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Abstract

An axiomatic model is presented, in which a utility function over
consequences, unique up to location and unit, is derived. The axioms
apply to a binary relation over purely subjective acts, namely no ex-
ogenous probabilities are assumed. The main axiom used is a weak
tradeoff consistency condition. The model generalizes the biseparable
model of Ghirardato and Marinacci (2001).
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1 Introduction.

Decision models under uncertainty are commonly composed of an abstract
set of states of nature, an abstract set of consequences, and mappings from
states to consequences, called acts. The decision maker’s preferences are
often modeled through a binary relation over the set of acts. Preferences over
consequences are induced from preferences over constant acts (acts yielding
the same consequence in every state of nature).

Given a binary relation over acts, one of the most basic questions is
whether there is a utility function that represents the preference induced
over consequences. If there is a utility function, then it is further interesting
to inquire in what sense, if any, the utility function is unique. Many Deci-
sion Theory models derive a utility function that is cardinal, namely unique
up to location and unit, which has the advantage that utility differences be-
tween consequences become comparable. This task is typically easier when
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exogenous probabilities are involved, so that acts map states of nature to
lotteries over a set of consequences, and more demanding when exogenous
probabilities are not assumed.

In the literature, one of the techniques applied to derive cardinal utility
functions when no exogenous probabilities are available is the tradeoffs, or
standard sequences, technique. This technique originated in Thomsen [11],
further developed in Blaschke and Bol [2] and Debreu [3], and was thor-
oughly investigated in Krantz, Luce, Suppes and Tversky [8]. The tradeoffs
technique yields statements such as ‘the tradeoff between consequence x and
consequence y is the same as the tradeoff between consequence z and conse-
quence w’. The way to produce such statements is to use particular events
and acts as measuring devices. For instance, consider consequences α and β
and an event E as your measuring device. If an act yielding a consequence
x on E and α otherwise is indifferent to an act yielding a consequence y on
the same event E and β otherwise, then α, β and E measure the tradeoff,
or the ‘preference distance’, between x and y. Hence, if an act yielding a
consequence z on E and α otherwise is indifferent to an act yielding a con-
sequence w on E and β otherwise, then the tradeoff between z and w equals
the tradeoff between x and y. The idea is that these indifferences exhibit
that under the same circumstances (i.e., event E and consequences α and
β) the decision maker is willing to trade x for y as much as z for w. In a
similar manner, standard sequences are sequences (not only pairs), in which
consequences are equally spaced in terms of ‘preference distance’.

It could be the case that all events and all acts are employed as measuring
devices, or that only some events, or some acts, are allowed to play that
part. In any case, in order for these tradeoff measurements to be consistent,
it should be that any one of these devices yields the same results. Wakker,
[12] and [13], and Kobberling and Wakker [6] (abbreviated KW from now
on), use tradeoff consistency requirements over different sets of events and
acts to obtain different representations: all events and all acts for Subjective
Expected Utility, comonotonic acts (see Definition 1 below) for nonadditive
expected utility á − la Schmeidler [10], and so on. Their work assumes
an environment that does not contain exogenous probabilities, and delivers,
among other parameters of the representation, a cardinal utility.

This paper examines a tradeoff consistency requirement in which the acts
allowed to be used to measure tradeoffs are either bets on, or bets against a
state, namely comonotonic acts which obtain one consequence on one state
and another consequence on all other states. It is shown that even if trade-
off consistency is restricted to comonotonic bets on or against states, and
moreover tradeoffs are measured only over single states (and not over their
complements), then a cardinal utility function over consequences may still be
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elicited.1 This utility function respects tradeoff measurements in the sense
that equal tradeoffs imply equal utility differences. The model does not as-
sume existence of exogenous probabilities, but instead requires that the set
of consequences be a connected topological space. A restriction of the model
is that the state space is assumed finite.

In addition to the elicitation of a cardinal utility, the axioms presented
imply local additive representations over sets of bets on, and sets of bets
against states. More specifically, denote by αsβ a bet on state s, with con-
sequences α and β such that α is preferred to β. The relation over the set
of all bets on state s satisfies that αsβ is preferred to γsδ, if and only if,
u(α) + V−s(β) ≥ u(γ) + V−s(δ), where u is a cardinal utility over conse-
quences and V−s is a continuous function that (like u) represents the relation
over constant acts. The same is satisfied for bets against states.2 These
additive representations are local in that each holds within one set of bets
on a state, or one set of bets against a state, and they cannot be employed
to compare bets contingent on different states, nor to compare bets on and
against the same state.

The model presented in this paper generalizes the biseparable model of
Ghirardato and Marinacci [4]. The biseparable model, which encompasses
many known choice models as special cases (for instance, non-additive ex-
pected utility of Schmeidler [10], maxmin expected utility of Gilboa and
Schmeidler [5]), imposes relatively weak assumptions yet extracts one ad-
ditive representation over all bets on events, and in particular a cardinal
utility over consequences (a similar representation is given by the binary
rank-dependent utility model of Luce [9]). As discussed in KW (Section
5.2), a tradeoff consistency requirement over comonotonic bets on events,
supplemented with a few basic conditions, yields a biseparable representa-
tion. This paper shows that a weaker consistency assumption, that restricts
attention to bets on or against states, still suffices to derive a cardinal utility.
It thus suggests a simpler condition that can be tested in order to establish
the use of a cardinal utility over consequences. At the same time, it should
be noted that the tradeoff consistency condition is not sufficient to obtain
a global additive representation over bets, even if only bets on and against
states are considered.

The result in this paper serves to strengthen the validity of the trade-
off method as a tool to empirically measure utility. The tradeoff method
elicits a utility by finding consequences which are equally spaced in terms

1A few basic axioms are also assumed.
2That is, the relation over acts αsβ with β preferred to α also admits an additive

representation u(α) + V−s(β), but this representation is different than the one over bets
on s.
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of tradeoffs, under a suitable assumption of tradeoff consistency (for a de-
tailed description and a discussion of the method see Wakker and Deneffe
[14], Kobberling and Wakker [7], and the references therein). Assuming that
the axioms suggested in this paper are satisfied, the tradeoff method may be
applied to derive a cardinal utility over consequences by measuring tradeoffs
over single states, using bets on or against states. The representation result
introduced in this paper thus extends the domain of preferences to which the
tradeoff method applies. Not only is it not required to assume an expected
utility representation in order to apply the method, but it is even possible
to measure a utility when the relation over binary acts does not conform to
the biseparable model (see Example 4).

The paper is organized as follows. The next section presents notation
and basic axioms. Section 3 presents the tradeoff consistency axiom used
and the result. Section 4 contains an example for a relation which obtains a
representation as in the theorem, yet is not a biseparable relation. Section 5
discusses the problem of infinite values and a possible generalization. Finally,
all proofs appear in Section 6.

2 Notation and basic axioms.

S a set of states of nature, with typical elements s, t, . . ..
Σ = 2S an algebra of all events over S, with typical elements

E,F, . . ..
X a nonempty set of consequences, with typical elements

x, y, . . ..
XS = {f : S → X} the set of acts : mappings from states to conse-

quences, with typical elements f, g, . . ..
% the decision maker’s preference relation: a binary re-

lation over the set of acts XS. As usual, ∼ and �
denote its symmetric and asymmetric components.

xEy a notation for the act which assigns the consequence
x to the states in E and the consequence y other-
wise. x{s}y is sometimes abbreviated to xsy (more
generally, s is sometimes used instead of {s}).

x a constant act assigning consequence x to every state
of nature.
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With the usual slight abuse of notation, the symbol % is also used to
denote a binary relation on X, defined by: x % y if x % y. A state s is
said to be null if for all x, y, z ∈ X, xsz ∼ ysz. For a set of acts A, s is said
to be null on A if xsz ∼ ysz whenever xsz, ysz ∈ A. Otherwise the state is
non-null (on A). Similarly, an event E is null (on A) if for all x, y, z ∈ X,
xEz ∼ yEz (whenever xEz, yEz ∈ A).

The first assumption, A0, restricts the domain of decision problems ac-
commodated by the model. It poses structural requirements on the set of
states, as well as on the set of consequences.

A0. Structural assumption:

(a) S is finite.

(b) X is a connected topological space, and XS is endowed with the prod-
uct topology.

Three basic assumptions are presented first. Discussion of the axioms is
delayed until after their statement.

A1. Weak Order:

(a) For all f and g in XS, f % g or g % f (completeness).

(b) For all f, g, and h in XS, if f % g and g % h then f % h (transitivity).

A2. Continuity: The sets {f ∈ XS | f � g} and {f ∈ XS | f ≺ g} are
open for all g in XS.

A3. Monotonicity: For any two acts f and g, f % g holds whenever
f(s) % g(s) for all states s in S.

Assumptions A1-A3 are standard. The first requires that the preference
relation be complete and transitive, the second states that it is continuous,
and the third that monotonicity holds. Monotonicity implies that the pref-
erence over consequences is state-independent. If the consequence f(s) is
preferred to the consequence g(s) in each state s, where these are compared
through constant acts, then the composition of f out of these consequences
cannot make it worse than g.

In order to state the fourth assumption the notion of a comonotonic set
of acts is defined, generalizing the definition of pairwise comonotonicity.
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Definition 1. A set of acts is a comonotonic set if there are no two acts
f and g in the set and states s and t, such that f(s) � f(t) and g(t) � g(s).
Acts in a comonotonic set are said to be comonotonic acts.

Comonotonic acts induce essentially the same ranking of states according
to the desirability of their consequences (or, more accurately, the same rank-
ing up to indifferences). Given any numeration of the states, say π : S →
{1, ..., |S|}, the set { f ∈ XS | f(π(1)) % . . . % f(π(|S|) } is comonotonic. It
is a largest-by-inclusion comonotonic set of acts.

A4. Consistent Essentiality:

(a) For all s ∈ S,

asx � bsx ⇒ csy � dsy for all c � d,

whenever the set {asx, bsx, csy, dsy} is comonotonic.

xsa � xsb ⇒ ysc � ysd for all c � d,

whenever the set {xsa, xsb, ysc, ysd} is comonotonic.

(b) There exist distinct states s′, s′′ and consequences x, y such that xs′y �
ȳ and x̄ � ys′′x .

Part (a) of Consistent Essentiality implies that if a state s is non-null on a
set of bets on, or a set of bets against s, then it should influence the decision
for every pair of acts from this set. The same holds true for essentiality of the
complement. Part (b) of the axiom guarantees that there are at least two
non-null states. Moreover, applying Monotonicity, ys′′x % xs′y, therefore
part (b) also yields that for some set of bets on, and some set of bets against
states, both the state and its complement are non-null.

Consistent Essentiality and Monotonicity can be replaced by a simpler
axiom of Dominance: f � g whenever f(s) % g(s) for all states s, with strict
preference for at least one state. Though simpler, Dominance is a stronger
condition as it excludes the possibility of null states. Therefore the less
restrictive axioms of Consistent Essentiality and Monotonicity were chosen
here.

3 Tradeoff consistency and results.

In order to present the tradeoff measurement used in this paper and its
corresponding consistency requirement, two definitions are introduced.
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Definition 2. An act of the form αsβ is called a simple binary act. For
a state s, a comonotonic set of acts of the form αsβ, either {αsβ | α % β}
or {αsβ | β % α}, is termed a simple binary comonotonic set.

Whenever the notation Cs is used in the sequel to denote a simple binary
comonotonic set of acts, it is to be understood that it denotes such a set of
the form αsβ.

Definition 3. Given a comonotonic set of acts A, an event E is said to be
comonotonically non-null on A, if there are consequences x, y, z such
that xEz � yEz, and A ∪ {xEz, yEz} is comonotonic. Otherwise, E is
comonotonically null on A.

For instance, {s} is comonotonically non-null on {asx} if it is non-null
on the simple binary comonotonic set of acts containing asx. Similarly, if Cs
is a simple binary comonotonic set of acts and A ⊆ Cs is any subset of it,
then {s} is comonotonically non-null on A whenever it is non-null on Cs.

The relation which determines how tradeoffs are measured under the
model is defined next.

Definition 4. Define a relation ∼∗ over pairs of consequences: for conse-
quences a, b, c, d,
< a; b > ∼∗< c; d > if there exist consequences x, y and a state s such that,

asx ∼ bsy and csx ∼ dsy (1)

with all four acts comonotonic and {s} comonotonically non-null on the set
of four acts.

To get intuition for the relation ∼∗, assume that y � x. In such a case,
having asx ∼ bsy implies that a is preferred to b in the precise amount that
makes the act asx indifferent to the act bsy. In other words, gaining a instead
of b on s exactly compensates for the advantage of y over x outside state s.
If the same is true for consequences c and d then it is concluded that the
decision maker is willing to trade a for b as much as c for d, namely that the
tradeoff between a and b is the same as the tradeoff between c and d.

An important point to note is that the relation ∼∗ measures the tradeoff
between consequences only over single states, and only through bets on one
particular state, or bets against one particular state. By contrast, for conse-
quences a, b, c, d, state s and acts f, g, indifferences asf ∼ bsg and csf ∼ dsg
do not in general imply similar equivalence of the tradeoffs < a; b > and
< c; d >. Moreover, tradeoffs are not even allowed to be measured over com-
plements of single states, so that xsa ∼ ysb and xsc ∼ ysd still do not imply
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that the tradeoffs < a; b > and < c; d > are equivalent. The measurement
allowed is therefore very cautious. It suggests that indifference relationships
which include any violation of comonotonicity, or employ acts which are not
simple binary ones, may involve considerations other than the mere tradeoff
between consequences.

The definition of ∼∗ would be meaningful only if the measurements em-
ployed in its definition are independent of the choice of state and conse-
quences outside this state. This is precisely the role of the following axiom.

A5. Simple Binary Comonotonic Tradeoff Consistency (S-BCTC):
For any eight consequences a, b, c, d, x, y, z, w, and states s and t,

asx ∼ bsy, csx ∼ dsy, atz ∼ btw ⇒ ctz ∼ dtw (2)

whenever the sets of acts { asx, bsy, csx, dsy } and { atz, btw, ctz, dtw }
are comonotonic, {s} is comonotonically non-null on the first set and {t} is
comonotonically non-null on the second set.

As noted above, only measurement over single states, which employs sim-
ple binary comonotonic acts, is involved in the axiom. KW (section 5.2) sug-
gest the following stronger consistency assumption, that applies to all events.

Binary Comonotonic Tradeoff Consistency: For any eight consequences
a, b, c, d, x, y, z, w, and events E and F ,

aEx ∼ bEy, cEx ∼ dEy, aFz ∼ bFw ⇒ cFz ∼ dFw

whenever the sets of acts { aEx, bEy, cEx, dEy } and { aFz, bFw, cFz, dFw }
are comonotonic, E is comonotonically non-null on the first set and F is
comonotonically non-null on the second set.

KW explain that Binary Comonotonic Tradeoff Consistency, together
with a few basic axioms, yields the biseparable representation of Ghirardato
and Marinacci [4]. By contrast, the weakened version of tradeoff consistency
introduced in this paper does not deliver a global additive representation
over simple binary acts, but only local additive representations, as is further
elaborated in the presentation of Theorem 1 below.

Theorem 1, presented next, is the main result of this paper. The theorem
is broken into four parts. Parts one through three are the sufficiency parts and
consist of implications of axioms A1 through A5. The fourth part provides
necessity.

8



The first part of Theorem 1 states that axioms A1 through A5 imply ex-
istence of a cardinal utility over consequences, which respects tradeoff indif-
ferences in the sense that indifference of tradeoffs is translated to equivalence
of utility differences.

Theorem 1, Part 1 (Sufficiency): Cardinal utility.
Assume a binary relation % on XS, where X and S satisfy the structural
assumptions, A0(a) and A0(b). Then (i) below implies (ii).

(i) % satisfies A1-A5.

(ii) There exists a continuous function u : X −→ R, unique up to location
and unit 3, such that for all x, y ∈ X, x % y ⇐⇒ u(x) ≥ u(y), and
< a; b > ∼∗< c; d > implies u(a)− u(b) = u(c)− u(d).

The second part of Theorem 1 states that axioms A1 through A5 are suffi-
cient to obtain local additive representations over simple binary comonotonic
sets. Focusing on the more interesting case when both s and its complement
are non-null on a simple binary comonotonic set (otherwise the result is triv-
ial), % on this set admits an additive representation αsβ 7→ u(α) + V−s(β).
That is, the additive value function operating on the single state consequence
is the utility function from (ii), whereas the second additive value function,
operating on the complement’s consequence, is general. The only known
attributes of V−s are that it is continuous and that it represents the rela-
tion over consequences. Nothing more can be said about the link between
functions V−s for different states s or about the link between local additive
representations on different simple binary comonotonic sets. It is thus im-
possible to use these additive representations to compare acts that belong to
different simple binary comonotonic sets.

As mentioned above, in the special case where the relation also satis-
fies Binary Comonotonic Tradeoff Consistency, a biseparable representation
results. According to the biseparable representation, if αEβ denotes a bet
on event E (with α % β), then the relation over bets on events admits the
additive representation αEβ 7→ u(α)ρ(E) + u(β)(1− ρ(E)), with u a cardi-
nal utility function and ρ a non-additive probability. The biseparable model
therefore implies one global additive representation over all bets on events,
in contrast to the model suggested here, which delivers only local additive
representations (and only on bets on and against states).

Theorem 1, Part 2 (Sufficiency): Local additive representations
on simple binary comonotonic sets.

3In other words, unique up to a positive linear transformation.
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Assume a binary relation % on XS, where X and S satisfy the structural
assumptions, A0(a) and A0(b). Then (i) above also implies:

(iii) Suppose that Cs is a simple binary comonotonic set of acts of the form
αsβ, on which both s and {s}c are non-null. Then given a function u
as in (ii), there exists a function
V−s : X −→ R ∪ {−∞,+∞}, unique up to location4, such that for all
asx, bsy ∈ Cs,

asx % bsy ⇐⇒ u(a) + V−s(x) ≥ u(b) + V−s(y) . (3)

Moreover, the function V−s is continuous where it is finite and repre-
sents % on X.

If only s ({s}c) is non-null on Cs then for all asx, bsy ∈ Cs, asx % bsy
if and only if
u(a) ≥ u(b) (u(x) ≥ u(y)).

The third component of the theorem establishes that the axioms imply
a general representation of % over all acts, and that general representation
identifies with the utility function over constant acts. Some additional at-
tributes of the representation, necessary for the axioms to be satisfied, are
stated. One of these attributes requires a definition.

Definition 5. A function J : XS −→ R is self-monotonic if J(f) ≥ J(g)
whenever
J(f(s)) ≥ J(g(s)) for all states s ∈ S.

Theorem 1, Part 3 (Sufficiency): A general representation.
Assume a binary relation % on XS, where X and S satisfy the structural
assumptions, A0(a) and A0(b). Then (i) above also implies:

(iv) Given a function u as in (ii), there exists a unique continuous and
self-monotonic function J : XS −→ R, such that for all f, g ∈ XS,
f % g ⇐⇒ J(f) ≥ J(g), and J(x̄) = u(x) for all x ∈ X.

Furthermore, there are distinct states s′ and s′′ and consequences x and
y such that
u(x) > J(ys′′x) and J(xs′y) > u(y).

4That is, unique up to an additive constant.
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Finally the fourth part of the theorem maintains that statements (ii), (iii)
and (iv) are necessary for axioms A1-A5 to be satisfied.

Theorem 1, Part 4 (Necessity).
Assume a binary relation % on XS, where X and S satisfy the structural
assumptions, A0(a) and A0(b). Then (ii),(iii) and (iv) together imply (i).

The next corollary is a supplement to the main theorem, and added since
it may prove useful in case the theorem is applied.

Corollary 1. Assume a binary relation % on XS, where X and S satisfy the
structural assumptions, A0(a) and A0(b). Suppose further that the relation
satisfies axioms A1-A5. Then there exists δ > 0 such that if u(a) − u(b) =
u(b)− u(c), and |u(a)− u(b)| < δ, then < a; b >∼∗< b; c >.

4 Example.

The following example depicts a relation that satisfies axioms A1 through
A5, hence admits the representation and satisfies the conditions in (ii),(iii)
and (iv) of Theorem 1. Nonetheless, the relation in the example is not a
biseparable one.

Let S = {1, 2, . . . , n} (n ≥ 3) and X = R+. Suppose that % is represented
by the following functional (0 < ε < 1):

J(f) = ε

(
1

2

√
f(s1) +

1

2

√
f(sn)

)
+ (1− ε)

(
1

n− 2

n−1∑
i=2

f(si)

)
,

for any act f and an ordering f(s1) % f(s2) % . . . % f(sn) .

First observe that this preference relation satisfies all the axioms listed
above. It obviously defines a weak order over (R+){1,2,...,n}, and, being a
continuous, monotonic functional over R+, the implied preference relation
satisfies Monotonicity and Continuity. Moreover, for any two acts f and g,
f � g whenever f(s) % g(s) in all states s and f(s) � g(s) for at least one
state s. Thus Consistent Essentiality follows, and all states are non-null on
any simple binary comonotonic set. Last, assume that for eight consequences
a, b, c, d and x, y, v, w, and two states s and t, asx ∼ bsy, csx ∼ dsy and
atv ∼ btw. The first two indifferences imply

ε

2
(
√
a−
√
b) =

ε

2
(
√
y −
√
x) + (1− ε)(y − x) =

ε

2
(
√
c−
√
d) ,
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while the third one renders

ε

2
(
√
a−
√
b) =

ε

2
(
√
w −
√
v) + (1− ε)(w − v) .

The indifference ctv ∼ dtw is thus implied, and delivers axiom S-BCTC
(A5). Still, this preference relation is not a biseparable relation. Bisepara-
ble preference relations maintain tradeoff consistency across events. There-
fore, a biseparable preference would satisfy, for instance, that if asx ∼
bsy, csx ∼ dsy and vta ∼ wtb, then also vtc ∼ wtd, whenever the sets
{asx, bsy, csx, dsy} and {vta, wtb, vtc, wtd} are comonotonic. This, how-
ever, is not the case here, since

√
a −

√
b =

√
c −
√
d does not imply

ε
2
(
√
a−
√
b) + (1− ε)(a− b) = ε

2
(
√
c−
√
d) + (1− ε)(c− d). 5

5 Comments.

5.1 Infinite values.

Note that the representation (u, V−s) in (3) may obtain a value of ±∞. Still,
an infinite value may only be obtained on extreme acts, as defined below.

Definition 6. A consequence y is termed minimal if x % y for all x ∈ X,
and maximal if y % x for all x ∈ X. A consequence which is either minimal
or maximal is called extreme. Correspondingly, a minimal act is one which
obtains a minimal consequence in every state, whereas a maximal act obtains
a maximal consequence in every state. An act is said to be extreme if it is
either minimal or maximal.

If (u, V−s) represents % on {αsβ | α % β}, then V−s may obtain a value
of +∞ on a maximal consequence, thus the representation on a maximal act
may equal +∞. Similarly, if (u, V−s) represents % on {αsβ | β % α}, then
V−s may obtain a value of −∞ on a minimal consequence, consequently the
representation may obtain −∞ on a minimal act. Nevertheless, in any case
the utility u is bounded.

The following example shows that an infinite value may be obtained under
the conditions of the model (The example is based on Example 3.8 from
Wakker [13]). Let X = [0, 1] and S = {1, 2, 3}. Consider a relation %
that over simple binary comonotonic sets of the form {αsβ | α % β} admits
the additive representation α + β, and over simple binary comonotonic sets

5The preference relation defined by J satisfies also tradeoff consistency across comple-
ments, though that attribute is not required by the axioms: if xsa ∼ ysb, xsc ∼ ysd and
vta ∼ wtb, then also vtc ∼ wtd.
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{αsβ | β % α} admits the additive representation α + ln β. The resulting
relation over constant acts is represented by u(α) = α, and satisfies that
< a; b > ∼∗< c; d > ⇒ a− b = c− d. Indifference curves on the entirety of
[0, 1]3 may be completed in any monotonic and continuous manner (for the
remaining acts (x1, x2, x3) where the xi’s all differ). The obtained relation
satisfies the conditions of Theorem 1.

Denote V−s(β) = ln β. The additive representation u(α) + V−s(β) over
simple binary comonotonic sets {αsβ | β % α} returns the value −∞ on
the constant act 0. To see that the consequence 0 must be assigned a value
of −∞ by V−s, consider the sequence of consequences βk = e−k. For this
sequence, V−s(βk)− V−s(βk+1) = V−s(βk+1)− V−s(βk+2), therefore V−s must
be unbounded from below.

5.2 A generalization of the tradeoff consistency axiom.

Let s be some state. Denote by AMs the set of all acts which obtain their best
consequence on s (that is, acts f for which f(s) % f(t) for all states t ∈ S),
and by Ams the set of all acts which obtain their worst consequence on s.
Consider the following tradeoff consistency axiom, which is a strengthening
of Simple Binary Comonotonic Tradeoff Consistency (S-BCTC):6

Extreme Consequence Tradeoff Consistency: For any four consequences
a, b, c, d, four acts f, g, f ′, g′, and states s and t,

asf ∼ bsg, csf ∼ dsg, atf ′ ∼ btg′ ⇒ ctf ′ ∼ dtg′

whenever all acts {asf, bsg, csf, dsg} belong to AMs or all belong to Ams , all
acts {atf ′, btg′, ctf ′, dtg′} belong to AMt or all belong to Amt , and correspond-
ingly {s} is non-null on AMs or on Ams , and {t} is non-null on AMt or on Amt .

Extreme Consequence Tradeoff Consistency strengthens S-BCTC as it im-
poses consistency when acts are not necessarily binary. Although tradeoffs
are still measured over single states, now the acts employed in the measure-
ment are any acts which obtain their extreme consequence – either best for
all acts or worst for all acts – on these single states. An interesting feature,
satisfied under this axiom and axioms A0 through A4, may be identified: by
connectedness of X, weak order and continuity, for each act f and state s
there exists a conditional certainty equivalent x ∈ X that satisfies f ∼ fsx.
Extreme Consequence Tradeoff Consistency implies that this conditional cer-
tainty equivalent is independent of the specific consequence obtained on s, as

6I thank an anonymous referee for pointing out to me this generalization and its interest.
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long as this consequence is extreme. More accurately, asf ∼ asx if and only
if bsf ∼ bsx, whenever both asf and bsf belong to AMs or both belong to
Ams . This independence is implied by applying the axiom to indifference rela-
tionships asf ∼ asf, bsf ∼ bsf , and asf ∼ asx, which result in bsf ∼ bsx,
if asf, bsf ∈ AMs or asf, bsf ∈ Ams .7 Further implications of this axiom
remain a matter for future research.

6 Proofs.

6.1 Proof of Theorem 1: Sufficiency.

Two standard observations are listed first. These observations will be used
in the sequel, sometimes without explicit reference.

Observation 1. Consistent Essentiality and Monotonicity imply that there
are two consequences x∗, x∗ ∈ X such that x∗ � x∗.

Observation 2. Weak order, Continuity and Monotonicity imply that each
act f has a certainty equivalent, i.e., a constant act x such that f ∼ x.

The proof that (i) of Theorem 1 implies (ii), (iii) and (iv) is conducted in
two logical steps. First, an additive representation is shown to hold on simple
binary comonotonic sets. Second, a utility is derived, satisfying the condi-
tions in (ii), and yielding the specific representation in (iii) on simple binary
comonotonic sets. A general representation as in (iv) follows by employing
certainty equivalents.

6.1.1 Additive representation on simple binary comonotonic sets.

This subsection contains a proof that % on simple binary comonotonic sets
is represented by an additive functional, every component of which is a rep-
resentation of % over constant acts.

Let s be some state and Cs a corresponding simple binary comonotonic
set of acts. Suppose that both s and its complement {s}c are non-null on Cs.

Lemma 2. The binary relation % on Cs is a continuous weak order, satisfying
Monotonicity.

Proof. All attributes on Cs follow from their counterparts on XS, assumed
in A1, A2 and A3. �

7The other acts involved must, by the other axioms, belong to the same sets. Some
nullity conditions are omitted for the sake of brevity.
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The proof that % on Cs admits an additive representation makes use of
Theorem 3.2 and Remark 3.7 from Wakker [13]. In order to apply these
results two additional attributes are required.

Definition 7. The binary relation % satisfies the hexagon condition on
Cs if, for all acts νsα, µsβ, νsβ, µsγ, ξsα, νsβ, ξsβ, νsγ in Cs,

νsα ∼ µsβ, νsβ ∼ µsγ, ξsα ∼ νsβ ⇒ ξsβ ∼ νsγ .

Definition 8. The binary relation % satisfies strong monotonicity on Cs
if, for all consequences α, β and acts αsx, βsx, ysα and ysβ in Cs,

α % β ⇔ αsx % βsx , and

α % β ⇔ ysα % ysβ .

Claim 3. The binary relation % on Cs satisfies strong monotonicity and the
hexagon condition.

Proof. Strong monotonicity follows from Monotonicity, and the assumption
that both s and {s}c are non-null on Cs together with part (a) of Consistent
Essentiality. The hexagon condition is implied by assigning in (2) both states
to s, and a = d = ν, b = µ, c = ξ,
x = α, y = v = β, w = γ. �

Lemma 4. (A combination of Theorem 3.2 and Remark 3.7 from Wakker
[13], applied to Cs) The following two statements are equivalent:

(a) The binary relation % on Cs is a continuous weak order, satisfying
strong monotonicity and the hexagon condition.

(b) There are functions Vs, V−s : X → R∪{−∞,+∞}, such that the binary
relation % on Cs is represented by the additive functional:

(Vs, V−s)(αsβ) = Vs(α) + V−s(β) , (4)

with Vs and V−s that are continuous where they are finite.

In case Cs = {αsβ | α % β} then Vs and V−s are finite, except possibly
Vs at minimal consequences and V−s at maximal consequences. In case
Cs = {αsβ | β % α}, then Vs and V−s are finite, except possibly Vs at
maximal consequences and V−s at minimal consequences.
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The representation (Vs, V−s) is unique up to locations and joint unit on
Cs \ {extreme acts}.8

Remark 5. If values (finite or infinite) at extreme consequences are chosen
in the following manner, then the conditions of Lemma 4 are still satisfied
(see section 4.2 in Wakker [13]): In case Cs = {αsβ | α % β}, if an ex-
treme consequence exists, set Vs(minimal consequence) = inf{Vs(x) | x ∈ X \
{minimal consequences}} for any minimal consequence, and V−s(maximal consequence) =
sup{V−s(x) | x ∈ X \ {maximal consequences}} for any maximal conse-
quence. In case Cs = {αsβ | β % α}, if an extreme consequence exists, set
Vs(maximal consequence) = sup{Vs(x) | x ∈ X \ {maximal consequences}}
for any maximal consequence, and V−s(minimal consequence) = inf{V−s(x) | x ∈
X \ {minimal consequences}} for any minimal consequence.

In the remainder of the proof, whenever there is a reference to an additive
representation over a simple binary comonotonic set, it is assumed that values
on extreme consequences are set as in the remark.

Conclusion 6. Each of Vs, V−s represents % on X.

Proof. Suppose that Cs = {αsβ | α % β}. By strong monotonicity and the
non-nullity assumptions, applying the additive representation,

α % β ⇔ Vs(α) + V−s(β) ≥ Vs(β) + V−s(β) .

In case β is not maximal, V−s(β) is finite and Vs(α) + V−s(β) ≥ Vs(β) +
V−s(β) ⇔ Vs(α) ≥ Vs(β). If β is maximal then α % β ⇔ α ∼ β, and by
Monotonicity and Consistent Essentiality there exists x ∈ X such that β � x.
Strong Monotonicity yields α ∼ β ⇔ αsx ∼ βsx, yielding Vs(α) + V−s(x) =
Vs(β) + V−s(x)⇔ Vs(α) = Vs(β), as V−s(x) is finite.

Similarly,

α % β ⇔ Vs(α) + V−s(α) ≥ Vs(α) + V−s(β) .

In case α is not minimal, Vs(α) is finite and the above holds if and only
if V−s(α) ≥ V−s(β). If α is minimal then so is β, and there exists y ∈ X
such that y � α. Strong Monotonicity again yields α ∼ β ⇔ ysα ∼ ysβ,
implying Vs(y) + V−s(α) = Vs(y) + V−s(β). As Vs(y) is finite, it follows that
V−s(α) = V−s(β), and V−s too represents % on X.

The proof for the case Cs = {αsβ | β % α} is completely analogous. �

8That is, if (Ws,W−s) is another additive representation as above, then Ws = σu +
µ1 , W−s = σV−s + µ2, σ > 0, on non-extreme acts.
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6.1.2 Completion of the proof that (i) implies (ii), (iii) and (iv).

Lemma 7. (A partial version of Lemma VI.8.2 from Wakker [12]):
Let Cs and Ct be two simple binary comonotonic sets of acts. Assume that s
and its complement {s}c are non-null on Cs, and that t and {t}c are non-null
on Ct. Let (Vs, V−s) and (Vt, V−t) be the implied continuous cardinal additive
representations of % on Cs and Ct, respectively (according to Lemma 4).
Then on X \ {extreme consequences}, Vt = σVs + τ, σ > 0.

Proof. By applying Lemma VI.8.2 of Wakker [12] for Vs, Vt (in his notation,
for V π

l = Vt,
V π′

k = Vs) on X \ {extreme consequences} (in case extreme consequences
exist, Proposition VI.9.5 from Wakker [12] guarantees that the required
topological conditions on X \ {extreme consequences} are satisfied, and the
Lemma may be applied there). �

Let s′ be a state, and x, y consequences, as characterized in part (b) of
Consistent Essentiality. By assumption, xs′y � y, which by Monotonicity im-
plies x � y. Part (b) of Consistent Essentiality also states that for some other
state s′′, x � ys′′x. Applying Monotonicity once more, ys′′x % xs′y, hence
x � xs′y � y, implying that both s′ and {s′}c are non-null on {αs′β | α % β}.
According to the proof in the previous subsection there exists a continuous
cardinal additive representation (Vs′ , V−s′) of % on the simple binary comono-
tonic set in question, where Vs′ , V−s′ represent % on X. Let u(x) = Vs′(x)
for all x ∈ X \ {minimal consequences}. If a minimal consequence exists,
set u(minimal consequence) = inf{u(x) | x ∈ X \ {minimal consequences}}.
According to Lemma 4, Conclusion 6 and Remark 5, u represents % on X,
it is finite except possibly at minimal consequences, and continuous where it
is finite.

Let s′′ be a state as characterized in part (b) of Consistent Essentiality.
Applying Monotonicity as is done above, both s′′ and {s′′}c are non-null on
{αs′′β | β % α}, thus according to the previous subsection there exists a
continuous cardinal additive representation (Vs′′ , V−s′′) of % on this simple
binary comonotonic set, where Vs′′ , V−s′′ represent % on X, and Vs′′ is finite
except possibly at maximal consequences. By Lemma 7 Vs′′ is a positive
linear transformation of u on non-extreme consequences. If a minimal conse-
quence exists, then Vs′′ , being finite there, is bounded from below. Hence u is
bounded from below and by its definition on minimal consequences must be
finite on those as well. The definition of u on minimal consequences extends
its continuity to X.

It follows that % on X is represented by a continuous utility function, u :
X → R. Uniqueness of u and the fact that it respects tradeoff indifferences
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is proved in the following lemma.

Lemma 8. If < a; b > ∼∗< c; d >, then u(a) − u(b) = u(c) − u(d). u is
unique up to a positive linear transformation.

Proof. If < a; b > ∼∗< c; d >, then there exist consequences x, y and a state t
such that atx ∼ bty and ctx ∼ dty, with {atx, bty, ctx, dty} comonotonic, and
{t} comonotonically non-null on this set of acts. If {t}c is comonotonically
null on {atx, bty, ctx, dty}, then having bty ∼ btx delivers atx ∼ bty ⇔ a ∼
b, and similarly ctx ∼ dty ⇔ c ∼ d. The equality u(a)− u(b) = u(c)− u(d)
is trivially implied.

Otherwise, assume that {t}c is comonotonically non-null on {atx, bty, ctx, dty}.
By the above subsection there exists a continuous additive representation
(Vt, V−t) for% on the simple binary comonotonic set containing {atx, bty, ctx, dty}.
Translating the indifference relationships with this representation obtains
Vt(a)+V−t(x) = Vt(b)+V−t(y) and Vt(c)+V−t(x) = Vt(d)+V−t(y). If Vt or V−t
obtain a value of ±∞ on one of these consequences, then the comonotonicity
restrictions and Consistent Essentiality imply that a ∼ b and c ∼ d, imme-
diately implying the required result. Else, if all values involved are finite,
Vt(a)− Vt(b) = Vt(c)− Vt(d). According to Lemma 7, Vt = σVs′ + τ, σ > 0,
on non-extreme consequences, thus, as all values are finite and recalling the
definition on extreme consequences, also u(a)− u(b) = u(c)− u(d).

For uniqueness of u, let û be some other representation of % on X which
satisfies that if < a; b > ∼∗< c; d > then û(a)− û(b) = û(c)− û(d).
Both u and û represent % on X, therefore û = ϕ ◦ u, with ϕ a continuous
and strictly increasing transformation. Non-triviality of %, connectedness of
X and continuity of u imply that u(X) = Vs′(x) is a non-degenerate interval.
For the same reasons V−s′(X) is a non-degenerate interval. Let ξ be an
internal point of u(X). There exists an interval R small enough around ξ
such that, for all u(a), u(c) and u(b) = [u(a)+u(c)]/2 in R, there are x, y ∈ X
for which as′x, bs′y, bs′x, cs′y are comonotonic, with a % x, b % y, b % x and
c % y, and

u(a)−u(b) = Vs′(a)−Vs′(b) = V−s′(y)−V−s′(x) = Vs′(b)−Vs′(c) = u(b)−u(c).

That is, as′x ∼ bs′y and bs′x ∼ cs′y with {as′x, bs′y, bs′x, cs′y} comono-
tonic, which is precisely the definition of < a; b > ∼∗< b; c >. By the
assumption on û, û(a) − û(b) = û(b) − û(c) as well, implying that for all
α, γ ∈ R , ϕ satisfies ϕ((α + γ)/2) = [ϕ(α) + ϕ(γ)]/2. By Theorem 1 of
section 2.1.4 of Aczel [1], ϕ must be a positive linear transformation. �

Let s be some state and Cs a corresponding simple binary comonotonic
set of acts. If both s and its complement {s}c are non-null on Cs, then
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according to Lemma 4, Lemma 7 and the definition of u, % on Cs admits a
representation as in (4) (by choosing for Vs the same location and unit as
those of u). If only s is non-null on Cs then for every asx, bsy in Cs, asx % bsy
if and only if a % b. Since u represents % on X, it follows that asx % bsy if
and only if u(a) ≥ u(b). If only {s}c is non-null on Cs then asx % bsy if and
only if x % y, which is true if and only if u(x) ≥ u(y).

Given u, a unique continuous representation J may be defined using cer-
tainty equivalents: for every act f , set J(f) = u(x) for x ∈ X such that
f ∼ x̄ (such a consequence x exists by Observation 2). The resulting func-
tional J represents % on XS, is unique given a specific u, and continuous
due to continuity of %. Self-monotonicity of J follows from Monotonicity
(A3). Part (b) of Consistent Essentiality (A4) implies that there are states
s′ and s′′ and consequences x and y such that J(x) = u(x) > J(ys′′x) and
J(xs′y) > J(y) = u(y).

6.2 Proof of Theorem 1: Necessity.

Let (ii), (iii) and (iv) of Theorem 1 hold. By (iv), % satisfies Weak Order
(A1), Continuity (A2) and Monotonicity (A3). By existence of states s′, s′′

and consequences x, y as detailed in (iv), part (b) of A4 holds. Part (a) of
A4 is implied by (iii).

For S-BCTC (A5), let consequences a, b, c, d and x, y, v, w, and states s
and t, be such that

asx ∼ bsy, csx ∼ dsy, atv ∼ btw (5)

where the sets { asx, bsy, csx, dsy } and { atv, btw, ctv, dtw } are comono-
tonic, {s} is comonotonically non-null on the first set and {t} is comonoton-
ically non-null on the second set. The first two indifference relations imply,
by definition, < a; b > ∼∗< c; d >, and thus, according to (ii), u(a)− u(b) =
u(c) − u(d). If {t}c is comonotonically null on { atv, btw, ctv, dtw }, then
atv ∼ btw implies u(a) = u(b), which renders u(a)− u(b) = u(c)− u(d) = 0
and thus c ∼ d. From nullity of {t}c and Monotonicity it follows that
ctv ∼ ctw ∼ dtw. Otherwise, by Lemma 7, Vt = σu + τ, σ > 0, hence
Vt(a) − Vt(b) = Vt(c) − Vt(d). The indifference atv ∼ btw implies Vt(a) −
Vt(b) = V−t(w)− V−t(v), thus also Vt(c)− Vt(d) = V−t(w)− V−t(v), yielding
ctv ∼ dtw.

6.3 Proof of Corollary 1.

Let a, b, c be consequences satisfying u(a)− u(b) = u(b)− u(c), and assume
w.l.o.g. u(a) > u(b) > u(c), so equivalently a � b � c. Suppose further that
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u(a) − u(b) < δ. Let s′ be a state satisfying x̄ � xs′y � ȳ whenever x � y
(exists by Essentiality (A4) and Monotonicity), and (u, V−s′) the correspond-
ing continuous cardinal additive representation of % on {αs′β | α % β}.
Similarly, let s′′ be a state satisfying x̄ � ys′′x � ȳ whenever x � y, and
(u, V−s′′) the corresponding continuous cardinal additive representation of %
on {αs′′β | β % α}.

Employing the above representations, tt suffices to show that there are
consequences x, y that satisfy either

u(a)− u(b) = V−s′(y)− V−s′(x), a � b � c % y � x (6)

or
u(a)− u(b) = V−s′′(y)− V−s′′(x), y � x % a � b � c . (7)

Note that according to the conditions on the consequences and Lemma
4, V−s′ and V−s′′ in the above equations must obtain finite values.

Let z1 > z2 > z3 > z4 be interior consequences (there are x∗, x∗ for which
x∗ � z1 � z2 � z3 � z4 � x∗). If u(a) − u(c) < mini=1,2,3 (u(zi)− u(zi+1)),
then either a ≺ z2, or a % z2 and c � z3. In the first case, letting u(a)−u(b) <
V−s′′(z1) − V−s′′(z2) guarantees existence of x, y as required by (7). In the
second case, u(a) − u(b) < V−s′(z3) − V−s′(z4) guarantees that there are
consequences x, y such that (6) is satisfied. Hence, choosing

δ = min {1

2
min
i=1,2,3

(u(zi)− u(zi+1)), V−s′(z3)− V−s′(z4), V−s′′(z1)− V−s′′(z2)}

yields the desired result. That is, if u(a) − u(b) < δ then there are x, y
satisfying either (6) or (7), implying < a; b > ∼∗< b; c >. �
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Abstract

This paper deals with an incomplete relation over events. Such a relation

naturally arises when likelihood estimations are required within environments that

involve ambiguity, and in situations which engage multiple assessments and disagreement

among individuals’ beliefs. The main result characterizes binary relations over

events, interpreted as likelihood relations, that can be represented by a unanimity

rule applied to a set of prior probabilities. According to this representation an event

is at least as likely as another if and only if there is a consensus among all the priors

that this is indeed the case. A key axiom employed is a cancellation condition,

which is a simple extension of similar conditions that appear in the literature.
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1 Introduction

1.1 Motivation and Background

Estimating the odds and comparing the likelihood of various events are essential parts of

processes carried out by many organizations. For instance, the US intelligence community

produces National Intelligence Estimates, in which the likelihood of various events is

assessed. Questions such as, ‘Is it more likely that democracy will prevail in Libya, or that

a military regime will be established?’, and the like, seem natural to ask. These questions

and many others call for likelihood comparisons of different events. Other examples in

which probabilistic estimates are used include forecasts published by central banks, that

address issues such as the odds of inflation or recession, assessments of market trends

supplied by committees of experts, estimated likelihood of natural events such as global

warming, that are based on individual opinions of scientists and on many experiments,

and so forth. In all these instances, statements of the type ‘event A is more likely than

event B’ seem fundamental to the respective context.

Typically, assessments of the kind given above rely on ‘objective’ data, such as reports

of military movements, temperature measurements and the like. Such assessments are

usually intended to be based as closely as possible on the data, in order to be considered

‘objective’. Frequently, though, the events examined involve some degree of ambiguity.

Knowledge or available information might be insufficient to determine which of two events

under consideration is more likely. For example, due to insufficient or conflicting data

about customers’ preferences, a committee of experts might be unable to determine which

of the smart phones and the tablet PCs markets will grow more rapidly in the next

few years. A likelihood relation in such situations might therefore leave the comparison

between some pairs of events unspecified. A question arises, as to what kind of probabilistic

representation, if any, may describe such likelihood relations, and reflect indeterminacy

with regard to some pairs of events.

The Bayesian approach suggests that an individual’s likelihood relation over events can

be represented by a prior probability measure. This probability is subjective in nature, as

it emerges from subjective likelihood comparisons. Ramsey (1931), de Finetti (1931,1937),

Savage (1954), and others who followed in their footsteps, introduced conditions on a

binary relation over events that characterize when it may be represented by a prior

probability. However, situations in which some events are incomparable cannot be captured

by a single prior probability, as a single probability determines the likelihood order
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between any two events.

Arguments that question the validity of the completeness assumption of preference

relations, are by now well-known. Von Neumann and Morgenstern (1944) already doubted

that an individual can always decide from among all alternatives. Aumann (1962) stated

that ‘of all the axioms of utility theory, the completeness axiom is perhaps the most

questionable’, and doubted completeness on descriptive as well as normative grounds.

In later models, involving alternatives with unknown probabilities, completeness was

challenged based on ambiguity considerations. The leading rationale was that when the

decision situation is unclear (due, for instance, to lack of information) an individual might

be unable, or unwilling, to make decisions among some alternatives. In most of these

models, ambiguity was reflected in a difficulty to assess probabilities and choose one prior

probability to describe the decision maker’s belief. As a result, belief was represented by

a set of prior probabilities. Those models that are closely related to the current work are

further discussed in subsection 1.4 below.

Notwithstanding the above arguments, incompleteness in decisions is often criticized

on the grounds that a decision should ultimately be made, and that ‘no decision’ is in

itself a decision. However, when likelihood judgements are concerned it is not clear how an

individual can be forced to express an honest opinion regarding the likelihood comparison

of events. For reasons of ambiguity as mentioned above, an individual may feel unable to

tell which of two events is more likely, and prefer to remain silent by declaring them to

be incomparable. Contrary to decision making, refraining from judgement in this context

cannot be claimed to be a likelihood judgement by itself. Incompleteness of a likelihood

relation over events is therefore a reasonable and even a desirable assumption.

1.2 Subjective multi-prior probability

This paper proposes a characterization of a subjective probability, which differs from the

aforementioned classical works. Here, completeness is not assumed. The paper formulates

conditions on a binary relation over events, that are necessary and sufficient for the relation

to be represented by a set of prior probabilities. This set of priors should be considered

subjective, as it emerges from subjective likelihood comparisons. As an aside, we comment

that a binary relation over events, that is taken here as a primitive of the model, can easily

be deduced from a binary relation over bets on events (as it is in fact done by Savage

(1954), for instance). Taking a binary relation over bets as a primitive, event A would be
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considered as more likely than event B whenever a bet on A is preferred to a bet on B. 1

The nature of the representing set of priors is that one event is considered at least as

likely as another, precisely when all the priors in the representing set agree that this is

the case. When the representing set contains more than one prior, there may exist pairs

of events over which there is no consensus among the priors. Hence, the likelihood order

induced by two or more different priors might be incomplete.

Formally, let % denote a binary relation over events, where A % B for events A and

B is interpreted as ‘A is at least as likely as B’. The main theorem of the paper introduces

necessary and sufficient conditions (‘axioms’) on % that guarantee the existence of a set

of prior probabilities, P , for which,

A % B ⇔ µ(A) ≥ µ(B) for all µ ∈ P . (1)

When this happens it is said that the ‘at least as likely as’ relation admits a subjective

multi-prior probability representation.

The representing set of prior probabilities is not necessarily unique. This is the reason

why reference is made to the maximal, w.r.t. inclusion, representing set of priors. In the

case of a finite state set, the set of priors is not restricted in any sense. However, when

the state space is infinite, the priors should agree on any null-set, or more formally, to

satisfy a kind of uniform absolute continuity condition. Still, even in this case, the priors

need not agree on the probability of any event rather than null and universal events.

The main result of the paper is separated into two cases: when the state space is

finite and when it is infinite. While for the finite case three basic assumptions and the

main axiom, which is a Cancellation condition, suffice to characterize those relations

that are representable by a multi-prior probability, the infinite case requires an additional

assumption regarding the richness of the state space, akin to the Archimedean assumption

of Savage (his P6). The Cancellation condition used is discussed in the next subsection.

The use of a set of prior probabilities to describe an individual’s belief elicits likelihood

judgements that are more robust to ambiguity than a description by a single probability

measure. Suppose that an individual is uncertain as to the prior probability to choose.

Choice of a single prior probability is sensitive to uncertainty in the sense that two different

probabilities might exhibit reversal of likelihood order between some pair of events. On

the other hand, representing the uncertainty through a set of prior probabilities leaves

1An appropriate consistency condition, such as Savage’s postulate P4, should obviously be imposed.
See elaboration in Subsection 4.1.
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such conflicting comparisons undetermined, reflecting the individual’s lack of knowledge

regarding the ‘right’ prior to choose.

The technique of employing sets of probabilities to produce robust models is used

extensively in Bayesian Analysis. Robust Bayesian Analysis replaces a single Bayesian

prior with a set of priors so as to make the statistical model less sensitive to the prior

chosen. A well-known example of this approach is the ε-contamination class (see, for

instance, Berger 1994). The axiomatization presented here may therefore lend normative

ground to these robust, multi-prior Bayesian techniques2.

Two additional results, somewhat complementary to the elicitation of a subjective

multi-prior probability, are contained in the paper. One compares the ambiguity perceived

by two individuals, holding subjective multi-prior probability beliefs, by means of inclusion

of sets of priors. One individual is considered to perceive more ambiguity than another

if he or she is less decisive, that is, leaves more comparisons undetermined. In the

representation, the maximal (w.r.t. set inclusion) set of probabilities of the first individual

contains that of the second individual. The other result proposes a scheme to complete a

partial likelihood relation, that obtains a subjective multi-prior probability. This scheme

suggests aversion to ambiguity.

1.3 Axiomatization

Some notation is needed to facilitate the following discussion. Let S denote a nonempty

state-space with a typical element s, and Σ an algebra of events over S. For an event E,

1E denotes the indicator function3 of E. A binary relation % is defined over Σ, with �
denoting its asymmetric part. A probability measure P agrees with % if it represents it,

in the sense that A % B ⇔ P (A) ≥ P (B). A probability measure P almost agrees

with % if the former equivalence is relaxed to A % B ⇒ P (A) ≥ P (B). In other

words, P almost agrees with % if it cannot be the case that A % B , and at the same

time, P (B) > P (A). It is possible, however, to have P (A) ≥ P (B) yet ¬(A % B).

De Finetti introduced four basic postulates that must be satisfied by an ‘at least

as likely as’ relation. These postulates define an entity known since as a qualitative

probability. The four postulates are:

2We thank Tzachi Gilboa for bringing this example to our attention
3That is, 1E is the function that attains the value 1 on E and 0 otherwise.
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Complete Order: The relation % is complete and transitive.

Cancellation: For any three events, A,B and C, such that

A ∩ C = B ∩ C = ∅, A % B ⇔ A ∪ C % B ∪ C.

Positivity: For every event A, A % ∅.
Non Triviality: S � ∅.

De Finetti assumed that the ‘at least as likely as’ relation is complete, and, in addition,

satisfies three basic assumptions: Transitivity; Positivity, which states that any event is at

least as likely as the empty event; and Non-triviality, which states that ‘all’ (the universal

event) is strictly more likely than ‘nothing’ (the empty event).

Beyond these three assumptions, de Finetti introduced another, more substantial

postulate, Cancellation. Cancellation implies a form of separability over events in the

following sense. Any event has its own likelihood weight, which is unrelated to other

disjoint events. In other words, any event has the same marginal contribution, no matter

what other disjoint events it is annexed to4.

The four de Finetti’s assumptions are necessary for the relation to have an agreeing

probability. de Finetti posed the question whether these postulates are also sufficient to

guarantee existence of an agreeing probability, or even of an almost agreeing probability.

The question was answered negatively by Kraft et al.(1959). They introduced a counter

example with a relation over a finite state space, that satisfies all the above conditions

and yet has no almost agreeing probability. Kraft et al.(1959) suggested a strengthening

of the Cancellation condition, and showed that with a finite state space, the strengthened

condition together with the above basic conditions imply that the relation has an almost

agreeing probability. Later on, other conditions that derive agreeing or almost agreeing

probabilities were proposed by Scott (1964), Kranz et al. (1971) and Narens (1974).

These conditions stated that for two sequences of events, (Ai)
n
i=1 (the A-sequence) and

(Bi)
n
i=1 (the B-sequence),

If
n∑
i=1

1Ai
(s) =

n∑
i=1

1Bi
(s) for all s ∈ S, (2)

and Ai % Bi for i = 1, . . . , n− 1,

then Bn % An.

4This assumption is violated, for instance, when states are evaluated through a nonadditive probability
v. Under such an evaluation, the marginal contribution of event C when added to event A, v(A∪C)−v(A),
is not necessarily the same as its marginal contribution when added to event B, v(B ∪ C)− v(B).
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The idea behind Finite Cancellation is similar in essence to that lying at the basis of

de Finetti’s Cancellation condition. Like Cancellation, Finite Cancellation is based on the

assumption that each state has always the same marginal contribution of likelihood, no

matter to which other states it is added. However, Finite Cancellation takes this rationale

a step further.

The equality, that appears in the axiom, between the two sums of indicators, means

that each state appears the same number of times in each of the sequences. Following

the rationale explained above, the weight of each state does not depend on the order and

manner in which it appears in each sequence. Hence, the equality between the two sums

suggests that it cannot be that the A-sequence has an overall likelihood weight greater

than that of the B-sequence. In order to explain this point we turn to an analogy from

accounting.

Consider a simple double-entry booking procedure with credit and debit that express

likelihood weights. In each of the n − 1 first lines of the ledger there are pairs of events

with Ai % Bi: Ai is recorded on the credit side, while Bi on the debit side. Another pair

of events An and Bn is now considered. Suppose that An is recorded on the credit column

and Bn on the debit column. This reflects the fact that An is at least as likely as Bn.

It is argued that this ranking contradicts the rationale behind Cancellation, of invariant

marginal contribution.

When An is ranked more likely than Bn, each event in the A-sequence is as likely

as its counterpart in the B-sequence. Therefore, the credit balance outweighs the debit

balance. Such an assertion contradicts the conclusion that the two sequences should have

the same overall likelihood weight, unless each pair consists of equally likely events. It

implies, in particular, that if An and Bn are comparable, it must be that Bn % An. Finite

Cancellation explicitly states that An and Bn are comparable, and that Bn is at least as

likely as An. For further details on Cancellation axioms and almost agreeing probabilities

see Fishburn (1986) for a thorough survey, and Wakker (1981) for a discussion and related

results.

This paper follows the path of studies described above and introduces an axiom termed

Generalized Finite Cancellation (GFC). This axiom postulates that for two sequences of

6



events, (Ai)
n
i=1 and (Bi)

n
i=1, and an integer k ∈ N,

If
n−1∑
i=1

1Ai
(s) + k1An(s) =

n−1∑
i=1

1Bi
(s) + k1Bn(s) for all s ∈ S,

and Ai % Bi for i = 1, . . . , n− 1,

then Bn % An.

GFC strengthens Finite Cancellation. Similarly to Finite Cancellation, it is concerned

with sequences of events with identical accumulation of indicators, which again should

have the same overall likelihood weight. However, the conclusion in GFC applies to

multiple repetitions of the last pair of events, An and Bn. As in Finite Cancellation, if

the first n − 1 events in one sequence are judged to weigh at least as much as the first

n− 1 events in the other sequence, then the last pair of events, repeated more than once

in the aggregation, should balance the account. Thus, Bn is regarded at least as likely as

An.

This generalization of Finite Cancellation is required since the relation in this paper

is not assumed to be complete. For a complete relation, GFC is implied by Finite

Cancellation: ¬(Bn % An) translates to An � Bn, and under the assumptions of the

axiom, a contradiction to Finite Cancellation is inflicted. When the relation is incomplete,

such a contradiction may not arise, thus GFC specifically requires that Bn % An be

concluded.

As this work is concerned with incomplete relations, the role of GFC is two fold.

The first is to preserve consistency of the ‘at least as likely as’ relation, as explained

above. The second is to allow for extensions of the relation to yet undecided pairs of

events, on the basis of others. Suppose that a pair of yet-undecided events can play

the part of An and Bn for some sequences of events (Ai)
n
i=1 and (Bi)

n
i=1. GFC then

explicitly prescribes a completion rule that imposes the principle of each state having its

own marginal contribution, unrelated to other states.

Any relation % with a subjective multi-prior probability representation as in (1)

satisfies GFC. In the opposite direction, Theorems 1 and 2, the main results of the paper,

show that GFC, along with basic conditions (and when S is infinite an additional richness

assumption), imply that the relation % admits a subjective multi-prior representation.

An analogue axiom to GFC, formulated on mappings from states to outcomes, appeared

in Blume et al. (2009) (under the name ‘extended statewise cancellation’). In this paper,

the axiom was applied in a different framework, and was used to obtain a representation
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that contains a subjective state space. Hence, the result of Blume et al. cannot be

employed to characterize a likelihood relation over a given, primitive state space.

1.4 Related literature

Incomplete Expected Utility models over objective lotteries (on a set of prizes) began

with Aumann (1962). Dubra, Maccheroni and Ok (2004) gave a full characterization of

an incomplete preference relation over lotteries, which obtains a unanimity representation

over a set of utility functions.

The path of dropping completeness for the sake of ambiguity, as suggested in this

paper, was taken in the literature by several authors. Ok, Ortoleva and Riella (2008)

axiomatized incomplete relations that admit either an expected multi-prior utility or an

expected multi-utility representations. Galaabaatar and Karni (2011) presented a model

of incomplete preferences, in which incompleteness stems both from ambiguity regarding

a prior probability (which is the rationale advocated here) and from incompleteness

of tastes. Their axiomatization characterizes an incomplete preference relation in an

uncertain environment, that admits a multi-probability expected multi-utility representation.

The special cases of expected multi-utility (w.r.t. a single probability measure), and

of multi-probability expected utility representation (w.r.t. a single utility), were given

specific axiomatizations. Other papers, which are the most related to the current work, are

Bewley (2002), Ghirardato et al (2003), and Nehring (2009). These papers are discussed

next.

Bewley (2002) axiomatized preference among alternatives that are mappings from

events to a rich set of consequences. Bewley worked in an environment with exogenous

probabilities, as in Anscombe and Aumann (1963; as rephrased by Fishburn 1970),

and showed that dropping completeness and maintaining the rest of Anscombe-Aumann

axioms yields a multi-prior expected utility representation. That is, for every pair of

alternatives f and g,

f % g ⇔ Eµ(u(f)) ≥ Eµ(u(g)) for every µ ∈ P , (3)

for a unique convex and closed set of priors P and a vN-M utility function u (Eµ denotes

the expectation operator w.r.t. the probability measure µ). In other words, under a quite

‘standard’ set of axioms, which is known to imply an expected utility representation with a

unique probability measure (as Anscombe and Aumann show), giving up the completeness
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assumption leads to an expected utility representation with a set of probability measures.

Prior to Bewley, Giron and Rios (1980) phrased similar axioms over alternatives which

map an abstract state space to the real line. Giron and Rios took the alternatives to be

bounded, and assumed that they consist of a convex set (they mentioned randomization

as justification for convexity). Giron and Rios showed that their set of axioms implied a

multi-prior expected utility representation as in (3).

Both models, that by Giron and Rios and the one by Bewley, if applied with only two

consequences, may be used to extract beliefs without any implication to risk attitude.

However, they both assume convexity, which amounts to the fact that events may be

mixed using exogenous, objective probabilities. Hence, their setup is less general than the

purely subjective setup of Savage.

Ghirardato et al (2003) axiomatized multi-prior expected utility preferences in an

environment without exogenous probabilities. Instead, they assumed that the set of

consequences is connected, and that there exists an event on which all probabilities agree.

The structure and axioms they employed do not permit applying the model for two

consequences alone. In order to obtain the mixtures used in their axioms, it necessitates

specifying preference on all binary alternatives contingent on the agreed-upon event (that

is, on all alternatives that yield one consequence on this event and another outside of it).

Thus, the model cannot be used to identify ‘pure’ belief.

Nehring (2009) presented a model based on an incomplete ‘at least as likely as’ relation

over events. Nehring formulated assumptions on the relation, and proved a multi-prior

representation result as in (1). In Nehring’s work, there is a unique convex and closed set

of priors that represents the relation. The model is placed in a general setup, where events

belong to an algebra over a state space. No assumptions a-priori are made on this space,

and in particular no objective probabilities are assumed. Nonetheless, one of the axioms

Nehring applied to characterize the multi-prior representation is Equidivisibility, which

hinges upon an explicit assumption that any event can be divided into two equally-likely

events. Nehring’s assumption is quite a strong one. It states that any event can be split

into two events in a way that all the priors involved agree that they are equally probable.

Formally, the set of priors in Nehring’s representation theorem is explicitly assumed to

have the property that, for any event A, there exists an event B ⊂ A such that all priors

µ agree that µ(B) = µ(A)/2. It implies, in particular, that all the priors agree on a rich

algebra of events: the one generated by dividing the entire space into 2n equally likely

events, for any integer n. This assumption restricts the plurality of the representing set
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of priors. Moreover, it does not work in the finite case.

The setup employed in this paper is as general as that of Savage5. Neither exogenous

probabilities nor any manner of mixture is assumed or required. The assumptions apply

to events alone.

1.5 Outline of the paper

Section 2 describes the essentials of the subjective multi-prior probability model. It details

the setup and assumptions, and then formulates representation theorems, separately for

the cases of a finite and an infinite spaces. Section 3 presents some examples, and Section

4 elaborates on three issues: a relative notion of ‘more ambiguous than’; an embedding of

ambiguity attitude that yields a complete relation; and minimal sets of priors. All proofs

appear in the last section.

2 The subjective multi-prior probability model

2.1 Setup and assumptions

Let S be a nonempty set, Σ an algebra over S, and % a binary relation over Σ. A

statement A % B is to be interpreted as ‘A is at least as likely as B’. For an event

E ∈ Σ, 1E denotes the indicator function of E. In any place where a partition over S

is mentioned, it is to be understood that all atoms of the partition belong to Σ.

The following assumptions (‘axioms’) are employed to derive a subjective multi-prior

probability belief representation.

P1. Reflexivity:

For all A ∈ Σ, A % A.

P2. Positivity:

For all A ∈ Σ, A % ∅.

P3. Non Triviality:

¬(∅ % S).

5In fact the setup is even somewhat less restrictive than that of Savage, in that it requires Σ to be an
algebra and not a σ-algebra.
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These first three assumptions are standard. Positivity and Non-Triviality are two of de

Finetti’s suggested attributes. Since Completeness is not supposed, Reflexivity is added

in order to identify the relation as a weak one. Transitivity is implied by the other axioms,

hence it is not written explicitly.

The next assumption is the central one in the derivation of the main result of the paper.

P4. Generalized Finite Cancellation:

Let (Ai)
n
i=1 and (Bi)

n
i=1 be two sequences of events from Σ, and k ∈ N an integer.

Then

If
n−1∑
i=1

1Ai
(s) + k1An(s) =

n−1∑
i=1

1Bi
(s) + k1Bn(s) for all s ∈ S,

and Ai % Bi for i = 1, . . . , n− 1 ,

then Bn % An .

Generalized Finite Cancellation is based on the basic assumption that every state has

the same marginal contribution of likelihood, no matter to which other states it is added.

Generalized Finite Cancellation applies this underlying assumption to sequences of events

that have exactly the same aggregation for each and every state, that is, in cases where

each state appears the same number of times in each of the sequences. As each state

should add the same likelihood weight to each of these aggregations, the axiom requires

that likelihood judgements be balanced among the two sequences.

Basic Cancellation (de Finetti’s condition) is obtained from Generalized Finite Cancellation

by letting A1 = A, B1 = B, A2 = B ∪ C and B2 = A ∪ C, for events A, B and C such

that (A ∪B) ∩ C = ∅. The indicators sum is identical,

1A1 + 1A2 = 1A + 1B∪C = 1A + 1B + 1C = 1A∪C + 1B = 1B1 + 1B2 ,

and hence A % B implies A ∪ C % B ∪ C and vice versa. Transitivity is obtained

by letting A1 = B3 = A, A2 = B1 = B, and A3 = B2 = C. The following remark sums

several implications of Generalized Finite Cancellation.

Remark 1. Generalized Finite Cancellation implies that % satisfies Transitivity, and

together with Positivity yields that A % B whenever A ⊃ B. It also results in

additivity: A % B ⇔ A∪E % B ∪E , whenever A∩E = B ∩E = ∅. In particular6,

6To understand the following, note that A = (A ∩ Bc) ∪ (A ∩ B) % (B ∩ Ac) ∪ (A ∩ B) = B ⇔
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A % B ⇔ Bc % Ac, hence S % B for all events B.

2.2 Subjective multi-prior probability representation

2.2.1 The case of a finite space S

The next theorem states that when S is finite assumptions P1-P4 are necessary and

sufficient to obtain a subjective multi-prior probability representation of %. For simplicity,

Σ is assumed to be the collection of all subsets of S (that is, Σ = 2S).

Theorem 1. Suppose that S is finite, and let % be a binary relation over events in S.

Then statements (i) and (ii) below are equivalent:

(i) % satisfies axioms P1 through P4.

(ii) There exists a nonempty set P of additive probability measures over events in S,

such that for every A,B ⊆ S,

A % B ⇔ µ(A) ≥ µ(B) for every µ ∈ P .

The set of prior probabilities need not be unique. However, the union of all representing

sets is itself a representing set, and is maximal w.r.t. inclusion by its definition. When

analyzing judgements made under ambiguity, the maximal set w.r.t. inclusion seems to

be a natural choice to express belief, as it takes into consideration all priors that may

be relevant to the case at hand. In fact, the maximal w.r.t. inclusion set includes all the

probability measures that almost agree with the relation.

Suppose, for instance, that after identifying a subjective multi-prior probability, an

individual is interested also in the extreme probabilities of each event. The maximal

set yields the largest range of probabilities for each event, without casting unnecessary

limits. On that account, the notion of a maximal w.r.t. inclusion set is claimed to be a

satisfactory notion of unique belief.

When S is finite, then even if completeness is assumed, there need not be one unique

probability measure that represents the relation. That is to say, even if % is complete,

the maximal representing set is not necessarily a singleton (see Example 1 below).

A ∩Bc % B ∩Ac ⇔ Bc = (A ∩Bc) ∪ (Ac ∩Bc) % (B ∩Ac) ∪ (Ac ∩Bc) = Ac.
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2.2.2 The case of an infinite space S

To obtain representation when S is infinite, an additional richness assumption is required.

Without this assumption, for an infinite S , it is possible to obtain a set P of probability

measures that only almost agrees with %, in the sense that for all events A and B,

A % B ⇒ µ(A) ≥ µ(B) for every µ ∈ P , but not necessarily the other way around.

To obtain the full ‘if and only if’ representation, a Non-Atomicity axiom is added. The

assumption requires a definition of strong preference for its formulation (the definition

originates in Nehring, 2009).

Definition 1. For two events A,B ∈ Σ, the notation A �� B states that there exists

a finite partition {G1, . . . , Gr} of S, such that A \Gi % B ∪Gj for all i, j.

In the representation (thus when all the axioms are assumed to hold), whenever the

set P is the maximal w.r.t. inclusion set7, having A �� B is equivalent to the condition

that there exists δ > 0 for which µ(A)− µ(B) > δ > 0 for every µ ∈ P .

P5. Non-Atomicity:

If ¬(A % B) then there exists a finite partition of Ac, {A′1, . . . , A′m}, such that for all i,

A′i �� ∅ and ¬(A ∪ A′i % B).

Remark 2. As ¬(A % B) ⇔ ¬(Bc % Ac), Non-Atomicity can equivalently be phrased

as:

If ¬(A % B) then there exists a finite partition of B, {B1, . . . , Bm}, such that for all i,

Bi �� ∅ and ¬(A % B \Bi).

Non-Atomicity is the incomplete-relation version of Savage’s richness assumption P6.

Adding Completeness makes P5 (along with the definition of strict preference) identical

to Savage’s P6, as negation of preference simply reduces to strict preference in the other

direction. The setup used here is somewhat weaker than that in Savage, as Σ is assumed

to be an algebra and not necessarily a σ-algebra. Still, adding Completeness yields a

unique probability that represents the ‘at least as likely as’ relation % (see Kopylov

(2007) for this result for an even more general structure of Σ)8. The difference from

Savage’s theorem is that the derived probability need not be convex-ranged, only locally

dense:

7or any other compact set
8Generalized Finite Cancellation obviously implies additivity (de Finetti’s Cancellation), thus when

adding completeness to axioms P2 through P5, Savage’s result follows.
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Definition 2. A probability measure µ over Σ is locally dense if, for every event B, the

set {µ(A) | A ⊂ B} is dense in [0, µ(B)].

In a similar fashion, Non Atomicity implies that each probability measure in the

subjective multi-prior probability set is locally dense.

Definition 3. A set P of probability measures is said to be uniformly absolutely continuous

if:

(a) For any event B, µ(B) > 0 ⇔ µ′(B) > 0 for every pair of probabilities µ, µ′ ∈ P .

(b) For every ε > 0, there exists a finite partition {G1, . . . , Gr} of S, such that for all

j, µ(Gj) < ε for all µ ∈ P .

The following is a representation result of the subjective multi-prior probability model

for the case of an infinite set S.

Theorem 2. Let % be a binary relation over Σ. Then statements (i) and (ii) below are

equivalent:

(i) % satisfies axioms P1-P5.

(ii) There exists a nonempty, uniformly absolutely continuous set P of additive probability

measures over Σ, such that for every A,B ∈ Σ,

A % B ⇔ µ(A) ≥ µ(B) for every µ ∈ P . (4)

Corollary 1. Assume that % admits a subjective multi-prior probability representation

as in (ii) of Theorem 2. Then all the probability measures in the representing set are

locally dense.

It is a known fact that existence of fine partitions, as depicted in the definition of

uniform absolute continuity, imply local denseness (see, for instance, Lehrer and Schmeidler,

2005). Hence, if % admits a subjective multi-prior probability representation as in (ii)

of Theorem 2, then all the probability measures in the representing set are locally dense.

Observation 1. The union of all sets of probabilities that represent % as in (ii) of

Theorem 2 is itself a representing set of %. Thus, the union of all sets that represent %

satisfies (ii) of Theorem 2. By its definition, every other representing set is contained in

it, namely it is the maximal w.r.t. inclusion representing set of %.
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Note that for general sets of probability measures, the fact that all sets in the union

are uniformly absolutely continuous does not imply that the union itself is uniformly

absolutely continuous (as the union may be over an infinite number of sets). However, if

the sets represent %, then (i) of Theorem 2 guarantees uniform absolute continuity of the

union. As already explained in the introduction, the set of probabilities which represents

% need not be unique. Nevertheless, the maximal representing set, which is the union of

all representing sets, is unique by its definition.

A few words on the reasons for lack of uniqueness, even when Non-Atomicity is

assumed, are in order. The difficulty in obtaining uniqueness is that it is impossible,

under the assumptions made, to produce an ‘objective measuring rod’ for probabilities.

The probabilities in the priors set need not agree on any event which probability is strictly

between zero and one. Moreover, there even need not be events with probability that is

ε-close to some value 0 < p < 1, according to all measures (see Example 2 in section

3). In addition, the technique used in the proof of the main theorem translates events to

indicator vectors. That is, an event E is represented by the vector in RS which assigns one

to any state s included in E and zero otherwise. Under this translation, the preference

relation considered in this paper applies only to indicator vectors, and preference calls

among vectors with values other than zero and one are meaningless. In that sense, the

domain to which the relation applies is too scarce to obtain uniqueness. The problem is not

only technical, for there are examples with two distinct (convex and closed) representing

sets of priors. An example may be found in Nehring (2009; Example 1).

3 Examples

The following examples demonstrate some features of the model. In the first example

it is shown that in the case of a finite state space, even if assumptions P1 through P4

are supplemented with completeness, there need not be one unique probability measure

representing the relation. The second example is a simple example of an incomplete

relation over an infinite state space, satisfying assumptions P1 through P5. The third

and last example, which again employs an infinite state space, demonstrates the problem

of producing an ‘objective measuring rod’. It shows that one cannot hope to be able to

produce events which are unambiguous (other than null or universal events), in the sense

that all probabilities in the representing set assign those events the same probability.

Example 1. Let S = {H,T}, Σ = 2S. If it is the case that H % T , then any probability

measure of the type (H : p ; T : 1−p) , for 0.5 ≤ p ≤ 1 , represents the relation. In that
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case, even though the relation is complete, there is no unique representing probability

measure, or unique representing probability measures set.

In the following examples, λ denotes the Lebesgue measure.

Example 2. Let S = [0, 1) and denote by Σ the algebra generated by all intervals [a, b)

contained in [0, 1). Define measures π1 and π2 through their densities:

f1(s) =

{
1
2

s ∈ [0, 0.5)
3
2

s ∈ [0.5, 1)
, f2(s) =

{
3
2

s ∈ [0, 0.5)
1
2

s ∈ [0.5, 1)

In other words, π1 distributes uniform weight of 1
4

on [0, 0.5) and uniform weight of
3
4

on [0.5, 1), and π2 distributes uniform weight of 3
4

on [0, 0.5) and uniform weight of 1
4

on [0.5, 1). Let P denote the convex set generated by π1 and π2. A set P of this form

may express an individual’s ambiguity as to the way the probabilistic weight is divided

between the lower and upper halves of a considered range, with the constraint that at

least 1
4

of the weight is placed on each half, and with otherwise uniform belief.

For every pair of measures π, π′ ∈ P , π(A) = 0 ⇔ π′(A) = 0, and for ε > 0,

λ(E) < 2
3
ε guarantees πi(E) < ε for i = 1, 2, therefore for all measures in P . Thus, fine

partitions as required exist, and P is uniformly absolutely continuous. The subjective

multi-prior probability induced by P is:

A % B , if and only if,

1

2
[ λ(A)− λ(B) ] ≥ λ(B ∩ [0.5, 1))− λ(A ∩ [0.5, 1))

and
1

2
[ λ(A)− λ(B) ] ≥ λ(B ∩ [0, 0.5))− λ(A ∩ [0, 0.5)) .

In this example, a necessary condition to obtain A % B is λ(A) ≥ λ(B), but this

condition is not sufficient. It should also be that on each half separately, event B does not

have a ‘large-enough edge’. For instance, ¬ ( [0, 0.5) % [0.8, 1) ), but [0, 0.45)∪ [0.95, 1) %

[0.8, 1). Events A and B are considered equally likely if they have the same Lebesgue

measure, divided in the same manner between [0, 0.5) and [0.5, 1).

Example 3. Let S = [0, 1) and Σ the algebra generated by all intervals [a, b) contained

in [0, 1). For A ∈ Σ such that λ(A) = 1
2
, let πA to be the probability measure defined by
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the density:

fA(s) =

{
1
2

s ∈ A
3
2

s /∈ A

Let P be the convex and closed set generated by all probability measures πA. All

measures in the set are mutually absolutely continuous with λ. For ε > 0, letting

{E1, . . . , En} be a partition with λ(Ei) <
2
3
ε obtains πA(Ei) < ε for all measures

πA, hence for all measures in P . The set P is therefore uniformly absolutely continuous.

The resulting subjective multi-prior probability representation satisfies assumptions

P1-P5. Note that for any event B ∈ Σ for which 0 < λ(B) < 1,

max
π∈P

π(B) =
3

2
min(λ(B),

1

2
) +

1

2
max(0, λ(B)− 1

2
)

>
1

2
min(λ(B),

1

2
) +

3

2
max(0, λ(B)− 1

2
) = min

π∈P
π(B).

That is, the measures in P do not agree on any event which is non-null and non-universal.

Moreover, there are even no events with probability ε-close to a fixed value 0 < p < 1.

Note also that for events A and B, it cannot be that all measures in P agree that A

and B have equal probabilities, therefore events cannot be partitioned into equally likely

events.

4 Extensions and comments

4.1 Link to choice behavior

The model presented in this paper takes as a primitive a binary relation over events,

which is interpreted as an ‘at least as likely as’ relation. The same ‘at least as likely as’

judgements could be derived from preferences over bets, in the following manner: if a

bet on A is preferred to a bet on B (when both bets involve the same prizes), then it

is concluded that the individual judges A to be at least as likely as B. This is the way

Savage (1954) defined the likelihood relation in his Subjective Expected Utility model

(See also de Finetti (1931,1937) and Ramsey (1931)). If the primitive notion considered

is a binary relation over bets (or, more generally, a binary relation over mappings from

events to a set of consequences) then some consistency assumption should be imposed,

in order to maintain that the derived likelihood relation is independent of the choice of

prizes defining the bets (one such well-known consistency assumption is Savage’s (1954)

axiom P4).
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Formally, let X be a nonempty set, denoting the set of consequences, let S be the set

of states endowed with an algebra Σ, and denote by F the set of (simple) acts, which

are all the Σ-measurable and finite-valued functions from S to X. Let % denote a binary

relation over F . An event A ∈ Σ is said to be null if xAf ∼ f for all x ∈ X and f ∈ F .

Otherwise the event is non-null. For consequences x, y ∈ X we write x % y whenever

x̄ % ȳ, where x̄ denotes the constant act yielding x in all states, and similarly for ȳ. For

consequences x, y ∈ X denote x � y if x % y but ¬(y % x). For simplicity, assume that

the relation over consequences is complete. The assumption implies that incomparability

of acts is not a result of incompleteness of tastes, but rather of uncertainty about events.

Completeness of Tastes:

For all consequences x, y ∈ X, either x % y or y % x.

An ‘at least as likely as’ relation %l over Σ may be derived from %, by:

For events A,B ∈ Σ, A %l B whenever x∗Ax % x∗Bx for consequences x∗ � x . (5)

Suppose that the ‘at least as likely as’ relation %l satisfies axioms P1-P4 in case S

is finite, and P1-P5 in case S is infinite. According to theorems 1 and 2, there exists a

nonempty set P of additive probability measures over Σ such that for every A,B ∈ Σ,

A % B if and only if µ(A) ≥ µ(B), for every µ ∈ P .

The next step is to define when the preferences of an individual are governed by a set

of prior probabilities. In order to do that, some notation and definitions are introduced.

denote by L = [ x1, p1 ; . . . ; xn, pn ] the lottery which obtains consequence xi with

probability pi, and by L(X) the set of all lotteries over consequences, that is, the set of

all probability distributions over X with finite support. Every act f ∈ F and additive

probability measure µ over Σ induce a lottery L(f, µ) in L(X), by

L(f, µ) = [ x1, µ(f−1(x1)) ; . . . ; xn, µ(f−1(xn)) ], where x1, . . . , xn are the consequences

obtained under act f . For lotteries L1, L2 ∈ L(X), L1 first order stochastically dominates

L2 with respect to % if L1({y ∈ X | y % x}) ≥ L2({y ∈ X | y % x}) for every x ∈ X. That

is, L1 first order stochastically dominates L2 if, for every x, the probability of receiving a

consequence x or better (when ‘better’ is determined according to %) is higher under L1

than under L2. A definition of multi-prior probabilistic sophistication can now be stated,

akin to probabilistic sophistication of Machina and Schmeidler (1992).

Definition 4. A binary relation over acts % is said to be multi-prior probabilistically
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sophisticated if there exists a nonempty set P of probability measures over Σ such that

the derived ‘at least as likely as’ relation %l admits a subjective multi-prior representation

with the set P, and for two acts f and g, f % g whenever L(f, µ) first order stochastically

dominates L(g, µ) w.r.t. %, for every µ ∈ P.

Probabilistic Sophistication of Machina and Schmeidler (1992) maintains that the

individual holds a subjective belief in the form of an additive probability measure, and

employs it to translate each act to the lottery it induces over consequences. Preference

between acts is then dictated by preference between lotteries, where preference between

lotteries is required to abide by the rule of first order stochastic dominance.9 Multi-

prior probabilistic sophistication generalizes this idea by allowing for a multi-prior belief

instead of a single prior one. Consequently, each act induces a multitude of lotteries

over consequences, each through a different prior in the set. Preference between acts

is dictated by preference between these probability-lottery mappings, where preference

between mappings is required to be monotonic with respect to pointwise (i.e., per-probability)

first order stochastic dominance.

Note that the notion of stochastic dominance used links every lottery to the probability

measure from which it originates. That it to say, f is preferred to g whenever its induced

lottery under the probability measure µ first order stochastically dominates the lottery

induced by g under the same probability µ, for every µ. By contrast, it is not required that

every lottery induced by f (under the entire priors set) first order stochastically dominates

every lottery induced by g. Rather, each prior in the set is viewed as a conceivable belief

over the states of nature, and accordingly the lotteries induced by f and g under each

conceivable belief separately should exhibit first order stochastic dominance.

Next, multi-prior probabilistic sophistication is characterized axiomatically. The main

axiom in the characterization is Cumulative Dominance, formulated by Sarin and Wakker

(1992 and 2000). The axiom is an intuitive preference-version of first order stochastic

dominance, and asserts that an act f is preferred to an act g whenever, for every

consequence x, the individual believes that it is more likely to obtain a consequence

x or better under f than under g. For an act f and a consequence x, denote by {f % x}
the set {s ∈ S|f(s) % x}, which is the set of all states on which f obtains a consequence

x or better.

9Machina and Schmeidler (1992) pose an additional continuity requirement, which is omit here.
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Cumulative Dominance:

For all acts f, g ∈ F , if {f % x} %l {g % x} for every x ∈ X, then f % g.

Cumulative Dominance implies that the ‘at least as likely as’ relation %l is consistent,

in the sense that the likelihood judgements it entails are independent of the choice of prizes

involved in the bets. To see this, suppose that for events A,B ∈ Σ and consequences x∗ �
x, x∗Ax % x∗Bx. Let y∗ and y be consequences such that y∗ � y, and consider the bets

y∗Ay and y∗By. According to the definition of %l, the relationship between the bets x∗Ax

and x∗Bx implies that A %l B, thus for every consequence z, {y∗Ay % z} %l {y∗By % z},
and by Cumulative Dominance y∗Ay % y∗By.

Sarin and Wakker (2000) show that probabilistic sophistication á-la Machina and

Schmeidler (1992) holds if and only if there is a probability measure agreeing with the

‘at least as likely as’ relation %l, and Cumulative Dominance is satisfied. Similarly,

Cumulative Dominance together with a set of prior probabilities that represents the ‘at

least as likely as’ relation %l delivers multi-prior probabilistic sophistication, as stated in

the next theorem.

Theorem 3. Let % be a binary relation over F . Then statements (i) and (ii) below are

equivalent:

(i) %l, the derived binary relation over Σ defined according to (5), satisfies axioms

P1-P4, and also P5 if S is infinite. % and %l satisfy Cumulative Dominance.

(ii) % is multi-prior probabilistically sophisticated. If S is infinite, then the corresponding

probabilities set is uniformly absolutely continuous.

4.2 A relative notion of ‘more ambiguous than’

Next, a relative notion of ‘more ambiguous than’ is presented. One subjective multi-prior

probability is considered to be more ambiguous than another, if it is less decisive, and

leaves more comparisons open. As can be expected, the ‘more ambiguous than’ relation

is characterized by inclusion of the %-maximal representing sets of priors. Being more

ambiguous means having a larger, in the sense of set inclusion, set of priors.

Proposition 1. Let %1 and %2 be two binary relations over Σ, satisfying P1-P5, with

P1 and P2 the maximal representing sets (unions of all representing sets) of %1 and %2,

respectively. Then the following statements are equivalent:
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(i) %1 ⊆ %2.

(ii) P2 ⊆ P1.

A result similar to this one is presented in Ghirardato, Maccheroni and Marinacci

(2004). The setup in Ghirardato et al. contains alternatives which are mappings from a

state space to a set of consequences. In that paper, a definition of ‘reveals more ambiguity

than’ is given, that amounts to inclusion of one relation in another, where both relations

admit a multiple-priors expected utility representation. Ghirardato et al. show that such

inclusion of the relation implies reversed inclusion of the priors sets.10

4.3 Ambiguity attitude

A subjective multi-prior probability may be viewed as representing the unambiguous

judgements of an individual. According to this view, some comparisons between events

are left open due to ambiguity, and those that are determined are the ‘unambiguous part’

of the individual’s likelihood judgements.

In the representation, a set of prior probabilities represents the scenarios the individual

considers possible. An event is judged at least as likely as another if this is the case

under every possible scenario. The set of priors thus represents all the ambiguity that

the individual perceives in the situation, and the unanimity rule characterizes those

comparisons that are not affected by this ambiguity.

After ambiguity itself is identified, attitudes towards it may be added. One obvious

possibility is completion using one probability measure from the multi-prior probability

set. Another possibility, in a setup with an infinite space S, is suggested next. It

exhibits aversion to ambiguity, and describes an individual who judges events by their

lowest possible probability. A similar treatment, of completing an incomplete relation, is

suggested by Gilboa et al. (2010) and Ghirardato, Maccheroni and Marinacci (2004). In

these models, a set of priors is obtained as a description of the ambiguity perceived by

an individual. The relations discussed in those papers apply to alternatives which map

states to lotteries over an abstract set of consequences, and the representations obtained

involve a procedure of expected utility. Here, the relation applies to events alone, but the

treatment of ambiguity separately from ambiguity attitude is similar in spirit.

In order to obtain an ambiguity averse completion, the framework of Sarin and Wakker

(1992) is adopted. In that framework, an exogenous sub-sigma-algebra is taken as part of

10In order to obtain the other direction in Ghirardato et al., an additional assumption of identical
utility for both relations is required.
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the model primitives, and is meant to represent a (rich) set of unambiguous events. An

assumption of Ambiguity Aversion is further used. The aversion to ambiguity is expressed

by supposing that the individual ranks unambiguous events strictly above other events,

whenever this does not contradict consistency with the incomplete, ‘original’ relation.

Let B denote a sigma-algebra contained in Σ, and % a binary relation over Σ. Events

in A should be thought of as unambiguous. For a complete relation %′, the relations �′

and ∼′ denote its asymmetric and symmetric components, respectively.

First, a weak order assumption is required for the relation %′.

P1’. Weak Order:

For any two events A and B, either A %′ B or B %′ A. (Completeness)

For any three events A,B and C, if A %′ B and B %′ C then A %′ C. (Transitivity)

Next, a richness assumption, Savage’s postulate P6 confined to unambiguous events,

is stated.

P6-UA. Unambiguous Non-Atomicity.:

If D �′ C for events C,D ∈ Σ, then there exists a finite partition of S, {B1, . . . , Bm}
with Bi ∈ B for all i, such that D �′ C ∪Bi for all i.

Last, two linking assumptions are added. The first assumption, Consistency, states

that %′ is a completion of %, so %′ is consistent with the preferences exhibited by %. The

second, Ambiguity Aversion, subscribes a completion rule that favors events with known

probabilities. This assumption imitates Epstein’s ? definition of uncertainty aversion for

alternatives, mapping events to an abstract set of consequences. It uses as a benchmark

for uncertainty neutrality the relation %, and suggests to complete it by preferring

unambiguous events. The completion in fact identifies, for every event, an ‘unambiguous

equivalent’ event, much in the same manner as is done with certainty equivalents. The

‘unambiguous equivalent’ of an event gives what is known as its ‘matching probability’

(see, for instance, Wakker (2010; Equation 4.9.1)). As noted above, analogous development,

applied to alternatives mapping events to consequences, may be found in Gilboa et al.

(2010; the relevant axiom is termed there Default to Certainty, or Caution in its weaker

version).
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P7. Consistency:

For any two events A and B, A %′ B whenever A % B.

P8. Ambiguity Aversion:

Let E ∈ Σ and B ∈ B be events. If ¬(E % B) then B �′ E.

Proposition 2. Let % and %′ be binary relations over Σ, and let B be a

σ-algebra contained in Σ. Then statements (i) and (ii) below are equivalent.

(i) The following conditions are satisfied:

(a) % satisfies axioms P1 through P5. On B, % is complete.

(b) %′ satisfies P6-UA.

(c) % and %′ satisfy Consistency (P7) and Ambiguity Aversion (P8).

(ii) There exists a nonempty, uniformly absolutely continuous set of probabilities P,

such that for any pair of events A and B,

A % B ⇔ µ(A) ≥ µ(B) for every µ ∈ P (6)

A %′ B ⇔ min
µ∈P

µ(A) ≥ min
µ∈P

µ(B) (7)

Furthermore, the probabilities in P agree on B, and their common part on B is

unique and convex-ranged there.

The proposition suggests how to complete a subjective multi-prior probability, in a

manner that expresses ambiguity aversion. An ambiguity seeking rule can analogously be

described through the use of maximum instead of minimum in (7). As in Theorem 2, the

set of probability measures P is not necessarily unique, yet a maximal (w.r.t. inclusion)

set may be identified, which represents the relation (see Observation 1 above).

4.4 Minimal set of priors

Nehring (2009) presents an example with two sets of priors P1 $ P2 that represent the

same likelihood order. The priors in P2 that are not in P1 do not restrict the order induced

by P1 in the sense that when all p ∈ P1 agree that p(A) ≥ p(B), every q ∈ P2\P1 concurs.
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In this example the intersection of the two representing sets is also a representing set: it is

P1. The question arises whether the intersection of every two representing sets is always

a representing one.

The following example answers this question in the negative.

Example 4. Suppose that S = {0, 1}N, the set of all sequences consisting of 0’s and 1’s.

The algebra Σ is the one generated by events of the type C(i, a) = (x1, x2, ...) ∈ S; x1 = a,

where a = 0, 1. The probability measure, denoted (p1, p2, ...) , is the one induced by an

infinite sequence of independent tosses of coins, where the probability of getting 1 in the

i-th toss is pi (pi ∈ (0, 1)) and the probability of getting 0 is 1− pi. For simplicity a coin

that assigns probability p to the outcome 1 and probability 1 − p to the outcome 0 is

referred to as p-coin.

We define two disjoint sets of priors. Let P1 be the convex hull of the probability

measures of the type (p1, ..., pn,
1
2
, 1
2
, ...), where p1, ..., pn ∈ {13 ,

1
2
}. In other words, any

distribution in P1 is such that the coins from time n + 1 and onwards are 1
2
-coins, while

up to time n the coins could be any combination of 1
2
-coins and 1

3
-coins.

The set P2 is defined in a way similar to that of P1 with the difference that coins from

time n+1 and onwards are 1
3
-coins. Note that the distributions in P1 are generated by only

finitely many 1
3
-coins and infinitely many 1

2
-coins. On the other hand, the distribution in

P2 are generated by only finitely many 1
2
-coins and infinitely many 1

3
-coins. Thus, P1 and

P2 are disjoint.

We argue that P1 and P2 induce the same likelihood relation over Σ. Let A,B be two

events in Σ. There is time, say n, such that A and B are defined by conditions imposed

only on the first n coordinates. Thus, the probability of A and B assigned by a particular

distribution depends only on its behavior on the n first coordinates. However, for every

distribution µ ∈ P1 there is ν ∈ P2 that behaves on the first n coordinates like µ. In

particular, if µ(A) ≥ µ(B) (or µ(A) > µ(B)), then ν(A) ≥ ν(B) (or ν(A) > ν(B)). This

implies that if ν(A) ≥ ν(B) for every ν ∈ P2, then µ(A) ≥ µ(B) for every µ ∈ P1. For

a similar reason the inverse of the previous statement is also true. We conclude that P1

and P2 induce the same likelihood relation over Σ.

This example shows that two representing sets can be disjoint. In particular, the

intersection of two representing sets is not representing the same relation.

A careful look at this example reveals that the sets P1 and P2 are not closed (w.r.t. the

weak* topology). For instance, the probability (1
3
, 1
3
, ...) is in the closure of P1. The reason
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is that (1
3
, 1
3
, ...) is a cumulative point of the following sequence of probability measures

in P1: (1
3
, 1
2
, 1
2
, 1
2
...), (1

3
, 1
3
, 1
2
, 1
2
, 1
2
...), (1

3
, 1
3
, 1
3
, 1
2
, 1
2
, 1
2
...),... .

It turns out that the closure of one set contains the other and therefore, the closures of

P1 and of P2 coincide. This conclusion leaves us with two unanswered questions: whether

the intersection of two closed (w.r.t. the weak* topology) representing sets of priors can

be disjoint, and whether the intersection itself is a representing set for the same relation.

5 Proofs

LetB0(S,Σ) denote the vector space generated by linear combinations of indicator functions

1A for A ∈ Σ, endowed with the supremum norm. Define a subset D% of B0(S,Σ),

D% = closure{
n∑
i=1

αi [ 1Ai
− 1Bi

] | Ai % Bi, αi ≥ 0, n ∈ N } .

That is, D% is the closed convex cone generated by indicator differences 1A − 1B , for

A % B. By Reflexivity, Positivity and Nontriviality, D% has vertex at zero, D% is not

the entire space B0(S,Σ), and it contains every nonnegative vector ψ ∈ B0(S,Σ) .

The next claims show that under assumptions P1 through P4, preference is preserved

under convex combinations (the proof is joint for the finite and infinite cases). In some of

the claims, conclusions are more easily understood considering the following alternative

formulation of Generalized Finite Cancellation:

Let A and B be two events, and (Ai)
n
i=1 and (Bi)

n
i=1 two sequences of events from Σ,

that satisfy,

Ai % Bi for all i, and for some k ∈ N,
n∑
i=1

[1Ai
(s)− 1Bi

(s)] = k[1A(s)− 1B(s)] for all s ∈ S.

Then A % B.

Claim 1. Suppose that11 ri ∈ Q++, and Ai % Bi for i = 1, . . . , n. If

1A − 1B =
∑n

i=1 ri(1Ai
− 1Bi

) , then A % B.

11Q++ is the set of strictly positive rational numbers.
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Proof. Let k denote the common denominator of r1, . . . , rn, and write ri = mi

k
for mi ∈ N

and i = 1, . . . , n. It follows that k(1A− 1B) =
∑n

i=1mi(1Ai
− 1Bi

) for all s ∈ S. By GFC

applied to sequences (Ai)
N
i=1 and (Bi)

N
i=1, where each Ai and each Bi repeats mi times

(N = m1 + . . .+mn), it follows that A % B. �

Claim 2. Suppose there are αi > 0, i = 1, . . . , n, such that 1A−1B =
∑n

i=1 αi(1Ai
−1Bi

).

Then there are ri ∈ Q++, i = 1, . . . , n, such that 1A − 1B =
∑n

i=1 ri(1Ai
− 1Bi

).

Proof. Consider the partition induced by A1, . . . , An, B1, . . . , Bn, A,B, and denote it by

A, with atoms denoted by a. The assumed indicators identity for all s ∈ S translates to

the following finite system of linear equations, with the variables α1, . . . , αn.

n∑
i=1

δi(a)αi = δ(a), a ∈ A,

δi(a) = 1Ai
(s)− 1Bi

(s), s ∈ a, δ(a) = 1A(s)− 1B(s), s ∈ a.

Since all coefficients in the above equations, δ(a) and δi(a), are integers, by denseness

of the rational numbers in the reals it follows that if a nonnegative solution to this

system exists, then there also exists a nonnegative rational solution. Thus, if indeed

1A − 1B =
∑n

i=1 αi(1Ai
− 1Bi

) for some αi > 0, then there is a solution ri ∈ Q++. �

Conclusion 1. Suppose that Ai % Bi for i = 1, . . . , n. If there are αi > 0, i = 1, . . . , n,

such that 1A − 1B =
∑n

i=1 αi(1Ai
− 1Bi

), then A % B.

In order to show that D% contains exactly those indicator differences which correspond

to preference, it should further be proved that preference is preserved under the closure

operation. This is done separately for the finite and infinite cases.

5.1 Proof of Theorem 1

First it is proved that under assumptions P1-P4, the multiple-priors representation

follows (direction (i)⇒(ii)).

When S is finite, there are finitely many pairs of events. Therefore D% is generated

by a finite number of vectors. In fact,

D% =
∑

(A,B):A%B

α(A,B)(1A − 1B), α(A,B) ≥ 0 ,
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hence D% is closed, and by Conclusion 1, 1A−1B ∈ D% if and only if A % B. Define12

V = {v ∈ RS | v ·ϕ ≥ 0 for all ϕ ∈ D%} . The set V is a closed convex cone, and contains

the zero function.

Claim 3.

ϕ ∈ D% ⇔ v · ϕ ≥ 0 for every v ∈ V .

Proof. By definition of V , if ϕ ∈ D% then v · ϕ ≥ 0 for every v ∈ V . Now suppose that

ψ /∈ D%. Since D% is a closed convex cone then by a standard separation theorem (see

Dunford and Schwartz, Corollay V.2.12) there exists a nonzero vector separating D%

and ψ. Since 0 ∈ D% and aψ /∈ D% for all a > 0, there exists w ∈ RS such that

w ·ϕ ≥ 0 > w ·ψ, for every ϕ ∈ D%. It follows that w ∈ V , and the proof is completed. �

Conclusion 2.

A % B ⇔ v · (1A − 1B) ≥ 0 for every v ∈ V .

For every event A ∈ Σ and vector v ∈ V , denote v(A) = v · 1A =
∑

s∈A v(s).

According to the Non-Triviality assumption, V 6= {0}. By Positivity, 1A ∈ D% for

all A ∈ Σ, therefore v(A) ≥ 0 for every v ∈ V . It follows that the set P = {π =

v/v(S) | v ∈ V \ {0}} is a nonempty set of additive probability measures over Σ, such

that:

A % B ⇔ π(A) ≥ π(B) for every π ∈ P .

By its definition, P is the maximal set w.r.t. inclusion that represents the relation.

The other direction, from the representation to the axioms, is trivially implied from

properties of probability measures (GFC directly follows by taking expectation on both

sides).

5.2 Proof of Theorem 2

5.2.1 Proof of the direction (i)⇒(ii)

Claim 4. If A �� B , then 1A − 1B is an interior point of D%.

12For x = (x1, ..., x|S|), y = (y1, ..., y|S|) ∈ RS , x · y denotes the inner product of x and y. That is,

x · y =
∑|S|

i=1 xiyi.

27



Proof. By definition, A �� B implies that there exists a partition {A1, . . . , Ak} of A

and a partition {B′1, . . . , B′l} of Bc, such that for all i, j, A\Ai % B∪Bj . First observe

that it cannot be that A = ∅, for it would imply, on the one hand, that A = ∅ % B, by

definition of strong preference, and on the other hand, by Generalized Finite Cancellation,

∅ % Bc ⇔ B % S, contradicting Non-Triviality. Similarly B = S is impossible. Hence,

k, l ≥ 1. Using the definition of strong preference, monotonicity of % w.r.t set inclusion

and the structure of D% obtains:

1A − 1B − 1Ai
∈ D% , i = 1, . . . , k, and

1A − 1B − 1Bj
∈ D% , j = 1, . . . , l, therefore

(k + l)(1A − 1B)− 1A − 1Bc = (k + l − 1)(1A − 1B)− 1S ∈ D% ⇒

(1A − 1B)− 1

k + l − 1
1S ∈ D%.

It is next shown that there exists a neighborhood of 1A − 1B in D%. Let ε <
1

2(k+l−1) and let ϕ ∈ B0(S,Σ) be such that ‖1A − 1B − ϕ‖ < ε. For all s ∈ S ,

ϕ(s) > 1A(s)− 1B(s)− 1
2(k+l−1) , therefore ϕ dominates 1A − 1B − 1

k+l−11S. It follows

that ϕ = 1A− 1B − 1
k+l−11S +ψ for ψ ∈ D% (since ψ is nonnegative), hence ϕ ∈ D%

and 1A − 1B is an internal point of D%. �

Claim 5. If 1A − 1B is on the boundary of D%, then A % B.

Proof. Suppose on the contrary that for some events A and B, 1A − 1B is on the

boundary of D%, yet ¬(A % B). As 1A − 1B is on the boundary of D%, there exists

ε′ > 0 and ϕ ∈ D% such that 1A − 1B + δϕ ∈ D% for every 0 < δ < ε′.

On the other hand, employing Non-Atomicity, there exists an event F ⊆ Ac such

that F �� ∅ and 1A−1B +1F /∈ D%. The previous claim entails that 1F is an interior

point of D%, hence there exists εϕ > 0 such that 1F + δϕ ∈ D% for all |δ| < εϕ. Let

0 < δ < min(εϕ, ε
′) , then 1A − 1B + δϕ+ 1F − δϕ = 1A − 1B + 1F is in D%, since it is

a sum of two vectors in D%. Contradiction. �

Conclusion 3.

A % B ⇔ 1A − 1B ∈ D%.
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Proof. The set D% contains, by its definition, all indicator differences 1A′ − 1B′ for

A′ % B′ (thus also the zero vector), and their positive linear combinations. However, by

the previous claims, if 1A − 1B may be represented as a positive linear combination of

indicator differences 1A′ − 1B′ for which A′ % B′, or if 1A − 1B is on the boundary of

D%, then A % B. That is, every indicator difference 1A − 1B in the closed convex cone

generated by indicator differences indicating preference also satisfies A % B. �

Denote by B(S,Σ) the space of all Σ-measurable, bounded real functions over S,

endowed with the supremum norm. Denote by ba(Σ) the space of all bounded, additive

functions from Σ to R, endowed with the total variation norm. The space ba(Σ) is

isometrically isomorphic to the conjugate space of B(S,Σ). Since B0(S,Σ) is dense in

B(S,Σ) , ba(Σ) is also isometrically isomorphic to the conjugate space of B0(S,Σ).

Consider an additional topology on ba(Σ). For ϕ ∈ B0(S,Σ) and m ∈ ba(S,Σ), let

ϕ(m) =
∫
S
ϕdm. Every ϕ defines a linear functional over ba(S,Σ), and B0(S,Σ) is a total

space of functionals on ba(S,Σ).13 The B0(S,Σ) topology of ba(S,Σ), by its definition,

makes a locally convex linear topological space, and the linear functionals on ba(S,Σ)

which are continuous in this topology are exactly the functionals defined by ϕ ∈ B0(S,Σ).

Event-wise convergence of a bounded generalized sequence µα in ba(S,Σ) to µ is identical

to its convergence to µ in the following topologies: the B0(S,Σ) topology, the B(S,Σ)

topology, and the weak* topology (see Maccheroni and Marinacci, 2001). Hence, the

notion closedness of bounded subsets of ba(S,Σ) is identical in all three topologies.

Let

M = {m ∈ ba(Σ) |
∫
S

ϕdm ≥ 0 for all ϕ ∈ D% }. (8)

The set M is a convex cone, and contains the zero function. For a generalized sequence

{mτ} in M, which converges to m in the B0(S,Σ) topology, mτ (ξ) → m(ξ) for every

ξ ∈ B0(S,Σ). Therefore, having mτ (ϕ) ≥ 0 for every ϕ ∈ D% and every τ , yields that

m ∈M. The set M is thus closed in the B0(S,Σ) topology.14

Claim 6.

ϕ ∈ D% ⇔
∫
S

ϕdm ≥ 0 for every m ∈M.

13That is, ϕ(m) = 0 for every ϕ ∈ B0(S,Σ) implies that m = 0.
14This part of the proof is very similar to a proof found in ‘Ambiguity from the differential viewpoint’,

a previous version of Ghirardato, Maccheroni and Marinacci (2004).
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Proof. According to the definition of M, it follows that if ϕ ∈ D% then
∫
S
ϕdm ≥ 0

for every m ∈ M. Now suppose that ψ /∈ D%. Since D% is a closed convex cone, and

B0(S,Σ), endowed with the supnorm, is locally convex, then by a Separation Theorem

(see Dunford and Schwartz (1957), Corollary V.2.12) there exists a non-zero, continuous

linear functional separating D% and ψ. Hence, since 0 ∈ D% and aψ /∈ D% for all a > 0,

there exists m′ ∈ ba(Σ) such that
∫
S
ϕdm′ ≥ 0 >

∫
S
ψdm′, for every ϕ ∈ D%. It follows

that m′ ∈M, and the proof is completed. �

Conclusion 4.

A % B ⇔
∫
S

(1A − 1B)dm ≥ 0 for every m ∈M.

Proof. Follows from Conclusion 3 and the previous claim. �

According to the Non-Triviality assumption, M 6= {0}. By Positivity, 1A ∈ D%

for all A ∈ Σ, therefore
∫
S

1Adm ≥ 0 for every m ∈ M. It follows that the set

P = {π = m/m(S) | m ∈ M \ {0}} is a nonempty, B0(S,Σ)-closed and convex set of

additive probability measures over Σ, such that:

A % B ⇔ π(A) ≥ π(B) for every π ∈ P .

Observation 2. The set P is bounded (in the total variation norm), hence it is compact

in the B(S,Σ) topology, thus in the B0(S,Σ) topology (see Corollary V.4.3 in Dunford

and Schwartz). Boundedness of P also implies that it is weak* closed.

The set P , by its definition, is maximal w.r.t. inclusion (any π′ /∈ P yields
∫
S
ϕdπ′ <

0 for some ϕ ∈ D%, hence π′(A) < π′(B) for some pair of events that satisfy A % B),

B0(S,Σ)-closed and convex.

Claim 7.

A �� B ⇒ π(A)− π(B) > δ > 0 for every π ∈ P .

Proof. By definition of strong preference, A �� B if and only if there exists a partition

{G1, . . . , Gr} of S, such that A \ Gi % B ∪ Gj for all i, j. This means that there

are partitions {A1, . . . , Ak} of A, and {B′1, . . . , B′l} of Bc, such that π(A) − π(Ai) ≥
π(B) + π(B′j) for all π ∈ P and all i, j. It cannot be that π(A) − π(Ai) = 0 or
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π(B) + π(B′j) = 1, since π(B ∪ B′j) > 0 for some j and π(A \ Ai) < 1 for some i.

Hence, k ≥ 2 and l ≥ 2, and, for all π ∈ P ,

π(A)− π(B) ≥ π(Ai) + π(B′j), for all i, j ⇒

(k + l − 1)(π(A)− π(B)) ≥ 1

and the proof is completed with δ = 1/(k + l), for instance. �

In particular, it follows that π(A) > π(B) for every π ∈ P , whenever A �� B.

Lemma 1. The probability measures in P are uniformly absolutely continuous.

Proof. Let B be an event, and suppose that µ′(B) > 0 for some µ′ ∈ P . The inequality

implies that ¬(Bc % S), therefore by Non-Atomicity and claim 7 there exists an event

E ⊆ B that satisfies µ(E) > 0 for every µ ∈ P . It follows that µ(B) > 0 for every

µ ∈ P , hence µ(B) > 0 ⇔ µ′(B) > 0, for every event B and any µ, µ′ ∈ P .

Non-Atomicity further implies that ¬(Bc ∪E % S), which implies that µ(B \E) > 0

for some, hence for all, µ ∈ P . Therefore, if µ(B) > 0 there exists E ⊂ B with

µ(B) > µ(E) > 0. All probability measures in P are thus non-atomic.

According to the above arguments, there exists an event F1 such that 0 < µ(F1) < 1

for all µ ∈ P . As this implies ¬(F c
1 % S), it follows from Non-Atomicity that there exists

a partition of F1, {E1, . . . , Em}, such that:

Ei �� ∅ and ¬(∅ % F1 \ Ei) for i = 1, . . . ,m.

For a fixed i, the preference Ei �� ∅ entails that there exists a partition of S,

{G1, . . . , Gri}, that satisfies Ei % Gj, j = 1, . . . , ri. Taking the refinement of the partitions

for each i, there exists a partition {G1, . . . , Gr} such that Ei % Gj for all i = 1, . . . ,m

and j = 1, . . . , r. It follows that for each i, j, µ(Gj) ≤ µ(Ei) for every µ ∈ P . As ∅ % ∅,
the partition {E1, . . . , Em} must consist of at least two atoms. Hence, for each j,

µ(Gj) ≤
1

m

m∑
i=1

µ(Ei) ≤
1

2
µ(F1) <

1

2
, for all µ ∈ P .

Let F2 = Gj for Gj such that µ(Gj) > 0 (there must exist such j since the Gj’s

partition S). Again ¬(∅ % F2), and by Non-Atomicity there exists a partition of F2,
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{E ′1, . . . , E ′l}, such that:

E ′i �� ∅ and ¬(∅ % F2 \ E ′i) for i = 1, . . . , l.

As in the previous step, it follows that l ≥ 2 and there exists a partition {G′1, . . . , G′k}
with µ(G′j) ≤ µ(E ′i) for all indices i, j and all probabilities µ ∈ P . Thus, for all j,

µ(G′j) ≤
1

l

l∑
i=1

µ(E ′i) ≤
1

2
µ(F2) <

1

4
, for all µ ∈ P .

In the same manner, for all n ∈ N there exists a partition {G1, . . . , Gr} such that

for all j, µ(Gj) <
1
2n

for all µ ∈ P . It follows that the probabilities in P are uniformly

absolutely continuous. �

The proof of the direction (i) ⇒ (ii) is in fact completed. One more corollary is added,

that will prove useful in the sequel. This is the opposite direction to Claim 7.

Corollary 2. For any events A and B, if there exists δ > 0 such that µ(A)− µ(B) > δ

for every µ ∈ P, then A �� B.

Proof. Let A and B be events such that µ(A) − µ(B) > δ > 0. By uniform absolute

continuity, there exists a partition {G1, . . . , Gr} of S such that for all j, µ(Gj) < δ/2

for every µ ∈ P . It is so obtained that

µ(A \Gi) > µ(A)− δ/2 > µ(B) + δ/2 > µ(B ∪Gj), for all i, j.

�

Conclusion 5.

A �� B ⇔ µ(A)− µ(B) > δ > 0 , for every µ ∈ P .

5.2.2 Proof of the direction (ii)⇒(i)

Suppose that for every A,B ∈ Σ, A % B if and only if π(A) % π(B) for every probability

measure π in a %-maximal set P , and that P is uniformly absolutely continuous, and

32



all probabilities in the set are non-atomic. Assumptions P1 through P5 are shown to hold.

P1 Reflexivity and P2 Positivity.

For every A ∈ Σ and every π ∈ P , π(A) ≥ π(A) and π(A) ≥ 0, hence A % A and A % ∅.

P3 Non-Triviality. The %-maximal set P is nonempty, thus π(B) > π(A) for some

A,B ∈ Σ and π ∈ P , implying ¬(A % B).

P4 Generalized Finite Cancellation.

Let (Ai)
n
i=1 and (Bi)

n
i=1 be two collections of events in Σ, such that Ai % Bi for all i,

and
∑n

i=1(1Ai
(s) − 1Bi

(s)) ≤ k (1A(s)− 1B(s)) for all s ∈ S, for some k ∈ N and events

A,B ∈ Σ. Then for every π in P , kEπ (1A − 1B) ≥
∑n

i=1 Eπ(1Ai
− 1Bi

) ≥ 0. It follows

that π(A) ≥ π(B) for every π ∈ P , hence A % B.

Claim 8. If µ(F ) > 0 for an event F and probability measure µ ∈ P, then F �� ∅.

Proof. Suppose that F is an event with µ(F ) > 0. By uniform absolute continuity of P ,

there exists a partition {E1, . . . , Em} of S, such that µ(F ) > µ(Ei) for all i and all

µ ∈ P . In the same manner, for any F \ Ei there exists a partition {Gi
1, . . . , G

i
ki
} such

that µ(F \Ei) > µ(Gi
j) for all j and all µ ∈ P . Let {G1, . . . , Gr} be the refinement of

{E1, . . . , Em} and the partitions for each i, then µ(F \Gi) > µ(Gj) for all i, j and all

µ ∈ P . By definition, F �� ∅. �

P5 Non-Atomicity.

Suppose that ¬(A % B). By the representation assumption, µ′(B) > µ′(A) for some

µ′ ∈ P . Note that necessarily µ′(Ac) > 0. It is required to show that there exists a

partition {A′1, . . . , A′k} of Ac such that for all i, A′i �� ∅ and ¬(A ∪ A′i % B).

Uniform absolute continuity of the set P implies that there exists a partition {G1, . . . , Gr}
of S, such that for all j, µ(Gj) < µ′(B) − µ′(A) for all µ, thus specifically for µ′.

The partition {G1, . . . , Gr} induces a partition {A′1, . . . , A′k} of Ac such that µ′(A′i) > 0

and µ′(A ∪ A′i) < µ′(B). By the representation and the previous claim, A′i �� ∅ and

¬(A ∪ A′i % B) for all i.
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5.3 Proof of Theorem 3

First assume that %l satisfies P1-P4, and P5 if S is infinite. Then, according to theorems

1 and 2, there exists a set P of probability measures such that A %l B if and only if

µ(A) ≥ µ(B) for every µ ∈ P .

Assume further that% and%l satisfy Cumulative Dominance. Let f and g be acts such

that L(f, µ) first order stochastically dominates L(g, µ) for every µ ∈ P . By definition,

L(f, µ)({y ∈ X | y % x}) ≥ L(g, µ)({y ∈ X | y % x}), namely µ(f % x) ≥ µ(g % x),

for every x ∈ X and every µ ∈ P . Employing the subjective multi-prior representation of

%l obtains that {f % x} %l {g % x} for every x ∈ X, hence by Cumulative Dominance,

f % g.

Suppose now that % is multi-prior probabilistically sophisticated. In other words,

suppose there exists a set P of probability measures over Σ, such that %l admits a

subjective multi-prior representation with P , and for acts f and g, f % g whenever L(f, µ)

first order stochastically dominates L(g, µ) for every µ ∈ P . If S is infinite, assume also

that the set P is uniformly absolutely continuous. According to theorems 1 and 2, %l

satisfies axioms P1-P4, and also P5 if S is infinite. For Cumulative Dominance, let f and

g be acts such that {f % x} %l {g % x} for all x ∈ X. The multi-prior representation of

%l implies that µ(f % x) ≥ µ(g % x) for every x ∈ X and every µ ∈ P , hence L(f, µ) first

order stochastically dominates L(g, µ) for every µ ∈ P , yielding that f % g as required.

5.4 Proof of Proposition 1

If P2 ⊆ P1 then obviously π(A) ≥ π(B) for every π ∈ P2, whenever π(A) ≥ π(B)

for every π ∈ P1. In the other direction, let %1 and %2 be two binary relations over Σ

with a subjective multi-prior probability representation. Denote by P1 the %1-maximal

set and by P2 the %2-maximal set. Assume that for every pair of events A and B,

A %1 B implies A %2 B. By the representation, it follows that π(A) ≥ π(B) for every

π ∈ P1 implies π(A) ≥ π(B) for every π ∈ P2. The proof that P2 ⊆ P1 is given

separately for the finite and the infinite cases.

5.4.1 Proof of (i)⇒(ii) when S is finite

Recall the construction of V and the derived %-maximal set of probabilities from the

proof of Theorem 1. Let V1 = {aπ | a ≥ 0, π ∈ P1}, V2 = {aπ | a ≥ 0, π ∈ P2} be the

closed convex cones associated with P1 and P2, respectively. Suppose on the contrary
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that there exists π′ ∈ P2 \ P1. As π′ /∈ P1, then also aπ′ /∈ V1 for every a ≥ 0, and since

V1 is a cone, a separation theorem yields that there exists a non-zero ϕ ∈ RS for which

ϕ · v ≥ 0 > ϕ·, for every v ∈ V1.
Let D%1 , D%2 denote the closed convex cones generated by indicator differences

1A − 1B for A % B (see the definition of D% in the proof of Theorem 1). Employing

Claim 3, the separating ϕ satisfies ϕ ∈ D%1 \D%2 . That is, ϕ =
∑n

i=1 αi(1Ai
− 1Bi

) for

Ai %1 Bi, but
∑n

i=1 αi(1Ai
− 1Bi

) /∈ D%2 . It follows that there exist events A,B such

that A %1 B while not A %2 B. Contradiction.

5.4.2 Proof of (i)⇒(ii) when S is infinite

For ϕ ∈ B0(S,Σ) and m ∈ ba(S,Σ), let ϕ(m) =
∫
S
ϕdm. Every ϕ defines a linear

functional over ba(S,Σ), andB0(S,Σ) is a total space of functionals on ba(S,Σ).15 Consider

the B0(S,Σ) topology of ba(S,Σ). By its definition, in this topology ba(S,Σ) is a

locally convex linear topological space, and the linear functionals on ba(S,Σ) which are

continuous in the B0(S,Σ) topology are exactly the functionals defined by ϕ ∈ B0(S,Σ).

Recall the construction of M and the derived %-maximal set of probabilities from

the proof of Theorem 2. Let M1 = {aπ | a ≥ 0, π ∈ P1}, M2 = {aπ | a ≥ 0, π ∈ P2} be

the closed convex cones associated with P1 and P2, respectively. Suppose on the contrary

that there exists π′ ∈ P2 \ P1. As π′ /∈ P1, then also aπ′ /∈ M1 for every a ≥ 0, and

a Separation Theorem, employed for the B0(S,Σ) topology of ba(S,Σ), yields that there

exists a non-zero ϕ ∈ B0(S,Σ), separating M1 and π′. Since M1 is a cone, there exists

ϕ for which
∫
S
ϕdm ≥ 0 >

∫
S
ϕdπ′, for every m ∈M1.

Let D%1 , D%2 denote the closed convex cones generated by indicator differences

1A − 1B for A % B (see Claim 5, the definition of D% in the proof of Theorem 2 and

Observation 1). Employing Claim 6, the separating ϕ satisfies ϕ ∈ D%1 \D%2 . That is,

ϕ =
∑n

i=1 αi(1Ai
− 1Bi

) for Ai %1 Bi, but
∑n

i=1 αi(1Ai
− 1Bi

) /∈ D%2 . It follows that

there exist events A,B such that A %1 B while not A %2 B. Contradiction.

5.5 Proof of Proposition 2

Assume that (i) of the proposition holds. By Theorem 2, for any two events A and B,

A % B if and only if µ(A) ≥ µ(B) for every probability measure µ in a uniformly

15That is, ϕ(m) = 0 for every ϕ ∈ B0(S,Σ) implies that m = 0.
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absolutely continuous set P . According to Savage ?, % on B is represented by a unique

probability, hence all probabilities in P coincide on B. Savage’s theorem also implies that

the common part on B is convex-ranged. Denote the restriction of P to B by π. As %

on B is complete, % and %′ coincide there. Note that, according to Observation 2, P is

compact, thus it attains its infimum (see Lemma I.5.10 in Dunford and Schwartz ?).

Let E ∈ Σ and B ∈ B be events, and suppose that π(B) > minµ∈P µ(E). Then

π(B) > µ′(E) for some µ′ ∈ P , and as π(B) = µ′(B), then by the representation of % it

follows that ¬(E % B). Employing Ambiguity Aversion yields the preference B �′ E. In

the other direction, if minµ∈P µ(E) ≥ π(B), then µ(E) ≥ µ(B) for all µ ∈ P , therefore

E % B and by Consistency also E %′ B. Thus, summing the two implications,

E %′ B ⇔ min
µ∈P

µ(E) ≥ π(B). (9)

Recall that π over B is convex-ranged. Hence, for any E ∈ Σ there exists B ∈ B
with π(B) = minµ∈P µ(E). Next it is shown that E ∼′ B must hold. First, by (9),

E %′ B. Suppose on the contrary that E �′ B. By Unambiguous Non-Atomicity, there

exists an unambiguous partition of S, {B1, . . . , Bm} with Bi ∈ B for all i, such that

E �′ B ∪ Bi. According to the above arguments, minµ∈P µ(E) ≥ π(B ∪ Bi) for all i,

hence minµ∈P µ(E) > π(B). Contradiction. Therefore E ∼′ B.

Let E and F be events, and B and C events in B, such that π(B) = minµ∈P µ(E)

and π(C) = minµ∈P µ(F ). Then, employing Transitivity (P1’),

E %′ F ⇔ B %′ C ⇔ B % C ⇔ min
µ∈P

µ(E) ≥ min
µ∈P

µ(F ) (10)
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1 Introduction

There is a respectable body of literature dealing with axiomatic foundations of decision

theory, and specifically with the non-Bayesian (or extended Bayesian) branch of it.

We will mention a part of this literature to put our paper in context.

Building on the works of Ramsey (1931), de Finetti (1937), and von Neumann and

Morgenstern (1944, 1953), Savage (1952, 1954) provided an axiomatic model of purely

subjective expected utility maximization. The descriptive validity of this model was

put in doubt long ago. Today many think that Savage’s postulates do not constitute

a sufficient condition for rationality, and some doubt that they are all necessary

conditions for it. However, almost all agree that his work is by far the most beautiful

and important axiomatization ever written in the social or behavioral sciences. ”The

crowning glory”, as Kreps (1998, p. 120) put it. Savage’s work has had a tremendous

influence on economic modeling, convincing many theorists that the only rational

way to make decisions is to maximize expected utility with respect to a subjective

probability. Importantly, due to Savage’s axioms, many believe that any uncertainty

can and should be reduced to risk, and that this is the only reasonable model of

decision making on which economic applications should be based. About a decade

after Savage’s seminal work Anscombe and Aumann (1963) (AA for short) suggested

another axiomatic derivation of subjective probability, coupled with expected utility

maximization. As in Savage’s model, acts in AA’s model map states of nature to a set

of consequences. However, in Savage’s model the set of consequences has no structure,

and it may consist of merely two elements, whereas AA assume that the consequences

are lotteries as in vNM’s model, namely, distributions over a set of outcomes, whose

support is finite. Moreover, AA impose the axioms of vNM-’s- theory (including the

independence axiom) on preferences over acts, which imply that the decision maker

maximizes expected utility in the domain of risk. On the other hand, AA’s model can

deal with a finite state space, whereas Savage’s axioms imply that there are infinitely

many states, and, moreover, that none of them is an “atom”. Since in many economic

applications there are only finitely many states, one cannot invoke Savage’s theorem

to justify the expected utility hypothesis in such models.
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A viable alternative to the approaches of Savage and of AA is the assumption that

the set of consequences is a connected topological space. (See Fishburn (1970) and

Kranz, Luce, Suppes, and Tversky (1971) and the references therein.) These spaces

are ”rich” and therefore more restrictive than Savage’s abstract set of consequences.

On the other hand, such spaces are natural in many applications. In particular,

considering a consumer problem under uncertainty the consequences are commodity

bundles which, in the tradition of neoclassical consumer theory, constitute a convex

subset of an n-dimensional Euclidean space, and thus a connected topological space.

As opposed to AA’s model, the richness of the space is not necessarily derived from

mixture operations on a space of lotteries. Thus, no notion of probability is pre-

supposed, and no restrictions are imposed on the decision maker’s behavior under

risk.

Despite the appeal of Savage’s axioms, the Bayesian approach has come under

attack on descriptive and normative grounds alike. In accord with the view held

by Keynes (1921), Knight (1921), and others, Ellsberg (1961) showed that Savage’s

axioms are not necessarily a good description of how people behave, because people

tend to prefer known to unknown probabilities. Moreover, some researchers argue

that such preferences are not irrational. This was also the view of Schmeidler (1989),

who suggested the first axiomatically based, general-purpose model of decision making

under uncertainty, allowing for a non-Bayesian approach and a not necessarily neutral

attitude to uncertainty. Schmeidler axiomatized expected utility maximization with

a non-additive probability measure (also known as capacity), where the operation of

integration is done as suggested by Choquet (1953-4). Schmeidler (1989) employed the

AA model, thereby using objective probabilities and restricting attention to expected

utility maximization under risk. Following his work, Gilboa (1987) and Wakker (1989)

axiomatized Choquet Expected Utility theory (CEU) in purely subjective models; the

former used Savage’s framework, whereas the latter employed connected topological

spaces. Thus, when applying CEU, one can have a rather clear idea of what the

model implies even if the state space is finite, as long as the consequence space is rich

(or vice versa).

Gilboa and Schmeidler (1989) (GS hereafter) suggested the theory of Maxmin

Expected Utility (MEU), according to which beliefs are given by a set of probabilities,

and decisions are aimed to maximize the minimal expected utility of the act chosen

(see also Chateauneuf (1991)). This model has an overlap with CEU: when the
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non-additive probability is convex, CEU can be described as MEU with the set of

probabilities being the core of the non-additive probability. More generally, CEU can

capture modes of behavior that are incompatible with MEU, including uncertainty-

liking behavior. On the other hand, there are many MEU models that are not CEU.

Indeed, even with finitely many states, where the dimension of the non-additive

measures is finite, the dimension of closed and convex sets of measures is infinite

(if there are at least three states).1 Moreover, there are many applications in which

a set of priors can be easily specified even if the state space is not explicitly given.

As a result, there is an interest in MEU models that are not necessarily CEU. GS

axiomatized MEU in AA’s framework, paralleling Schmeidler’s original derivation of

CEU.

There are several reasons to axiomatize the MEU model without using objective

probabilities. The raison d’être of the CEU and MEU models (and of several more

recent models) is the assumption that, contrary to Savage’s claim, Knightian uncertainty

cannot be reduced to risk. Thus to require the existence of exogenously given additive

probabilities while modeling Knightian uncertainty appear to be in a conceptual

dissonance. Another drawback of the AA framework is the assumption that it is

immaterial whether objective or subjective uncertainty is resolved first. While this

assumption is natural under subjective expected utility, it is questionable under non-

expected utility models. In addition, alternatives in the AA framework are two-stage

acts which are remote from individuals’ experience and economic models.

Most of the applications in economics assume consequences lie in a convex subset

of, say, a Euclidean space, but do not assume linearity of the utility function. It

is therefore desirable to have an axiomatic derivation of the MEU decision rule in

this framework that is applicable to a finite state space and that does not rely on

objective probabilities. Such a derivation can help us see more clearly what the exact

implication of the rule is in many applications, without restricting the model in terms

of decision making under risk or basing it on vNM utility theory.

Our goal here is to suggest a set of axioms delivering MEU representation, namely

1The space of all convex compact subsets of the plane with the Hausdorff metric can be embedded

as a non negative cone of a linear topological space of infinite dimension. In this cone the set of all

convex closed subsets of some non degenerate triangle includes an open set of the linear topological

space. Such a triangle can represent all probability distributions over some state space with three

states.
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the existence of a utility function u on the set of consequences X, and a non empty,

compact and convex set C of finitely additive probability measures on (S,Σ) (the

states set, the events set), such that for any two acts f and g:

f % g ⇔ min
P∈C

∫
S

u(f(·))dP ≥ min
P∈C

∫
S

u(g(·))dP .

The first axiomatic derivation of MEU of this type is by Casadesus-Masanell,

Klibanoff and Ozdenoren (2000). Another one is by Ghirardato, Maccheroni, Marinacci

and Siniscalchi (2003). These are discussed in subsections 2.2 and 3.2, correspondingly.

To compare these works with ours, we continue the introduction with a comment on

axiomatization of the individual decision making under (Knightian) uncertainty. Such

an axiomatization consists of a set of restrictions on preferences. This set usually

constitutes a necessary and sufficient condition for the numerical representation of

the preferences.

Axiomatizations may have different goals and uses, be distinguished across more

than one normative or positive interpretations and be evaluated according to different

tests. Here we emphasize and delineate simplicity and transparency as a necessary

condition for an axiom. Let us start with a normative interpretation of the axioms.

In many decision problems, the decision maker does not have well-defined preferences

that are accessible to him or her by introspection, and has to invest time and effort

to evaluate his or her options. In accordance with the models discussed in this

paper we assume that the decision maker constructs a states space and conceives

the options as maps from states to consequences. The role of axioms in this situation

is twofold. First, the axioms may help the decision maker to construct his or her

mostly unknown preferences: the axioms may be used as ”inference rules”, using some

known instances of pairwise preferences to derive others.2 Second, the set of axioms

can be used as a general rule that justifies a certain decision procedure. To the extent

that the decision maker can understand the axioms and finds them agreeable, the

representation theorem might help the decision maker to choose a decision procedure,

thereby reducing the problem to the evaluation of some parameters. It is often the case

that the mathematical representation of the decision rule also makes the evaluation

of the parameters a simple task. For example, in the case of EU theory, one can

use simple trade-off questions to evaluate one’s utility function and one’s subjective

probability, and then use the theory to put these together in a unique way that

2On this see Gilboa et al. (2010).
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satisfies the axioms.

Both normative interpretations of the axioms call for clarity and simplicity. In the

first, instance-by-instance interpretation, the axioms are used by the decision maker

to derive conclusions such as f % h from premises such as f % g and g % h. Only

simple and transparent axioms can be used by actual decision makers to construct

their preferences. In the second interpretation, the axioms should be accepted by

the decision maker as universal statements to which the decision maker is willing to

commit. If the axioms fail to have a clear meaning, a critical decision maker will

hesitate to accept the axioms and the conclusions that follow from them.

Finally, we briefly mention that descriptive interpretations of the axioms also favor

simple over complex ones. One descriptive interpretation is the literal one, suggesting

testing the axioms experimentally. The simpler the axioms, the easier it is to test

them. Another descriptive interpretation is rhetorical: the axioms are employed to

convince a listener that a certain mode of behavior may be more prevalent than it

might appear at first sight. Here again, simplicity of the axioms is crucial for such a

rhetorical task.

But how does one measure the simplicity of an axiom? One can define a very

coarse measure of opaqueness of an axiom by counting the number of variables in its

formulation: acts, consequences, states or events, instances of preference relation, and

logical quantifiers. For example, transitivity requires three variables, three preference

instances, and one implication – seven in all. It should be pointed out that such a

measure of opaqueness is a test, and not a criterion, for simplicity and transparency

of an axiom. In the present work we apply this measure very roughly. By a low

or satisfactory level of opaqueness we mean smaller than some fixed number, say,

smaller than 100. If an axiom is stated using some notations (same as definitions) their

opaqueness is included in the count. Our purpose in this work is to introduce a purely

subjective axiomatization of the MEU model with axioms of satisfactory opaqueness.

One exception is the axiom of continuity. (See the discussion in Subsection 2.1, after

the presentation of our continuity assumption.) Actually, we are not going to count

the variables in the axioms we present. Simply, an axiom of unsatisfactory opaqueness

means that it is of unbounded opaqueness. The latter applies to the continuity axiom.

We conclude the Introduction with a short outline. Because our goal is to derive
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the representation formula as stated in the title of the paper we are left with the

statement of axioms and the proof. This is the order of presentation. But to state

the axioms we need first a strategy for the proof. An obvious possibility is to follow

GS. They accomplished it in several steps. First they constructed a vNM utility

over consequences, and a numerical representation of the preferences over acts, where

the latter coincides with the utility on constant acts. Next they reduced acts to

functions from states to utiles, i.e., to elements of RS, and the functional from acts

to functional on RS. Finally they translated the axioms on preferences to properties

of the functional on RS , and showed that this functional can be represented via a set

of priors.

One way to carry out the first step, in which a utility function is derived, is to

take an “off the shelve” result based on a purely subjective axiomatization. There are

two obvious candidates. The first one is the tradeoffs approach, or more precisely, a

special case of a theorem in Kobberling and Wakker (2003), KW henceforth. The

theorem deals with the CEU model, but both, MEU model and CEU model, share

basic axioms in the purely subjective framework as they do in the AA framework.

Moreover, an MEU representation on binary acts (i.e., acts with two values) is also its

CEU representation. However there is still a distance between KW result we quote

and the cardinal utility result we need. It is explained in Subsection 2.1, and the

proof of the required result is provided in the beginning of the Appendix. The latter

includes all the proofs. Our new axioms and the main result, expressed in tradeoffs

language, are presented in Subsection 2.2.

Another possible way to derive a utility function over consequences is to use

the biseparable preferences representation by Ghirardato and Marinacci (2001), GM

henceforth. Their axioms and results are introduced in Subsection 3.1, and in

Subsection 3.2 our new axioms are expressed in their language. For the latter, we

also require a result from Ghirardato, Maccheroni, Marinacci and Siniscalchi (2003).

Finally, Section 4 contains extensions, discussion of further possible extensions, and

additional results.

2 Tradeoffs approach

The following notation is used throughout the entire paper. Let S denote the set of

states, Σ a σ-algebra of events over S, X the set of consequences,
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F = {f : S → X | f obtains finitely many values and is measurable w.r.t. Σ} the set

of (simple) acts, and % ⊂ F×F the decision maker’s preferences over acts. As usual,

∼ and � denote the symmetric and asymmetric components of %. For x, y ∈ X and

an event E, xEy stands for the act which assigns x to the states in E and y otherwise.

Let x denote the constant act xEx (for any E ∈ Σ). Without causing too much of a

confusion, we also use the symbol % for a binary relation on X, defined by: x % y iff

x % y.

2.1 Basic axioms and tradeoff consistency

We start with the restrictions on the set of consequences.

A0. Structural assumption:

S is nonempty, X is a connected, topological space, and XS is endowed with the

product topology.

A0 is an essential restriction of our approach. It follows the neoclassical economic

model and the literature on separability.3 For its introduction into decision theory

proper see Fishburn (1970) and the references there, and Kranz, Luce, Suppes, and

Tversky (1971) and the references there.4 We note that the topology does not have

to be assumed. One can use the order topology on X whose base consists of open

intervals of the form { z ∈ X | x � z � y }, for some x, y ∈ X. The restriction

then is the connectedness of the space. A0 can be further weakened by imposing

the order topology and its connectedness on X/ ∼, i.e., on the ∼-equivalence classes.

The connectedness restriction excludes decision problems where there are just a few

deterministic consequences like in medical decisions. On the other hand many medical

consequences are measured by QALY, quality-adjusted life years, that is, in time units.

These situations can be embedded in our model.

We state now the four basic axioms. The first one is a simple weak order assumption,

which is clearly a necessary condition for an MEU representation.

A1. Weak Order:

(a) For all f and g in F , f % g or g % f (completeness).

3It is still an open problem to obtain a purely subjective representation of MEU in a Savage-like

model, where X may be finite but S is rich enough.
4Debreu (1959) is the earliest paper we know. The mathematical foundations go back to Blaschke

in the period between the two world wars.
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(b) For all f, g, and h in F , if f % g and g % h then f % h (transitivity).

A2. Continuity:

The sets {f ∈ F | f � g} and {f ∈ F | f ≺ g} are open for all g in F .

A remark about the opaqueness of the axiom of continuity is required. All the

main representation theorems require such an axiom in one form or another. But

any version of this axiom has an unbounded or infinite opaqueness as specified above.

Ours is akin to continuity in the neoclassical consumer theory. As such it cannot be

tested. Moreover, the decision maker should be agnostic toward it. Because of its

opaqueness, it is as difficult for the decision maker to accept it as to reject it.

A3. Essentiality:

There exist an event E ∈ Σ and consequences x, y such that x � xEy � y.

This axiom simplifies and shortens the formal presentation. If there is no event

and consequences as in A3, then we are either in a deterministic setting or in a

degenerate setting.

The last basic axiom is the usual monotonicity condition. like A1, it is simple and

necessary for an MEU representation.

A4. Monotonicity:

For any two acts f and g, f % g holds whenever f(s) % g(s) for all states s in S.

Let us consider once again the spacial case whereX = Rl
+, the standard neoclassical

consumption set. Then XS consists of state contingent consumption bundles, like in

Chapter 7 of the classic ’Theory of value’, Debreu (1959). Our A4 is ”orthogonal”

to the neoclassical monotonicity of preferences on Rl
+. The latter says that increase in

quantity of any commodity is desirable. A4 says that preferences between consequences

do not depend on the state of nature that occurred. However if one assumes neoclassical

monotonicity on (Rl
+)S = XS, it does not imply A4, but can accommodate it. Chapter

7 preferences on (Rl
+)S can be represented by a continuous utility function, say,

J : (Rl
+)S → R. One then can define a utility where for x ∈ X = Rl

+ , u(x) = J(x̄). If
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also A4 is imposed, u represents % on X and is continuous.5 To get such result under

A0 assumption, a separability condition has to be added. However we are interested

in a stronger representation where u, and hence J, are cardinal. The ’why’ and ’how’

are discussed in the next subsection.

We next present the specific concept of tradeoffs which is appropriate for this

work. In order to do that we need to recall and restate several definitions.

Definition 1. A set of acts is comonotonic if there are no two acts f and g in the

set and states s and t, such that, f(s) � f(t) and g(t) � g(s). Acts in a comonotonic

set are said to be comonotonic.

Comonotonic acts induce essentially the same ranking of states according to the

desirability of their consequences. Given any numeration of the states, say

π : S → {1, ..., |S|}, the set { f ∈ XS | f(π(1)) % . . . % f(π(|S|) } is comonotonic. It

is a largest-by-inclusion comonotonic set of acts.

Definition 2. Given a comonotonic set of acts A, an event E is said to be comonotonically

nonnull on A if there are consequences x, y and z such that xEz � yEz and the set

A ∪ {xEz, yEz} is comonotonic.

The definition of tradeoff indifference we use restricts attention to binary comonotonic

acts, that is, comonotonic acts which obtain at most two consequences.

Definition 3. Let a, b, c, d be consequences. We write < a; b > ∼∗< c; d > if there

exist consequences x, y and an event E such that,

aEx ∼ bEy and cEx ∼ dEy (1)

with all four acts comonotonic, and E comonotonically nonnull on this set of acts.

Given this notation we can express the cardinality of a utility function within our

framework.

Definition 4. We say that u : X −→ R cardinally represents % on X (or for short,

u is cardinal), if it represents % ordinally, and

< a; b > ∼∗< c; d >⇒ u(a)− u(b) = u(c)− u(d) .

5More precisely: the way % was defined u represents it on X with or without A4. However

without A4 this representation does not make sense.
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It will be shown in the sequel that given our axioms so far, and A5 below, such

u exists, and that u and v cardinally represent % iff v(x) = αu(x) + β for some

positive number α, and any number β.

A special case of Definition 3 is of the form, < a; b > ∼∗< b; c > . It essentially

says that b is half the way between a and c. It will be used in the statement of axioms

A6 and A7 below. To make the definition of tradeoffs indifference useful we need the

following axiom.

A5. Binary Comonotonic Tradeoff Consistency (BCTC): For any eight

consequences a, b, c, d, x, y, v, w, and events E,F ,

aEx ∼ bEy, cEx ∼ dEy, aFv ∼ bFw ⇒ cFv ∼ dFw (2)

whenever the sets of acts { aEx, bEy, cEx, dEy } and { aFv, bFw, cFv, dFw } are

comonotonic, E is comonotonically nonnull on the first set, and F is comonotonically

nonnull on the second.

This axiom guarantees that the relations aEx ∼ bEy and cEx ∼ dEy, defining

the ∼∗ equivalence relation above, do not depend on the choice of E, x and y. This

axiom is a weakening of the one used in KW. Note that the axiom involves only a

finite number of variables (even if the concepts of comonotonicity of acts, and events

being comonotonically nonnull are replaced by their definitions).

2.2 New axioms and the main result

As mentioned in the Introduction, in an AA type model the set of consequences X

consists of an exogenously given set of all lotteries over some set of deterministic

consequences, say Z. As a result, for any two acts f and g, and θ ∈ [0, 1], the act

h = θf + (1 − θ)g is well defined where h(s) = θf(s) + (1 − θ)g(s) for all s ∈ S.

This mixture is used in the statement of two axioms central in the derivation of

the MEU decision rule. One axiom, uncertainty aversion, states that f % g implies

θf + (1− θ)g % g for any θ ∈ [0, 1]. The other axiom, that of certainty independence,

uses a mixture of acts with constant acts. Without lotteries the sets X and F are

not linear spaces, and the two axioms have to be restated without availability of the

mixture operation. Recall, however, that X is a connected topological space.
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Given acts f, g, and h, we introduce two ways to express the intuition that g is

half way between f and h. One is by tradeoffs and the ∼∗ notation, and the other

within the biseparable preferences approach in Section 3. In any case, under the basic

set of axioms in either approach, a utility function u is derived, and for consequences

x, y and z, y being half way between x and z implies u(y) = 1
2
(u(x) + u(z)). An act

g is considered to be half way between acts f and h whenever this holds state-wise,

so that g(s) is half way between f(s) and h(s).

Employing a definition of ‘half way’, one way to formalize certainty independence

goes as follows: Let f, g, and h be acts with f � g, and h a constant act. Suppose that

for some k ≥ 1 and acts f = f0, f1, f2, . . . , fk−1, fk = h, and g = g0, g1, g2, . . . , gk−1, gk =

h, fi is half way between fi−1 and fi+1, and gi is half way between gi−1 and gi+1, for

i = 1, . . . , k − 1 . Then fi � gi for i = 1, . . . , k − 1 . This essentially is the

way that Casadesus-Masanell et al. (2000) stated the axiom.6 Thus their certainty

independence axiom is of unbounded opaqueness.

As explained we would like to avoid, whenever possible, axioms of the form: “for

any positive integer n, and for any two n-lists, etc...”. Our uncertainty aversion axiom

states that if f % h and g is half way between f and h, then g % h. Our certainty

independence axiom is: Suppose that g is half way between f and a constant act w̄,

and for some constant acts x̄ and ȳ, ȳ is half way between x̄ and w̄. Then f ∼ x̄ iff

g ∼ ȳ.

However our version of the certainty independence axiom does not suffice to

obtain the required representation. An axiom named Certainty Covariance is added.

Certainty Covariance says that given acts f and g, and consequences x and y : If, for

all states s, the strength of preference of f(s) over g(s) is the same as the strength

of preference of x over y, then, f ∼ x̄ iff g ∼ ȳ. In other words: when consequences

are translated into utiles, the conditions of the axiom imply that the change from

the vector of utiles (u(f(s)))s∈S, to the vector of utiles (u(g(s)))s∈S, is parallel to the

move on the diagonal from the constant vector with coordinates u(x) to the constant

vector with coordinates u(y). The axiom requires that indifference (between x̄ and

f) be preserved by movements parallel to the diagonal in the utiles space.

We now formally present the three axioms introduced above, using the ∼∗ relation.

6Such sequences are called standard sequences; See Krantz et al. (1971) and the references there.
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A6. Uncertainty Aversion:

For any three acts f , g, and h, if f % g, and for all states s ∈ S,

< f(s);h(s) > ∼∗< h(s); g(s) >, then h % g.

A7. Certainty Independence:

Suppose that two acts, f and g, and three consequences, x, y, and w, satisfy

< x; y > ∼∗< y;w >, and for all states s ∈ S, < f(s); g(s) > ∼∗< g(s);w > . Then

g ∼ y iff f ∼ x.

A8. Certainty Covariance:

Let f, g be acts and x, y consequences such that for all states s ∈ S,
< f(s); g(s) > ∼∗< x; y > . Then, f ∼ x iff g ∼ y.

As mentioned earlier, the three axioms are stated in the language of tradeoffs

indifference ∼∗ and not in the language of the preferences on X (or F). Yet, even if

all instances of ∼∗ are replaced by their definition, all three axioms require a bounded

number of variables.

The axiom of uncertainty aversion, A6, is a tradeoffs version of the uncertainty

aversion axiom introduced by Schmeidler (1989, preprint 1984). Essentially, it replaces

utility mixtures with the use of tradeoffs terminology. It is analogous to the uncertainty

aversion axiom in a model with exogenous lotteries for the case of θ = 1/2. Applying

the axiom consecutively, and then using continuity, A2, guarantees the conclusion

for any mixture. A6 expresses uncertainty aversion in that it describes the decision

maker’s will to reduce the impact of not knowing which state will occur. The reduction

is achieved by averaging the consequences of f and g in every state.

In a similar manner to A6, axiom A7 produces a utilities analogue of the certainty

independence axiom phrased by GS in their axiomatization of MEU, for the case

θ = 1/2. Consecutive application of A7 will yield the analogue for θ = 1/2m, where θ

is the coefficient of the non-constant act. To get the analogue for all dyadic mixtures

we have to supplement it with A8.

Certainty Covariance is a subjective equivalent of an axiom Grant and Polak
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(2011) call constant absolute uncertainty aversion.7 Analogously to the notion of

constant absolute risk aversion, this axiom states that preference is maintained if

alternatives are altered by a constant shift across all states. Grant and Polak use

mixtures with exogenous probabilities to phrase the axiom in an AA setting, while

we use tradeoffs to express the idea of a constant shift. Our Certainty Covariance

axiom thus asserts that whenever an act f is indifferent to a constant act x, then

shifting both f and x by a constant shift across all states, the resulting acts, g and

the constant y, are still indifferent. Consequently, indifference curves for the relation

are parallel.

When acts are represented in the utiles space, one can see that axiom A8 is some

version of a parallelogram where one side is an interval on the diagonal. This is

the order interval [x, y]. The parallel side is [f, g] ≈ [f(s), g(s)]s∈S, which should be

thought of as an off diagonal “order” interval in XS. The other two sides of the

parallelogram are delineated by equivalences: f ∼ x iff g ∼ y.

Having stated all axioms, we can formulate our main result.

Theorem 1. Suppose that a binary relation % on F is given, and the structural

assumption A0 holds. Then the following two statements are equivalent:

(1) % satisfies

(A1) Weak Order

(A2) Continuity

(A3) Essentiality

(A4) Monotonicity

(A5) Binary Comonotonic Tradeoff Consistency

(A6) Uncertainty Aversion

(A7) Certainty Independence

(A8) Certainty Covariance

(2) There exist a continuous utility function u : X → R and a non-empty, closed

and convex set C of additive probability measures on Σ, such that, for all

7The two axioms were formulated independently, and presented at RUD 2008 in Oxford.
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f, g ∈ F ,

f % g ⇔ min
P∈C

∫
S

u(f(·))dP ≥ min
P∈C

∫
S

u(g(·))dP .

Furthermore, the utility function u is unique up to an increasing linear transformation,

the set C is unique, and for some event E, 0 < minP∈C P (E) < 1.

The requirement that for some event E, 0 < minP∈C P (E) < 1, reflects the

assumption that there is an essential event. As mentioned earlier, this assumption

is made merely for the sake of ease of presentation and may be dropped. All proofs

appear in the appendix.

3 Biseparable approach

3.1 Basic axioms and act independence

First we recall the definition of a biseparable relation from GM.

Definition 5. A functional J : F → R represents the relation % whenever: J(f) ≥
J(g) if and only if f % g. The representation is monotonic if for any two acts f and

g, J(f) ≥ J(g) whenever f(s) % g(s) for all states s.

Definition 6. An event E is essential if for some consequences x and y,

x � xEy � y.

Definition 7. A preference relation over acts, %, is said to be biseparable if it admits

a nontrivial, monotonic representation J , and there exists a set function η on events

such that for binary acts with x % y,

J(xEy) = u(x)η(E) + u(y)(1− η(E)). (3)

The function u is defined on X by, u(x) = J(x), and it represents % on X. The set

function η, when normalized s.t. η(S) = 1, is unique, and u and J are unique up to

a positive multiplicative constant and an additive constant whenever there exists an

essential event.

GM showed that this representation generalizes CEU and MEU. They characterized

biseparable preferences using several axioms, among which are A0, A3 and A4 above.

For the sake of uniformity, we will continue to assume our continuity axiom A2, which

is somewhat stronger than the continuity axiom assumed by GM. The new axioms

required for biseparability of the preferences will be denoted with *. First of all an
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additional structural assumption, used by GM, is stated:

A0*. Separability:

The topology on X is separable.

Essentiality alone is not enough in this framework, and an additional axiom is

required to guarantee that nonnull events are ‘always’ nonnull.

A3*. Consistent Essentiality:

For an event E, if for some x � y, xEy � y, (resp. x � xEy), then for all a � b % c,

aEc � bEc (resp. for all c % a � b, cEa � cEb).

To state the last axiom required for biseparability of preferences we first recall

that for an act f, x ∈ X is its certainty equivalent if f ∼ x̄. In the following

definition and in the axiom the concept of certainty equivalence is employed.

Definition 8. Let there be given two acts, f and g, and an essential event G. An act

h is termed a G-mixture of f and g, if for all s ∈ S, h(s) ∼ f(s)Gg(s).

Given axioms A0, A1, A2 and A4, it is obvious that a certainty equivalent of each

act, and consequently event mixtures, can easily be proved to exist. However when

stating the next axiom these proofs are not assumed.

A5*. Binary Comonotonic Act Independence:

Let two essential events, D and E, and three pairwise comonotonic, binary acts, aEb,

cEd, and xEy be given. Suppose also that either xEy weakly dominates aEb and

cEd, or is weakly dominated by them. Then aEb % cEd implies that a D-mixture

of aEb and xEy is weakly preferred to a D-mixture of cEd and xEy, provided that

both mixtures exist.

GM (2001) Theorem 11 says that assuming A0 and A0*, preferences are

biseparable (with the uniqueness results) iff they satisfy A1, A2, A3, A3*, A4, and

A5*.

The theorem implies that if x � y � z, and u(y) = u(x)/2 +u(z)/2, then y is half

way between x and z. However we would like to express that y is half way between

x and z in the language of preferences, and not by using an artificial construct like
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utility. Ghirardato et al. (2003) did it in their Proposition 1. They showed that if

the preferences over acts are biseparable, and x � y � z in X, then:

u(y) = u(x)/2 + u(z)/2 iff

∃ a, b ∈ X, and an essential event E s.t. ā ∼ xEy, b̄ ∼ yEz, and xEz ∼ aEb. (4)

The line above is a behavioral definition of “y is half way between x and z.” We

denote it by y ∈ H(x, z). 8 We will use this notation to state our new axioms.

Note that both A3* and A5* involve a bounded number of variables in their

formulation. On the other hand, Separability (A0*) is as complex as continuity. But

it comes for free if X is in a Euclidean space with a topology induced by the Euclidean

distance.

3.2 New axioms and the main result

For formulation of the theorem using biseparable preferences we simply repeat the

new axioms with the H(·, ·) notation.

A6*. Uncertainty Aversion:

For any three acts f , g, and h with f % g: if ∀s ∈ S, h(s) ∈ H(f(s), g(s)), then h % g.

A7*. Certainty Independence:

Suppose that two acts, f and g, and three consequences, x, y, and w, satisfy:

y ∈ H(x,w), and ∀s ∈ S, g(s) ∈ H(f(s), w). Then g ∼ y iff f ∼ x.

A8*. Certainty Covariance:

Let f, g be acts and x, y consequences such that ∀s ∈ S, H(f(s), y) = H(x, g(s)).

Then, f ∼ x iff g ∼ y.

As opposed to our application of the ‘half way’ notation H(·, ·) in the axioms,

Ghirardato et al. (2003), in their MEU axiomatization, introduce an artificial construct,

⊕, coupled with a mixture set (M, =̂, +̂). Their C-independence axiom states that for

all α ∈ [0, 1], f % g implies αf ⊕ (1−α)x̄ % αg⊕ (1−α)x̄. The ⊕ notation stands for

a consecutive application of the H(·, ·) notation (for all s ∈ S), where the number of

8This is Definition 4 in Ghirardato et al. (2003).
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times it is applied may be infinite. Their axiom therefore requires an infinite number

of variables.

The relation between A6, A7 and A8, and their starred counterparts, is derived

from the observation that under the rest of the axioms (in each of the approaches),

if < x; y > ∼∗< y; z > then y ∈ H(x, z). Note that the relation between A8 and A8*

is also based on the Euclidean geometry theorem which says: A (convex) quadrangle

is a parallelogram iff its diagonals bisect each other. The main result within the

biseparable approach is stated below. It’s proof appears in the appendix.

Theorem 2. Suppose that a binary relation % on F is given, and the structural

assumptions A0 and A0* hold. Then the following two statements are equivalent:

(1) % satisfies

(A1) Weak Order

(A2) Continuity

(A3) Essentiality

(A3*) Consistent Essentiality

(A4) Monotonicity

(A5*) Binary Comonotonic Act Independence

(A6*) Uncertainty Aversion

(A7*) Certainty Independence

(A8*) Certainty Covariance

(2) There exist a continuous utility function u : X → R and a non-empty, closed

and convex set C of additive probability measures on Σ, such that, for all

f, g ∈ F ,

f % g ⇔ min
P∈C

∫
S

u(f(·))dP ≥ min
P∈C

∫
S

u(g(·))dP .

Furthermore, the utility function u is unique up to an increasing linear transformation,

the set C is unique, and for some event E, 0 < minP∈C P (E) < 1.

The basic axioms in the two approaches, either A0-A5 in the tradeoffs approach

or A0-A4, A0*, A3* and A5* in the biseparable approach, both yield a biseparable
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representation. KW, in Subsection 5.2, outline how a biseparable representation

follows from A0-A5, and in Section 7 show that Binary Comonotonic Act Independence

(A5*) implies Binary Comonotonic Tradeoff Consistency (A5) (under axioms A0-

A4).9

After assuming the set of basic axioms, the notion of a consequence y being

‘half-way’ between consequences x and z, in the two approaches, amounts to having

u(y) = u(x)/2 + u(z)/2. Axioms A6-A8 or A6*-A8* can then be seen to yield the

same attributes in utiles space, each expressed in its corresponding language.

4 Extensions and Comments

4.1 Bounded acts

Until now we have dealt with finite valued and measurable acts. An obvious question

arises whether the main results hold when the set of acts is extended to include all

measurable bounded acts.

Definition 9. Given a complete and transitive binary relation, % , on X, an act

a : S → X is said to be bounded if there are two consequences, x, y ∈ X s.t. for all

s ∈ S : x % a(s) % y.

Thus, if % is a binary relation on F satisfying A1 (Weak order), bounded acts

are well defined. Furthermore, assuming A0 and A1 (The structural assumption and

weak order), the set,

F b = {f : S → X | f is bounded and measurable w.r.t. Σ}

is well defined. One can ask under what additional conditions the binary relation on

F can uniquely be extended to a binary relation on F b. Assuming that such conditions

are satisfied we denote this extension also by % ⊂ F b ×F b.

Theorem 3. Suppose that A0 holds and % ⊂ F ×F satisfies A1-A8. Then % has a

unique extension to a binary relation on F b, that satisfies the same axioms, and the

representation (2) of Theorem 1 (or Theorem 2) holds for it.

9As a result, under our non-degeneracy assumptions which imply at least two nonnull states,

Separability (A0*) is in fact not required. We continue to assume it nevertheless, in order to

employ the representation theorem from GM. In addition, GM assume a somewhat weaker continuity

assumption than our A2. Consequently their representing functional is subcontinuous rather than

continuous.
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In other words, it suffices to impose the axioms on finite valued acts to get the

representation for bounded acts. The proof of this result derives from Lemma 20 in

the appendix.

4.2 Preference relations admitting CEU and MEU representations

Theorem 4 below is a purely subjective counterpart of a proposition in Schmeidler

(1989), characterizing preference relations representable by both CEU and MEU

rules. Axiom A5 is replaced by a more restrictive axiom, A5.1, below. The latter

axiom, together with Axioms A1-A4, yield a purely subjective CEU representation

(Definition 2). Addition of uncertainty aversion (A6) implies that the preference

relation can equivalently be represented by an MEU functional, where the set of

additive probabilities is the core of the nonadditive probability.

A5.1 Comonotonic Tradeoff Consistency:

For any four consequences a, b, c, d, events D,E and acts f, g, f ′, g′,

aDf ∼ bDg, cDf ∼ dDg, aEf ′ ∼ bEg′ ⇒ cEf ′ ∼ dEg′ (5)

whenever the sets of acts {aDf, bDg, cDf, dDg} and {aEf ′, bEg′, cEf ′, dEg′} are

comonotonic, D is comonotonically nonnull on the first set, and E on the second.

This definition originates in Wakker (1986,1989).

Theorem 4. Assume that the structural assumption A0 holds, and let % be a binary

relation on F . Then the following two statements are equivalent:

(1) % satisfies:

(A1) Weak Order

(A2) Continuity

(A3) Essentiality

(A4) Monotonicity

(A5.1) Comonotonic Tradeoff Consistency

(A6) Uncertainty Aversion
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(2) There exist a continuous, non-constant, cardinal utility function u : X → R
and a unique, convex, and nonadditive probability η on Σ, such that, for all

f, g ∈ F ,

f % g ⇔
∫
S

u ◦ fdη ≥
∫
S

u ◦ gdη

where the nonadditive probability η satisfies∫
S

u ◦ fdη = min{
∫
S

u ◦ fdP | P ∈ core(η)} (6)

Furthermore, for some event E ∈ Σ, 0 < η(E) < 1.

The proof appears in Appendix A, subsection 5.5.

4.3 A generalization of Theorem 1

If the state space is assumed finite, then in the axioms applied to obtain Theorem

1, axiom A5, Binary Comonotonic Tradeoff Consistency, may be weakened so that

consistency is required to hold only when the involved events, E and F , are either

{s} or S \{s}, for any state s ∈ S. Essentiality (A3) should then be changed to state

that for some state s and consequences x and y, x � x{s}y � y.

Under this weaker set of axioms a continuous utility function, which is unique

up to an increasing linear transformation and respects tradeoff indifferences, may

still be elicited. With A3 and A5 changed as explained, and A0-A2 and A4 stated

as above, the resulting intermediate representation is weaker than the biseparable

representation of GM (2001). The desired MEU representation however, for a finite

state space S, may still be obtained.

When the state space is assumed finite, an even weaker set of assumptions may be

used to derive a continuous utility function as required, which may in turn be applied

as basis to obtain an MEU representation. The weaker substitutes for Essentiality

(A3) and Binary Comonotonic Tradeoff Consistency (A5) are:

Consistent Comonotonic Essentiality:
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(a) For all s ∈ S,

asx � bsx ⇒ csy � dsy for all c � d,

whenever {asx, bsx, csy, dsy} are comonotonic.

xsa � xsb ⇒ ysc � ysd for all c � d,

whenever {xsa, xsb, ysc, ysd} are comonotonic.

(b) There exist distinct states s′, s′′ and consequences x, y such that xs′y � ȳ and

x̄ � ys′′x .

Simple Binary Comonotonic Tradeoff Consistency (S-BCTC):

For any eight consequences a, b, c, d, x, y, z, w, and states s and t,

a{s}x ∼ b{s}y, c{s}x ∼ d{s}y, a{t}z ∼ b{t}w ⇒ c{t}z ∼ d{t}w

whenever the sets of acts { a{s}x, b{s}y, c{s}x, d{s}y } and { a{t}z, b{t}w, c{t}z, d{t}w }
are comonotonic, {s} is comonotonically nonnull on the first set and {t} is comonotonically

nonnull on the second set.

The resulting representation under these versions of A3 and A5, along with A0-

A2 and A4, is weaker than the biseparable representation of GM (2001) and the

representation mentioned above. For further details see Alon (2012). Nevertheless,

when these axioms are supplemented with A6, A7 and A8, an MEU representation

still follows.

4.4 Purely subjective Variational Preferences

An important generalization of the GS Maxmin Expected Utility model is the Variational

Preferences model of Maccheroni, Marinacci and Rustichini (2006). In the latter,

which also is placed in the Anscombe-Aumann setup, the axiom of Certainty Independence

of GS, is replaced by the axiom of Weak Certainty Independence. Weak Certainty

Independence states that if an α : 1 − α mixture of an act f and a constant act x

is preferred to an α : 1 − α mixture of an act g and the same constant act x, then,

for any constant act y, the α : 1 − α mixture of f and y is preferred to the same

mixture of g and y. The representation of preferences which allow this seemingly

slight weakening of the Certainty Independence of GS is a significant generalization

of MEU representation. An obvious question arises: can we use the techniques of the
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present paper to get a purely subjective model of Variational Preferences?

At first sight it seems possible. The Certainty Independence of GS is replaced by

us with two axioms, Certainty Independence (A7) and Certainty Covariance (A8). As

discussed in Subsection 2.2, Certainty Covariance is a purely subjective counterpart

of an axiom phrased by Grant and Polak (2011) in an AA setting. Grant and Polak

show that their axiom, under the basic set of axioms they assume, implies Weak

Certainty Independence. The same holds under our set of basic axioms. However,

our basic axioms, A1 - A5, imply that our preferences are biseparable. 10 However,

Variational preferences are not biseparable. Moreover, even under weaker versions

of tradeoff consistency, discussed in Subsection 4.3, the additive representation over

binary acts that emerges is incompatible with the Variational model. Thus, using our

method does not enable representation of purely subjective variational preferences.

It still is an open problem.

5 Appendix: The proofs

We begin by listing two observations, which are standard in neoclassical consumer

theory. These observations will be used in the sequel, sometimes without explicit

reference.

Observation 5. Weak order, Substantiality and Monotonicity imply that there are

two consequences x∗, x∗ ∈ X such that x∗ � x∗.

Observation 6. Weak order, Continuity and Monotonicity imply that each act f ∈ F
has a certainty equivalent, i.e., a constant act x such that f ∼ x.

5.1 Proof of Theorem 1: (1)⇒(2)

Our first step is to use A0 through A5 to derive a cardinal utility function which

represents % on constant acts, that is, a utility function that satisfies that

< a; b > ∼∗< c; d > implies u(a)− u(b) = u(c)− u(d). A representation on F is then

defined using certainty equivalents.

Proposition 7. Under axioms A0 to A5 the following is satisfied:

10This has been conjectured in KW and the main steps of the proof have been outlined there. We

did not prove it because it was not needed for our first representation theorem, Theorem 1.
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(1) there exists a continuous function u : X → R such that for all x, y ∈ X,

x % y ⇐⇒ u(x) ≥ u(y), and < a; b > ∼∗< c; d > implies

u(a) − u(b) = u(c) − u(d). Furthermore, u is unique up to a positive linear

transformation.

(2) Given a function u as in (1) there exists a unique continuous J : F → R, such

that for all x ∈ X, J(x) = u(x), and for all f, g ∈ F ,

f % g ⇐⇒ J(f) ≥ J(g) .

5.1.1 Proof of Proposition 7

Let E be an event such that x � xEy � y for some consequences x, y (exists by

Essentiality (A3)). The next claim shows that strict preferences then hold for all

such consequences.

Claim 8. Let D be an event and x, y, z consequences such that xDz � yDz and

xDz, yDz are comonotonic. Then αDγ � βDγ whenever α, β, γ are consequences

for which α � β and {αDγ, βDγ, xDz, yDz} is a comonotonic set of acts.

Proof. Assume w.l.o.g. that y % z. Suppose on the contrary that αDγ ∼ βDγ. By

assumption D is comonotonically nonnull on {αDγ, βDγ}. Since obviously αDγ ∼
αDγ and αDβ ∼ αDβ (which belongs to the same comonotonic set of acts), then

BCTC (A5) implies that also αDβ ∼ βDβ = β̄. If Dc is comonotonically null on

{βDcα}, then αDβ = βDcα ∼ αDcα = ᾱ. Otherwise, if Dc is comonotonically

nonnull on {βDcα}, then from the three equivalences: αDγ ∼ βDγ, βDγ ∼ βDγ

and βDcα ∼ βDcα, applying BCTC, we conclude αDcα = ᾱ ∼ βDcα = αDβ. In

any case, whether Dc is comonotonically null or nonnull as assumed, it is obtained

that ᾱ ∼ β̄. Contradiction. If z % x then the roles of α and β are reversed and the

proof remains the same. �

We define a new decision problem. Define {E,Ec} to be the new state space.

Let X{E,Ec} be the set of acts, functions from the new state space to the set of

consequences X. For consequences a and b, (a, b) denotes an act in X{E,Ec}, assigning

a to E and b to Ec. To avoid confusion, we use the notation (a, b) and (a, a) for acts

in X{E,Ec} and reserve the notation aEb and ā for acts in F . Define a binary relation

%E on X{E,Ec} by:

for all (a, b), (c, d) ∈ X{E,Ec},

(a, b) %E (c, d) ⇐⇒ aEb % cEd, aEb, cEd ∈ F .
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There exists a one-to-one correspondence between the sets X{E,Ec} and

{ aEb | a, b ∈ X }. Thus, the product topology on X{E,Ec} is equivalent to the

original topology, restricted to the set { aEb | a, b ∈ X }. We summarize some of the

attributes of %E in the next lemma.

Lemma 9. The binary relation %E on X{E,Ec} satisfies Weak order, Continuity,

Monotonicity, Non-nullity of the states E and Ec and (Binary) Comonotonic Tradeoff

Consistency.

Proof. Weak Order, Continuity, Monotonicity and Non-nullity follow from the definition

of %E and the attributes of the original relation %, and from the equivalence between

the topology on X{E,Ec} and the topology on XS restricted to { aEb | a, b ∈ X}.
Note that when there are only two states, axioms A5 (Binary Comonotonic Tradeoff

Consistency) and A5.1 (Comonotonic Tradeoff Consistency) coincide. It follows that

%E satisfies Comonotonic Tradeoff Consistency. �

Additive representation of %E on X{E,Ec} is obtained using Corollary 10 and

Observation 9 of KW, applied to the case of two states, stated below. Uniqueness

of u and ρ follows from both E and Ec being comonotonically nonnull on the set

{aEb | a % b} (by choice of E). KW use a slightly different tradeoff consistency

condition than ours, however assuming the rest of our axioms their condition follows

(see proof in Subsection 5.6).

Lemma 10. (Corollary 10 and Observation 9 of KW 2003:) Assume the conclusions

of Lemma 9. Then there exists a nonadditive probability ρ on 2{E,Ec} and a continuous

utility function u : X → R, such that %E is represented on X{E,Ec} by the following

CEU functional U :

U((a, b)) =

{
u(a)ρ(E) + u(b)[1− ρ(E)] a % b

u(b)ρ(Ec) + u(a)[1− ρ(Ec)] otherwise
(7)

Furthermore, u is unique up to an increasing linear transformation and ρ is

unique.

Denote by U the CEU functional over acts of the form aEb, which existence is

guaranteed by the lemma. Let u denote the corresponding utility function and ρ

the corresponding nonadditive probability. The functional U represents % on acts of

the form aEb and the utility function u represents % on X, and is unique up to an
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increasing linear transformation. We proceed to show that u is cardinal, in the sense

that tradeoff indifference implies equivalence of utility differences.

Let F 6= E be an event. If F and F c are comonotonically nonnull on some

comonotonic set of the form aFb (either a % b or b % a) then a CEU functional as

in Lemma 10, representing % on acts of the form aFb, may be obtained. The link

between this functional and U is elucidated in the following lemma.

Lemma 11. Let F 6= E, and suppose that F and F c are comonotonically nonnull on

some comonotonic set of the form aFb. Let W be a CEU representation on X{F,F
c}

(according to Lemma 10), and w the corresponding utility function. Then w = σu+τ ,

σ > 0.

Proof. Denote by ϕ the nonadditive probability corresponding to W . Denote, for

x ∈ X, V1(x) = u(x)ρ(E), and recall that ρ(E) > 0, as E is comonotonically nonnull

on {aEb | a % b}. Suppose that F and F c are comonotonically nonnull on {aFb | a %
b}, and let W1(x) = w(x)ϕ(F ). Binary Comonotonic Tradeoff Consistency allows us

to follow the steps of Lemma VI.8.2 in Wakker 1989, to obtain W1 = ηV1 + λ, η > 0,

thus w(x) = σu + τ (set σ = ηρ(E)/ϕ(F ) > 0 , where ϕ(F ) > 0 follows from F

being comonotonically nonnull as assumed).

Otherwise, if F and F c are comonotonically nonnull on {aFb | a - b}, the result

may be obtained using a functional W2(x) = w(x)ϕ(F c) (here again ϕ(F c) > 0

because F c is comonotonically nonnull as assumed). �

Corollary 12. For any four consequences a, b, c, d, < a; b > ∼∗< c; d > implies

u(a)− u(b) = u(c)− u(d).

Proof. Let < a; b > ∼∗< c; d >. Then there exist consequences x, y and an event F

such that aFx ∼ bFy and cFx ∼ dFy, with {aFx, bFy, cFx, dFy} comonotonic

and F comonotonically nonnull on this set. Assume first that F c is comonotonically

null on {aFx, bFy, cFx, dFy}. It is next proved that in that case it must be that

a ∼ b and c ∼ d.

Suppose on the contrary that a � b (w.l.o.g.; similar arguments work for the case

b � a). If a % x and b % y, then aFy, bFy are comonotonic, and by nullity of F c on

the comonotonic set involved, aFx ∼ aFy ∼ bFy, and obviously also aFy ∼ aFy,

where F is assumed to be comonotonically nonnull on the comonotonic set of acts

{aFy, bFy}. If a - x and b - y, then similarly aFx, bFx are comonotonic, and by

nullity of F c on the comonotonic set involved, aFx ∼ bFy ∼ bFx, and also aFx ∼
aFx, where F is comonotonically nonnull on the comonotonic set of acts {aFx, bFx}.
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In any case, it is also true that aEb ∼ aEb, where E is comonotonically nonnull on the

set of acts containing aEb. By Binary Comonotonic Tradeoff Consistency it follows

that aEb ∼ bEb = b, contradicting Claim 8. Therefore it must be that a ∼ b. The

same can be proved for the consequences c and d. Thus, if F c is comonotonically null

on the set of acts {aFx, bFy, cFx, dFy}, then the above indifference relations imply

a ∼ b and c ∼ d, resulting trivially u(a)− u(b) = 0 = u(c)− u(d).

Suppose now that F c is comonotonically nonnull on the relevant binary comonotonic

set. According to Lemma 10 there exists a CEU representation over acts of the

form aFb, with a utility function unique up to an increasing linear transformation,

and a unique nonadditive probability. Denote the CEU functional by W , with a

corresponding utility function w. The indifference relations aFx ∼ bFy and

cFx ∼ dFy then imply w(a) − w(b) = w(c) − w(d). If F = E or F = Ec then

by the uniqueness result in Lemma 10, w = σu+ τ with σ > 0. If F is another event,

then Lemma 11 yields this relation. In any case, w(a)− w(b) = w(c)− w(d) implies

u(a)− u(b) = u(c)− u(d). �

The next lemma establishes the uniqueness of u.

Lemma 13. u is unique up to a positive linear transformation.

Proof. Let û be some other representation of % on X, which satisfies that if <

a; b > ∼∗< c; d > then û(a)− û(b) = û(c)− û(d). Both u and û represent % on X,

therefore û = ψ ◦ u, where ψ is continuous and strictly increasing.

Non-triviality of %, connectedness of X and continuity of u imply that u(X) is a

non-degenerate interval. Let ξ be an internal point of u(X). There exists an interval

R small enough around ξ such that, for all u(a), u(c) and u(b) = [u(a) +u(c)]/2 in R,

there are x, y ∈ X for which aEx, bEy, bEx, cEy are comonotonic, with a % x, b %

y, b % x and c % y, and

u(a)− u(b) = (u(y)− u(x))
1− ρ(E)

ρ(E)
= u(b)− u(c).

That is, aEx ∼ bEy and bEx ∼ cEy, with {aEx, bEy, bEx, cEy} comonotonic,

which is precisely the definition of < a; b > ∼∗< b; c >. By the assumption on û,

û(a) − û(b) = û(b) − û(c), which in fact implies that for all α, γ ∈ R , ψ satisfies

ψ((α + γ)/2) = [ψ(α) + ψ(γ)]/2. By Theorem 1 of section 2.1.4 of Aczel (1966), ψ

must be a positive linear transformation. �
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Statement (1) of Proposition 7 is proved. Having a specific u, a unique representation

J on F follows using certainty equivalents. By Observation 6 there exists, for any

f ∈ F , a constant act CE(f) such that f ∼ CE(f). Set J(f) = u(CE(f)), then for

all f, g ∈ F ,

f % g ⇐⇒ CE(f) % CE(g) ⇐⇒ J(f) = u(CE(f)) ≥ u(CE(g)) = J(g)

That is, J represents % on F . J is unique and continuous by its definition and by

continuity of u. The proof of the proposition is completed.

5.2 Proof of the implication (1)⇒(2) of Theorem 1 - continued

Throughout this subsection E will denote an event that satisfies x � xEy � y

whenever x � y (exists by Essentiality and Claim 8), and U will denote the CEU

representation on binary acts of the form aEb (according to Lemma 10). u and ρ

will notate the corresponding utility function on X and nonadditive probability on

2{E,Ec}, respectively. By choice of E, 0 < ρ(E) < 1. As proved above, u satisfies

(1) of Proposition 7, and we denote by J the representation of % over F obtained

according to (2) of the proposition. By connectedness of X and continuity of u, u(X)

is an interval. Since u is unique up to a positive linear transformation, we fix it for

the rest of this proof such that there are x∗, x∗ for which u(x∗) = −2 and u(x∗) = 2.

θ is a consequence such that u(θ) = 0.

The proof is conducted in three logical steps. First, an MEU representation is

obtained on a subset of F . This is done by moving to work in utiles space, and

applying tools from GS. Afterwards, the representation is extended to a ’stripe’, in

utiles space, around the main diagonal. The last step extends the representation to

the entire space.

Claim 14. There exists a subset Y ⊂ X such that u(Y ) is a non-degenerate interval,

θ ∈ Y , and for all a, b, c, d ∈ Y , u(a)−u(b) = u(c)−u(d) implies < a; b > ∼∗< c; d >.

Proof. Employing the representation U and Continuity of u, there exists an interval

[−τ, τ ] (0 < τ) small enough such that if u(a), u(b), u(c), u(d) ∈ [−τ, τ ] satisfy

u(a)− u(b) = u(c)− u(d), there are x, y ∈ X for which u(x), u(y) ≤ −τ and

u(a)− u(b) =
1− ρ(E)

ρ(E)
[u(y)− u(x)] = u(c)− u(d).
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It follows that aEx ∼ bEy and cEx ∼ dEy. By choice of the consequences and

the event E, the set {aEx, bEy, cEx, dEy} is comonotonic and E is comonotonically

nonnull on this set. Thus < a; b > ∼∗< c; d >.

Let Y = {y ∈ X | u(y) ∈ [−τ, τ ]}. Y is a subset of X, u(Y ) is an interval, θ ∈ Y ,

and for all a, b, c, d ∈ Y , u(a)− u(b) = u(c)− u(d) implies < a; b > ∼∗< c; d >. �

Throughout this subsection Y will denote a subset of X as specified in the above

claim. Note that utility mixtures of acts in Y S are also in Y S (this fact is employed

in the proof without further mention).

The following is a utilities analogue to Schmeidler’s (1989) uncertainty aversion

axiom.

A6u. Uncertainty Aversion in Utilities:

Let the preference relation % be represented on constant acts by a utility function u.

If f, g, h are acts such that f % g , and for all states s, u(h(s)) = 1
2
u(f(s))+ 1

2
u(g(s)),

then h % g.

Lemma 15. If (1) of the theorem holds then Uncertainty Aversion in Utilities (A6u)

is satisfied on F ∩ Y S.

Proof. Let f, g, h ∈ F ∩ Y S be acts satisfying f % g, h such that in all states s,

u(h(s)) = 1
2
u(f(s)) + 1

2
u(g(s)). Then for all states s,

u(f(s))− u(h(s)) = u(h(s))− u(g(s)), therefore < f(s), h(s) > ∼∗< h(s), g(s) >. By

A6 it follows that h % g. �

Comment 16. Applying A6u consecutively implies that if f, g, h ∈ F ∩ Y S are acts

satisfying f % g, h an act such that for all states s,

u(h(s)) = k
2m
u(f(s)) + (1 − k

2m
)u(g(s)), ( k

2m
∈ [0, 1]) then h % g. Continuity then

yields that the same is true for any α : 1− α utilities mixture (α ∈ [0, 1]).

Claim 17. Let f ∈ F∩Y S be an act, x ∈ F∩Y S a constant act such that f ∼ x, and

α ∈ (0, 1). If g is an act such that for all states s, u(g(s)) = αu(f(s)) + (1− α)u(x),

then g ∼ x.

Proof. We first prove the claim for α = 1
2m

, that is, when g satisfies, for all states s,

u(g(s)) = 1
2m
u(f(s)) + (1 − 1

2m
)u(x). The proof is by induction on m. For m = 1,

in all states s, < f(s); g(s) > ∼∗< g(s);x >, which by certainty independence (A7)
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(with w = x) implies g ∼ x. Assume that for g that satisfies

u(g(s)) = 1
2m
u(f(s)) + (1− 1

2m
)u(x), g ∼ x. Let h be an act such that

u(h(s)) = 1
2m+1u(f(s)) + (1− 1

2m+1 )u(x). The act h satisfies, for all states s,

u(h(s)) = 1
2
u(g(s)) + 1

2
u(x), and g ∼ x by the induction assumption. Employing

Certainty Independence again implies h ∼ x.

Now let α = k
2m

(k ∈ {2, . . . , 2m − 1}). For all states s,

u(g(s)) = k
2m
u(f(s)) + (1 − k

2m
)u(x). By Uncertainty Aversion in Utilities (A6u),

g % x. We assume g � x and derive a contradiction.

Let g′ be such that u(g′(s)) = 1
2
u(g(s)) + 1

2
u(x) for all states s, y a constant act

such that g ∼ y. For all states s, u(g(s)) ∈ u(Y ), and u(Y ) is an interval, therefore

by Monotonicity and Essentiality u(y) ∈ u(Y ). Employing Certainty Independence,

g′ ∼ z for z such that u(z) = u(x)+u(y)
2

> u(x), so g′ � x. However, There exists an

act h such that u(h(s)) = j
2n
u(g(s)) + (1− j

2n
)u(g′(s)) and also

u(h(s)) = 1
2m
u(f(s))+(1− 1

2m
)u(x) for some j, n,m ∈ N. By the previous paragraph,

h ∼ x. But Uncertainty Aversion in Utilities requires that h % g′, contradiction.

Therefore if g satisfies u(g(s)) = k
2m
u(f(s))+(1− k

2m
)u(x) for all states s, then g ∼ x.

By continuity it follows that the same is true for any α ∈ (0, 1) . �

Claim 18. Let f ∈ F ∩ Y S be an act, w, x, y ∈ F ∩ Y S constant acts and α ∈ (0, 1),

such that f ∼ x and u(y) = αu(x) + (1−α)u(w). If h is an act such that in all states

s, u(h(s)) = αu(f(s)) + (1− α)u(w), then h ∼ y.

Proof. Let g be an act such that for all states s, u(g(s)) = αu(f(s)) + (1 − α)u(x),

then g ∈ F ∩ Y S. For all states s,

u(h(s)) = αu(f(s)) + (1− α)u(w) = u(g(s)) + u(y)− u(x)⇐⇒
u(h(s))− u(g(s)) = u(y)− u(x) ⇐⇒
< h(s); g(s) > ∼∗< y;x > .

According to Claim 17, g ∼ x, therefore by Certainty Covariance h ∼ y. �

The following is an analogue to Lemma 3.3 from GS, and follows the lines of the

proof given there. Denote by B0 the set of real-valued functions on S which assume

finitely many values, and by B the space of all bounded Σ-measurable real-valued

functions on S. For any γ ∈ R, γ ∈ B0 is the constant function γS.
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Lemma 19. There exists a functional I : B0 → R such that:

(i) For f ∈ F ∩ Y S, I(u ◦ f) = J(f).

(ii) I is monotonic (i.e., for a, b ∈ B0, if a ≥ b then I(a) ≥ I(b)).

(iii) I is superadditive and homogeneous of degree 1 (therefore I(1) = 1).

(iv) I satisfies certainty independence: for any a ∈ B0 and γ a constant function,

I(a+ γ) = I(a) + I(γ).

Proof. For a ∈ B0 ∩ (u(Y ))S define I(a) by (i). By monotonicity, if in all states s,

f(s) ∼ g(s), then f ∼ g. I is therefore well defined.

We show that I is homogeneous on B0 ∩ (u(Y ))S. Let a, b ∈ B0 ∩ (u(Y ))S,

b = αa. Let f, g be acts such that u ◦ f = a, u ◦ g = b, and x, y ∈ X such

that f ∼ x, u(y) = αu(x). Monotonicity and the fact that Y contains θ imply

that x, y ∈ F ∩ Y S. Applying Claim 18 with w = θ̄ implies that g ∼ y. Thus

I(b) = J(g) = u(y) = αu(x) = αJ(f) = αI(a), and homogeneity is established.

The functional I may now be extended from B0 ∩ (u(Y ))S to B0 by homogeneity.

By its definition, I is homogeneous on B0, and by monotonicity of the preference

relation I is also monotonic. Note also that if y ∈ Y and u(y) = γ, then I(γ) =

u(y) = γ, and homogeneity implies that I(1) = 1. Again by homogeneity it suffices

to show that certainty independence and superadditivity of I hold on B0 ∩ (u(Y ))S.

For certainty independence, let a, γ ∈ B0 ∩ (u(Y ))S. Let f ∈ F ∩Y S be such that

u◦f = a, and denote I(a) = β. Suppose x, y, w ∈ F ∩Y S are constant acts such that

u(x) = β, u(w) = γ, u(y) = (u(x) + u(w))/2 and h an act such that in all states s,

u(h(s)) = 1
2
(u(f(s)) + u(w)). Then h ∈ F ∩ Y S, f ∼ x, and by Claim 18 it follows

that h ∼ y, which implies

J(h) = I(u ◦ h) = I(
1

2
(u ◦ f + γ)) = u(y) =

1

2
(β + γ) =

1

2
(I(a) + γ).

Hence, using homogeneity to extend the result to B0, for all a, γ ∈ B0,

I(a+ γ) = I(a) + I(γ).
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Finally we show that I is superadditive on B0 ∩ (u(Y ))S. Let a, b ∈ B0 ∩ (u(Y ))S

and f, g ∈ F ∩ Y S such that u ◦ f = a, u ◦ g = b. Assume first that I(a) = I(b). By

Lemma 15, if h is an act such that u ◦ h = 1
2
(u ◦ f + u ◦ g), then h % g. Thus,

J(h) = I(u ◦ h) = I(
1

2
(u ◦ f + u ◦ g)) ≥ J(g) =

1

2
(I(a) + I(b)).

so by homogeneity, if a, b ∈ B0 satisfy I(a) = I(b) then I(a+ b) ≥ I(a) + I(b).

Now assume that I(a) > I(b) and let γ = I(a) − I(b), c = b + γ. Certainty

independence of I implies I(c) = I(b) + γ = I(a). Again by certainty independence

and by superadditivity for the case I(a) = I(b), it follows that

I(
1

2
(a+ b)) +

1

2
γ = I(

1

2
(a+ c)) ≥ 1

2
(I(a) + I(c)) =

1

2
(I(a) + I(b)) +

1

2
γ.

and superadditivity is proved for all a, b ∈ B0 ∩ (u(Y ))S, and may be extended to B0

using homogeneity. �

Lemmas 3.4 and 3.5 from GS may now be applied to obtain an MEU representation

of % on F ∩ Y S.

Lemma 20. (Lemma 3.4 from GS):

There exists a unique continuous extension of I to B, and this extension is monotonic,

superlinear and C-independent.

Lemma 21. (Lemma 3.5 and an implied uniqueness result from GS):

If I is a monotonic superlinear certainty-independent functional on B, satisfying

I(1) = 1, there exists a closed and convex set C of finitely additive probability measures

on Σ such that for all b ∈ B, I(b) = min{
∫
bdP | P ∈ C}. The set C is unique.

Corollary 22. % is represented on F ∩ Y S by an MEU functional.

Let C denote the set of additive probability measures on Σ, involved in the

MEU representation of % on F ∩ Y S. For all f ∈ F ∩ Y S, J(f) = I(u ◦ f) =

min{
∫
u ◦ fdP | P ∈ C}. Outside of B0 ∩ (u(Y ))S, I is extended by homogeneity.

By the above lemmas, I is monotonic, superadditive, homogeneous of degree 1 and

satisfies certainty independence.

It is now required to show that the homogeneous extension of I outside of

B0 ∩ (u(Y ))S is consistent with the preference relation. That is, that for all f ∈ F ,
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J(f) = I(u◦f) = min{
∫
u◦fdP | P ∈ C} . The proof consists of two steps. First, the

representation is extended to a ‘stripe’ (in utiles space) parallel to the main diagonal,

obtained by ‘sliding’ B0 ∩ (u(Y ))S along the diagonal. Then the representation is

further extended from that stripe to the entire space.

For an act g ∈ F , let diag(g) = {f ∈ F | u ◦ f = u ◦ g + γ, γ ∈ R}. That is,

diag(g) contains all acts that can be obtained from g by constant shifts (translations

parallel to the main diagonal, in utiles space). Note that diag(g) is convex w.r.t.

utility mixtures.

Claim 23. Let g ∈ F ∩ Y S. Then for all acts f ∈ diag(g), J(f) = I(u ◦ f).

Proof. Let f, g be acts that satisfy g ∈ F ∩ Y S and u ◦ f = u ◦ g + ε , ε > 0, so

f ∈ diag(g). Suppose that x, y are consequences such that g ∼ y and u(x)−u(y) = ε.

It follows that for all states t, u(f(t))− u(g(t)) = u(x)− u(y).

Similarly to the proof of Claim 14, if ε is small enough then there are z1, z2 such

that u(z1), u(z2) < mins u(g(s)), and (recall that ρ(E) > 0)

ε = u(f(s))− u(g(s)) =
1− ρ(E)

ρ(E)
[u(z2)− u(z1)] = u(x)− u(y)

It follows that for all consequences f(s) and g(s), f(s)Ez1 ∼ g(s)Ez2 and xEz1 ∼
yEz2, with {f(s)Ez1, g(s)Ez2, xEz1, yEz2} comonotonic, and E comonotonically nonnull

on this set. Thus < f(s); g(s) > ∼∗< x; y > for all states s. Certainty Covariance

implies f ∼ x. Applying certainty independence of I,

I(u ◦ f + u ◦ y) = I(u ◦ f) + u(y) = I(u ◦ g + u ◦ x) = J(g) + u(x),

and I(u ◦ f) = u(x) = J(f). The same procedure may be repeated (in small ’tradeoff

steps’) for all f ∈ diag(g) that satisfy u◦f = u◦g+γ, γ ≥ 0, to obtain J(f) = I(u◦f).

In order to extend the representation to the lower part of the diagonal, let f, g be

acts that satisfy g ∈ F ∩ Y S and u ◦ f = u ◦ g − ε , ε > 0. Let x, y be consequences

such that g ∼ y and u(y) − u(x) = ε. Similarly to the previous case, if ε is small

enough then there are z3, z4 such that u(z3), u(z4) > maxu(g(s)) and (recall that

ρ(E) < 1)

ε = u(g(s))− u(f(s)) =
ρ(E)

1− ρ(E)
[u(z3)− u(z4)] = u(y)− u(x)
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It follows that for all consequences f(s) and g(s), f(s)Ecz3 ∼ g(s)Ecz4 and

xEcz3 ∼ yEcz4, with the set {f(s)Ecz3, g(s)Ecz4, xE
cz3, yE

cz4} comonotonic, and

Ec comonotonically nonnull on this set. Therefore < f(s); g(s) > ∼∗< x; y > for all

states s. By Certainty Covariance it follows that f ∼ x, and certainty independence

of I again implies that J(f) = I(u ◦ f). Subsequent applications yield the result for

all acts f such that u ◦ f = u ◦ g − γ, γ ≥ 0, and the proof is completed. �

Claim 22 implies that J(f) = min{
∫
u ◦ fdP | P ∈ C} for all f ∈ F that satisfy

u ◦ f = u ◦ g + γ for some g ∈ F ∩ Y S and γ ∈ R. That is, % is represented by

an MEU functional in a ’stripe’ containing all acts with utilities in [−τ, τ ], and those

obtained from them by translations parallel to the main diagonal (in utiles space).

To complete the proof and show that the MEU representation holds for all acts, an

auxiliary result is proved. It consists of showing that for any subset of consequences

there exists a consequence ξ that has a tradeoff-midpoint with every intermediate

consequence (including the extreme ones, if those exist).

Claim 24. Let m,M ∈ u(X) be such that m < M . Then there exists a consequence

ξ ∈ X, m < u(ξ) < M , such that for all x ∈ X with m ≤ u(x) ≤ M , there is y ∈ X
that satisfies

< x; y > ∼∗< y; ξ >

Proof. Choose a consequence ξ ∈ X such that u(ξ) = ρ(E)M + (1 − ρ(E))m. By

continuity of u and connectedness of X, the definition of M and m and the fact

that 0 < ρ(E) < 1, such a consequence exists, and its utility is strictly between M

and m. To show that every x ∈ X with utility (weakly) between M and m has

a tradeoff-midpoint with ξ, the cases u(x) ≥ u(ξ) and u(ξ) > u(x) are examined

separately.

Suppose first that u(ξ) ≤ u(x) ≤ M . In order to show that there exists y that

satisfies < x; y > ∼∗< y; ξ > it suffices to show that there are consequences a, b which

satisfy u(ξ) ≥ u(b) ≥ u(a) > m, and xEa ∼ yEb, yEa ∼ ξEb. For that, using the

CEU representation over binary acts contingent on E, it suffices to prove that there

are a, b ∈ X for which,

u(x)ρ(E) + u(a)[1− ρ(E)] =
u(x) + ρ(E)M + (1− ρ(E))m

2
ρ(E) + u(b)[1− ρ(E)] ,
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where M ≥ u(x) ≥ u(ξ) ≥ u(b) ≥ u(a) ≥ m, or, rearranging the above expression,

u(b)− u(a) =
ρ(E)

2(1− ρ(E))
[u(x)− ρ(E)M − (1− ρ(E))m]

with M ≥ u(x) ≥ u(ξ) ≥ u(b) ≥ u(a) > m. By continuity of u and connectedness

of X, such u(b)− u(a) obtains all values from zero up to u(ξ)−m = ρ(E)(M −m).

Thus, it is enough to prove,

ρ(E)

2(1− ρ(E))
[u(x)− ρ(E)M − (1− ρ(E))m] ≤ ρ(E)(M −m) ⇐⇒

u(x)− ρ(E)M − (1− ρ(E))m ≤ 2(1− ρ(E))M − 2(1− ρ(E))m ⇐⇒
u(x) ≤ ρ(E)M + 2(1− ρ(E))M − (1− ρ(E))m = M + (1− ρ(E))(M −m) .

As by assumption u(x) ≤ M and M > m, this condition is satisfied, and a

tradeoff-midpoint of ξ and any x ∈ X with u(ξ) ≤ u(x) ≤M exists as required.

Next suppose that x ∈ X satisfiesm ≤ u(x) < u(ξ). Similarly to the previous case,

it suffices to show that there are consequences c, d which satisfy M ≥ u(d) ≥ u(c) ≥
u(ξ), and ξEcc ∼ yEcd, yEcc ∼ xEcd. Using once more the CEU representation over

binary acts contingent on E, it suffices to prove that there are c, d ∈ X for which

u(d)ρ(E) + u(x)[1− ρ(E)] = u(c)ρ(E) +
u(x) + ρ(E)M + (1− ρ(E))m

2
[1− ρ(E)]

where M ≥ u(d) ≥ u(c) ≥ u(ξ) > u(x) ≥ m, or, rearranging the above expression,

u(d)− u(c) =
1− ρ(E)

2ρ(E)
[ρ(E)M + (1− ρ(E))m− u(x)]

with M ≥ u(d) ≥ u(c) ≥ u(ξ) > u(x) ≥ m. By continuity of u and connectedness of

X, u(d)−u(c) obtains all values in the range [0,M −u(ξ)] = [0, (1− ρ(E))(M −m)].

Thus, it is enough to prove,

1− ρ(E)

2ρ(E)
[ρ(E)M + (1− ρ(E))m− u(x)] ≤ (1− ρ(E))(M −m) ⇐⇒

ρ(E)M + (1− ρ(E))m− u(x) ≤ 2ρ(E)M − 2ρ(E)m ⇐⇒
u(x) ≥ m− ρ(E)(M −m)

which is again true based on the assumptions that u(x) ≥ m and M > m. �

Corollary 25. For all f ∈ F , J(f) = I(u ◦ f).
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Proof. As stated above, by claims 22 and 23, % is represented by an MEU functional

on a ’stripe’ containing all acts with utilities in [−τ, τ ], and those obtained from them,

in utiles space, by translations parallel to the main diagonal. It is left to show that

J(f) = I(u ◦ f) for all acts outside that stripe as well.

Let f, g ∈ F be acts and x, y, ξ consequences such that: f is not a constant act,

J(g) = I(u ◦ g), < f(s); g(s) > ∼∗< g(s); ξ > for all states s, g ∼ y and < x; y >

∼∗< y; ξ >. The existence of the required ξ is guaranteed by applying Lemma 24 to

M = maxs∈S u(f(s)) and m = mins∈S u(f(s)) (x such that u(y) = (u(x) + u(ξ))/2

must satisfy m ≤ u(x) ≤M). Employing the axiom of Certainty Independence (A7)

it may be asserted that f ∼ x. Thus, by homogeneity and certainty independence of

I,

u(y) = I(u ◦ g) =
1

2
(I(u ◦ f) + u(ξ)) =

1

2
(I(u ◦ f) + 2u(y)− u(x))

and I(u ◦ f) = u(x) = J(f).

In that manner the MEU representation that applies in the stripe may be extended

to any act in F which has a tradeoff-midpoint inside the stripe. By repeating this

procedure, the MEU representation is seen to apply to the entire acts space. �

It is concluded that for all f ∈ F , J(f) = min{
∫
u ◦ fdP | P ∈ C}, that is, %

on F is represented by an MEU functional, with a utility function unique up to an

increasing linear transformation, and a unique set of prior probabilities C.

The fact that for some event E, 0 < minP∈C P (E) < 1, follows from Essentiality:

the event which existence is guaranteed by Essentiality should satisfy that

x � xEy � y for x � y. Translating to the MEU representation yields

u(x) > u(x) minP∈C P (E) + u(y)(1−minP∈C P (E)) > u(y), hence

0 < minP∈C P (E) < 1. The proof of the direction (1)⇒(2) of the main theorem is

completed.

5.3 Proof of the implication (2)⇒(1) of Theorem 1

By definition of the representation on F , % is a weak order, satisfying Monotonicity.

Define a functional I : B0 → R by I(b) = min{
∫
S
bdP | P ∈ C}. Hence the preference

relation is represented by J(f) = I(u ◦ f). By its definition, I is continuous and

superlinear, therefore % is continuous and satisfies Uncertainty Aversion in Utilities
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(A6u). Uncertainty aversion (A6) results by observing that

< f(s), h(s) > ∼∗< h(s), g(s) > implies u(h(s)) = 1
2
[u(f(s)) + u(g(s))].

To see that Essentiality holds let E be an event such that

0 < minP∈C P (E) < 1, and take x � y, which must exist according to the uniqueness

result. Then u(x) = J(x) > u(x) minP∈C P (E)+u(y)(1−minP∈C P (E)) = J(xEy) >

u(y) = J(y).

Next it is proved that Certainty Independence is satisfied. If γ ∈ R and γ is the

constant function returning γ in every state, then for all b ∈ B0,

I(b+ γ̄) = I(b) + I(γ̄) = I(b) + γ. If α > 0 then I(αb) = αI(b). Let f, g be acts and

ξ, x, y consequences that satisfy: for all states s, < f(s), g(s) > ∼∗< g(s), ξ > and

< x; y > ∼∗< y; ξ >. Then u(g(s)) = 1
2
[u(f(s)) + u(ξ)] and u(y) = 1

2
[u(x) + u(ξ)].

Therefore,

J(g) = I(u ◦ g) =
1

2
I(u ◦ f) +

1

2
u(ξ) =

1

2
J(f) +

1

2
u(ξ)

and J(f) = u(x) ⇔ J(g) = u(y), that is, f ∼ x ⇔ g ∼ y, as required.

To see that Certainty Covariance (A8) holds let f, g be acts and x, y consequences

such that for all states s, < f(s); g(s) > ∼∗< x; y >. Then for all states s,

u(f(s)) − u(g(s)) = u(x) − u(y), which implies I(u ◦ f) + u(y) = I(u ◦ g) + u(x)

and thus f ∼ x ⇔ g ∼ y.

Finally, under MEU, sets of binary comonotonic acts are EU-sets, hence binary

comonotonic tradeoff consistency is satisfied.

5.4 Proof of Theorem 2

By Theorem 11 in GM (2001), assuming A0 and A0*, the binary relation % satisfies

axioms A1,A2,A3,A3*,A4 and A5* if and only if there exist a real valued, continuous,

monotonic and nontrivial representation J : F −→ R of %, and a monotonic set

function η on events, such that for binary acts with x % y,

J(xEy) = u(x)η(E) + u(y)(1− η(E)). (8)

The function u is defined on X by, u(x) = J(x), and it represents % on X. The set

function η, when normalized s.t. η(S) = 1, is unique, and u and J are unique up to

a positive multiplicative constant and an additive constant.
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It remains to show that addition of axioms A6*,A7* and A8* yields an MEU

representation as in (2) of the theorem. This is done simply by showing that when

these axioms are translated into utiles space, they imply the exact same attributes

as their counterpart axioms A6, A7 and A8. The key result is Proposition 1 of

Ghirardato et al. (2003), which states that for biseparable preference relations, and

x � y � z in X, y ∈ H(x, z) if and only if u(y) = u(x)/2 + u(z)/2. Applying that

result, we obtain equivalence between A6*, A7* and A8*, and their utilities-analogue

axioms. First, axiom A6* is equivalent to Uncertainty Aversion in Utilities (A6u), as

phrased above. Second, A7* is equivalent to the following utilities-based axiom:

A7u. Certainty Independence in Utilities:

Let the preference relation % be represented on constant acts by a utility function

u. Suppose that two acts, f and g, and three consequences, x, y and w, satisfy:

u(y) = 1
2
u(x) + 1

2
u(w), and for all states s, u(g(s)) = 1

2
u(f(s)) + 1

2
u(w). Then

f ∼ x ⇔ g ∼ y.

Finally, A8* is equivalent to the utilities axiom:

A8u. Certainty Covariance in Utilities:

Let f, g be acts and x, y consequences such that ∀s ∈ S :
1
2
u(f(s)) + 1

2
u(y) = 1

2
u(g(s)) + 1

2
u(x). Then f ∼ x iff g ∼ y.

Having these utilities axioms (which immediately apply to the entire acts space,

as opposed to the tradeoffs case), the rest of the proof (both directions) is identical

to the proof of Theorem 1.

5.5 Proof of Theorem 4

To obtain a CEU representation on simple acts we apply Corollary 10 from KW,

stated below, supplemented with their subsection 5.1, which extends the theorem to

infinite state spaces. As in the proof of Theorem 1, here as well KW use a slightly

different tradeoff consistency condition than ours. However, assuming the rest of our

axioms, their condition follows (see proof in Subsection 5.6).

Lemma 26. (Corollary 10 of KW 2003, extended to an infinite state space in their

subsection 5.1:) Given a binary relation % on F , the following two statements are
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equivalent:

(1) % satisfies:

(A1) Weak Order

(A2) Continuity

(A4) Monotonicity

(A5.1) Comonotonic Tradeoff Consistency

(2) There exist a continuous utility function u : X → R and a nonadditive

probability v on Σ such that, for all f, g ∈ F ,

f % g ⇔
∫
S

u ◦ fdv ≥
∫
S

u ◦ gdv

Claim 27. If, in addition to axioms A1,A2,A4 and A5.1, Essentiality is satisfied,

then u is cardinal and v is unique and satisfies 0 < v(E) < 1 for some event E.

In the other direction, assuming that u is cardinal, and that v is unique and

satisfies 0 < v(E) < 1 for some event E, Essentiality holds.

Proof. Suppose that Essentiality is satisfied. By Observation 9 of KW, the utility

function u is cardinal, and the nonadditive probability function v is unique. Applying

the CEU representation obtains that there exists an event E for which 0 < v(E) < 1.

Now assume that u is cardinal and v unique, satisfying that for some event E,

0 < v(E) < 1. First, cardinality of u guarantees that there exist consequences x and

y such that x � y. In addition, for the event E, x � xEy � y, thus Essentiality

holds. �

Let u be the utility function and v the non-additive probability obtained by Lemma

26. The proof of the theorem continues in subsections 5.5.1 and 5.5.2 below.

5.5.1 Proof of the implication (1)⇒(2) of Theorem 4.

It is left to prove that addition of Uncertainty Aversion yields the specific CEU form

in (6) (along with the detailed attributes of v).

Lemma 28. Let % satisfy (1) of Lemma 26. Then Uncertainty Aversion (A6)

implies Uncertainty Aversion in Utilities (A6u).
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Proof. Let f, g, h be such that f % g, and for all states t,

u(h(t)) = 1
2
u(f(t)) + 1

2
u(g(t)). It is proved that h % g.

Let x be an internal consequence, that is, x∗ � x � x∗ for some x∗, x∗. Since X is

connected and u continuous, there exist acts f ′, g′, h′ such that, in all states s,

u(f ′(t)) =
1

2n
u(f(t)) + (1− 1

2n
)u(x)

u(g′(t)) =
1

2n
u(g(t)) + (1− 1

2n
)u(x)

u(h′(t)) =
1

2n
u(h(t)) + (1− 1

2n
)u(x) =

1

2
u(f ′(t)) +

1

2
u(g′(t))

By definition of the CEU functional, f % g ⇔ f ′ % g′ and h % g ⇔ h′ % g′.

Therefore it suffices to prove that h′ % g′.

In order to use Uncertainty Aversion we need to show that for every state t,

< f ′(t);h′(t) > ∼∗< h′(t); g′(t) >. That is, it should be proved that for every

state t there are consequences y, z and an event E such that f ′(t)Ey ∼ h′(t)Ez and

h′(t)Ey ∼ g′(t)Ez. It is next shown that these indifference relations may be satisfied

for an event E such that x � xEy � y whenever x � y (exists by Essentiality and

Claim 8), and f ′, g′, h′ are made ’close enough’ to the internal consequence x.

Let E be an event such that x � xEy � y whenever x � y. By the CEU

representation it follows that 0 < v(E) < 1. Let z1 � z2 � z3 be internal consequences

that satisfy

z1 � x � z2 and u(z1)− u(z2) <
2(1− v(E))

v(E)
(u(z2)− u(z3))

For any two consequences a � c between z1 and z2, u(a) − u(c) ≤ u(z1) − u(z2).

Thus, applying continuity of u, there are consequences y, z such that

z2 � z � y � z3 and u(a)− u(c) =
2[1− v(E)]

v(E)
(u(z)− u(y)).

Rearranging the expression and letting b be a consequence with u(b) = u(a)+u(c)
2

,

yields aEy ∼ bEz and bEy ∼ cEz. Since all acts are comonotonic and E is

comonotonically nonnull on the set containing them, we conclude that for every a, c
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such that z1 � a � c � z2 there is a consequence b that satisfies u(b) = u(a)+u(c)
2

and

< a; b > ∼∗< b; c >.

Taking a large enough n, for each t it may be asserted that z1 � f ′(t), g′(t) � z2.

As all acts obtain finitely many values there is a number n such that the preferences

hold for all states simultaneously, thus < f ′(t);h′(t) > ∼∗< h′(t); g′(t) > for all states

t. By Uncertainty Aversion h′ % g′ and the proof is completed. �

Denote by B0 the set of real-valued functions on S which assume finitely many

values. Let J : F → R denote the representation of % over acts, that is, for all

f ∈ F , J(f) =
∫
S
u ◦ fdv, and define by I the corresponding function over B0, so

that I(a) =
∫
S
adv for a ∈ B0.

Claim 29. Let a, b ∈ B0 be such that I(a) = I(b), then I(a+ b) ≥ I(a) + I(b).

Proof. By its definition, I is homogeneous, so it suffices to show that the claim is

satisfied for all a, b ∈ B0∩ (u(X))S. Let a, b ∈ B0∩ (u(X))S be such that I(a) = I(b).

Let f, g ∈ F be such that u ◦ f = a, u ◦ g = b. Then J(f) = I(a) = I(b) = J(g), and

f ∼ g. By A6u it follows that if h is an act such that in all states s,

u(h(s)) = 1
2
u(f(s)) + 1

2
u(g(s)), then h % g. Thus, applying homogeneity once more,

J(h) = I(u ◦ h) = I(
1

2
u ◦ f +

1

2
u ◦ g) =

1

2
I(a+ b) ≥ J(g) = I(b) =

1

2
(I(a) + I(b))

�

To obtain the specific CEU form as minimum expected utility over the core of v,

a result from Schmeidler (1989) is stated.

Lemma 30. (part of a proposition from Schmeidler 1989): Suppose that % on F
is represented by a CEU functional J(f) = I(u ◦ f) =

∫
S
u ◦ fdv. The following

conditions are equivalent:

(i) For all a, b ∈ B0, if I(a) = I(b) then I(a+ b) ≥ I(a) + I(b).

(ii) v is convex.

(ii) For all a ∈ B0, I(a) = min{
∫
S
adP | P ∈ core(v)}.

Thus, by Lemma 29, the representation in (2) obtains. Essentiality guarantees

that 0 < v(E) < 1 for some event E.
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5.5.2 Proof of the implication (2)⇒(1) of Theorem 4.

By Lemma 26, axioms A1, A2, A4 and A5.1 are satisfied. By claim 27, Essentiality

holds. It remains to show that when the integral w.r.t. v takes on the special form

of minimum expectation over a set of priors, Uncertainty Aversion (A6) is satisfied.

However since< f(s);h(s) > ∼∗< h(s); g(s) > implies u(h(s)) = 1
2
[u(f(s))+u(g(s))],

and the representing functional consists of taking a minimum, the required inequality

is easily seen to hold.

5.6 On the equivalence of tradeoff consistency definitions

KW use the following condition in eliciting a CEU representation:

KW Comonotonic Tradeoff Consistency:

Improving any outcome in the ∼∗ relation breaks that relation.

Our formulation of Comonotonic Tradeoff Consistency (A5.1), as well as Binary

Comonotonic Tradeoff Consistency (BCTC, A5) applied to a state space with two

states, correspond to an axiom KW call Comonotonic Strong Indifference-Tradeoff

Consistency :

KW Comonotonic Strong Indifference-Tradeoff Consistency:

For any four consequences a, b, c, d, four acts f, g, f ′, g′ and events D,E,

aDf ∼ bDg, cDf ∼ dDg, aEf ′ ∼ bEg′ ⇒ cEf ′ ∼ dEg′

whenever the sets of acts { aDf, bDg, cDf, dDg } and { aEf ′, bEg′, cEf ′, dEg′ } are

comonotonic, D is comonotonically nonnull on the first set, and E is comonotonically

nonnull on the second.

We show that assuming the rest of our axioms, Comonotonic Tradeoff Consistency

(equivalently, BCTC for |S| = 2) implies KW Comonotonic Tradeoff Consistency.

Thus, we may use their results to derive a 6, as is done in Appendix A. To show their

axiom is implied, we require an additional condition of monotonicity.

Comonotonic Strong Monotonicity:
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For any two comonotonic acts f and g, if f(s) % g(s) for all states s, and

f(t) � g(t) for a state t that is comonotonically nonnull on {f, g}, then f � g.

Lemma 31. Assume that the binary relation % satisfies Weak Order, Continuity,

Essentiality, Monotonicity and Comonotonic Tradeoff Consistency. Then % satisfies

Comonotonic Strong Monotonicity.

Proof. Let f, g be comonotonic acts such that f(s) % g(s) for all states s ∈ S,

and f(t) � g(t) for some state t ∈ S which is comonotonically nonnull on {f, g}.
Let {E1, . . . , En} be a partition w.r.t. which both f and g are measurable, and

such that f(E1) % f(E2) % . . . f(En).11 As f and g are comonotonic the same

ordering holds for g. Define acts h0, h1, . . . , hn as follows: h0 = g, h2 = fE1g, h3 =

f(E1∪E2)g, . . . , hn−1 = f(E1∪. . .∪En−1)g, hn = f . All these acts are comonotonic,

and by Monotonicity hn % . . . % h1 % h0, and hi, hi−1 differ by at most one

consequence. Thus, it suffices to prove that for any two comonotonic acts aDh, bDh,

with a � b and D comonotonically nonnull on {aDh, bDh}, aDh � bDh.

Let E be an event for which α � αEβ � β whenever α � β (exists by Essentiality

and Claim 8). We assume that aDh ∼ bDh and derive a contradiction. Obviously

aDh ∼ aDh and aEb ∼ aEb, therefore by Comonotonic Tradeoff Consistency (all

comonotonicity and non-nullity conditions are satisfied) it must be that aEb ∼ b,

contradicting the choice ofE. Thus aDh � bDh and Comonotonic Strong Monotonicity

holds. �

Having proved that % satisfies Comonotonic Strong Monotonicity, Lemma 24 of

KW implies that it also satisfies KW Comonotonic Tradeoff Consistency 12.
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set corresponding to a possible interpretation of the data. A comparison can only

be made when the rankings of eventualities established by the different relevance-

weights, are in unanimous accord, otherwise the comparison is indecisive. The

present model is a generalization of the Gilboa and Schmeidler inductive inference

model (2003) which defines a complete ranking process over a database.

∗The authors are grateful to Itzhak Gilboa, David Schmeidler and Peter Wakker for many helpful

comments.
†School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. e-mail:

shiri.aloneron@gmail.com
‡Department of Economics, Bar-Ilan University, Ramat Gan, 52900, Israel. e-mail:

gabi.gayer@gmail.com



Keywords: Incompleteness, Inductive Inference, Case-Based Decision Theory, Likelihood

comparisons.

JEL classification: D80

2



1 Introduction

1.1 Motivation

There are many instances where people are faced with problems in which they have

to compare the likelihood of several eventualities. These problems can range from

predicting the weather to the chances of survival of the Eurozone or the achievement

of peace in the Middle East. These predictions have obvious implications for market

behavior as well. How do people make these evaluations? What is their process of

performing comparisons? Are they always able to conclude that one eventuality is

more likely than another? Understanding this evaluation mechanism may help us both

to identify the circumstances under which such comparisons are possible as well as to

predict their outcomes.

The present work, focusing on evaluation methods based on past observations, rests

upon the widely accepted principle that similar circumstances lead to similar outcomes.

One eventuality is considered to be more likely than another if the data support the

occurrence of the former more than they do the latter. Take for example an individual

trying to predict which of two teams is more likely to win a match. In the simple

case where the teams played each other many times and Team A won a large majority

of games, an evaluator will most surely conclude that Team A is more likely to win

the current match. On the other hand, if the only available observations are the

results of matches in which teams A and B played other teams, the relevance of these

observations to the problem at hand is questionable. In this case it would be much

harder to ascertain which team is more likely to win.

A more serious case of this type of quandary is that of a doctor who is asked

to recommend whether a patient with a certain medical condition should undergo a

treatment that, while it may cure the patient’s illness, may also produce complications.

The doctor will undoubtedly base the recommendation on the outcomes of relevant

past cases. In particular, the doctor will tend to recommend treatment where success

occurred much more frequently than failure, and oppose treatment if the opposite were

true. The question is what will the doctor recommend if he or she is uncertain as
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to the relevance of these past cases to the condition of the current patient. In such

a situation the doctor will feel much less confident about recommending any specific

option, and will only outline to the patient the advantages and disadvantages of each

course of action.

In fact, it appears that the US Preventive Services Task Force (USPSTF) relies

upon a similar approach when issuing guidelines for preventive health care services

which are broken down by age, gender, medical condition and other criteria. However,

the USPSTF often publishes ‘I statements’where no recommendation is made, when it

“concludes that the current evidence is insuffi cient to assess the balance of benefits and

harms of the service". 1 In such cases the USPSTF advises that patients be informed

about the uncertain balance of benefits and harms, stating that its recommendation

may be altered after gathering more specific observations. The use of ‘I statements’

implies that uncertainty regarding the relevance of existing data is one of the primary

causes for not making recommendations.2

The evaluation process described above contains two major components: the first

that the comparison of eventualities depends on support of past observations that may

change as a function of the available data, and the second that the evaluator may

refrain from making a prediction due to the existence of several plausible methods

to analyze or interpret the data. These different interpretations may indeed lead to

diametrically opposite conclusions which would render impossible any comparison of

the likelihoods of the eventualities under consideration.

In the context of decision-making, the inevitability of making a decision is the main

critique of incompleteness. In fact, it is commonly held that not making a decision

is in itself also a decision. However, from both positive and normative perspectives

this criticism is invalid in connection to comparisons of likelihoods, for not only is it

impossible to force an individual to make an honest prediction, it may be undesirable

as well. Surely in the above medical example a patient would prefer to be told that

the doctor could not assess whether success is more likely than failure, rather than be

1See the USPSTF website, http://www.uspreventiveservicestaskforce.org.
2We thank Irit Dror for bringing the example of USPSTF to our attention.
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misled by an arbitrary, poorly-based prediction.

There are many situations in which there is an individual who makes a decision

based on evaluations of likelihoods of a separate party, this medical example being only

one instance. In such a case it seems more appropriate to allow for incomparability of

likelihoods instead of insisting on completeness, for the decision maker may entertain

various considerations and constraints, of which comparison of likelihoods is but one

element. In particular, when the comparison of likelihoods is inconclusive the decision

maker may want to put more weight on the other considerations. Thus, if the evaluator

were to find it impossible to compare some likelihoods, then such diffi culty is in

itself informative. The decision maker would typically prefer that this predicament

be revealed rather than have it papered over by an unfounded conclusion.

The purpose of this essay is to model evaluation processes in which data-based

likelihoods are compared, but which also allow for non-determinability. The model

aims to describe conditions in which a database is utilized to compare eventualities by

evaluating the support that the database gives to their likelihoods of occurrence. When

several plausible interpretations of the data lead to opposite conclusions, inability to

make a valid comparison obtains.

1.2 The Model

According to the Gilboa and Schmeidler model of inductive inference (2003; henceforth

abbreviated GS) a weight is assigned to each record in the database expressing its degree

of support for the eventuality under consideration. The evaluation of an eventuality

simply becomes its aggregate support. One eventuality is ranked above another if its

aggregate support across the database is higher (the inductive inference model is closely

related to Case-Based Decision theory, 1995 and 1997). For instance, when considering

surgery for a patient, a past case in which surgery was successful lends more support

to the eventuality ‘success’than to the eventuality ‘failure’, this support being higher

the more resemblance there is between the medical parameters of the patients in the

past and current cases. ‘Success’would be considered more likely than ‘failure’if its

total support across the database were higher.
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Ranking eventualities according to the GS model requires the capability of assigning

an exact weight, expressing degree of support, to each pair of eventuality and record

in the database. This is a reasonable assumption when a good understanding exists of

the factors responsible for relevance of past cases to the current situation. However,

when the situation at hand is not completely understood or perhaps when there is a

lot at stake, the evaluator may be reluctant to commit to specific relevance-weights.

For instance, the doctor in the medical example above may not be able to determine

whether the cases of two patients in the same age group but with different blood

pressure levels resemble each other more than the cases of two patients from different

age groups but with identical blood pressure levels.

The present work generalizes the GS model by allowing the evaluator to be unsure

about the relevance of records in the database to the eventuality under consideration

and therefore allows a set of relevance-weights that correspond to different interpretations

of the data. In the model one eventuality is considered more likely than another, if and

only if, it gains more support according to every interpretation of the data. If conflicting

interpretations of the data obtain, that is when an eventuality is evaluated as more

likely than another according to one relevance-weighting, but according to another

relevance-weighting the opposite is true, then the evaluator will refrain from issuing a

comparison of the likelihoods of the two eventualities. This model thus converts lack

of confidence into a sign of caution.

Specifically, relevance-weighting function v assigns a weight to each pair of an

eventuality and a record in a database. For two eventualities, x and y, and a database I,

x is considered more likely than y, given database I, if and only if, for every relevance-

weighting function v in some set V ,∑
c∈I

v(x, c) ≥
∑
c∈I

v(y, c) (1)

where c denotes a record in the database, and v(x, c) is the support lent by record c to

eventuality x, according to relevance-weighting function v. In other words, x is more

likely than y, given database I, if and only if, there is unanimity over V that I lends

more support to eventuality x than to eventuality y.
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In this paper three axioms are imposed in order to derive the desired representation.

In comparison to the GS model, completeness is suppressed, while GS’s Combination

axiom is replaced by a stronger axiom which we have termed Independence of Support.

Both Combination and Independence of Support rely on the rationale that the support

a certain record in the database lends to an eventuality is the same, regardless of the

eventuality to which a comparison is made, and regardless of the other records in the

database. Combination is a basic expression of this notion, whereas Independence of

Support abstracts it even further. As the relations in this paper may be incomplete, the

Independence of Support axiom not only requires that this notion of independence not

be contradicted, but it also entails that comparisons motivated by this consideration

be actively completed.

In a complementary result, our axioms are supplemented by Completeness in order

to obtain a representation as in (1) with a single function v.3 The strengthening of

the Combination axiom allows this model to dispense with GS’s Diversity axiom thus

enabling the removal of the restrictions on v that appear in the GS representation. On

the other hand, without the Diversity axiom, uniqueness is no longer guaranteed.

Independence of Support is closely connected to the finite cancellation condition

which was first introduced by Kraft, Pratt and Seidenberg (1959) to derive a representation

of a subjective probability. Later, Scott (1964), Kranz et al. (1971) and Narens

(1974) stated other variants of this condition (for a more detailed discussion of the

finite cancellation condition, see Alon and Lehrer, 2012). The primitives over which

the finite cancellation condition is defined are events rather than databases as in

our Independence of Support condition. Nevertheless, both conditions impose strong

additivity requirements in order to derive the desired representation.

1.3 Related Literature

There is a vast body of literature within decision theory providing axiomatizations

of relations that, due to ambiguity are allowed to be incomplete. Ambiguity in these

3To be precise, we require also a strict version of Independence of Support, see Subsection 3.2.
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models is represented by a decision maker having a set of priors over the states of nature,

which is analogous to our evaluator considering a set of relevance-weights of past records

to eventualities. The decision maker prefers one alternative over another, if and only

if, this alternative is preferred according to each prior in the set of priors (see, for

instance, Giron and Rios (1980), Bewley (2002), Gilboa et al. (2010), and Galaabaatar

and Karni (2011)). However, in these works the preferences do not explicitly depend

on data. By contrast, the ability of the evaluator in the present model to rank the

likelihoods of two eventualities is a function of the available data, which is a primitive

of the model.

Ambiguity was introduced into the Case-Based framework by Eichberger and Guerdjikova

(2010 and 2011), first in the context of belief formation and then in the context of

decision-making. The decision-making model suggests an α-maxmin rule which is

complete. Eichberger and Guerdjikova (2010 and 2011) refer to two types of ambiguity:

the first, due to the small number of observations in the database, where absence of

data gives rise to the largest amount of ambiguity that gradually disappears as the

number of observations grows. As will be shown in Section 2.2, this aspect is not

part of the present model, for when no data are available, it is possible to compare

any pair of eventualities and all eventualities are considered to be equally likely. This

impartiality property is consistent with the aim of the present work which is to model

an evaluation process that is purely data-based. Thus, this model expresses no a

priori bias towards any one of the eventualities, and further restricts incomparability

of likelihoods only to contradictory interpretations of available data. The second source

of ambiguity mentioned in Eichberger and Guerdjikova (2010 and 2011) is caused by

uncertainty regarding the relevance of past observations to the current problem. This

second type is in line with the reasoning considered here and does not disappear with

the accumulation of data.
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1.4 Outline of the Paper

The setup and assumptions are discussed in Section 2. Section 3 contains the main

theorem of the paper, a unanimity representation of incomplete relations, followed

by a representation when relations are assumed to be complete. Section 4 expands

the applications to which this model may be relevant, going beyond the context of

evaluation and comparison of likelihoods. Section 5 contains the proofs.

2 Setup and Assumptions

2.1 Setup and Notation

X a finite, non-empty set of eventualities, with typical elements x, y, . . ..

C a finite, non-empty set of record types, with a typical element c. This

is the set of all possible classes of past observations that can be found

in a database.

J = ZC+ the set of all databases, which are functions from record types to

nonnegative integers, with typical elements I, J, . . .. For I ∈ J and

c ∈ C, I(c) denotes the number of times record type c appears in

database I.

{%I}I∈J for a database I, %I is a binary relation over X. Relationship x %I y
means that eventuality x is at least as likely as eventuality y, given

database I.

In the medical example above the eventualities are ‘success’and ‘failure’, and a

record type consists of various medical parameters and the outcome of treatment. For

instance, for parameters age (‘young’or ‘old’) and blood pressure (‘high’or ‘low’), the

record type (‘young’, ‘low’,‘success’) represents a case of a young patient with low blood

pressure whose treatment was successful, while the record type (‘old’, ‘high’, ’failure’)

represents a case of an old patient with high blood pressure whose treatment was

unsuccessful. A database is a summary of the actual number of times the doctor has
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encountered each record type. Given a database the doctor tries to evaluate whether

success is more likely than failure. The relationship ‘success’%I ‘failure’implies that
the doctor maintains that success is at least as likely as failure given database I and

vice versa for ‘failure’%I ‘success’. Lack of both ‘success’%I ‘failure’and ‘failure’%I
‘success’indicates that the doctor is unable to assess which of the two eventualities is

more likely.

For two databases I and J , I + J is the database obtained by pointwise addition,

namely, (I + J)(c) = I(c) + J(c) for every c ∈ C.

2.2 Assumptions

First and foremost, the model does not impose completeness of relations {%I}I∈J.
Without completeness weak relations allow for distinguishability between pairs of

eventualities that are equally likely and those that, according to our model, cannot

be compared. This distinction cannot be made when the relations are strict, thus weak

relations are more appropriate for our framework. The model assumes reflexivity of

relations in order to establish that they are indeed weak.

A1. Reflexivity: For every eventuality x and database I ∈ J, x %I x.

2.2.1 Combination and Related Axioms

Next we introduce and discuss a few assumptions that eventually lead to the set of

necessary and suffi cient axioms employed in our model. A basic assumption presented

first is Transitivity, which states that for every three eventualities x, y, z and any

database I, if both x %I y and y %I z then x %I z. Another assumption, central
to the GS model, is Combination, which states that if eventuality x is evaluated as

more likely than eventuality y given two separate databases I and J , then it should

also be evaluated as more likely than y when the two databases are combined. More

formally, for every two eventualities x, y and databases I and J , if x %I y and x %J y
then x %I+J y. Combination further states that if, in addition, either ¬(y %I x) or
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¬(y %J x), then ¬(y %I+J x) (which translates to strict relationships if completeness
is assumed). The assumption of Combination flows logically from the conception of

a database as the sum of its components. Therefore, the relevance of a record to an

eventuality cannot be altered by other records in the database. Combination requires

that the support for an eventuality provided by any one record in the database be

independent of all the other records in that database.

For a better understanding of this axiom consider an example, taken fromGS, where

it fails. Suppose an individual tries to compare the likelihoods of a coin being fair or

biased using a database of past tosses. The support that a record of tails provides to

the likelihood that the coin is biased is higher when the other records in the database

are mainly tails than it is when the database contains a nearly equal number of ‘heads’

and ‘tails’records. The support that a ‘tails’record lends to the likelihood of ‘biased

coin’therefore depends upon the other records in the database (see GS for a detailed

discussion of this point and more examples).

Under the assumption of completeness, Combination implies several other properties

that do not follow when completeness is suppressed. As will be made clear, these

properties match the type of ambiguity addressed in our model and are consistent with

the idea of independence of support across records. Therefore it seems sensible that

these properties continue to hold in our incomplete framework as well.

For the special case of I = J , Combination implies that if x %I y, then x %2I y.
Combination and completeness together also imply the opposite, namely if x %2I y,
then x %I y, or, equivalently, if ¬(x %I y), then ¬(x %2I y). Without completeness this
implication does not necessarily follow. In our model the inability to make comparisons

is caused by conflicting interpretations of the data. In particular, when ¬(x %I y)
there must be one interpretation of the records in I whereby x is evaluated as more

likely than y, and another interpretation of the records in I whereby the opposite

evaluation occurs. Independence of support across records means that the duplicated

database, 2I, is simply the sum of two identical copies of I. Hence, the same conflicting

interpretations that apply for I apply for 2I as well, yielding ¬(x %2I y). The next
axiom is the applications of this argument to any number of replications of the same
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database.

A2. Persistent Incomparability: For any two eventualities x and y, database I ∈ J

and an integer n ∈ N , if ¬(x %I y) then ¬(x %nI y).

In the presence of completeness, Combination also entails that if x %I+J y and

y %I x then x %J y. However, when completeness is not imposed, inability to compare
x with y on J is still consistent with Combination. Nevertheless, the requirement

that x %J y once again conforms to independence of evaluations across records, as the
support that records in I lend to the likelihood of y compared with that of x cannot

be altered by records in J . Since y is perceived to be more likely than x on I, if this

evaluation is reversed on I + J , then it must be the records in J that caused this

reversal by supporting x more than y. The following axiom incorporates this idea.

Strong Combination: For any two eventualities x and y and databases I and J ,

If x %I y and x %J y, then x %I+J y.

If x %I+J y and y %I x, then x %J y.

2.2.2 Insuffi ciency of the Above Axioms

Reflexivity, Transitivity, Persistent Incomparability, and Strong Combination are obviously

necessary conditions for the representation (1), however, they are insuffi cient, as demonstrated

by the following example.

Example 1. Let X = {x, y, z, w} and C = {1, 2}. Suppose that the relations %I are
all reflexive, and that

x %(1,0) y , x %(1,1) z , x %(0,1) w ,

z %(1,0) w , w %(1,1) y , z %(0,1) y , and

¬(x %(2,2) y) .4

4For instance, (1, 0) denotes the database which contains one record of type ‘1’and no records of

type ‘2’.
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It is easy to see that Transitivity, Persistent Incomparability, and Strong Combination

are all satisfied,5 yet these relationships cannot be represented by (1). Assuming there

exists such a representation, the relationships above imply that for all v ∈ V ,

v(x, 1) ≥ v(y, 1) ,

v(z, 1) ≥ v(w, 1) ,

v(x, 1) + v(x, 2) ≥ v(z, 1) + v(z, 2) ,

v(w, 1) + v(w, 2) ≥ v(y, 1) + v(y, 2) ,

v(x, 2) ≥ v(w, 2) , and

v(z, 2) ≥ v(y, 2) .

By summing over these inequalities 2v(x, 1)+2v(x, 2) ≥ 2v(y, 1)+2v(y, 2) for all v ∈ V .

Hence by the representation x %(2,2) y, contradicting ¬(x %(2,2) y).

Example 1 not only demonstrates that the axioms discussed above are too weak to

derive the desired representation, but also raises the question of whether it is reasonable

to require that a stronger condition hold. In particular we need to examine whether,

given the impetus of the model, the relationships stated in the example should in fact

imply that x %(2,2) y. We argue the affi rmative. On database (1, 1) it is possible to
complete the relationship between z and w in two ways, either by z %(1,1) w or by

w %(1,1) z. In case z %(1,1) w, Transitivity implies x %(1,1) y, and by Combination it
follows that x %(2,2) y. Otherwise, if w %(1,1) z, then by Strong Combination w %(0,1) z
leading to x %(0,1) y by Transitivity. Then by applying Combination twice, both

x %(1,1) y and x %(2,2) y. The ranking of eventualities z and w on (1, 1) may not be

known, yet if all possible rankings lead to the same conclusion that x %(2,2) y then this
relationship should be completed in that manner.

2.2.3 Independence of Support : A Further Strengthening of the Above Axioms

The previous discussion suggests that the strengthening of the GS axioms introduced

above is in order. To obtain a representation in the GS model, the above conditions
5For this purpose assume that relationships on replications of the databases mentioned above are

properly completed according to Combination. Moreover, any form of continuity may be added.
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are supplemented with a richness assumption termed Diversity (along with a form of

Continuity). Diversity states that every four eventualities can be ranked in any order

given some database. Gilboa and Schmeidler show that with this set of axioms the

relations are represented by (1) with a single weighting function v. The richness implied

by Diversity constrains the representing v (a further discussion on Diversity appears

in Subsection 3.2). Diversity is a strong assumption in our context, since it requires

the evaluator to be able to determine many comparisons, and thus confines the type

of incomplete relations that can be described. This work therefore strengthens Strong

Combination instead of imposing Diversity.

In this model the strengthening of Strong Combination imposes that the support

that a record provides to the likelihood of an eventuality is independent of the other

records and the other eventualities. The impetus for independence across records is

the same as that mentioned above in the discussion of Combination, where the support

provided for the likelihood of an eventuality by a specific record is not altered by the

other records in the database.

Independence across eventualities means that the support that a record lends to

the likelihood of eventuality x is independent of the eventuality to which it is being

compared. Hence eventualities can be evaluated separately from one another. Such

separability would fail if in determining the support that a record lends to the likelihood

of an eventuality x, different criteria were employed depending on the eventuality y to

which x is being compared. For example, consider an investor who is comparing several

investments based on past performance of these and other similar investments. Suppose

that when comparing the likelihood of profit from a European equity index to that

from a US equity index, the investor considers past performances of all indices in both

continents, but when comparing the likelihood of profit from a European equity index

to the likelihood of profit from a European bond, only previous European investments

are considered. In that case, the support a past investment lends to the eventuality

‘profit from a European equity index’depends on the eventuality to which it is being

compared. Such a process of comparison is ruled out in the present model. The

connection between these notions of independence and the next axiom will now be
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clarified.

Notice that in Example 1, the relationships satisfy the following conditions: the

aggregation of all records on which x is more likely than the other eventualities (database

K = (2, 2)) equals the aggregation of all records on which y is less likely than the other

eventualities. Moreover, for any other alternative, the aggregation of all records on

which it is more likely is the same as the aggregation of records on which it is less

likely. When a set of relationships satisfies such conditions we say that it satisfies

conditions of support of eventuality x over eventuality y on database K.

For a general formulation, let R = {b1 %J1 w1, . . . , bn %Jn wn} denote a set of

relationships, and define, for eventuality z,MR(z) =
∑

l:bl=z
Jl andLR(z) =

∑
l:wl=z

Jl.

That is, MR(z) aggregates all records in R for which z is considered more likely,

whereas LR(z) aggregates those records in R for which it is considered less likely. Both

MR(z) and LR(z) are themselves databases. The next definition applies this notation

in order to obtain a general formulation for relationships that satisfy conditions of

support for one eventuality over another for a given database.

Definition 1. A set of relationships R is said to satisfy conditions of support of

eventuality x over eventuality y on database K, if:

MR(x) = LR(x) +K, (2)

LR(y) = MR(y) +K, (3)

MR(z) = LR(z), for every z 6= x, y . (4)

A necessary condition for representation (1) is that when a set of relationships

satisfies conditions of support of eventuality x over eventuality y on database K, then

x %K y. This may easily be verified by summing over all the relationships in R, in the

same manner as in Example 1. This condition is next stated as an axiom.

A3-E. Exact Independence of Support: Let x, y be eventualities and K a

database. If there exists a set of relationships that satisfies conditions of support of x

over y on K, then x %K y.
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Exact Independence of Support implies Transitivity and Strong Combination.6 The

following discussion explains the concepts supporting this axiom and elucidates how

they comply with the two notions of independence across both records and eventualities

discussed above.

By equation (2), the aggregated database on which x is considered more likely

than other eventualities in R,MR(x), is the sum of K and the database on which x

is considered less likely than other eventualities in R, LR(x). Following the logic that

underlies Strong Combination, the records in K must be responsible for the evaluation

of x as more likely. It thus follows that K contains evidence to support the evaluation

of x as more likely relative to the other eventualities in R, while equation (3) upholds

this by providing evidence in K to support the evaluation of y as less likely relative to

the other eventualities in R.

Nevertheless, it is undesirable to conclude that x should be considered more likely

than y on K based on equations (2) and (3) alone. This is clearly demonstrated by

the situation in which for some database I there is a most likely eventuality, z∗, and

a least likely eventuality, z∗ (so that z∗ %I x %I z∗ for all eventualities x). If only
conditions (2) and (3) were to be imposed, then by x %I z∗ and z∗ %I y, every two
eventualities x, y (apart from z∗ and z∗) would have to be evaluated as equally likely

on database I. The problem is that x and y are compared to eventualities that are

not neutral. If, on the other hand, the likelihood assessments of x and y would rely

on comparisons to eventualities that are neutral in a proper sense, then these could

serve as a common reference point between the likelihood evaluation of x on K and

the likelihood evaluation of y on K. The conclusion that x is more likely than y on K

would then be natural (akin to Transitivity).

Conditions (4) of the definition imply that all eventualities in R other than x and

y gain overall neutral support, as each has an equal amount of support both for and

against it from each record type in the databases involved. The neutrality of these

eventualities suggests that they can be employed as a common reference point. In

this case, since K contains evidence that x is more likely compared to these neutral

6An explicit statement and proof appear below in Remark 1.
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eventualities, while y is less likely compared to them, it is sensible to consider x to be

more likely than y, given K, as Exact Independence of Support requires.

The axiom makes use of the two notions of independence, across both records and

eventualities, in the interpretation ofMR(·) and LR(·). Evidence that an eventuality

is more likely, as well as evidence that it is less likely, is aggregated across databases, in

order to obtain both the ‘more likely’and the ‘less likely’databases for the eventuality,

MR(·) and LR(·). The resulting databases are independent of the order and manner in

which they were aggregated, thus expressing independence of support across records.

In addition,MR(·) and LR(·) are formed on the basis of comparisons of a particular

eventuality to various other eventualities, reflecting the idea that the support a record

lends to the evaluation of an eventuality is independent of the eventualities to which

it is being compared.

Finally Exact Independence of Support is generalized to express the requirement

that independence of support across records and eventualities be a continuous property.

Namely if there are relationships that adequately approximate conditions of support

of x over y on K, then again it must be that x %K y. The following definition states

those conditions of ε-approximate support. For the definition recall that for a set of

relationships R and eventuality z,MR(z)(c) and LR(z)(c) denote the number of times

record type c appears in the databasesMR(z) and LR(z), respectively.

Definition 2. For ε > 0, a set of relationships R is said to ε-satisfy conditions of

support of eventuality x over eventuality y on database K, if there exists m ∈ N such

that for every c ∈ C,

|MR(x)(c)− LR(x)(c)−mK(c)| < mε

|LR(y)(c)−MR(y)(c)−mK(c)| < mε

|MR(z)(c)− LR(z)(c)| < mε, for every z 6= x, y.

These conditions are meant to capture ε-closeness ofMR(x)−LR(x) and LR(y)−

MR(y) to K, and of MR(z) − LR(z) to the all-zeros database. The approximated

conditions of support are formulated such that the size of the neighborhood around the

approximated databases is proportional to the number of replications of this database
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(i.e., neighborhood mε is proportional to the number of replications of K and the zeros

database). This is a natural restriction since a given difference in the number of records

is much more substantial when considering databases with a small number of records

as compared to databases with a large number of records.

The continuous version of Exact Independence of Support may now be stated.

A3. Independence of Support: Let x, y be eventualities and K a database. If for

every ε > 0 there exists a set of relationships that ε-satisfies conditions of support of

x over y on K, then x %K y.

The axioms that are finally imposed in the model are Reflexivity, Persistent Incomparability,

and Independence of Support. Independence of Support and Reflexivity entail that on

an empty database (the all-zeros database) all eventualities are comparable and deemed

equally likely (this attribute is termed Impartiality; See Remark 1 below). Together

with Persistent Incomparability, this confines inability to compare eventualities only

to situations created by conflicting interpretations of available data. This and other

attributes that follow from these three axioms are summarized in the next remark.

Remark 1. For every three eventualities x, y, z and databases I and J , Reflexivity,

Persistent Incomparability and Independence of Support imply:

(a) Transitivity: If x %I y and y %I z, then x %I z.

(b) Combination: If x %I y and x %J y, then x %I+J y.

(c) Homogeneity: x %I y if and only if x %nI y.

(d) Impartiality: x %0 y, where 0 denotes the all-zeros database.
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3 Results

3.1 Main Result

The conclusion of this inquiry is that assumptions A1, A2 and A3 are equivalent to the

representation of the GS model with multiple relevance-weighting functions. As the

range of the relevance-weighting functions is X × C, they are referred to as matrices

throughout the remainder of the paper.

Theorem 1. The following statements are equivalent:

(i) The relations {%I}I∈J satisfy assumptions A1, A2 and A3.

(ii) There exists a nonempty set V of matrices v : X × C −→ R, such that for any

two eventualities x, y and database I,

x %I y ⇔
∑
c∈C

v(x, c)I(c) ≥
∑
c∈C

v(y, c)I(c), for every v ∈ V . (5)

With this representation each matrix v ∈ V can be viewed as a conceivable interpretation

of the data. The likelihood of eventuality x being greater than y is accepted only when

every possible interpretation of the data leads to that conclusion. If, however, x is

evaluated as more likely than y according to one interpretation, and less likely according

to another interpretation, then no ranking of the likelihoods of the two eventualities is

possible.

In order to illustrate the evaluation process described by our theorem let us return

to the medical example presented in the introduction. Assume that the doctor has the

following set of data on a particular treatment:
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Age Blood Pressure Outcome Num. of Records

young low success 150

young high success 4

old low success 60

old high success 5

young low failure 40

young high failure 0

old low failure 30

old high failure 40

Now suppose a young person with high blood pressure consults the doctor about

undergoing this treatment. The doctor is generally in favor of treatment as the overall

success rate in the entire population is approximately 2/3. However, the rate varies

dramatically within different subgroups of the population, therefore the degree of

relevance of these past cases to this specific patient is crucial.

In this situation there are only four cases identical to the current case. As this

number is so small, the doctor will have to take into account other cases in order to

evaluate whether success is more likely than failure. If the doctor were to consider only

past cases within the patient’s age group (‘young’), he or she will conclude that success

is more likely, as it occurs much more frequently than failure in that group. This

corresponds to assigning, for x ∈ {success, failure}, v(x, c) = 1 when c = (young, ·, x)

and v(x, c) = 0 otherwise. If, instead, the doctor were to consider only past cases

with high blood pressure, the doctor would come to the opposite conclusion, as failure

within this group is much more frequent than success. This corresponds to assigning,

for x ∈ {success, failure}, v(x, c) = 1 when c = (·, high, x) and v(x, c) = 0 otherwise.

It is precisely this contradiction in the conclusions that makes the doctor unsure

whether treatment is more likely to succeed than fail in the current case. It should

be noted that such uncertainty does not exist when considering treatment for a young

patient with low blood pressure, since both the age and the blood pressure level indicate

that success is more likely than failure in this case.
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3.1.1 Uniqueness of the Representing set V

The set of matrices V in the theorem need not be unique. First, if V represents the

relations {%I}I∈J, then so does the closed convex cone generated by V , and second it
is possible to shift the matrices in V by adding any matrix with identical rows (i.e. a

matrix with constant columns) and still obtain a representation of the same relations.

These issues can be resolved by normalizing some row of each matrix in V , for example,

by fixing the last row in each matrix to equal an all-zeros row. Yet, even if all matrices

in V are normalized, and only closed convex cones are considered, uniqueness is still

not guaranteed. The following example demonstrates this point.

Example 2. Let X = C = {1, 2, 3}, and define V to be the closed convex cone

generated by the following three matrices:

v1 =


3 0 −1

0 1 −1

0 0 0

 , v2 =


1 0 −1

0 3 −1

0 0 0

 , v3 =


1 0 −3

0 1 −3

0 0 0

 .

The relations obtained are x %I y ⇔ I(x) ≥ 3I(y) for any two eventualities

x, y ∈ {1, 2, 3} and database I. Now consider the matrix

v4 =


5/12 0 −1

0 1 −1

0 0 0

 .

If the matrices above are supplemented with v4 the relations do not change in any

way, in spite of v4 not being contained in V . In other words, if W is the closed convex

cone generated by v1, . . . , v4, then W and V are two distinct sets, each representing

the same relations {%I}I∈J.

Without uniqueness, a ‘standard’representing set of matrices is the maximal representing

set w.r.t. set inclusion. This is the union of all representing sets, which is a closed

convex cone and unique by definition. The maximal set has the advantage of containing

all possible values of relevance-weights. If, after employing a consensus rule over
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various interpretations of data as a first stage of comparison, a further examination of

completion of relations is undertaken by employing a different rule (e.g. a minimum-

support rule), then no relevance-weights are eliminated a priori. The second rule then

relies on the full range of interpretations that are compatible with the initial incomplete

relations.

3.2 Complete Relations

If completeness is assumed for relations {%I}I∈J, then a conclusion similar to GS can
be obtained. For this to occur, Independence of Support needs to be augmented as

follows in order to deal with the case of strict rankings.

A1’. Completeness: for any two eventualities x, y and database I, either x %I y or
y %I x.

For a complete relation %I , �I denotes its asymmetric part, while ∼I denotes its
symmetric part.

A3-S. Strict Independence of Support: Let x, y be eventualities and K be a

database. If there exists a set of relationships that satisfies conditions of support of x

over y on K, where at least one of the relationships is strict, then x �K y.

Proposition 2. The following statements are equivalent:

(i) The relations {%I}I∈J satisfy assumptions A1’, A3 and A3-S.

(ii) There exists a matrix v : X × C −→ R, such that for any two eventualities x, y

and database I,

x %I y ⇔
∑
c∈C

v(x, c)I(c) ≥
∑
c∈C

v(y, c)I(c) . (6)

There are two significant differences between the representation obtained here and

that of the GS model. First, the assumptions used here imply a broader range of
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relations, as the relations are not required to be diverse, and correspondingly the

representing matrix (in the terminology of GS) is not necessarily diversified.7

On the other hand, while in the GS model the representing matrix is essentially

unique (up to multiplication by a positive constant and shift by a matrix with identical

rows), Proposition 2 does not provide such uniqueness. The following is an example of

a family of complete relations which satisfy (i) of Proposition 2, yet admit two different

representations by two distinct matrices.

Example 3. Let X = {x, y, z}, C = {1, 2, 3}, and

v =


1 0 3

0 1 2

0.5 0.5 2.5

 .

The relationships defined are: if I(1) + I(3) ≥ I(2), then x %I z %I y, otherwise
y %I z %I x. This representation, however, is not unique. The same relationships are
induced, for instance, by the matrix:

w =


1 0 3

0 1 2

0.25 0.75 2.25

 .

The difference between the representation of Proposition 2 and that of GS stems

from the fact that the axioms of Combination and Diversity used in the GS model

(See Subsection 2.2 for their formulation) are replaced by Independence of Support in

both its strict and non-strict versions. As discussed in 2.2, Independence of Support

generalizes and strengthens Combination. In so doing, it makes Diversity unnecessary.

The Independence of Support axioms together with Completeness are suffi cient to

obtain representation (6) (In GS both strict and weak versions of Combination are

required as well). However, Independence of Support, as mentioned before, does not

7A matrix v : X × C −→ R, where |X| ≥ 4, is diversified if there exist no four distinct elements

x, y, z, w ∈ X and λ, µ, θ ∈ R with λ + µ + θ = 1, such that v(x, ·) ≤ λv(y, ·) + µv(z, ·) + θv(w, ·). If

|X| < 4, v is diversified if no row in v is dominated by an affi ne combination of the others.
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yield a unique representing matrix. Note that in the example above Diversity is not

satisfied, as eventuality z is always ranked between x and y. This example therefore

cannot be accommodated in the GS model.

4 Alternative Applications

In addition to the evaluation process discussed in this paper, there are a variety of

problems in areas of interest as diverse as statistics, welfare analysis, and economics

where our model may be a useful tool. The basic commonality that these problems

share with the current model is that the analysis of data can be interpreted in different

ways yielding conflicting rankings.

4.1 Classification Problems

In a classification problem one must predict the class of a new data point based on

past observations. The prediction will be positioned in the most common class among

the most relevant observations in the database. The relevance of an observation in

the database is determined by a kernel function that depends on the distance between

the attributes of the new data point and the attributes of the observation in question.

Gilboa and Schmeidler (2003) establish that a classification problem can be viewed

as a special instance of their model by defining v(x, c) to equal the kernel function if

observation c belongs to class x, otherwise v(x, c) = 0. In fact, the medical example

discussed in section 3 is also a classification problem in which the doctor must predict

whether the class of the current patient will be success or failure. However, instead of

employing a single kernel to predict the outcome, the doctor considers several kernels.

As demonstrated in the example, classification of the new data point may greatly

depend upon which kernel is employed. Indeed when there is no good reason to choose

one kernel over another, it would be hard to classify the new data point, and care must

be taken to require that classification be made only upon consideration of all kernels.
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4.2 Welfare Comparisons

Standard of living is used to compare welfare among societies. Generally speaking,

standard of living depends on a variety of factors such as average income, inequality

of income, poverty, education, life expectancy, etc. However, there are many ways

to calculate this measure, each calculation producing a different ranking of countries.

For example the United States, that has a high income per capita that is, however,

distributed very unevenly, will rank higher in measures that put more weight on average

income, and will rank lower in measures that put more weight on income inequality

relative to other developed countries. In 2011, the United States was ranked above

Germany according to the Human Development Index (HDI), but below Germany

according to the Inequality-adjusted HDI (IHDI).8

The model suggested in this paper may incorporate ranking of countries based on

different welfare indices by applying a unanimity rule. A corresponding database may

be composed of observations of income, education, state of health, etc. of residents

of each country, with each index corresponding to a different matrix v. Under the

unanimity rule it would be impossible to compare the welfare of the United States

with that of Germany, as different indices produced opposite rankings. On the other

hand, the welfare of the United States and Norway can be compared, since the latter

ranked higher on both indices.

4.3 Voting Games

Many voting systems can be represented as cooperative games. If N is the set of voters,

the value w(T ) of coalition T ⊂ N is set to 1 if T can accumulate enough votes to

become a winning coalition, and to 0 if it cannot. Power indices provide a measure of

the voting power of each voter and play an important role in examining the fairness

of voting systems. Two central power indices are those of Shapley-Shubik (1954) and

Banzhaf (1965). The Shapley-Shubik power index of voter i in a voting system w is

8This data can be found on the website of the United Nations Development Program (UNDP).
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given by:

Si(w) =
∑
T⊂N\i

|T |!(|N | − |T | − 1)!
|N |! (w(T ∪ i)− w(T )) ,

while the Banzhaf power index of voter i in a voting system w is given by:9

Bi(w) =
∑
T⊂N\i

1

2|N |−1
(w(T ∪ i)− w(T )) .

It is well known that in some games the Shapley-Shubik and the Banzhaf power

indices yield similar results, while for others they vary considerably. In fact, they

sometimes rank the power of two voters in opposite ways. It has been argued that the

Shapley-Shubik index is more appropriate when the order of the players casting a vote

matters, while the Banzhaf index is more appropriate when order does not matter.

However, it is not always obvious when the order in fact matters, making it unclear

which index to use.

Ranking the voting power of players may be described by the model presented here

by allowing the eventualities to be the n players, and a record to be the value of the

coalitions, w(T ), for all T ⊂ N . Two matrices, the Shapley-Shubik matrix, vS, and

the Banzhaf matrix, vB, may be defined in the following manner, for all players i and

coalitions T ⊂ N :

vS(i, T ) =


|T−1|!(n−|T |−2)!

n!
i ∈ T

− |T |!(n−|T |−1)!
n!

i /∈ T
, vB(i, T ) =

 1
2n−1 i ∈ T

− 1
2n−1 i /∈ T

.

For each player i, Si(w) =
∑
T⊂N

vS(i, T )w(T ), and Bi(w) =
∑
T⊂N

vB(i, T )w(T ). Using

a unanimity rule it is possible to rank the voting power of two voters only when their

rankings in both indices match.

4.4 Group Rankings

Another scenario for employing multiple relevance-weights is in describing a ranking

process performed by a group of individuals. The process of ranking eventualities only
9This is the non-normalized version of the Banzhaf power index since the weights of all voters do

not necessarily add to 1.
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when all relevance-weighting functions are in agreement corresponds to the application

of a unanimity rule. That is, one eventuality will be ranked above another only if

all members agree on the ranking. Here, each member may hold a solid view of the

appropriate degree of support for each eventuality; however, as members’views may

differ, a unanimity decision rule will generally lead to incompleteness.

5 Proofs

5.1 Proof of Remark 1

For Transitivity, apply A3 to the relationships x %I y, y %I z, which satisfy conditions
of support of eventuality x over eventuality z on database I. For Combination, apply A3

to the relationships x %I y, x %J y, which satisfy conditions of support of eventuality x
over eventuality y on database I+J . In order to see that one direction of Homogeneity

holds, apply A3 to n copies of the relationship x %I y, which then satisfy conditions of
support of eventuality x over eventuality y on database nI. In the other direction apply

axiom A2. Last, Impartiality is seen to be satisfies by applying A3 to the relationships

x %I x, y %I y, which hold true by Reflexivity (for any database I). These relations
satisfy conditions of support of eventuality x over eventuality y, as well as of eventuality

y over eventuality x, on the all-zeros database.

5.2 Proof of Theorem 1

5.2.1 Proof of the Direction (i)⇒(ii)

The proof of this direction, as well as the proof of Proposition 2, use definitions and

arguments from Ashkenazi and Lehrer (2001).

Extend J to nonnegative rational numbers, so that J = QC+. The relations {%I}I∈J
are accordingly extended to rational-valued databases in the following manner: For a

database I ∈ J (with rational entries), let k ∈ N be such that kI ∈ ZC+, and define

%I=%kI . By Homogeneity (see Remark 1) the extension is well defined, and satisfies
%I=%qI for every q ∈ Q, q > 0. Assumptions A1 and A2, as well as A3-E, immediately
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carry through to the extended J, and will thus be employed without further mention.

Axiom A3, when used in course of the proof, will explicitly be shown to work with

rational-valued databases.

Let S denote the number of elements in X and T the number of elements in C.

Consider the Euclidean space RST as consisting of vectors with S blocks, T entries

in each block. Each block corresponds to an eventuality, so that for ϕ ∈ RST ,

ϕx denotes the block matching eventuality x. For any two eventualities x, y ∈ X

and database I, the vector ϕ(I, x, y) denotes the vector in RST for which the block

corresponding to eventuality x is I, the block corresponding to eventuality y is −I,

and those corresponding to other eventualities are all zero.

Consider B = conv{ϕ(I, x, y) | x, y ∈ X, I ∈ J} ⊂ RST , with its relative topology.

For v ∈ RST , eventuality x and record type c, v(x, c) denotes the entry of v which

belongs to block x, and inside block x, to record type c.

Define E = cl(conv{ϕ(I, x, y) | x %I y, x, y ∈ X, I ∈ J}). That is, E is the closed

convex hull generated by all vectors in B that indicate ranking. As Homogeneity and

Impartiality are satisfied (see Remark 1), E is a closed convex cone with vertex at zero.

By its definition, E contains all vectors that indicate ranking. That is, if x %I y then
ϕ(I, x, y) ∈ E. The following claims show that the opposite is also true, namely that

if a vector of the form ϕ(I, x, y) is contained in E, then x %I y.
Recall that if there are relationships b1 %J1 w1, . . . , bn %Jn wn that satisfy conditions

of support of x over y on database K, then these relationships also ε-satisfy these

conditions of support for every ε > 0, thus A3 implies that x %K y.

Claim 3. Let x, y, b1, w1, . . . , bn, wn be eventualities andK, J1, . . . , Jn databases. Suppose

that bl %Jl wl for l = 1, . . . , n, and that there are strictly positive coeffi cients q1, . . . , qn ∈
Q, such that

ϕ(K, x, y) =

n∑
l=1

qlϕ(Jl, bl, wl) .

Then x %K y.

Proof. The vector ϕ(K, x, y) has zeros in all blocks but those that correspond to

eventualities x and y. Hence, for any eventuality z 6= x, y, by setting Il = qlJl, it is
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implied that ∑
l:bl=z

Il −
∑
l:wl=z

Il = 0 .

By Homogeneity, as bl %Jl wl, then also bl %Il wl (since the ql’s are rational). In
Addition, by the structure of the vector ϕ(K, x, y),∑

l:bl=x

Il −
∑
l:wl=x

Il = K, and∑
l:bl=y

Il −
∑
l:wl=y

Il = −K .

Thus, Independence of Support implies that x %K y. �

Claim 4. Let x, y, b1, w1, . . . , bn, wn be eventualities andK, J1, . . . , Jn databases. Suppose

that bl %Jl wl for l = 1, . . . , n, and that there are strictly positive coeffi cients α1, . . . , αn ∈
R, such that

ϕ(K, x, y) =
n∑
l=1

αlϕ(Jl, bl, wl) .

Then x %K y.

Proof. Consider the following finite system of equations, with α1, . . . , αn as variables:∑
l:bl=z

αlJl −
∑
l:wl=z

αlJl = 0 , for all z 6= x, y∑
l:bl=x

αlJl −
∑
l:wl=x

αlJl = K∑
l:bl=y

αlJl −
∑
l:wl=y

αlJl = −K

All the coeffi cients (entries of the databases) are rational numbers. Therefore,

if the system has a positive solution α1, . . . , αn, then, by denseness of the rational

numbers in the reals, it must also have a positive rational solution q1, . . . , qn. In other

words, employing again the structure of the vector ϕ(K, x, y), there are positive rational

coeffi cients such that ϕ(K, x, y) =
∑n

l=1 qlϕ(Jl, bl, wl). By the previous claim it follows

that x %K y. �
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It is now established that if a vector of the form ϕ(K, x, y) is obtained as a convex

combination of vectors which indicate ranking, then this vector itself indicates ranking.

Therefore, taking the convex hull of vectors which satisfy x %I y does not add any
‘unwanted’vectors to E, that is, does not add any ϕ(I, x, y) for which ¬(x %I y).
It is next proved that applying a closure operation does not add any vectors

ϕ(I, x, y) for which ¬(x %I y) as well.

Claim 5. If ϕ(I, x, y) ∈ E then x %I y.

Proof. In light of the previous claim it remains to show that if ϕ(I, x, y) is on the

boundary of E then x %I y. As E is a convex cone with vertex at zero, if ϕ(I, x, y) is

on the boundary of E then so is ϕ(iI, x, y) for iI an integer-valued database. Therefore

there exists a sequence of points in E, ϕn =
∑Tn

t=1 λ
n
t ϕ(I

n
t , x

n
t , y

n
t ), which converges to

ϕ(iI, x, y), where λnt > 0 and x
n
t %Int ynt . By denseness of the rational numbers in the

reals there must also be a sequence qn =
∑Tn

t=1 r
n
t ϕ(I

n
t , x

n
t , y

n
t ) =

∑Tn
t=1 ϕ(r

n
t I

n
t , x

n
t , y

n
t ),

with rnt > 0 rational numbers, that also converges to ϕ(iI, x, y).

By the structure of ϕ(iI, x, y), if qn converges to ϕ(iI, x, y), then for any ε > 0

there exists n ∈ N such that for every c ∈ C,

|
∑
t:xnt =x

rnt I
n
t (c)−

∑
t:ynt =x

rnt I
n
t (c)− iI(c)| < ε

|
∑
t:ynt =y

rnt I
n
t (c)−

∑
t:xnt =y

rnt I
n
t (c)− iI(c)| < ε

|
∑
t:xnt =z

rnt I
n
t (c)−

∑
t:ynt =z

rnt I
n
t (c)| < ε, for every z 6= x, y .

Let m be an integer such that Lt := mrnt I
n
t is an integer-valued database for all t,

then still xnt %Lt ynt , and for every c ∈ C,

|
∑
t:xnt =x

Lt(c)−
∑
t:ynt =x

Lt(c)−m(iI(c))| < mε

|
∑
t:ynt =y

Lt(c)−
∑
t:xnt =y

Lt(c)−m(iI(c))| < mε

|
∑
t:xnt =z

Lt(c)−
∑
t:ynt =z

Lt(c)| < mε, for every z 6= x, y .
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That is, the relationships xnt %Lt ynt , t = 1, . . . , Tn, ε-satisfy conditions of support
of eventuality x over eventuality y on database iI. Since this holds true for any ε > 0,

A3 implies that x %iI y, thus also x %I y. �

The previous claim yields that E contains exactly those vectors ϕ(I, x, y) for which

¬(x %I y), as summarized in the next conclusion.

Conclusion 6. ϕ(I, x, y) ∈ E if and only if x %I y.

Define V = {v ∈ RST | v · ϕ ≥ 0 for all ϕ ∈ E} (where v · ϕ denotes the inner

product of v and ϕ). The set V is not empty, since it contains zero. If v1 and v2 are in

V then so is αv1 + βv2 for α, β ≥ 0, and if vn →n→∞ v for vn ∈ V , then v ∈ V . Hence

V is a closed convex cone, with vertex at zero.

By the definitions of V and E, if x %I y then
∑

c∈C v(x, c)I(c) ≥
∑

c∈C v(y, c)I(c)

for every v ∈ V . In the other direction, suppose that ¬(x %I y), that is, ϕ(I, x, y) /∈ E.
Since E is closed and convex, then by a separation theorem there exists a vector

w ∈ RST which separates E and ϕ(I, x, y). Following Remark 1, the zero vector

belongs to E, and if ϕ(I, x, y) /∈ E then ϕ(qI, x, y) = qϕ(I, x, y) /∈ E for any q ∈ Q.

Hence the separating scalar is zero, that is, w · ψ ≥ 0 > w ·ϕ(I, x, y), for every ψ ∈ E.

In other words, there exists w ∈ V such that
∑

c∈Cw(x, c)I(c) <
∑

c∈Cw(y, c)I(c).

Thus it is established that there exists a set V ⊆ RST , such that for every pair of

eventualities x, y and database I,

x %I y if and only if
∑
c∈C

v(x, c)I(c) ≥
∑
c∈C

v(y, c)I(c) for all v ∈ V .

5.2.2 Proof of the Direction (ii)⇒(i)

Suppose that the relations {%I}I∈J obtain a representation as in (ii) of Theorem 1.

It is immediate to see that Reflexivity (A1) is satisfied. Assumption A2 is proved by

multiplying both sides of the inequality by the same constant.

For Independence of Support (A3), let x, y be eventualities and K a database, such

that for every ε > 0 there are relationships (ε-dependent) b1 %J1 w1, . . . , bn %Jn wn
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and an integer mε that satisfy, for every c ∈ C,

|
∑
l:bl=x

Jl(c)−
∑
l:wl=x

Jl(c)−mεK(c)| < mεε ,

|
∑
l:wl=y

Jl(c)−
∑
l:bl=y

Jl(c)−mεK(c)| < mεε ,

|
∑
l:bl=z

Jl(c)−
∑
l:wl=z

Jl(c)| < mεε, for every z 6= x, y .

First, for every ε > 0, by summing over all the inequalities implied by the relationships,

n∑
l=1

[∑
c∈C

v(bl, c)Jl(c)−
∑
c∈C

v(wl, c)Jl(c)

]
=: Rεv ≥ 0 , for every v ∈ V .

After rearranging the addends in the above expression according to the eventualities

involved, it is obtained that:

0 ≤ Rεv =
∑
l:bl=x

∑
c∈C

v(x, c)Jl(c)−
∑
l:wl=x

∑
c∈C

v(x, c)Jl(c) +∑
l:bl=y

∑
c∈C

v(y, c)Jl(c)−
∑
l:wl=y

∑
c∈C

v(y, c)Jl(c) +

∑
z 6=x,y

[∑
l:bl=z

∑
c∈C

v(z, c)Jl(c)−
∑
l:wl=z

∑
c∈C

v(z, c)Jl(c)

]

=
∑
c∈C

v(x, c)

(∑
l:bl=x

Jl(c)−
∑
l:wl=x

Jl(c)

)
+ (7)

∑
c∈C

v(y, c)

(∑
l:bl=y

Jl(c)−
∑
l:wl=y

Jl(c)

)
+ (8)

∑
z 6=x,y

[∑
c∈C

v(z, c)

(∑
l:bl=z

Jl(c)−
∑
l:wl=z

Jl(c)

)]
(9)

Given the inequalities assumed on the databases involved, for every v ∈ V (which

is possibly all zeros),

(7) ≤ mε

∑
c∈C

v(x, c)K(c) +mεε
∑
c∈C

|v(x, c)| ,

(8) ≤ −mε

∑
c∈C

v(y, c)K(c) +mεε
∑
c∈C

|v(y, c)| ,

(9) ≤ mεε
∑
z 6=x,y

∑
c∈C

|v(z, c)| .
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Therefore, for every v ∈ V ,∑
c∈C

K(c)[v(x, c)− v(y, c)] ≥ −ε
∑
x∈X

∑
c∈C

|v(x, c)| .

Since there is a finite number of eventualities and records, it follows that for every

v ∈ V ,
∑

c∈CK(c)[v(x, c)− v(y, c)] ≥ 0, implying x %K y.

5.3 Proof of Proposition 2

Let the set E be as in the proof of Theorem 1. In the degenerate case where x %I y for
all x, y, I, E is the entire space, and v may be taken to be zero. Otherwise, applying

Completeness, assume that for some x, y, I, x �I y.

From the proof of that theorem, the set E is closed and therefore Ec is open. By

definition, the sets E and Ec are disjoint, where

x %I y ⇔ ϕ(I, x, y) ∈ E, and with Completeness x �I y ⇔ ϕ(I, y, x) = −ϕ(I, x, y) ∈

Ec.

Let D = conv{−ϕ(I, x, y) | x, y ∈ X, I ∈ J, x �I y}. By A3-S and Completeness,

if −ϕ(I, x, y) ∈ D then x �I y (the proof is analogous to claims 3 and 4), and D is

a convex cone with vertex at zero, not containing zero. It follows that D ⊆ Ec, and

since Ec is open then so is D, being composed of convex combinations of vectors from

Ec. By assumption there is −ϕ(I, x, y) = ϕ(I, y, x) ∈ D, thus the interior of D is

nonempty.

The above yields two disjoint convex cones, one open (D) and one closed (E),

with vertex at zero, one of them with a nonempty interior (D). By a basic separation

theorem, there exists a nonzero separating vector v for which v ·ψ < 0 ≤ v ·ϕ for every

ψ ∈ D and every ϕ ∈ E. It follows that x %I y ⇔ ϕ(I, x, y) ∈ E ⇒ I · (vx − vy) ≥ 0,

and x �I y ⇔ ϕ(I, y, x) ∈ D ⇒ I · (vx − vy) > 0. In other words, for any database I

and eventualities x and y,

x %I y ⇔
∑
c∈C

v(x, c)I(c) ≥
∑
c∈C

v(y, c)I(c) .

The proof of the direction (ii)⇒(i) is the same as for Theorem 1, with Completeness
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and the strengthening of Relevance Separability, A3-S, implied by the fact that there

is a single representing matrix.
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