrium strategy. 

Proof. The first implication holds by definition of stability. To prove the second implication 

(local superiority ⇒ uniform-stability), consider a locally superior strategy 𝑥. Such a strategy 

has a convex neighborhood 𝑈 where (35) holds for every strategy 𝑦 ≠ 𝑥. For every such 𝑦 

and any 0 < 𝑡 ≤ 1, 

𝑔  1 − 𝑡 𝑥 + 𝑡𝑦,  1 − 𝑡 𝑥 + 𝑡𝑦, … ,  1 − 𝑡 𝑥 + 𝑡𝑦 

< 𝑔 𝑥,  1 − 𝑡 𝑥 + 𝑡𝑦, … ,  1 − 𝑡 𝑥 + 𝑡𝑦 . 

By the multilinearity of 𝑔, (36) is equivalent to 

 𝐵𝑗−1,𝑛−1 𝑡  𝑔(𝑦, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦   
𝑗−1 times

) − 𝑔(𝑥, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦   
𝑗−1 times

) 

𝑛

𝑗 =1

< 0, 

where 𝐵𝑗−1,𝑛−1 𝑡 =  𝑛−1
𝑗−1 𝑡

𝑗−1 1 − 𝑡 𝑛−𝑗  is Bernstein polynomial. By the identity 

 𝐵𝑗−1,𝑛−1 𝑡  𝑑𝑡 
1

0

=
1

𝑛
, 𝑗 = 1,2, … , 𝑛, 

the inequality obtained by integrating the left-hand side of (37) over 𝑡 coincides with the 

special case of (28) (given by (31)) that defines uniform-stability. This proves that 𝑥 is 

uniformly-stable. 

The penultimate implication in the theorem is a special case of the following result. 

Lemma 1. For a probability vector 𝑝 = (𝑝1 , 𝑝2 , … , 𝑝𝑛), with 𝑝𝑛 ≠ 0, every 𝑝-stable strategy 𝑥 

is an ESS.  

Proof. For a 𝑝-stable strategy 𝑥 and any strategy 𝑦 ≠ 𝑥, for sufficiently small 𝜖 > 0 the 

following expression is negative: 

                                                                                                                                       
authors’ definition of ESS is different from (and more demanding than) Definition 7 in that it 

interchanges the two logical quantifiers and requires that, for sufficiently small 𝜖 > 0, (33) holds for 

all 𝑦 ≠ 𝑥. (Using standard terminology, this requirement means that there is a uniform invasion 

barrier.) 

(36) 

(37) 
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 𝑝𝑗  𝑔(𝑦𝜖 , 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦𝜖 , … , 𝑦𝜖     
𝑗−1 times

) − 𝑔(𝑥, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦𝜖 , … , 𝑦𝜖     
𝑗−1 times

) 

𝑛

𝑗 =1

, 

where 𝑦𝜖 =  1 − 𝜖 𝑥 + 𝜖𝑦. The expression can also be written as 

 𝑝𝑗   
𝑗−1

𝑘−1
 𝜖𝑘𝑔 (𝑦 − 𝑥, 𝑥, … , 𝑥   ,

𝑛−𝑗 times 

𝑦 − 𝑥, … , 𝑦 − 𝑥           ,
𝑘−1 times 

𝑗

𝑘=1

𝑛

𝑗 =1

𝑥, … , 𝑥   
𝑗−𝑘 times

), 

where 𝑔  denotes the multilinear extension of 𝑔 (the domain of which consists of all 𝑛-tuples 

of linear combinations of strategies). This is a polynomial in 𝜖, in which the constant term is 

zero and the coefficients of the higher-order terms are  

  𝑝𝑗  
𝑗−1

𝑘−1
 

𝑛

𝑗=𝑘

 𝑔 (𝑦 − 𝑥, … , 𝑦 − 𝑥           ,
𝑘 times 

𝑥, … , 𝑥), 𝑘 = 1,2, … , 𝑛. 

Since the polynomial is negative for sufficiently small 𝜖 > 0, the sequence of coefficients 

(38) must have the property that at least one of its entries is not zero, and the first such 

entry is negative. The expression in parenthesis in (38) is the sum of nonnegative terms, and 

at least the last term is positive, since 𝑝𝑛 ≠ 0. Therefore, that expression is positive, so that 

dropping it does not affect the signs of the various entries in (38). This implies that the 

sequence (34) also has the property described above, for otherwise either  

𝑔(𝑦, 𝑦, … , 𝑦   ,
𝑗−1 times

𝑥, … , 𝑥   
𝑛−𝑗 times

) − 𝑔(𝑥, 𝑦, … , 𝑦   ,
𝑗−1 times

𝑥, … , 𝑥   
𝑛−𝑗 times

) = 0 

would hold for all 1 ≤ 𝑗 ≤ 𝑛 or  

𝑔(𝑦, 𝑦, … , 𝑦   ,
𝑗−1 times

𝑥, … , 𝑥   
𝑛−𝑗 times

) − 𝑔(𝑥, 𝑦, … , 𝑦   ,
𝑗−1 times

𝑥, … , 𝑥   
𝑛−𝑗 times

) > 0 

would hold for the smallest 𝑗 for which the equality does not hold. Both possibilities 

contradict the previous finding, since they imply that either  

𝑔 (𝑦 − 𝑥, … , 𝑦 − 𝑥           ,
𝑗  times 

𝑥, … , 𝑥) = 0 

holds for all 1 ≤ 𝑗 ≤ 𝑛 or  

𝑔 (𝑦 − 𝑥, … , 𝑦 − 𝑥           ,
𝑗  times 

𝑥, … , 𝑥) > 0 

holds for the smallest 𝑗 for which the equality does not hold. This contradiction proves that 𝑥 

is an ESS. ∎ 

The last implication in the theorem follows from the fact that the ESS condition gives (in the 

limit 𝜖 → 0) an inequality similar to (33) in which 𝑦𝜖  is replaced by 𝑥 and the strict inequality 

is replaced by a weak one.  

(38) 
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It remains to prove the two equivalences in the theorem. For 0 < 𝑡 ≤ 1, call a strategy 𝑥  

𝑡-stable if it has a neighborhood 𝑈 such that (35) holds for every strategy 𝑦 ≠ 𝑥 in the set 

𝑈𝑡 =   1 − 𝑡 𝑥 + 𝑡𝑧│𝑧 ∈ 𝑈 . 

Local superiority is a special case of 𝑡-stability, corresponding to 𝑡 = 1. The following 

lemma shows that, in fact, it is the only case.  

Lemma 2. For every 0 < 𝑡 ≤ 1, a strategy 𝑥 is 𝑡-stable if and only if it is locally superior. 

Proof. Fix 0 < 𝑡 ≤ 1, and let 𝑥 be a 𝑡-stable strategy, with a neighborhood 𝑈 as in the 

definition. Since the set 𝑈𝑡  defined in (39) is also a neighborhood of 𝑥, and every 𝑦 ≠ 𝑥 in 𝑈𝑡  

satisfies (35), 𝑥 is locally superior. 

Conversely, suppose that 𝑥 is locally superior, and let 𝑈 be a convex neighborhood of 𝑥 

where every strategy 𝑦 ≠ 𝑥 satisfies (35). The convexity of 𝑈 implies that the set 𝑈𝑡  defined 

in (39) is a subset of 𝑈. Therefore, every 𝑦 ≠ 𝑥 in 𝑈𝑡  satisfies (35), which proves that 𝑥 is 𝑡-

stable. ∎ 

Since (36) and (37) are equivalent for 0 < 𝑡 ≤ 1, and 𝐵𝑗−1,𝑛−1 1/2 =  𝑛−1
𝑗−1 (1/2)𝑛−1 

(𝑗 = 1,2, … , 𝑛), comparison with (30) shows that independent-stability is equivalent to 1/2-

stability. Therefore, by Lemma 2, it is also equivalent to local superiority. To prove that local 

superiority is equivalent also to dependent-stability, note, first, that by Lemma 1 every 

locally superior strategy (which is necessarily independently-stable) is an ESS, and hence also 

an equilibrium strategy, and the same is true for every dependently-stable strategy. The 

equivalence of these two conditions is therefore an immediate consequence of the following 

lemma, which completes the proof of the theorem. 

Lemma 3. An equilibrium strategy 𝑥 has a neighborhood where, for all 𝑦 ≠ 𝑥, 

𝑔 𝑦, 𝑦, … , 𝑦 − 𝑔 𝑥, 𝑦, … , 𝑦 < 0 

if and only if it has a neighborhood where, for all 𝑦 ≠ 𝑥, 

 𝑔 𝑦, 𝑦, … , 𝑦 − 𝑔 𝑥, 𝑦, … , 𝑦  +  𝑔 𝑦, 𝑥, … , 𝑥 − 𝑔 𝑥, 𝑥, … , 𝑥  < 0. 

Proof. One direction is trivial: (40) and the equilibrium condition (26) imply (41). To prove 

the other direction, suppose that the equilibrium strategy 𝑥 has a neighborhood of the 

second kind in the lemma but does not have a neighborhood of the first kind. It has to be 

shown that this assumption leads to a contradiction.  

Let  𝑦𝑘 𝑘≥1 be a sequence of strategies that converges to 𝑥 such that, for all 𝑘, inequality 

(41) holds for 𝑦 = 𝑦𝑘  but (40) does not hold, i.e.,  

𝑔 𝑦𝑘 , 𝑦𝑘 , … , 𝑦𝑘 − 𝑔 𝑥, 𝑦𝑘 , … , 𝑦𝑘 ≥ 0. 

If all the other players use 𝑥, none of the strategies 𝑦𝑘  is a best response (for otherwise 

the left-hand sides of (40) and (41) would be equal for 𝑦 = 𝑦𝑘 ). Hence, each of them can be 

presented as  

(39) 

(40) 

(41) 

(42) 



24 

𝑦𝑘 =  1 − 𝛼𝑘 𝑤𝑘 + 𝛼𝑘𝑧𝑘 , 

where 𝑧𝑘  is a strategy whose support includes only pure strategies that are not best 

responses when everyone else uses 𝑥, 𝑤𝑘  is a strategy whose support includes only pure 

strategies that are best responses, and 0 < 𝛼𝑘 ≤ 1. Since there are only finitely many pure 

strategies, there is some 𝛿 > 0 such that, for all 𝑘, 

𝑔 𝑧𝑘 , 𝑥, … , 𝑥 − 𝑔 𝑥, 𝑥, … , 𝑥 < −𝛿, 

while  

𝑔 𝑤𝑘 , 𝑥, … , 𝑥 − 𝑔 𝑥, 𝑥, … , 𝑥 = 0. 

By (42), (43), (44) and (45),  

 𝑔 𝑦𝑘 , 𝑦𝑘 , … , 𝑦𝑘 − 𝑔 𝑦𝑘 , 𝑥, … , 𝑥  −  𝑔 𝑥, 𝑦𝑘 , … , 𝑦𝑘 − 𝑔 𝑥, 𝑥, … , 𝑥  > 𝛿𝛼𝑘 . 

As 𝑘 → ∞, the two expressions in parentheses tend to zero, since 𝑦𝑘 → 𝑥. Therefore, 

𝛼𝑘 → 0, which by (43) implies that 𝑤𝑘 → 𝑥. It follows that, for almost all 𝑘 (i.e., all 𝑘 > 𝐾, 

for some integer 𝐾), either 𝑦 = 𝑤𝑘  satisfies (41) or 𝑤𝑘 = 𝑥. By (45), in both cases 

𝑔 𝑤𝑘 , 𝑤𝑘 , … , 𝑤𝑘 − 𝑔 𝑥, 𝑤𝑘 , … , 𝑤𝑘 ≤ 0. Therefore, for almost all 𝑘 

𝛼𝑘
−1 𝑔 𝑤𝑘 , 𝑦𝑘 , … , 𝑦𝑘 − 𝑔 𝑥, 𝑦𝑘 , … , 𝑦𝑘  

≤ 𝛼𝑘
−1 𝑔 𝑤𝑘 , 𝑦𝑘 , … , 𝑦𝑘 − 𝑔 𝑥, 𝑦𝑘 , … , 𝑦𝑘  

− 𝛼𝑘
−1 1 − 𝛼𝑘 𝑛−1 𝑔 𝑤𝑘 , 𝑤𝑘 , … , 𝑤𝑘 − 𝑔 𝑥, 𝑤𝑘 , … , 𝑤𝑘  

=  𝛼𝑘
−1𝐵𝑗−1,𝑛−1 𝛼𝑘  𝑔(𝑤𝑘 , 𝑤𝑘 , … , 𝑤𝑘       ,

𝑛−𝑗 times

𝑧𝑘 , … , 𝑧𝑘)

𝑛

𝑗 =2

− 𝑔(𝑥, 𝑤𝑘 , … , 𝑤𝑘       ,
𝑛−𝑗 times

𝑧𝑘 , … , 𝑧𝑘) . 

The right-hand side tends to zero as 𝑘 → ∞, since 𝑤𝑘 → 𝑥. Therefore, for almost all 𝑘 

𝑔 𝑤𝑘 , 𝑦𝑘 , … , 𝑦𝑘 − 𝑔 𝑥, 𝑦𝑘 , … , 𝑦𝑘 <
1

2
𝛿𝛼𝑘 . 

On the other hand, by (44) and since 𝑦𝑘 → 𝑥, for almost all 𝑘 

1

2
𝛿𝛼𝑘 < 𝛼𝑘   𝑔 𝑥, 𝑥, … , 𝑥 − 𝑔 𝑧𝑘 , 𝑥, … , 𝑥  +  𝑔 𝑧𝑘 , 𝑥, … , 𝑥 − 𝑔 𝑧𝑘 , 𝑦𝑘 , … , 𝑦𝑘  

+  𝑔 𝑤𝑘 , 𝑦𝑘 , … , 𝑦𝑘 − 𝑔 𝑤𝑘 , 𝑥, … , 𝑥   . 

By (43) and (45), the right-hand side is equal to 𝑔 𝑤𝑘 , 𝑦𝑘 , … , 𝑦𝑘 − 𝑔 𝑦𝑘 , 𝑦𝑘 , … , 𝑦𝑘 , which 

by (42) is less than or equal to  

𝑔 𝑤𝑘 , 𝑦𝑘 , … , 𝑦𝑘 − 𝑔 𝑥, 𝑦𝑘 , … , 𝑦𝑘 . 

This contradicts (46). The contradiction proves that an equilibrium strategy 𝑥 as above does 

not exist. ∎ 

(43) 

(44) 

(45) 

(46) 
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None of the four implications in Theorem 1 holds as equivalence. For the fourth implication, 

the reverse implication does not hold even in the special case of symmetric 2 × 2 games: it 

is well known that not every equilibrium strategy in such a game is an ESS. For the other 

three implications, the reverse implications do hold for two-player games, but as the 

following example shows, this is not so in general.  

Example 2. A symmetric four-player multilinear game 𝑔 is defined as follows. There are 

three possible actions (or pure strategies), so that the strategy space 𝑋 consists of all 

probability vectors 𝑥 =  𝑥1 , 𝑥2 , 𝑥3  (with 𝑥1 + 𝑥2 + 𝑥3 = 1). The payoff of a player using 

strategy 𝑥 against opponents using strategies 𝑦 =  𝑦1 , 𝑦2 , 𝑦3 , 𝑧 =  𝑧1 , 𝑧2 , 𝑧3  and 

𝑤 =  𝑤1 , 𝑤2 , 𝑤3  is given by 

𝑔 𝑥, 𝑦, 𝑧, 𝑤 =  𝑔𝑖𝑗𝑘𝑙 𝑥𝑖𝑦𝑗𝑧𝑘𝑤𝑙

3

𝑖,𝑗 ,𝑘,𝑙=1

. 

The coefficients  𝑔𝑖𝑗𝑘𝑙  𝑖,𝑗 ,𝑘,𝑙=1
3  that define the game satisfy the symmetry condition 

𝑔𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑗 ′ 𝑘 ′ 𝑙 ′ , for all (𝑖, 𝑗, 𝑘, 𝑙) and  𝑗′ , 𝑘 ′ , 𝑙′  such that the latter is a permutation of 

(𝑗, 𝑘, 𝑙). There are three versions of the game, with different coefficients, as detailed in the 

following table: 

Coefficient Version 1 Version 2 Version 3 
𝑔2211  −2 −18 −4 
𝑔2221  0 −16 −4 
𝑔3221  4 4 0 
𝑔2331  4 20 4 
𝑔2222  3 −9 −3 
𝑔2332  4 12 2 
𝑔3333  −3 −15 −4 
𝑔2322  4 4 0 

Coefficients that are not listed in the table and cannot be deduced from it by using the 

above symmetry condition are zero. In all three versions of the game, the strategy 

𝑥 =  1,0,0  is an equilibrium strategy, since if all the other players use 𝑥, any strategy is a 

best response. However, the stability properties of 𝑥 are different for the three versions. 

Claim. The equilibrium strategy 𝑥 =  1,0,0  is an ESS in all three versions of the game, but it 

is uniformly-stable only in versions 2 and 3, independently-stable (equivalently, 

dependently-stable, locally superior) only in version 3, and stable in none of them.  

In view of Theorem 1, to prove the Claim is suffices to show that 𝑥 is: (i) an ESS but not 

uniformly-stable in version 1, (ii) uniformly-stable but not independently-stable in version 2, 

and (iii) independently-stable but not stable in version 3. 

In version 1 of 𝑔, (28) reads 

−2𝑝2𝑦2
2 − 4𝑝3 𝑦1𝑦2

2 − 𝑦2
2𝑦3 − 𝑦2𝑦3

2 

− 3𝑝4 2𝑦1
2𝑦2

2 − 4𝑦1𝑦2
2𝑦3 − 4𝑦1𝑦2𝑦3

2 − 𝑦2
4 − 4𝑦2

2𝑦3
2 + 𝑦3

4 − 4𝑦2
3𝑦3 < 0. 
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Uniform stability corresponds to 𝑝 = (1/4,1/4,1/4,1/4), for which the above inequality can 

be simplified to 

7

16
𝑦2

2 <  𝑦2−
3

8
 1 − 𝑦1 2 2 . 

There are strategies 𝑦 = (𝑦1 , 𝑦2 , 𝑦3) arbitrarily close to  1,0,0  for which this inequality does 

not hold. For example, this is so whenever 𝑦2 = (3/8) 1 − 𝑦1 2. This proves that the 

equilibrium strategy is not uniformly-stable. To prove that it is nevertheless an ESS, consider 

(33), which in the present case can be simplified to   

2𝑦2
2 <  2𝑦2 − 𝜖 1 − 𝑦1 2 2 . 

For every (fixed) strategy 𝑦 =  𝑦1 , 𝑦2 , 𝑦3 ≠  1,0,0 , this inequality holds for sufficiently 

small 𝜖 > 0. Therefore,  1,0,0  is an ESS.  

In version 2 of the game, for 𝑝 = (1/4,1/4,1/4,1/4) inequality (28) can be simplified to  

−
1

80
𝑦2

2 <  𝑦2−
3

8
 1 − 𝑦1 2 2 . 

This inequality holds for all strategies 𝑦 other than  1,0,0 , and therefore the latter is 

uniformly-stable. However, it is not independently-stable, since for 𝑝 = (1/8,3/8,3/8,1/8) 

inequality (28) can be simplified to 

8

5
𝑦2

2 <  4𝑦2 −  1 − 𝑦1 2 2 . 

This inequality does not hold for strategies 𝑦 with 𝑦2 = (1/4) 1 − 𝑦1 2, which exist in every 

neighborhood of  1,0,0 . 

Finally, in version 3 of the game, for 𝑝 = (1/8 ,3/8,3/8,1/8) inequality (28) can be 

simplified to  

−𝑦3
4 < 3 4𝑦2 −  𝑦2 + 𝑦3 2 2. 

This inequality holds for all strategies 𝑦 other than  1,0,0 , and therefore the latter is 

independently-stable. However, it is not stable. There are probability vectors 𝑝 satisfying 

(27) (and even (32)) for which (28) does not hold for some strategies 𝑦 arbitrarily close to 

 1,0,0 . For examples, for 𝑝 = (1/20,9/20,9/20,1/20) inequality (28) can be simplified to 

24𝑦2
2 −

1

3
𝑦3

4 <  8𝑦2 −  1 − 𝑦1 2 2 . 

For strategies 𝑦 with 𝑦2 = (1/8) 1 − 𝑦1 2, this inequality is equivalent to 512 +

2048 1 − 𝑦1 − 384 1 − 𝑦1 2 + 32 1 − 𝑦1 3 −  1 − 𝑦1 4 < 0. Hence, it does not hold if 

𝑦1 is sufficiently close to 1. 
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4.2. Symmetric multiplayer games with a unidimensional strategy 

space 
The notion of a continuously stable strategy (CSS), originally defined only for two-player 

games (see Section ‎2.2), extends in a straightforward way to multiplayer games. 

Definition 9. In a multiplayer game 𝑔 with a strategy space that is a subset of the real line, a 

(symmetric) equilibrium strategy 𝑥 is a continuously stable strategy (CSS) if it has a 

neighborhood where for every other strategy 𝑦, for sufficiently small 𝜖 > 0 

𝑔  1 − 𝜖 𝑦 + 𝜖𝑥, 𝑦, … , 𝑦 > 𝑔 𝑦, 𝑦, … , 𝑦 , 

and a similar inequality does not hold with 𝜖 replaced by – 𝜖.  

The following theorem shows that, as in the two-player case, continuous stability is 

essentially equivalent to stability as defined in this paper (Definition 6). Moreover, stability, 

dependent-stability, independent-stability and uniform-stability are all essentially 

equivalent, unlike for multilinear games (Theorem 1).  

Theorem 2.  Let 𝑥 be an interior equilibrium strategy in a symmetric 𝑛-player game 𝑔 with a 

strategy space that is a subset of the real line, such that 𝑔 has continuous second-order 

partial derivatives in a neighborhood of the equilibrium point (𝑥, 𝑥, … , 𝑥). If 

𝑔11(𝑥, 𝑥, … , 𝑥) + (𝑛 − 1)𝑔12(𝑥, 𝑥, … , 𝑥) ≠ 0, 

then for every probability vector 𝑝 satisfying (27) the following conditions are 

equivalent: 

 𝑥 is a CSS 

 the left-hand side of (47) is negative 

 𝑥 is not definitely 𝑝-unstable 

 𝑥 is 𝑝-stable 

 𝑥 is not definitely unstable 

 𝑥 is stable. 

Proof. Using Taylor’s theorem, it is easy to show that, for 𝑦 tending to 𝑥, the left-hand side of 

(28) can be expressed as  

 𝑦 − 𝑥 𝑔1(𝑥, 𝑥, … , 𝑥) +
1

2
 𝑦 − 𝑥 2𝑔11(𝑥, 𝑥, … , 𝑥)

+  𝑦 − 𝑥 2𝑔12(𝑥, 𝑥, … , 𝑥)  (𝑗 − 1)𝑝𝑗

𝑛

𝑗 =1

+ 𝑜( 𝑦 − 𝑥 2). 

By (27), the sum in (48) is equal to (𝑛 − 1)/2. The rest of the proof is very similar to that of 

Proposition 2. ∎ 

(47) 

(48) 



28 

5. Asymmetric Multiplayer Games 
The definitions of asymmetric multiplayer games and symmetrization of such games are 

conceptually similar to those in the two-player case (Section ‎3). An asymmetric 𝑛-player 

game is a function ℎ =  ℎ1 , ℎ2, … , ℎ𝑛 : 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 → ℜ𝑛 , where, for 1 ≤ 𝑖 ≤ 𝑛, 𝑋𝑖  

is player 𝑖’s strategy space. For a strategy profile (𝑥1 , 𝑥2 , … , 𝑥𝑛), the payoff of player 𝑖 is 

ℎ𝑖(𝑥1 , 𝑥2 , … , 𝑥𝑛). The strategy profile is an equilibrium if, for every player 𝑖, 

ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑦𝑖 , … , 𝑥𝑛 ≤ ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑥𝑖 , … , 𝑥𝑛  

for all 𝑦𝑖 ≠ 𝑥𝑖  in 𝑋𝑖 , and it is a strict equilibrium if these inequalities are all strict. 

An asymmetric game ℎ is symmetrized by allowing the players to take turns playing the 

different roles in ℎ. Thus, in the symmetric game, each player 𝑖 has to choose a strategy 

profile 𝑥𝑖 =  𝑥𝑖
1 , 𝑥𝑖

2 , … , 𝑥𝑖
𝑛  in ℎ. An assignment of the 𝑛 players to the 𝑛 roles in ℎ is 

described by a permutation 𝜋 of (1,2, … , 𝑛). Player 𝑖 is assigned to role 𝜋(𝑖), and the player 

assigned to role 𝑗 is 𝜋−1 𝑗 . Symmetrization involves averaging a player’s payoff as 𝜋 varies 

over the set Π of all 𝑛! permutations.  

Definition 10. The game obtained by symmetrizing an asymmetric 𝑛-player game ℎ =

 ℎ1 , ℎ2 , … , ℎ𝑛 : 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 → ℜ𝑛  is the symmetric 𝑛-player game 𝑔: 𝑋 × 𝑋 × ⋯ ×

𝑋 → ℜ, where the strategy space 𝑋 is the product space 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛  and 

𝑔 𝑥1 , 𝑥2 , … , 𝑥𝑛 =
1

𝑛!
 ℎ𝜋 1  𝑥𝜋−1 1 

1 , 𝑥𝜋−1 2 
2 , … , 𝑥𝜋−1 𝑛 

𝑛  

𝜋∈Π

 

for all 𝑥1 =  𝑥1
1 , 𝑥1

2 , … , 𝑥1
𝑛 , 𝑥2 =  𝑥2

1 , 𝑥2
2 , … , 𝑥2

𝑛 , … , 𝑥𝑛 =  𝑥𝑛
1 , 𝑥𝑛

2 , … , 𝑥𝑛
𝑛 ∈ 𝑋. 

Proposition 8. A strategy profile 𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑛) in an asymmetric 𝑛-player game ℎ is an 

equilibrium if and only if it is a (symmetric) equilibrium strategy in the symmetric game 𝑔 

obtained by symmetrizing ℎ. In this case, the equilibrium payoff in 𝑔 is equal to the players’ 

average equilibrium payoff in ℎ.  

Proof. By definition, 𝑥 is an equilibrium strategy in 𝑔 if and only if choosing 𝑥1 = 𝑥 

maximizes the expression obtained by setting 𝑥2 = 𝑥3 = ⋯ = 𝑥𝑛 = 𝑥 in the right-hand side 

of (49). That expression can be simplified by partitioning the set of permutations Π into 𝑛 

parts, each of cardinality  𝑛 − 1 !, according to the value 𝑖 of 𝜋(1). Thus, the expression 

under consideration is equal to 

1

𝑛
 ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑥1

𝑖 , … , 𝑥𝑛 

𝑛

𝑖=1

. 

Clearly, choosing 𝑥1 = 𝑥 maximizes this sum if and only if, for each 𝑖, the 𝑖th term is 

maximized by choosing 𝑥1
𝑖 = 𝑥𝑖 . The latter is also the condition for 𝑥 to be an equilibrium in 

ℎ. If it holds, then the maximum (obtained by setting 𝑥1
𝑖 = 𝑥𝑖  in each of the terms in (50)) is 

the players’ average equilibrium payoff in ℎ. ∎ 

The last result suggests the following. 

(49) 

(50) 
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Definition 11. A strategy profile 𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑛  in an asymmetric 𝑛-player game ℎ is 

stable, weakly stable or definitely unstable if it has the same property as a strategy in the 

symmetric game 𝑔 obtained by symmetrizing ℎ. Similar definitions apply to 𝑝-stability, weak 

𝑝-stability and definite 𝑝-instability, for every probability vector 𝑝.  

As in the case of Definition 6, dependent-stability, independent-stability, uniform-stability 

and the related notions of weak stability and definite instability are defined by specifying a 

particular vector 𝑝, i.e., the one given by (29), (30) or (31).  

As in the two-player case (Proposition 4), every stable strategy profile is “locally strict.” In 

fact, this is true also with stability replaced by the weaker condition of 𝑝-stability.  

Proposition 9. For every probability vector 𝑝 = (𝑝1 , 𝑝2 , … , 𝑝𝑛) and every 𝑝-stable strategy 

profile 𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑛) in an asymmetric game ℎ, the strategy 𝑥𝑖  of each player 𝑖 has a 

neighborhood where it is 𝑖’s unique best response to 𝑥.   

Proof. It suffices to prove this for 𝑖 = 1. (The argument for any other player is similar.) Let 𝑝, 

ℎ and 𝑥 be as in the proposition, and let 𝑔 be the game obtained by symmetrizing ℎ. It 

follows from Definition 11 that there is a neighborhood of 𝑥1 where, for every 𝑦1 ≠ 𝑥1, 

inequality (28) holds for 𝑦 =  𝑦1 , 𝑥2 , … , 𝑥𝑛 . The expression in parenthesis in (28) is the 

difference between the payoff from using 𝑦 in 𝑔 and the payoff from using 𝑥, when a 

particular number of other players use 𝑥 and the rest use 𝑦. Recall that, in 𝑔, the players are 

assigned to the different roles in ℎ, and a player’s payoff is obtained by summing up his 

payoffs in all such possible assignments and dividing by their number 𝑛!. Since 𝑥 and 𝑦 

prescribe different strategies only for a user taking the role of player 1 in ℎ, only the payoff 

obtained in that role contributes to the above difference. If follows that it does not matter 

whether each of the opponents uses 𝑥 or 𝑦: both prescribe the same strategy 𝑥𝑖  for a user 

taking player 𝑖’s role in ℎ, for all 𝑖 ≠ 1. Therefore, the expression in parenthesis in (28) is 

equal to  

1

𝑛
 ℎ1 𝑦1 , 𝑥2 , … , 𝑥𝑛 − ℎ1 𝑥1 , 𝑥2 , … , 𝑥𝑛  . 

Thus, (28) says that this expression is negative, which shows that 𝑦1 is a worse response to 𝑥 

than 𝑥1. ∎ 

Working directly with the definition of stability may be possible, as the proof of Proposition 

9 demonstrates. However, this is not always very convenient. The following lemma offers a 

useful alternative characterization.  

Lemma 4. For any probability vector 𝑝 = (𝑝1 , 𝑝2 , … , 𝑝𝑛), a strategy profile 

𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑛  in an asymmetric 𝑛-player game ℎ =  ℎ1 , ℎ2 , … , ℎ𝑛  is 𝑝-stable if and 

only if it has a neighborhood where, for every other strategy profile 𝑦 =  𝑦1 , 𝑦2 , … , 𝑦𝑛 , 

  
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  

𝑆⊆𝑁

ℎ𝑖 𝜒𝑆c  1 𝑥1 + 𝜒𝑆 1 𝑦1 , 𝜒𝑆c  2 𝑥2

𝑛

𝑖=1

+ 𝜒𝑆 2 𝑦2 , … , 𝜒𝑆c  𝑛 𝑥𝑛 + 𝜒𝑆 𝑛 𝑦𝑛 < 0, 

(51) 
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where 𝑁 = {1,2, … , 𝑛} and 𝜒𝑆  denotes the characteristic, or indicator, function of a subset 

𝑆 ⊆ 𝑁, i.e., the function that is 1 on 𝑆 and 0 on its complement 𝑆c. The characterizations of 

weak 𝑝-stability and definite 𝑝-instability are similar, except that the strict inequality in (51) 

is replaced by a weak one or by the reverse (strict) inequality, respectively. 

Proof. Identify the set of players in ℎ with 𝑁, and let 𝑔 be the game obtained by 

symmetrizing ℎ. Let 𝐶 be the collection of all characteristic functions of subsets of 𝑁, i.e., all 

functions of the form 𝜒: 𝑁 → {0,1}. If 𝜒 ∈ 𝐶 is the characteristic function of a set 𝑆 ⊆ 𝑁 (i.e., 

𝜒 = 𝜒𝑆), then, for every 𝑖 ∈ 𝑁, 

𝜒𝑖 ≝  𝜒 𝑗 

𝑗≠𝑖

 

is equal to the cardinality of 𝑆 ∖ {𝑖}. Since 𝑔 is a symmetric game, for any pair of strategies in 

this game, 𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑛  and 𝑦 =  𝑦1 , 𝑦2 , … , 𝑦𝑛 , and any 𝜒 ∈ 𝐶,  

𝑔  1 − 𝜒(1) 𝑥 + 𝜒(1)𝑦,  1 − 𝜒(2) 𝑥 + 𝜒(2)𝑦, … ,  1 − 𝜒(𝑛) 𝑥 + 𝜒(𝑛)𝑦 

=  1 − 𝜒(1) 𝑔 𝑥, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦   
𝑗−1 times

 +  𝜒 1 𝑔 𝑦, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦   
𝑗−1 times

 , 

where 𝑗 =  𝜒1 + 1. (Note that the expression on the left-hand side is well defined even if this 

is not so for general convex combination of strategies in 𝑔. This is because each of the 

arguments is simply either 𝑥 or 𝑦.) For every 1 ≤ 𝑗 ≤ 𝑛, the equality 𝜒1 = 𝑗 − 1 holds for 

 𝑛−1
𝑗−1  elements 𝜒 of 𝐶 with 𝜒 1 = 0 and the same number of elements with 𝜒 1 = 1. 

Therefore, by (52), for any probability vector 𝑝, the left-hand side of (28) can be written as 

 
𝑝𝜒1+1

 𝑛−1
𝜒 1

 
 2𝜒(1) − 1  𝑔  1 − 𝜒(1) 𝑥 + 𝜒(1)𝑦,  1 − 𝜒(2) 𝑥 + 𝜒(2)𝑦, … ,  1 − 𝜒(𝑛) 𝑥

𝜒∈𝐶

+ 𝜒(𝑛)𝑦 . 

By Definition 10, this is equal to 

1

𝑛!
  

𝑝𝜒1+1

 𝑛−1
𝜒 1

 
 2𝜒(1) − 1 

𝜒∈𝐶

ℎ𝜋 1   1 − 𝜒(𝜋−1 1 ) 𝑥1

𝜋∈Π

+ 𝜒(𝜋−1 1 )𝑦1,  1 − 𝜒(𝜋−1 2 ) 𝑥2

+ 𝜒(𝜋−1 2 )𝑦2, … ,  1 − 𝜒(𝜋−1 𝑛 ) 𝑥𝑛 + 𝜒(𝜋 𝑛 )𝑦𝑛 . 

For any permutation 𝜋 ∈ Π, changing 𝜒 in the summand to the composed function 𝜒 ∘ 𝜋 

leaves the inner sum unchanged, since as 𝜒 varies over all elements of 𝐶, so does 𝜒 ∘ 𝜋. 

Since  𝜒 ∘ 𝜋 1 =  𝜒𝜋 1 , the above double sum is therefore equal to  

1

𝑛!
  

𝑝𝜒𝜋 1 +1

 𝑛−1
𝜒𝜋 1 

 
 2𝜒(𝜋 1 ) − 1 

𝜒∈𝐶

ℎ𝜋 1   1 − 𝜒(1) 𝑥1 + 𝜒(1)𝑦1 ,  1 − 𝜒(2) 𝑥2

𝜋∈Π

+ 𝜒(2)𝑦2 , … ,  1 − 𝜒(𝑛) 𝑥𝑛 + 𝜒(𝑛)𝑦𝑛 . 

Note that 𝜋 now appears in the summand only as part of the expression 𝜋 1 . As 𝜋 varies 

over all permutations, this expression returns each of the elements 𝑖 of 𝑁 exactly (𝑛 − 1)! 

times. Therefore, the double sum is equal to  

(52) 
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1

𝑛
  

𝑝𝜒 𝑖+1

 𝑛−1
𝜒 𝑖

 
 2𝜒(𝑖) − 1 

𝜒∈𝐶

ℎ𝑖  1 − 𝜒(1) 𝑥1 + 𝜒(1)𝑦1 ,  1 − 𝜒(2) 𝑥2

𝑛

𝑖=1

+ 𝜒(2)𝑦2 , … ,  1 − 𝜒(𝑛) 𝑥𝑛 + 𝜒(𝑛)𝑦𝑛 , 

which is equal to 1/𝑛 times the expression in (51). ∎ 

Inequality (51) is a generalization of (15). It may be interpreted as follows. All possible 

partitions of the set of players in ℎ into a set 𝑆 and its complement 𝑆c  are considered. The 

players in 𝑆 play according to the strategy profile 𝑦 =  𝑦1 , 𝑦2 , … , 𝑦𝑛  (i.e., each 𝑖 ∈ 𝑆 uses 

𝑦𝑖) and those outside it play according to 𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑛 . Each such partition is 

associated with a particular linear combination of the players’ payoffs, which assigns a 

positive weight to players in 𝑆 and a negative weight to those outside it. Inequality (51) 

requires that the sum of all these linear combinations is negative. Roughly, this expresses 

the requirement that when the players’ only choices are playing according to 𝑥 and playing 

according to a particular strategy profile that is different from 𝑥 but close to is, those who 

choose the former alternative tend to fare better.  

1.1. Asymmetric multilinear games 
An asymmetric game ℎ =  ℎ1 , ℎ2 , … , ℎ𝑛  is a multilinear game if for each player 𝑖 the 

strategy space 𝑋𝑖  is the unit simplex in some Euclidean space and ℎ𝑖  is multilinear. As 

Example 2 shows, for symmetric multilinear games there is a real difference between 

stability of an equilibrium strategy and the various versions of 𝑝-stability. The following 

theorem shows that this is not so for asymmetric games, for which these notions of stability 

all mean the same.  

Theorem 3. For every probability vector 𝑝 = (𝑝1 , 𝑝2 , … , 𝑝𝑛), a strategy profile in an 

asymmetric multilinear game ℎ =  ℎ1, ℎ2 , … , ℎ𝑛  is 𝑝-stable if and only if it is a strict 

equilibrium. In particular, a 𝑝-stable equilibrium is pure.  

Proof. Fix 𝑝 and ℎ as in the proposition. It follows immediately from Proposition 9 and the 

linearity of each payoff function ℎ𝑖  in the 𝑖th argument that every 𝑝-stable strategy profile is 

a strict equilibrium. To prove the converse, fix a strict equilibrium 𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑛 . It has 

to be shown that 𝑥 is 𝑝-stable. 

The strategy 𝑥𝑖  of each player 𝑖 is an element of 𝑖’s strategy space 𝑋𝑖 , that is, a probability 

vector (𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛 𝑖
𝑖 ) of some player-specific dimension 𝑛𝑖 . For every other strategy 𝑦𝑖 ∈

𝑋𝑖 , 

ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑦𝑖 , … , 𝑥𝑛 − ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑥𝑖 , … , 𝑥𝑛 < 0. 

Consider the collection 𝑍𝑖  of all strategies 𝑧𝑖 = (𝑧1
𝑖 , 𝑧2

𝑖 , … , 𝑧𝑛1
𝑖 ) ∈ 𝑋𝑖  that satisfy 𝑧𝑗

𝑖 = 0 for 

some 𝑗 with 𝑥𝑗
𝑖 > 0. This is a compact subset of 𝑋𝑖  that does not include 𝑥𝑖 , and therefore 

the expression on the left-hand side of (53) is bounded away from zero for 𝑦𝑖 ∈ 𝑍𝑖 . In other 

words, there is some 𝛿 > 0 such that, for all 𝑖 and 𝑧𝑖 ∈ 𝑍𝑖 , 

ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑧𝑖 , … , 𝑥𝑛 − ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑥𝑖 , … , 𝑥𝑛 < −𝛿. 

(53) 

(54) 
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Given any strategy 𝑦𝑖  of any player 𝑖, there is a unique 0 ≤ ϵ𝑖 ≤ 1 (which depends on 𝑦𝑖) 

such that for some (in fact, unique) 𝑧𝑖 ∈ 𝑍𝑖 , 

𝑦𝑖 =  1 − ϵ𝑖 𝑥
𝑖 + ϵ𝑖𝑧

𝑖 . 

As 𝑦𝑖  tends to 𝑥𝑖 , ϵ𝑖 𝑧
𝑖 − 𝑥𝑖 = 𝑦𝑖 − 𝑥𝑖 → 0. This implies that ϵ𝑖  tends to zero, for 

otherwise it would be possible to find an example in which ϵ𝑖  is bounded away from zero, 

and hence 𝑧𝑖 → 𝑥𝑖 , which is impossible by the compactness of 𝑍𝑖 . 

For any strategy profile 𝑦 =  𝑦1 , 𝑦2 , … , 𝑦𝑛 ≠ 𝑥, expressing each strategy 𝑦𝑖  as in (55) gives 

the left-hand side of (51) the following form: 

  
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  

𝑆⊆𝑁

ℎ𝑖  1 − ϵ1𝜒𝑆 1  𝑥1 + ϵ1𝜒𝑆 1 𝑧1 ,  1 − ϵ2𝜒𝑆 2  𝑥2

𝑛

𝑖=1

+ ϵ2𝜒𝑆 2 𝑧2 , … ,  1 − ϵ𝑛𝜒𝑆 𝑛  𝑥𝑛 + ϵ𝑛𝜒𝑆 𝑛 𝑧𝑛 . 

By multilinearity, this is equal to  

 ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑥𝑛  
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  

𝑆⊆𝑁

𝑛

𝑖=1

+   ϵ𝑗  ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑧𝑗 , … , 𝑥𝑛 

𝑛

𝑗 =1

𝑛

𝑖=1

− ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑥𝑗 , … , 𝑥𝑛   
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  𝜒𝑆 𝑗 

𝑆⊆𝑁

+ 𝑜 𝜖 , 

where 𝜖 = ϵ1 + ϵ2 + ⋯ + ϵ𝑛  (> 0, since 𝑦 ≠ 𝑥). In the first term in (56), the inner sum is 

zero for every 𝑖, since 

 
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  

𝑆⊆𝑁

=  
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

  𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  +  𝜒𝑆∪ 𝑖  𝑖 − 𝜒(𝑆∪ 𝑖 )c  𝑖   

𝑆⊆𝑁∖{𝑖}

= 0. 

(The expression in square parenthesis is identically zero for 𝑖 and 𝑆 with 𝑖 ∉ 𝑆.) In the second 

term in (56), the innermost sum is zero for every 𝑖 and 𝑗 with 𝑖 ≠ 𝑗, since for such 𝑖 and 𝑗  

 
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  𝜒𝑆 𝑗 

𝑆⊆𝑁

=  
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  

{𝑗 }⊆𝑆⊆𝑁

= 0, 

where the second equality follows from an argument similar to (57). Replacing these two 

sums in (56) with zeroes and simplifying gives 

 ϵ𝑖  ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑧𝑖 , … , 𝑥𝑛 − ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑥𝑖 , … , 𝑥𝑛   
𝑝 𝑆 

 𝑛−1
 𝑆 −1 {𝑖}⊆𝑆⊆𝑁

𝑛

𝑖=1

+ 𝑜 𝜖 . 

The inner sum in (59) clearly has the same value for all 𝑖. Therefore, by (54), the first term in 

(59) is negative and its absolute value is greater than  

(55) 

(56) 

(57) 

(58) 

(59) 
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𝜖𝛿  
𝑝 𝑆 

 𝑛−1
 𝑆 −1 {1}⊆𝑆⊆𝑁

. 

Hence, if 𝜖 is sufficiently small (but positive), the whole of (59) is negative. As shown above, 

𝜖 tends to zero as 𝑦 tends to 𝑥. It follows that (59) is negative for all 𝑦 ≠ 𝑥 in some 

neighborhood of 𝑥. Since (59) is just a different form of (51), it follows from Lemma 4 that 𝑥 

is 𝑝-stable. ∎ 

1.1. Asymmetric games with unidimensional strategy spaces 

For an asymmetric multiplayer game ℎ =  ℎ1 , ℎ2 , … , ℎ𝑛  in which the strategy space 𝑋𝑖  of 

each player 𝑖 is a subset of the real line, the stability condition can be presented in a 

differential form, at least in the case of an interior equilibrium and sufficiently smooth payoff 

functions. For symmetric games with such strategy spaces, the move from two to an 

arbitrary number of players proved to be rather easy. A single condition, not much different 

from that in the two-payer case, essentially characterizes stability, dependent-stability, 

independent-stability and uniform-stability, which are therefore all essentially equivalent 

(see Theorem 2). As the next theorem shows, the same is true for asymmetric games.  

Theorem 4. A sufficient condition for stability or definite instability of an interior equilibrium 

𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑛) with a neighborhood in which ℎ1 , ℎ2 , … , ℎ𝑛  have continuous second-

order derivatives is that the matrix 

𝐻 =  
ℎ11

1 ⋯ ℎ1𝑛
1

⋮ ⋱ ⋮
ℎ𝑛1

𝑛 ⋯ ℎ𝑛𝑛
𝑛

 , 

with the derivatives computed at 𝑥, is negative definite or positive definite, respectively. A 

necessary condition for weak stability is that the matrix is negative semidefinite. The same is 

true with ‘stability’, ‘weak stability’ or ‘definite instability’ replaced by ‘𝑝-stability’, ‘weak 𝑝-

stability’ or ‘definite 𝑝-instability’, respectively, for any probability vector 𝑝 satisfying (27).  

Proof. It suffices to prove the last part of the proposition, since this clearly implies the rest. 

Thus, fix a probability vector 𝑝 =  𝑝1 , 𝑝2 , … , 𝑝𝑛  satisfying (27). For every vector 𝑦 =

 𝑦1 , 𝑦2 , … , 𝑦𝑛 ≠ 𝑥, the left-hand side of (51) can be written as  

  
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  

𝑆⊆𝑁

ℎ𝑖 𝑥1 + ϵ1𝜒𝑆 1 , 𝑥2 + ϵ2𝜒𝑆 2 , … , 𝑥𝑛 + ϵ𝑛𝜒𝑆 𝑛  

𝑛

𝑖=1

, 

where  

ϵ𝑖 = 𝑦𝑖 − 𝑥𝑖 , 𝑖 = 1, 2, … , 𝑛. 

For 𝑦 tending to 𝑥 (equivalently, 𝜖𝑖 → 0 for all 𝑖), this can be presented as  

  

(60) 
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 ℎ𝑖 𝑥1 , 𝑥2 , … , 𝑥𝑛  
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  

𝑆⊆𝑁

𝑛

𝑖=1

+   ϵ𝑗ℎ𝑗
𝑖 𝑥1 , 𝑥2 , … , , 𝑥𝑛  

𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  𝜒𝑆 𝑗 

𝑆⊆𝑁

𝑛

𝑗 =1

𝑛

𝑖=1

+
1

2
   ϵ𝑗 ϵ𝑘ℎ𝑗𝑘

𝑖  𝑥1 , 𝑥2 , … , , 𝑥𝑛  
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 

𝑆⊆𝑁

𝑛

𝑘=1

𝑛

𝑗 =1

𝑛

𝑖=1

− 𝜒𝑆c  𝑖  𝜒𝑆 𝑗 𝜒𝑆 𝑘 + 𝑜 𝜖2 , 

where 𝜖 =  ϵ1
2 + ϵ2

2 + ⋯ + ϵ𝑛
2  (> 0, since 𝑦 ≠ 𝑥). By (57), the first term in (61) is zero. By 

(58), the innermost sum in the second term is zero for every 𝑖 and 𝑗 with 𝑖 ≠ 𝑗. For 𝑖 = 𝑗, 

ℎ𝑗
𝑖 𝑥1 , 𝑥2 , … , 𝑥𝑛 = 0, since 𝑥 is an interior equilibrium. Therefore, the second term in (61) is 

zero. By an argument similar to (57), the innermost sum in the third term, which can be 

written also as  

 
𝑝 𝑆∪ 𝑖  

 𝑛−1
 𝑆∖ 𝑖   

 𝜒𝑆 𝑖 − 𝜒𝑆c  𝑖  

{𝑗 ,𝑘}⊆𝑆⊆𝑁

, 

is zero if 𝑖 ∉ {𝑗, 𝑘}. Therefore, the third term in (61) is equal to 1/2 times 

   ϵ𝑗 ϵ𝑘ℎ𝑗𝑘
𝑖 𝜒 𝑗 ,𝑘 (𝑖)  

𝑝 𝑆 

 𝑛−1
 𝑆 −1 {𝑗 ,𝑘}⊆𝑆⊆𝑁

𝑛

𝑘=1

𝑛

𝑗 =1

𝑛

𝑖=1

, 

where the partial derivatives are computed at 𝑥. The innermost sum in (62) has two possible 

values. If 𝑗 = 𝑘, then 

 
𝑝 𝑆 

 𝑛−1
 𝑆 −1 {𝑗 ,𝑘}⊆𝑆⊆𝑁

=  
 𝑛−1

𝑙−1  

 𝑛−1
𝑙−1  

𝑝𝑙 = 1

𝑛

𝑙=1

. 

If 𝑗 ≠ 𝑘, then by (27) 

 
𝑝 𝑆 

 𝑛−1
 𝑆 −1 {𝑗 ,𝑘}⊆𝑆⊆𝑁

=  
 𝑛−2

𝑙−2  

 𝑛−1
𝑙−1  

𝑝𝑙 =
1

𝑛 − 1
  𝑙 − 1 𝑝𝑙

𝑛

𝑙=2

𝑛

𝑙=2

=
1

2
. 

It follows that (62) is equal to 

  
ℎ𝑗𝑘

𝑗
+ ℎ𝑗𝑘

𝑘

2
ϵ𝑗 ϵ𝑘

𝑛

𝑘=1

𝑛

𝑗 =1

. 

If 𝐻 is negative definite or positive definite, then (63) is negative or positive, respective, and 

its absolute value is at least  𝜆0 𝜖
2, where 𝜆0 ≠ 0 is the eigenvalue closest to 0 of the matrix 

(1/2)(𝐻 + 𝐻T) and 𝜖 is defined above. This implies that, if 𝐻 is negative definite, then (61) 

is negative for 𝑦 ≠ 𝑥 sufficiently close to 𝑥, so that (51) holds, which proves that 𝑥 is 𝑝-

stable. Similarly, if 𝐻 is positive definite, then (61) is positive for 𝑦 ≠ 𝑥 sufficiently close to 𝑥, 

which proves that 𝑥 is definitely 𝑝-unstable. 

(61) 

(62) 

(63) 
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If 𝐻 is not negative semidefinite, then (1/2)(𝐻 + 𝐻T) has a positive eigenvalue 𝜆 > 0 (see 

footnote 14). If (ϵ1 , ϵ2 , … , ϵ𝑛) ≠ 0 is a corresponding eigenvector, then (63) is positive and 

equal to 𝜆𝜖2. This implies that there are strategy profiles 𝑦 arbitrarily close to 𝑥 for which 

the reverse inequality to that in (51) holds, which proves that 𝑥 is not weakly 𝑝-stable. ∎ 

As indicated, stability as defined in this paper is based on incentives rather than motion. In 

the previous sections, it is compared mainly with other, special notions of static stability, 

which are defined only for particular classes of games. However, for the class of games 

considered in this section, the most well-established notion of stability is a dynamic one, 

namely, asymptotic stability with respect to the following equations of motion:  

𝑑𝑥𝑖

𝑑𝑡
= 𝑑𝑖ℎ𝑖

𝑖 𝑥1 , 𝑥2 , … , 𝑥𝑛 , 𝑖 = 1,2, … , 𝑛, 

where 𝑡 is the time variable. This system of differential equations expresses the assumption 

that, for each player 𝑖, the rate of change of strategy 𝑥𝑖  is proportional to the marginal 

payoff ℎ𝑖
𝑖 . The coefficient of proportionality 𝑑𝑖  is a positive and (possibly) player-specific 

parameter. With these dynamics, the condition for asymptotic stability of an equilibrium 

𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑛) is that, at the equilibrium point, the (Jacobian) matrix 

 
𝑑1ℎ11

1 ⋯ 𝑑1ℎ1𝑛
1

⋮ ⋱ ⋮
𝑑𝑛ℎ𝑛1

𝑛 ⋯ 𝑑𝑛ℎ𝑛𝑛
𝑛

  

is stable, i.e., all its eigenvalues have negative real parts. This is usually required to hold for 

all positive adjustment speeds 𝑑1 , 𝑑2 , … , 𝑑𝑛  (Dixit, 1986). This requirement is known as D-

stability of the matrix 𝐻 (defined in (60)). It is a strictly weaker condition than negative 

definiteness: every negative definite matrix is D-stable (this follows immediately from 

Lyapunov stability theorem), but not conversely. Unlike negative definiteness, for which a 

number of useful characterizations are known, necessary and sufficient conditions for D-

stability are known only for small 𝑛 (Impram et al., 2005), and they are reasonably simple 

only for 𝑛 = 2 (see Section ‎3.2). As Example 1 shows, even in the latter case D-stability of 𝐻 

does not imply that the equilibrium is (statically) stable in the sense considered in this paper: 

𝐻 may be D-stable but not negative semidefinite. 

Negative definiteness and D-stability are equivalent in the special case of symmetric 

matrices. This fact is used in the next subsection. 

5.3. Inessentially asymmetric games  
An asymmetric 𝑛-player game ℎ =  ℎ1 , ℎ2 , … , ℎ𝑛  is inessentially asymmetric if all the 

players have the same strategy space and for every strategy profile  𝑥1 , 𝑥2 , … , 𝑥𝑛  and 

permutation 𝜋 of (1,2, … , 𝑛) 

ℎ𝑖 𝑥𝜋 1 , 𝑥𝜋 2 , … , 𝑥𝜋 𝑛  = ℎ𝜋 𝑖  𝑥1 , 𝑥2 , … , 𝑥𝑛 , 𝑖 = 1,2, … , 𝑛. 

This condition says that if the players’ strategies are shuffled, such that each player 𝑖 takes 

the strategy of some other player 𝜋(𝑖), then the latter’s old payoff becomes player 𝑖’s new 

one. In other words, the rules of the game ignore the players’ identities, and are therefore 

(64) 

(65) 
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completely specified by the payoff function of any single player, and in particular by ℎ1. The 

latter can be viewed as a symmetric game in the sense of Section ‎4. Thus, for fixed strategy 

space and number of players 𝑛, the projection ℎ ↦ ℎ1, restricted to inessentially asymmetric 

games, is one-to-one. By means of it, the inessentially asymmetric games can be identified 

with the symmetric ones. In fact, inessentially asymmetric games are usually referred to 

simply as symmetric games (von Neumann and Morgenstern, 1953). However, as the two-

player case (Section ‎3.3) already demonstrates, inessential asymmetry and symmetry are 

actually not the same thing. In particular, they correspond to substantially different 

conditions for static stability.  

Proposition 10. A symmetric strategy profile (𝑥, 𝑥, … , 𝑥) in an inessentially asymmetric 𝑛-

player game ℎ =  ℎ1 , ℎ2 , … , ℎ𝑛 : 𝑋 × 𝑋 × ⋯ × 𝑋 → ℜ𝑛  is an equilibrium if and only if it is an 

equilibrium in the corresponding symmetric game ℎ1: 𝑋 × 𝑋 × ⋯ × 𝑋 → ℜ. If (𝑥, 𝑥 … , 𝑥) is 

stable in ℎ, then the strategy 𝑥 is stable in ℎ1, but the converse does not hold even if 

(𝑥, 𝑥, … , 𝑥) is an equilibrium and 𝑛 = 2. The same is true with ‘𝑝-stable’ instead of ‘stable’, 

for every probability vector 𝑝. 

Proof. The symmetric strategy profile is an equilibrium in ℎ if and only if none of the players 

can benefit from unilaterally deviating from 𝑥 to some other strategy 𝑦. The inessential 

asymmetry condition (65) implies that this is so if and only if player 1 cannot benefit from 

such a deviation, which is the condition for 𝑥 to be an equilibrium strategy in ℎ1. 

The definitions of stability and 𝑝-stability of a strategy profile in the asymmetric 𝑛-player 

game ℎ use an auxiliary symmetric 𝑛-player game, namely, the game 𝑔 obtained by 

symmetrizing ℎ. The strategies in 𝑔 are the strategy profiles in ℎ, and according to Definition 

11, a strategy profile in ℎ is stable or 𝑝-stable, respectively, if and only if it is a stable or 𝑝-

stable strategy in 𝑔. Since ℎ is inessentially asymmetric, (65) and Definition 10 give 

𝑔 𝑥1 , 𝑥2 , … , 𝑥𝑛 =
1

𝑛!
 ℎ1 𝑥1

𝜋 1 
, 𝑥2

𝜋 2 
, … , 𝑥𝑛

𝜋 𝑛 
 ,

𝜋∈Π

 

for all strategies 𝑥1 =  𝑥1
1 , 𝑥1

2 , … , 𝑥1
𝑛 , 𝑥2 =  𝑥2

1 , 𝑥2
2 , … , 𝑥2

𝑛 , … , 𝑥𝑛 =  𝑥𝑛
1 , 𝑥𝑛

2 , … , 𝑥𝑛
𝑛  in 𝑔 (i.e., 

strategy profiles in ℎ). This formula shows that 𝑔 is in a sense a richer game than ℎ1. The 

latter can be obtained from the former essentially by restricting the players in 𝑔 to 

symmetric strategy profiles in ℎ. In particular, it follows from (66) that for any pair of distinct 

strategies 𝑥 and 𝑦 in ℎ, if all the players in 𝑔 use either  𝑥, 𝑥, … , 𝑥  or  𝑦, 𝑦, … , 𝑦 , then for a 

player using the former, a switch to the latter would change the payoff by 

ℎ1(𝑦, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦) − ℎ1(𝑥, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦), 

where 𝑛 − 𝑗 is the number of other players using  𝑥, 𝑥, … , 𝑥 . If  𝑥, 𝑥, … , 𝑥  is 𝑝-stable in 𝑔 

(equivalently, in ℎ), for a particular probability vector 𝑝 = (𝑝1 , 𝑝2 , … , 𝑝𝑛), then it follows 

from the definition of stability for symmetric multiplayer games (Section ‎4) that there is a 

neighborhood of 𝑥 such that, if 𝑦 belongs to that neighborhood, the expected (with respect 

to 𝑝) change in payoff is negative, i.e., 

(66) 
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 𝑝𝑗  ℎ1(𝑦, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦) − ℎ1(𝑥, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦) 

𝑛

𝑗 =1

< 0. 

By the same definition, this shows that 𝑥 is a 𝑝-stable strategy in the symmetric game ℎ1. 

Since 𝑝 here is arbitrary, this also proves that stability of  𝑥, 𝑥, … , 𝑥  in ℎ implies stability of 𝑥 

in ℎ1. 

To complete the proof of the proposition it suffices to note that, for any stable strategy 𝑥 in 

a symmetric 2 × 2 game (i.e., an ESS) that is not a pure strategy, by Theorem 3 the 

symmetric equilibrium (𝑥, 𝑥) is not 𝑝-stable in the corresponding inessentially asymmetric 

bimatrix game for any probability vector 𝑝. ∎  

The following result, which concerns games with unidimensional strategy spaces, provides 

another example of the difference between stability of a symmetric equilibrium in an 

inessentially asymmetric game and stability of the equilibrium strategy in the corresponding 

symmetric game. Comparison with Theorem 2 shows that the latter requires only one of the 

two inequalities required for the former. The proposition generalizes a result obtained for 

the two-player case in Section ‎3.3. 

Proposition 11. Let ℎ =  ℎ1 , ℎ2 , … , ℎ𝑛  be an inessentially asymmetric 𝑛-player game with a 

unidimensional strategy space, and  𝑥, 𝑥, … , 𝑥  an interior symmetric equilibrium with a 

neighborhood in which ℎ1, ℎ2, … , ℎ𝑛  have continuous second-order derivatives. A sufficient 

condition for stability of the equilibrium is 

ℎ11
1  𝑥, 𝑥, … , 𝑥 < ℎ12

1  𝑥, 𝑥, … , 𝑥 < −
ℎ11

1  𝑥, 𝑥, … , 𝑥 

𝑛 − 1
, 

and a necessary condition is obtained by replacing the strict inequalities with weak ones.  

Proof. It follows from (65) that, at  𝑥, 𝑥, … , 𝑥 , all the diagonal entries in the matrix 𝐻 

defined in (60) are equal to ℎ11
1  𝑥, 𝑥, … , 𝑥  and all the off-diagonal entries are equal to 

ℎ12
1  𝑥, 𝑥, … , 𝑥 . Therefore, 𝐻 is symmetric and has 𝑛 − 1 eigenvalues equal to 

ℎ11
1  𝑥, 𝑥, … , 𝑥 − ℎ12

1  𝑥, 𝑥, … , 𝑥  and one eigenvalue equal to ℎ11
1  𝑥, 𝑥, … , 𝑥 +  𝑛 −

1 ℎ12
1  𝑥, 𝑥, … , 𝑥 . 𝐻 is negative definite or negative semidefinite if and only if these 

eigenvalues are negative or nonpositive, respectively. It remains to use Theorem 4. ∎ 

As the proof shows, at a symmetric equilibrium as in Proposition 11 the matrix 𝐻 is 

symmetric, and is therefore negative definite if and only if it is D-stable. Thus, the differential 

condition for stability of the symmetric equilibrium is essentially the same as that for 

asymptotic stability with respect to the system (64), with adjustment speeds that can take 

arbitrary values. As Example 1 demonstrates, the same is not true for “truly” asymmetric 

games.  

6. Summary 
This paper presents a notion of local stability that is applicable to all strategic games with a 

finite (but otherwise arbitrary) number of players and “continuous” strategy spaces. This is a 
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static notion of stability, meaning that it is based on incentives rather than motion and 

therefore does not involve any assumptions about dynamics, or off-equilibrium behavior. 

Unlike other notions of static stability, the one presented here is not linked to any particular 

kind of strategy spaces (e.g., subsets of a Euclidean space) or payoff functions (e.g., 

multilinear ones). Instead, it implicitly introduces a linear structure by considering 

probabilistic perturbations of the original state. (Nevertheless, in some important classes of 

games such probabilistic perturbations yield the same notion of static stability that comes 

out of an analysis based on deterministic perturbations. A continuously stable strategy, or 

CSS, is an example of this.) A probabilistic perturbation is specified by the joint distribution 

of the players’ deviations from the original state. The marginal distributions, which describe 

the deviations of individual players, do not give the whole picture, since different players’ 

deviations can be correlated to a lesser or greater degree. In games with three of more 

players, weaker versions of static stability (i.e., the different kinds of 𝑝-stability) are defined 

by specifying, or constraining, the permissible kinds of correlations.  

Stability does not generally imply the equilibrium condition. It is based on a comparison of 

(only) two possible unilateral deviations from the perturbed state: one in the direction of the 

original state and the other in the opposite direction. The definition of stability has the 

simplest form for symmetric games. The definition for asymmetric games is based on the 

latter, and uses a natural notion of symmetrization of an asymmetric game. However, 

stability for symmetric games is not a special case of that for asymmetric games. Nor should 

it be. As argued above, symmetric games are not a subset of the asymmetric ones but rather 

constitute a distinct category. In particular, stability in symmetric games refers to strategies 

rather than strategy profiles or equilibria. (An evolutionarily stable strategy, or ESS, is an 

example of this.) The subset of asymmetric games that correspond to the symmetric ones 

are referred to in this paper as inessentially asymmetric games. The stability condition for 

these games is more demanding than for their “truly” symmetric kin. For example, in an 

(inessentially or otherwise) asymmetric multilinear game, stability of a strategy profile 

means that it is a strict equilibrium.  

In some classes of games there are several reasonable non-equivalent notions of static 

stability. Restriction of the general notion of stability proposed here to such a class singles 

out one of them, and indicates that this particular notion can be derived from general 

principles rather than (or in addition to) considerations that are specific to the class of 

games. For example, there is more than one extension of ESS to symmetric multilinear 

games with three or more players. The restriction described above gives a notion of stability 

that is stronger than the other alternatives proposed in the literature. However, one of the 

latter (namely, local superiority) coincides with the restriction to symmetric multilinear 

games of one of the weaker versions of static stability (namely, dependent- or independent-

stability). 

In some classes of asymmetric games there are no well-established notions of static stability, 

but only dynamic ones. Dynamic stability means asymptotic stability with respect to 

specified dynamics. Different dynamical systems may yield different notions of stability, 

which are not necessarily comparable with (i.e., weaker or stronger than) the static one 

proposed in this paper. A well-known notion of dynamic stability that is comparable with 
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static stability is that expressible by the condition of D-stability of the Jacobian matrix. This 

applies to asymmetric games in which strategies are real numbers and the payoff functions 

are differentiable. This condition is essentially weaker than static stability, for which the 

differential condition is a negative definite matrix. 

This paper does not consider the problem of the existence of stable strategies or equilibria. 

Any existence result is necessarily specific to a particular structure on the strategy spaces 

and involves specific assumptions about the payoff functions, which defeats the very idea of 

a universal notion of stability. Examination of specific examples suggests that the stability 

condition is satisfiable in many games, but this is far from being always the case. For 

example, many symmetric 2 × 2 games have at least one ESS, but many others do not. There 

are, however, classes of games for which the situation regarding the existence of stable 

strategies is less clear. For example, this is so for symmetric multilinear games with three or 

more players.  
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