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Abstract

This paper gives an axiomatic foundation for multigroup segregation indices. We under-

stand segregation to be the tendency of demographic groups to be distributed di¤erently across

locations (such as neighborhoods, schools, or occupations). We prove that there is a unique seg-

regation index that satis�es a set of basic properties. One of these properties is invariance to

changes in the relative sizes of the di¤erent groups (due, e.g., to di¤erential population growth)

that preserve each group�s distribution across locations. We also characterize an alternative

index that lacks this property, but that is more robust to changes in group de�nitions.
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1 Introduction

Segregation is a pervasive social issue. The segregation of men and women into di¤erent occupations

helps explain the gender gap in earnings.1 The continued racial segregation of schools appears

to contribute to low educational achievement among minorities.2 Residential segregation between

blacks and whites has been blamed for black poverty, high black mortality, and increases in prejudice

among whites.3 In other contexts, segregation is viewed more positively. The formation of

homogeneous living areas has been discussed as a solution to highly polarized con�icts in the

Middle East, Yugoslavia, and elsewhere.

The literature on segregation measurement has generated over 20 di¤erent indices (Massey and

Denton [15]). While some papers have analyzed the properties of various indices, very few of them

have provided a full characterization, and none of these have used purely ordinal axioms. Further,

the existing characterizations are essentially valid for the two-group case. In this paper we provide

a full ordinal characterization of two segregation indices for the multigroup case. The second index

appears to be new to the literature.

Axiomatizations are important because they decompose an index into few basic and independent

de�ning properties and thus facilitate the comparison of di¤erent measures. Ordinal axioms are

more appealing than cardinal ones because they refer to bilateral comparisons and not to their

speci�c functional representations. Multigroup segregation orderings are important because they

allow us to study units (cities, school districts, etc.) with more than two groups and to compare

units with di¤erent numbers of groups.

To begin, we need a working de�nition of segregation. An in�uential paper by James and

Taeuber [11] de�nes segregation as �the di¤erences in the distribution of social groups, such as

blacks and whites, among units of social organization such as schools.� In a later paper, Massey

and Denton [15] discern �ve di¤erent dimensions of segregation. The �rst, evenness, agrees with

James and Taeuber�s de�nition:

Groups may live apart from one another and be �segregated� in a variety of ways.

1See Cotter et al [3], Lewis [13], and Macpherson and Hirsh [14].

2See Meldrum and Eaton [16], Or�eld [18], and Schiller [23].

3See Cutler and Glaeser [4], Collins and Williams [2], and Kinder and Mendelberg [12], respectively.
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Minority members may be distributed so that they are overrepresented in some areas

and underrepresented in others, varying on the characteristic of evenness.

Massey and Denton�s other dimensions of segregation are isolation from the majority group, con-

centration in a small area, centralization in the urban core, and clustering in a contiguous enclave.

Indices that measure the last three dimensions require detailed geographic information about a

city�s neighborhoods. Most indices of evenness and isolation do not require such information; they

can usually be computed using data on neighborhood demographics alone.

Following James and Taeuber, we understand segregation to be the tendency of demographic

groups to have di¤erent distributions across neighborhoods. This agrees with Massey and Denton�s

dimension of evenness. Formally, we de�ne a segregation ordering as a total order on cities:

a ranking from most segregated to least segregated. We propose a set of basic properties of

a segregation ordering. We then prove that there is a unique segregation ordering with these

properties.

This ordering is represented by a simple index: one minus the sum, over all neighborhoods, of

the geometric means of the percentages of each group who live in the neighborhood. For example,

suppose 40% of blacks and 10% of whites live in neighborhood A while 60% of blacks and 90% of

whites live in neighborhood B. The index is 1� (:4)1=2 (:1)1=2 � (:6)1=2 (:9)1=2 = 0:065.

One of the properties of this index is Scale Invariance: the index is invariant to changes in

the size of one group that preserve that group�s distribution across locations. For instance, if the

number of blacks in every neighborhood of a city is doubled, the index is unchanged. Researchers

have justi�ed this property based on the argument that di¤erences in segregation should not be

due purely to di¤erences in citywide demographic compositions.

Scale Invariance has strong implications: a group�s weight in the segregation index cannot

depend on its size. This property can be undesirable in some cases. A recent example is the in-

troduction of tiny, mixed-race groups in the 2000 U.S. Census. To illustrate, Table 1 depicts a city

with two neighborhoods, A and B. Neighborhood A contains 90 blacks and 10 whites; in neighbor-

hood B, the numbers are reversed. The distributions of each group across neighborhoods appear

in the second panel. Since the city is symmetric, its segregation index is 1�2
�
9
10

�1=2 � 1
10

�1=2
= 0:4.

Now suppose a black from neighborhood A and a white from neighborhood B are reclassi�ed as

belonging to a new mixed-race group. Table 2 depicts the city as it now appears.
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Population Row Distributions

A B Total A B Total

Blacks 90 10 100 9
10

1
10 1

Whites 10 90 100 1
10

9
10 1

Table 1: Old demographic schema.

Population Row Distributions

A B Total A B Total

Blacks 89 10 99 89
99

10
99 1

Whites 10 89 99 10
99

89
99 1

Mixed 1 1 2 1
2

1
2 1

Table 2: New demographic schema.

The segregation of the city drops to 1� 2
�
89
99

�1=3 �10
99

�1=3 �1
2

�1=3
= 0:29. Since a group�s size does

not matter, the small mixed-race group receives the same weight of 1/3 in the geometric averages

as each of the two larger groups. A minor change in the segregation schema leads to a large decline

in measured segregation.

Our second axiomatization avoids this problem by replacing Scale Invariance with a very di¤er-

ent axiom: the Group Division Property. An index with this property does not change when an

existing group is subdivided into two groups that have the same neighborhood distribution. For

instance, if whites are divided into white females and white males, and these groups have the same

distribution across neighborhoods, the index is una¤ected. When we replace Scale Invariance with

the Group Division Property, we again obtain a unique index. It equals one minus the sum, over

all neighborhoods, of the weighted geometric means of the percentages of each group who live in

the neighborhood, where the weight of each group equals that group�s proportion in the city. This

index appears to be new to the literature.

With this weighted index, the change of the racial schema in our earlier example has only a

small e¤ect on measured segregation. Since the proportions of blacks and whites are equal in

Table 1, the weighed index of this city is still equal to 1� 2
�
90
100

�1=2 � 10
100

�1=2
= 0:4. However, the

weighted index of the city in Table 2 is 1� 2
�
89
99

�99=200 �10
99

�99=200 �1
2

�2=200
= 0:394. Since there are
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only two mixed-race residents in a city of 200, they receive a weight of only 2/200 in the weighted

segregation index as opposed to 1/3 in the unweighted index. Consequently, the weighted index

falls by much less than the unweighted index when the mixed-race group is introduced.

Our approach is to give a rigorous foundation for segregation that can be applied in a variety

of contexts. This �context-free�approach may not suit everyone. Some researchers may desire

axioms that are inspired by social welfare considerations. We view social welfare and segregation

as orthogonal concepts. While the segregation of blacks and whites in the U.S. is seen by many as

harmful, segregation in other contexts is often viewed as leading to peaceful coexistence.

Other researchers may desire axioms that are motivated by the underlying social processes that

generate segregation. We agree that the causes of segregation are an important issue. However,

segregation can have di¤erent causes in di¤erent contexts: racial discrimination, Tiebout sorting,

a preference for living with members of the same group, and so on. Thus, we need a measure of

segregation that does not depend directly on any particular cause. By analogy, height in humans

is usually in�uenced by nutrition and state of health. But some people are tall because they are

sick. Hence, one needs a measure of height that does not depend directly on a person�s health

status.

Another advantage of a context-free approach is that it lets us make meaningful comparisons of

segregation in di¤erent settings. For instance, Farley [7] reports the following striking comparison:

in Detroit in 1970, segregation between post-college educated black men and post-college educated

white men was greater than segregation between post-college educated white men and white men

with no education whatsoever. There is no reason to think that these two types of segregation

have the same welfare implications or the same causes and e¤ects. Yet we are wiser for being able

to make the comparison. It tells us something useful.

The �rst paper to study segregation axiomatically is Philipson [19]. It provides an axiomatic

characterization of a large family of segregation orderings that have an additively separable rep-

resentation. The representation consists of a weighted average of a function that depends on the

neighborhood�s demographic distribution only. The papers that are most closely related to the

present one are Hutchens [8, 9]. These papers study the measurement of segregation in the case of

two demographic groups. Hutchens [8] characterizes the family of indices that satisfy a set of basic

properties. Hutchens [9] strengthens one axiom and obtains a unique segregation index, which
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is the index produced by our �rst axiomatization (Theorem 1) in the case of two demographic

groups. While we assume properties of the underlying segregation ordering, Hutchens follows the

inequality literature (e.g., Shorrocks [24, 25]) by imposing restrictions directly on the segregation

index. Some of these restrictions are cardinal in nature and do not have a natural translation into

properties of segregation orderings.4

Another related paper is Echenique and Fryer [6]. They use data on individuals�social networks

to measure the strength of an individual�s isolation from members of other demographic groups.

The resulting �spectral segregation index� is most closely related to Massey and Denton�s second

dimension of segregation: isolation from the majority group. The paper also provides group-

speci�c indices that measure one group�s isolation from the other groups.

Our view is that evenness and isolation are each important in di¤erent contexts. Evenness

re�ects the extent to which the choices of demographic groups di¤er from each other. In a residential

context, it is related to issues of Tiebout sorting, housing discrimination, and the e¤ects of tastes

on housing choice. In the context of occupational segregation, evenness can be used to study

how the di¤erent occupational distributions of men and women a¤ect male-female wage inequality.

Isolation measures the tendency of an ethnic group to have most of its contacts with members of

the same group. While isolation may help a group to develop a unique culture and identity, it may

also create disadvantages in the labor market. Hence, isolation is a more relevant dimension for

researchers who are interested in such phenomena as culture, identity, and minority labor market

outcomes. The two dimensions may also be causally related. An absence of cross-racial social

contact may strengthen a person�s preference for living in neighborhoods in which her group is

a majority. In this way, isolation may lead to a lack of evenness. Conversely, the tendency of

ethnic groups to have sharply di¤erent neighborhood distributions, whether or not the di¤erences

are voluntary, may lead to ethnically isolated social networks.

The rest of the paper is organized as follows. After setting up some basic notation in Section 2,

we introduce the notion of a segregation ordering and provide some known examples of segregation

indices that represent various orderings in Section 3. Section 4 proposes our �rst set of axioms.

4For example, Hutchens [9] proposes that the segregation of a city that is composed of two areas (each of which

may contain several neighborhoods) should equal the between-area segregation plus a weighted sum of segregation

within the areas.
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Our results appear in Section 5. The unweighted segregation index is characterized in sections 5.1

and 5.2. The weighted segregation index is axiomatized in Section 5.3. In Section 6 we prove

independence of the axioms in each axiomatization. Longer proofs are relegated to the appendix.

2 Notation

We understand segregation as the tendency of demographic groups to be distributed di¤erently

across locations, such as neighborhoods, schools, or occupations. Hence, segregation is a property

of sets of locations. If the locations are neighborhoods, then these sets are typically cities; if they

are schools, then the sets are usually school districts; and if the locations are occupations, then the

sets might be industries or geographic areas.

The assignment of individuals to locations is taken as a primitive of the model. In some cases

this assignment may be unambiguous, such as when the locations are schools. In other cases, such

as when the locations are neighborhoods, there may be more than one natural assignment: census

tracts, city blocks, etc. We do not take a position on which assignment is best. Rather, we study

how segregation should be measured for a given assignment of individuals to locations.

For concreteness, we will refer to locations as neighborhoods and to sets of locations as cities.

Formally, we de�ne a city as follows:

De�nition 1 A city consists of

� A nonempty and �nite set of demographic groups G

� A nonempty and �nite set of neighborhoods N

� For each group g 2 G and for each neighborhood n 2 N , a nonnegative number Tng (the

number of members of group g that reside in neighborhood n), such that the total population

of group g in the city is positive: for all g 2 G,
P

n2N T
n
g > 0.

For instance, in the city X depicted in Table 3, G(X) = fBlack ;Whiteg, N(X) = fA;Bg, TABlack =

5, and so on.

We will sometimes use the following more compact notation. The expression h(1; 2) ; (3; 1)i

denotes a city with two groups (e.g., blacks and whites) and two neighborhoods. The �rst neigh-
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City X

A B

Blacks 5 2

Whites 1 4

Table 3: Example of a city.

borhood, (1; 2), contains one black and two whites; the second, (3; 1), contains three blacks and one

white. The order of the neighborhoods does not matter; e.g., h(1; 2) ; (3; 4)i can also be written

h(3; 4) ; (1; 2)i.

The following notation will be useful:

Tg =
X
n2N

Tng : the number of members of group g in the city

Tn =
X
g2G

Tng : the total population of neighborhood n

T =
X
g2G

Tg: the total population of the city

Pg =
Tg
T
: the proportion of city residents who are in group g

Pn =
Tn

T
: the proportion of city residents who are in neighborhood n

png =
Tng
Tn

(for Tn > 0): the proportion of residents of n who are in g

tng =
Tng
Tg
: the proportion of members of g who live in n

For any city X =


(Tng )g2G

�
n2N , we will denote the set of neighborhoods of X by N(X) and

the set of demographic groups of X by G(X).

The group distribution of a city X is the vector (Pg)g2G of proportions of the city�s residents

who are in each group. The group distribution of a nonempty neighborhood n is the vector
�
png
�
g2G

of proportions of the neighborhood�s residents who are in each group. Neighborhood n in city X

is representative if the group distributions of n and X are the same: if png = Pg for all g 2 G. A

neighborhood that is not representative of the city is said to be unrepresentative.

For any cityX and any nonnegative constant c, cX denotes the city that results from multiplying

the number of members of each group in each neighborhood of X by c. For example, if X =

h(1; 2) ; (3; 4)i, then 2X = h(2; 4) ; (6; 8)i. For any city X and any vector of nonnegative scalars
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�!� = (�g)g2G(X),
�!� �X denotes the city in which the number of members of group g in neighborhood

n is �gTng . For example, if X = h(1; 2) ; (3; 4)i, and �!� = (2; 3), then �!� �X = h(2; 6) ; (6; 12)i. We

sometimes apply the same operation to individual neighborhoods; e.g., �!� � (1; 2) = (2; 6).

For any two cities X and Y , X ] Y denotes the result of adjoining Y to X. Its neighborhoods

consist of the neighborhoods of X and Y ; its groups are simply the groups of X and Y .5 For

instance, consider the one-neighborhood cities X = h(1; 2)i, and Y = h(1; 2)i. If the two cities

contain the same two groups (e.g., blacks and whites), then X ] Y = h(1; 2) ; (1; 2)i. If instead X

contains a black and two whites while Y consists of a black and two Asians, then the combined

city will include three groups: X ] Y = h(1; 2; 0) ; (1; 0; 2)i. (The order in each neighborhood is

blacks, whites, Asians.)

3 Segregation orderings, and their measures

We will sometimes restrict attention to some special classes of cities. For example, the class of

cities with exactly K � 1 nonempty groups will be denoted CK . A segregation ordering < on a

class of cities is a complete and transitive binary relation on that set of cities. We interpret X < Y

to mean �city X is at least as segregated as city Y.� The relations � and � are derived from < in

the usual way.6

A related concept is the segregation index : a function that assigns a nonnegative number to

each city in a class. Any segregation index S induces a segregation ordering de�ned by X < Y ,

S(X) � S(Y ).

We impose axioms not on the segregation index but on the underlying segregation ordering.

These approaches are not equivalent. As in utility theory, a segregation ordering may be represented

by more than one index, and there are segregation orderings that are not captured by any index.

5Formally, let X =


(Tng )g2G

�
n2N and Y =



(Tng )g2G0

�
n2N0 with disjoint set of neighborhoods. X ] Y denotes

the city


(Tng )g2G[G0

�
n2N[N0 .

6That is X � Y if both X < Y and Y < X; X � Y if X < Y but not Y < X.
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3.1 Examples of segregation indices

We now discuss several examples of segregation indices, each of which represents a particular

ordering. We begin with the Atkinson index:

Atkinson

A(X) = 1�
X

n2N(X)

� Y
g2G(X)

tng

� 1
jG(X)j

(1)

When X contains exactly two nonempty groups, this ordering coincides with that of the usual

Atkinson index with parameter 1/2 (Massey and Denton [15, p. 286]).7 The Atkinson index

is derived from the income inequality measure of the same name (Atkinson [1]). The Atkinson

ordering (the ordering represented by A) is the unique ordering that satis�es our �rst set of basic

properties (Theorems 1 and 2).

We also de�ne a weighted version of the Atkinson index:

Weighted Atkinson

AW (X) = 1�
X

n2N(X)

Y
g2G(X)

�
tng
�Pg(X) (2)

The Atkinson index (1) equals one minus the sum of the unweighted geometric averages of the

group proportions in each neighborhood. In contrast, the weighted Atkinson index equals one

minus the sum of the weighted geometric averages of the group proportions in each neighborhood,

where the weight assigned to a group equals the proportion of city residents who belong to that

group. While the Atkinson index treats each group the same regardless of its size, the weighted

Atkinson index gives more weight to larger groups. The weighted Atkinson ordering is the unique

ordering that satis�es our second set of basic properties (Theorem 3).

The next index is a multigroup version of the Index of Dissimilarity:

Dissimilarity

D(X) =
X

n2N(X)
f(tn) where f(tn) =

X
g2G(X)

1

jG(X)j

���tng � X
g02G(X)

1

jG(X)j t
n
g0

��� (3)

7One can show that with two groups, the usual Atkinson index with parameter 1/2 equals 1� (1�A(X))2, which

is an increasing transformation of A.
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In the case of two groups, the Dissimilarity index measures the proportion of either group who would

have to change neighborhoods in order to attain complete integration: for every neighborhood to

be representative of the city. The Dissimilarity index was �rst discussed by Jahn et al [10]. It was

used by Cutler, Glaeser, and Vigdor [5] to measure the evolution of segregation in American cities.

Some researchers have used a weighted version of the Dissimilarity index.

Weighted Dissimilarity

DW (X) =
X

n2N(X)

X
g2G(X)

Pg
��tng � Pn��

Weighted Dissimilarity was used by Rhode and Strumpf [21] to assess the empirical importance of

the Tiebout sorting model.8

4 Axioms

We state our axioms with respect to an unspeci�ed class of cities, C. Later we will apply them

to particular classes. Denote the class of all cities by CA =
1S
K=1

CK . Sometimes we will refer to

a transformation � : CA ! CA of cities. We will say that a class of cities C is closed under the

transformation � if, for all cities X in the class, the transformed city �(X) is also in C. Let C be a

class of cities that is closed under the transformation � . Let < be a segregation ordering on C, with

the associated �equally segregated�relation �. We will say that the segregation of a city (under

<) is invariant to the transformation � if the application of � does not a¤ect the city�s location

in the segregation ordering: if X � �(X) for all cities X 2 C. Many of our axioms state that a

segregation ordering on some class C is invariant to a given type of transformation. Implicit in

this is the requirement that C be closed under the transformation.

The �rst axiom, Group Symmetry, is an essential property of a context-free measure of segrega-

tion. It states that the level of segregation in a city does not depend on the identities of the city�s

demographic groups; it depends only on the number of each group who live in each neighborhood.

For instance, the cities depicted in Table 4 are equally segregated.

8This index was introduced by Morgan [17] and Sakoda [22]. In the Dissimilarity index, the neighborhood

functions f assign equal weight 1= jG(X)j to each group. Weighted Dissimilarity results from changing this weight

to the proportion of the group in the city, Pg: DW (X) =
P

n2N(X) f
W (tn) where fW (tn) =

P
g2G(X) Pg

���tng �P
g02G(X) Pg0t

n
g0

��� =Pg2G(X) Pg
��tng � Pn�� .

11



City 1 City 2

A B A B

Blacks 5 2 Protestants 5 2

Whites 1 4 Catholics 1 4

Table 4: Group Symmetry implies that these cities are equally segregated.

City 2 results from relabeling the groups of city 1. More generally, we de�ne a relabeling as follows:

De�nition 2 Let X be a city. A relabeling of the groups G(X) is a one to one function � : G0 !

G(X), where G0 is some set of groups such that jG0j = jG(X)j. Given a relabeling �, we de�ne

�(X) to be a city with the same set of neighborhoods as X and with the set G0 of nonempty groups,

such that for all groups g0 2 G0, the number of members of group g0 in each neighborhood n of

�(X) equals the number of members of group �(g0) in the corresponding neighborhood n of X.

The axiom of Group Symmetry states that the segregation of a city is una¤ected by any relabeling

of its groups.

Group Symmetry (GS) Let X be a city and let � be some relabeling of the groups G(X). Then

X � �(X).

Segregation refers to the tendency of di¤erent groups to have di¤erent distributions across

neighborhoods. This leaves open the question of whether segregation should also depend on the

absolute sizes of the groups. The next axiom, Scale Invariance, gives a negative answer to this

question. This axiom implies, for instance, that the two cities in Table 5 are equally segregated.

City 1 City 2

A B A B

Blacks 5 1 Blacks 5 1

Whites 2 4 Whites 20 40

Table 5: Scale Invariance implies that these cities are equally segregated.
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Scale Invariance is one of the �ve requirements that Jahn et al [10] say a satisfactory measure of

segregation should satisfy.9

Scale Invariance (SI) The segregation in a city is una¤ected if the number of agents of a given

demographic group is multiplied by the same nonzero factor in all neighborhoods: for any

city X 2 C and any positive scalars �!� = (�g)g2G(X), X � �!� �X.

In section 5.3, we study an alternative axiomatization that does not satisfy Scale Invariance.

The next axiom is the Neighborhood Division Property. The central idea of this axiom is

that if the partition of a city into neighborhoods becomes �ner, one may detect more segregation,

but not less. The axiom states, more precisely, that if two neighborhoods are combined, then

segregation is una¤ected if the two neighborhoods have the same group distribution; otherwise,

segregation weakly falls. Examples appear in Tables 6 and 7. In the �rst panel of each table there

are three neighborhoods, A, B, and C; the second panel depicts the result of combining A and B

into a single neighborhood. Assume that neighborhood C always contains the same unspeci�ed

numbers of blacks and whites. Since A and B have di¤erent proportions of blacks in Table 6, NDP

implies only that combining them does not raise segregation. A case in which A and B have the

same proportion of blacks appears in Table 7. In this case, NDP implies the stronger property

that combining A and B has no e¤ect on the level of segregation in the city. All indices described

in the previous section satisfy NDP.

Neighborhood Division Property (NDP) Let X 2 C be a city and let n be a neighborhood

of X. Let X 0 be the city that results from dividing n into two neighborhoods, n1 and n2. If

9Jahn et al [10] write:

A satisfactory measure of ecological segregation should (1) be expressed a single quantitative value so

as to facilitate such statistical procedures as comparison, classi�cation, and correlation; (2) be relatively

easy to compute; (3) not be distorted by the size of the total population, the proportion of Negroes, or

the area of a city; (4) be generally applicable to all cities; and (5) di¤erentiate degrees of segregation

in such a way that the distribution of intermediate scores cover most of the possible range between the

extremes of 0 and 100.

Property (3) is Scale Invariance.
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City 1 City 10

A B C A&B C

Blacks 1 2 TCBlack Blacks 3 TCBlack

Whites 2 1 TCWhite Whites 3 TCWhite

Table 6: The Neighborhood Division Property implies that combining neighborhoods A and B does

not raise segregation (although it may lower it).

City 2 City 20

A B C A&B C

Blacks 1 2 TCBlack Blacks 3 TCBlack

Whites 2 4 TCWhite Whites 6 TCWhite

Table 7: Since A and B have the same group distributions, the Neighborhood Division Property

implies that combining them does not a¤ect the level of segregation.

either (a) at least one of n1 and n2 is empty or (b) n1 and n2 have the same group distributions

(i.e., pn1g = pn2g for all g 2 G), then X 0 � X. Otherwise, X 0 < X.

NDP is related to two properties that are discussed by James and Taeuber [11] and subsequent

authors. The �rst is organizational equivalence: if a neighborhood is divided into two neighbor-

hoods that have the same group distribution, the city�s level of segregation does not change. The

second is the transfer principle. When there are two demographic groups, the transfer principle

states that if a black (white) person moves from one neighborhood to another neighborhood in

which the proportion of blacks (whites) is higher, then segregation in the city rises. For exam-

ple, consider the city h(5; 5) ; (0; 0)i. It is perfectly integrated since all residents live in a single

neighborhood. Suppose that blacks then move, one by one, to the second neighborhood. The

end result, h(0; 5) ; (5; 0)i, is clearly more segregated than the initial city. The transfer principle

implies that segregation rises along the way as well: each black who moves causes an increase in

segregation.

When there are two demographic groups, NDP follows from organizational equivalence and the
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transfer principle.10 But while NDP also includes the case of more than two groups, the transfer

principle cannot be easily generalized to this case.11 For instance, consider a city with blacks,

whites, and Asians. Suppose a black moves to a neighborhood that has higher proportions of both

blacks and Asians. Since there are more blacks in the destination neighborhood, one might argue

(using the transfer principle) that segregation has gone up. On the other hand, blacks are now

more integrated with Asians, so perhaps segregation has fallen.

The next axiom is Independence. It states that if two cities have the same group distribution

and the same total population, then adjoining a given set of neighborhoods to each of them does

not a¤ect which of the two cities is more segregated. Consider, for instance, the two cities depicted

in Table 8. The result of adjoining a given, unspeci�ed set of additional neighborhoods to both

cities appears in Table 9. The two original cities have the same total size and the same group

distribution (3/8 black, 5/8 white). The axiom of Independence implies that adjoining the new

neighborhoods preserves the segregation order of the cities. If the city in the left panel in Table 8

is more segregated than the city on the right, then the same is true in Table 9.

An intuition for Independence is as follows. Since the two original cities have the same size and

group distributions, the degree of segregation between each city and the new set of neighborhoods

is the same. Since the degree of segregation within the new set of neighborhoods is the same

regardless of which city these neighborhoods are added to, which combined city is more segregated

should be governed by the degree of segregation within each original city.

10To see this, let X be a city and let n be a neighborhood of X. Let X 0 be the city that results from di-

viding n into two neighborhoods, n1 and n2. Organizational equivalence directly implies X 0 � X if n1 and

n2 have the same demographic distributions. If they don�t, assume without loss of generality that the pro-

portion black is higher in n1 than in n2: pn1Black > pn2Black. Neighborhood n in city X can be written�
Tn1Black + T

n2

Black; T
n1

White + T
n2

White

�
. Split this neighborhood into two neighborhoods with identical percents black:

n01 =

�h
Tn1Black + T

n2

Black

i T
n1

White
T
n1

White
+T

n2

White
; Tn1White

�
and n02 =

�h
Tn1Black + T

n2

Black

i T
n2

White
T
n1

White
+T

n2

White
; Tn2White

�
. Let

the resulting city be X 00. By organizational equivalence, X � X 00. Since the proportion black is higher in n1 than

in n2, neighborhood n01 must have a proportion black that lies between p
n1

Black and p
n2

Black. Since the number of

whites is the same in n01 as in n1, the number of blacks must be lower in n
0
1 than in n1. Now move blacks from n02

to n01 until n
0
2 and n

0
1 have the same number of blacks as n2 and n1, respectively. (Note that the number of whites

is also the same.) The city that results is X 0. By the transfer principle, this operation strictly raises segregation:

X 0 � X 00 � X, so by transitivity, X 0 � X.
11One attempt to do so appears in Reardon and Firebaugh [20].
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City 1 City 2

A B A B

Blacks 3 0 Blacks 2 1

Whites 3 2 Whites 2 3

Table 8: Two cities with equal sizes and equal group distributions.

City 10 City 20

A B C D ... A B C D ...

Blacks 3 0 TCBlack TDBlack ... Blacks 2 1 TCBlack TDBlack ...

Whites 3 2 TCWhite TDWhite ... Whites 2 3 TCWhite TDWhite ...

Table 9: Result of adding the neighborhoods C, D, etc. to the cities in Table 8.

Independence (IND) Let X;Y 2 C be two cities with the same set G of nonempty groups.

Suppose X and Y have the same group distributions and the same total populations. Then

for all cities Z 2 CA such that G(Z) � G,

X < Y if and only if X ] Z < Y ] Z:

To see why the conditions on X and Y are needed, consider �rst an example in which X and

Y have the same total populations but very di¤erent group distributions: X = h(1; 100)i and

Y = h(100; 1)i. Since Y is just X with the groups relabeled, they are equally segregated by

Group Symmetry. Now consider adjoining Z = h(100; 1)i to each of them. Each neighborhood

in Y ] Z = h(100; 1) ; (100; 1)i is representative of the city, while the neighborhoods of X ] Z =

h(1; 100) ; (100; 1)i are very unrepresentative of their city. Hence, the city X ]Z seems to be more

segregated than the city Y ] Z: in a sensible segregation ordering, the addition of Z changes the

relative segregation of X and Y . To allow orderings with this property, the axiom of Independence

applies only to cities X and Y that have the same group distribution.

To see why X and Y must also be of the same size, consider the following example, in which
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X and Y have the same group distributions but very di¤erent total populations:

X = h(90000; 10000) ; (10000; 90000)i

Y = h(1; 0) ; (0; 1)i

Z = h(100; 100)i

In this example, Y is completely segregated; Z is completely integrated; and X lies inbetween.

Thus, Y � X � Z. In addition, since X is much larger than Z, X ] Z should be about as

segregated as X. Since Z is much larger than Y , Y ] Z should be about as segregated as Z.

Together, these imply that X ]Z should be more segregated than Y ]Z: adding Z should reverse

the segregation order. To permit segregation orderings with this reasonable property, the axiom

of Independence applies only to cities X and Y that have the same size.

Our �nal axiom, and the most trivial, is the axiom of Nontriviality. It states that there exist

two cities, one strictly more segregated than the other. More precisely:

Nontriviality Suppose the class C contains some cities with exactly K nonempty groups, where

K � 2. Then there exist cities X;Y 2 C, each with exactly K nonempty groups, such that

X � Y .

5 Results

This section has three parts. Subsection 5.1 shows that there is a unique ordering that satis�es

the preceding �ve axioms when the number of groups is �xed. This ordering is represented by

the Atkinson Index. Subsection 5.2 extends this result to the case of a variable number of groups.

This extension relies on a new axiom, the Weak Group Division Property. In subsection 5.3, we

strengthen this axiom while weakening Scale Invariance. We show once again that there is a unique

ordering. This ordering is represented by the Weighted Atkinson Index.

5.1 Fixed number of groups

In this section we consider the class CK of cities that contain exactly K nonempty groups. Fix a

city X 2 CK . For any neighborhood n in X, let tn(X) =
�
tng (X)

�
g2G(X) denote the vector of the

proportions of each group that live in n. For example, in the city X = h(3; 0) ; (7; 10)i, which is in
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C2, 3=10 of the blacks and none of the whites live in the �rst neighborhood, so t1(X) = (3=10; 0).

We will omit the argument �X�when the city is clear from the context.

Our �rst result is that the �ve axioms of Section 4 are jointly satis�ed on CK by a unique

segregation ordering, which is represented by the Atkinson index A.

Theorem 1 The Atkinson ordering on CK is the only ordering that satis�es GS, SI, NDP, IND,

and N on CK .

While A represents this unique ordering, any increasing transformation of A also represents it.

However, A is the unique index that satis�es the following intuitive property. Let XK be a city

with K � 1 groups of unit size who all live in the same neighborhood: XK =

�
1; 1; : : : ; 1| {z }
K groups

��
. Let

X
K
be a city with K � 2 groups of unit size who all live in separate neighborhoods:

X
K
=

��
1; 0; : : : ; 0| {z }
K groups

�
;
�
0; 1; 0; : : : ; 0| {z }
K groups

�
; :::;

�
0; :::; 0; 1| {z }
K groups

�
| {z }

K neighborhoods

�
:

The property is as follows.

De�nition 3 The index S satis�es the Cardinalization Principle with K Groups if the following

conditions hold:

1. If K = 1, then S
�
X1
�
= 0.

2. If K > 1, then for any � 2 [0; 1], S
�
�X

K ] (1� �)XK
�
= �:

Part 1 states that a city with one group should have an index of zero. Part 2 considers a city with

K equal sized groups, in which a proportion � of each group live in a completely segregated area

and 1� � live in a completely integrated area. The principle states that the segregation index of

such a city should be �. For instance, the Cardinalization Principle states that the index of the

city in Table 10 should be 0.15.

Only the Atkinson index satis�es the Cardinalization Principle together with the �ve axioms of

Theorem 1:
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A B C

Blacks 15 0 85

Whites 0 15 85

Table 10: A segregation index that satis�es the Cardinalization Principle must assign a value of

0.15 to this city.

Proposition 1 For all K � 1, the Atkinson index is the unique segregation index on CK that

satis�es the Cardinalization Principle with K Groups and has an induced segregation ordering that

satis�es GS, SI, NDP, IND, and N.

The following proposition provides a useful interpretation of the Atkinson index: it can be

rewritten as a weighted average of neighborhood-level segregation indices, where the weights are

the neighborhoods� relative sizes. For (c1; :::; cK) 2 RK+ , de�ne fA(c1; :::; cK) =
�
1
K

PK
i=1 ci

�
�� KQ

i=1
ci
�1=K .

Proposition 2 The Atkinson Index can be written

A(X) =
X

n2N(X)

Tn

T
fA
�pn1
P1
; : : : ;

pnjGj
PjGj

�
: (4)

The segregation index of neighborhood n, fA
�pn1
P1
; : : : ;

pnjGj
PjGj

�
, is nonnegative and equals zero if and

only if neighborhood n is representative of city X.

Proof. One can verify that
P

n2N(X)
1
K

P
g2GK t

n
g = 1 by reversing the order of summation.

Substituting this expression for 1 in (1),

A(X) =
X

n2N(X)

1

K

X
g2GK

tng �
X

n2N(X)

� Y
g2G(X)

tng

� 1
jG(X)j

=
X

n2N(X)
fA(tn)

Equation (4) follows since tng =
png
Pg

Tn

T and since fA is homogeneous of degree one. Further, the

neighborhood-level segregation index, fA
�
pn1
P1
; : : : ;

pnjGj
PjGj

�
, is nonnegative, since fA is the arithmetic

mean of its arguments less their geometric mean. It equals zero if and only if the ratios
png
Pg
are all

equal, in which case they must all equal one: the neighborhood must be representative of the city.

This follows since the numerators and the denominators must both sum to one. Q.E.D.
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This expresses the Atkinson index as a weighted average of neighborhood-level segregation

indices, where the weight on neighborhood n, Tn=T , is the proportion of city residents who live in

n. The neighborhood-level segregation index can be large even if the neighborhood is quite small.

For instance, consider the city X = h(1; 0) ; (99; 100)i. Substituting into (4),

A(X) =
1

200
f

�
1=
1

2
; 0

�
+
199

200
f

�
99

199
=
1

2
;
100

199
=
1

2

�
=

1

200
� 1 + 199

200
� 0:0000126:

The segregation index of the �rst neighborhood is 1; however, its weight in the average is only

1=200 since only one of the 200 city residents lives there. The segregation index of the second

neighborhood, 0:0000126, is much lower; however, the neighborhood�s weight is almost one since

nearly all city residents live there.

5.2 Variable Number of Groups

Thus far we have considered how cities with a common number of groups should be ranked. In

this section, we consider segregation orderings that allow comparisons among cities with di¤erent

numbers of groups. In order to obtain a unique segregation ordering on the set of all cities, we

introduce a weak assumption on how the ordering ranks certain pairs of cities with di¤erent numbers

of groups. This axiom states that if each group g is divided into a common number of equal-sized

groups, each with the same distribution across neighborhoods, segregation does not change. For

example, consider the two-neighborhood city h(2; 4) ; (6; 8)i with two demographic groups (say,

blacks and whites). If we divide each group into two equal sized groups (e.g., males and females)

which are identically distributed across neighborhoods, we obtain the two-neighborhood, four-

group city h(1; 1; 2; 2) ; (3; 3; 4; 4)i. According to the following axiom, these two cities are equally

segregated.

Weak Group Division Property (WGDP) Let X 2 C be a city in which the set of groups is

G. Let X 0 be the result of partitioning each group g 2 G into M � 2 equal sized groups, g1
through gM , such that the M groups have the same distribution across neighborhoods as the

original group: tngm = tng for all m = 1; :::;M and for all neighborhoods n.12 If X 0 2 C, then

X 0 � X.

12Note that X 0 has the same set N of neighborhoods as X and for each neighborhood n 2 N , Tngm = Tng =M for all
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With the addition of this axiom, we obtain a unique segregation ordering on the set of all cities:

Theorem 2 The Atkinson ordering on CA is the unique ordering that satis�es GS, SI, NDP, IND,

N, and WGDP on CA.

Proof. By Theorem 1, for any K, the Atkinson ordering on CK is the only ordering on CK that

satis�es the axioms GS, SI, NDP, IND, and N. We �rst show that the Atkinson ordering on CA

satis�es WGDP. Recall that A(X) = 1 �
P

n2N(X)

� Q
g=1;:::;K

tng

�1=K
where K is the number of

nonempty groups in X. Let X 0 be the result of partitioning each group g into M equal-sized

groups, g1 through gm. Suppose that for all g, the M subgroups g1 through gM have the same

distribution across neighborhoods as g itself: tngm = tng for all subgroups m and neighborhoods n.

Then

A(X 0) = 1�
X

n2N(X)

 Y
g=1;:::;K
m=1;:::;M

tngm

! 1
KM

= 1�
X

n2N(X)

" Y
g=1;:::;K

 Y
m=1;:::;M

tngm

! 1
M
# 1
K

= 1�
X

n2N(X)

" Y
g=1;::;K

tng

# 1
K

= A(X)

Thus, the Atkinson ordering on the set of all cities satis�es WGDP.

We now show that this is the only ordering on CA that satis�es GS, SI, NDP, WGDP, IND,

and N. Consider any two cities X and Y . Let KX (KY ) be the number of nonempty groups in X

(Y ). Let X 0 be the result of replacing each group in X by KY equal sized groups that have the

same distribution across neighborhoods. Let Y 0 be the result of replacing each group in Y by KX

equal sized groups that have the same distribution across neighborhoods. Note that X 0 and Y 0

have the same number of groups, KXKY . By WGDP, X � X 0 and Y � Y 0. Thus, X < Y if and

only if X 0 < Y 0. But by Theorem 1, X 0 < Y 0 if and only if A(X 0) � A(Y 0). Since the ordering

induced by A satis�es WGDP, A(X) = A(X 0) and A(Y ) = A(Y 0). Hence, X < Y if and only if

A(X) � A(Y ). Q.E.D.

m 2 f1; � � � ;Mg.

21



Theorem 2 shows that the Atkinson ordering is the only ordering that satis�es the �ve axioms

of Theorem 1 plus WGDP when the number of groups is variable. Any strictly increasing transfor-

mation of A also represents the same ordering. However, for any K � 2, any such transformation

must violate the Cardinalization Principle for K groups:

Proposition 3 The Atkinson index is the unique representation of the Atkinson ordering on CA

that satis�es the Cardinalization Principle for some number of groups K � 2. Moreover, the

Atkinson index satis�es the Cardinalization Principle for all K � 1.

5.3 Axiom Set II: WSI and GDP

We understand �segregation�as the tendency of di¤erent races to have di¤erent distributions across

neighborhoods. So far we have interpreted this to mean that segregation should be a function of

these distributions alone: the relative sizes of the groups should not matter. This is the property of

Scale Invariance. In some situations, however, we may be particularly interested in the tendency

of large groups to be distributed di¤erently from one another. To allow large groups to have

more weight, we must drop Scale Invariance. But one implication of Scale Invariance does make

sense: the overall size of a city should not matter. Accordingly, we replace Scale Invariance by

the following weaker axiom.

Weak Scale Invariance (WSI) The segregation in a city is unchanged if the numbers of agents

in all groups in all neighborhoods are multiplied by the same positive scalar: for any city

X 2 C and any positive scalar �, if �X 2 C then X � �X.

In order to obtain a unique index, we must strengthen one or more of the other axioms. A

plausible candidate is the Weak Group Division Property, which requires that segregation remain

unchanged when existing groups are subdivided in a particular way. This axiom is weak because

it applies only when (i) all the existing groups are subdivided into the same number of subgroups,

(ii) the subgroups of a given group have equal size, and (iii) the subgroups of a given group are

identically distributed across neighborhoods.
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In this section we drop conditions (i) and (ii) as they do not contribute to the axiom�s plau-

sibility. We retain condition (iii) as it is essential.13 Accordingly, the following axiom states

that segregation is invariant to the subdivision of an existing group into two identically distributed

subgroups. For instance, if whites are divided into white retirees and white nonretirees, and these

groups have the same distribution across neighborhoods, then measured segregation should not

change (even if there are fewer retirees than nonretirees).

Group Division Property (GDP) Let X 2 C be a city in which the set of groups is G. Let

X 0 be the result of partitioning some group g 2 G into two groups, g1 and g2, such that both

groups have the same distribution across neighborhoods: tng1 = tng2 = tng for all n 2 N .14 If

X 0 2 C, then X 0 � X.

The Atkinson ordering violates GDP. For example, the Atkinson index of the city h(2; 1) ; (0; 1)i

is 0:29. GDP implies that this city is as segregated as the city h(1; 1; 1) ; (0; 0; 1)i. However, the

Atkinson index of the second city is 0:21.

With these changes to the axioms, we also need to modify Independence. Independence states

that if X and Y have the same size and group distribution, then adjoining any city Z to X and to

Y does not a¤ect which city is more segregated. Since Z may not have the same group distribution

as X and Y , adjoining Z will generally change the group distribution of the two cities. However,

Scale Invariance would let us rescale the resulting cities so that their group distributions are the

same as before. This means that in the presence of SI, Independence is equivalent to requiring that

once the new cities are rescaled to restore their original group distributions, the segregation ordering

is una¤ected. When SI is dropped, we replace Independence by this alternative requirement. This

makes sense since without SI, the segregation of a city might depend on its group distribution.

Under the new axiom of Weak Independence, adjoining Z to X and to Y does not a¤ect which city

is more segregated after the combined cities are rescaled to restore their original group distributions.

13To see why, consider a city with two white inhabitants, each of whom occupies one neighborhood: h(1) ; (1)i.

This city is completely integrated. Assume the �rst white is, in fact, of Hispanic origin. If the demographic

schema is modi�ed to distinguish between Hispanic and non Hispanic whites, the city will now look very segregated:

h(1; 0) ; (0; 1)i. A reasonable segregation measure will be higher under the new schema. By retaining condition (iii),

we do not rule out such measures.

14Note that X 0 has the same set N of neighborhoods as X and for each neighborhood n 2 N , Tng = Tng1 + T
n
g2 .
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In fact, we only need this property in a special case: when the nonempty groups in X and

Y are all of size 1. We refer to such a city as a �normalized city�. For any city X 2 CA, let

�(X) be the �normalized� city that results from scaling each group so that its size is one. In

the normalized city, the number of members of any group g in each neighborhood n equals Tng =Tg.

For instance, the result of applying � to the city h(1; 2) ; (2; 3)i is the city

�
1
3 ;
2
5

�
;
�
2
3 ;
3
5

��
. Weak

Independence states that if X and Y are normalized cities with the same set G of nonempty groups

and Z is a set of neighborhoods whose groups are all in G, then adjoining Z to both cities and

then scaling the result to restore the cities�original group distributions does not change which city

is more segregated. This axiom is implied by IND and SI, but it does not itself imply IND or SI.

Weak Independence (WIND) LetX;Y 2 C be two cities with the same set of nonempty groups

G. Suppose that each nonempty group in X and Y has a size of one: Tg(X) = Tg(Y ) = 1

for all groups g 2 G. Then for all cities Z 2 CA such that G(Z) � G,

X < Y if and only if �(X ] Z) < �(Y ] Z):

When Scale Invariance is imposed, Weak Independence is equivalent to Independence. Therefore,

Theorems 1 and 2 would still hold if IND were replaced by WIND.

To facilitate the proof of our next theorem, we also modify Nontriviality slightly. Nontriviality

gives conditions under which there are two cities with exactly K groups that are ranked di¤erently.

Dual Nontriviality gives conditions under which there are two cities with exactly T residents that

are ranked di¤erently.

Dual Nontriviality (DN) Suppose the class C contains some cities with exactly T residents,

where T � 2. Then there exist cities X;Y 2 C, each with exactly T residents, such that

X � Y .

In the class CA of all cities, Dual Nontriviality is implied by Nontriviality (assuming Weak Scale

Invariance).15 However, this is not true for arbitrary classes of cities. For the purposes of proving

Theorem 3, Dual Nontriviality is a more convenient formulation.

15Nontriviality implies that there are two cities X;Y 2 CA such that X � Y . For any T , we can scale the

populations of X and Y so that they both have T residents. By Weak Scale Invariance, this rescaling does not

change the segregation level of either city.
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Until now we have let cities have group sizes that are not integers. Theorem 3 restricts to the

set of cities with integral group sizes.16 This restriction allows us to prove the theorem in a brief

and intuitive way. Formally, we restrict attention to the set CI � CA of cities in which, for each

nonempty group g, the number of members of group g is a positive integer: Tg 2 N. The following

theorem states that the weighted Atkinson ordering is the only one that satis�es the new set of

axioms on CI .

Theorem 3 The weighted Atkinson ordering on CI is the unique ordering that satis�es GS, WSI,

NDP, WIND, GDP, and DN on CI .

Proof. The idea of the proof is as follows. Let SI be the set of segregation orderings on CI

satisfying the axioms of Theorem 3, and let SA be the set of segregation orderings on CA satisfying

the axioms of Theorem 2. We will de�ne an isomorphism between these two sets. By Theorem

2, SA is a singleton. By the existence of the isomorphism, SI must also be a singleton. Finally,

using properties of the isomorphism we will show that the unique ordering in SI is represented by

AW .

We will use two transformations of cities. The �rst is the operation �, de�ned earlier in this

section, which scales each group so that its size is one. The second is a ��attening�transformation,

�, which divides each group g into Tg subgroups of size one, where each subgroup has the same

distribution across neighborhoods. For example, suppose X = h(1; 2) ; (0; 1)i. Since the �rst group

in X already has size one, it is not subdivided. The second group has two members in the �rst

neighborhood and one in the second, so it is divided into three equally distributed subgroups, each

having 2/3 of a member in the �rst neighborhood and 1/3 in the second:

�(X) =

��
1;
2

3
;
2

3
;
2

3

�
;
�
0;
1

3
;
1

3
;
1

3

��
:

More formally: for each neighborhood n 2 N(X) the corresponding neighborhood n in �(X)

contains Tg groups for each nonempty group g in X. Each of these Tg groups contains Tng =Tg

members. Note that the city �(X) contains a total of T groups.

16We can easily extend Theorem 3 to the class of cities where each group has a rational number of members.

Indeed, by Weak Scale Invariance, any such city X is as segregated as the city cX where c is constant such that cTg

is an integer for each g 2 G(X). In order to further extend Theorem 3 to the class of all cities one would need a

continuity axiom. We feel that there would be little to gain from doing this.
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We now de�ne a function  that transforms any ordering on CI into an ordering on CA.

De�nition 4 For any segregation ordering < on CI de�ne the associated ordering < on CA as

follows:

for any X;Y 2 CA, X < Y if and only if � (X) < � (Y ) : (5)

Analogously, we de�ne a function � that transforms any ordering on CA into an ordering on

CI .

De�nition 5 For any segregation ordering < on CA, de�ne the associated ordering <� on CI as

follows:

for any X;Y 2 CI , X <� Y if and only if � (X) < � (Y ) (6)

For any ordering < on CI , the associated ordering < satis�es SI, which is one of the axioms

in Theorem 2. Claim 1 states a stronger property: if in addition, the ordering < satis�es all the

axioms of Theorem 3, then the associated ordering < satis�es all the other axioms of Theorem 2

as well. That is,  is a function from SI to SA:

Claim 1 For any < in SI , the associated ordering < is in SA.

Claim 2 states the converse: if the ordering < on CA satis�es all the axioms of Theorem 2, then

the associated ordering <� satis�es all the other axioms of Theorem 3. That is, � is a function

from SA to SI .

Claim 2 For any < in SA, the associated ordering <� is in SI .

The next step is to show that  is one-to-one.

Claim 3  is a one-to-one function from SI to SA.

Proof. Let <1 and <2 be two di¤erent orderings in SI . To show that  is one-to-one, we must

show that < 1 and <
 
2 are di¤erent orderings. Since <1 and <2 di¤er, there are cities X;Y 2 CI for

which X <1 Y but Y �2 X. As <1 and <2 satisfy GDP, we can assume without loss of generality

that X and Y are normalized cities. (Otherwise, one can �rst apply � to obtain normalized cities,
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without disrupting the cities�ranking under the two orderings.) But any ordering < in SI agrees

with its associated ordering < on the set of normalized cities. This implies that X < 1 Y but

Y � 2 X; that is, <
 
1 and <

 
2 are di¤erent orderings. Q.E.D.

It follows that  is an isomorphism from SI to SA whose inverse is � . To see why, note that

SA is a singleton by Theorem 2. Since � is a function from SA to SI , the latter set must have

at least one element. Since  : SI �! SA is one-to-one, SI cannot have more than one element;

else SA would as well. So SI is also a singleton. But then  must be an isomorphism from SI to

SA whose inverse is � .

Let < be the unique element of SI . It remains only to show that < is represented by AW :

X < Y , �(X) < �(Y ) as < satis�es GDP

, �(X) < �(Y )

8>>><>>>:
as < and < agree

on the set of normalized cities,

which includes �(X) and �(Y )

, A(�(X)) � A(�(Y )) as < is represented by A

, AW (X) � AW (Y ) as AW (�) = A(�(�)). 17.

Q.E.D.

While any increasing transformation of the weighted Atkinson index also represents the same

ordering, only the weighted Atkinson index also satis�es the Cardinalization Principle:

Proposition 4 AW is the unique segregation index on CI whose induced segregation ordering sat-

is�es GS, WSI, NDP, WIND, GDP, and DN, and that satis�es the Cardinalization Principle for

some K � 2. Moreover, AW satis�es the Cardinalization Principle for all K � 1.

Proof. Identical to the proof of Proposition 3, with SI replaced by WSI. Q.E.D.

6 Analysis of various indices and the independence of the axioms

It is natural to wonder whether the axioms in Theorems 2 and 3 are independent of each other.

That is, for each axiom, is there an index that violates it yet that satis�es the other axioms? In

17For any city Z, A(�(Z)) = 1�
P

n2N(Z)

� Q
g2G(Z)

�
tng
�Tg(Z)� 1

T (Z)
= AW (Z)
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this section, we show that this is indeed the case. Consequently, no axiom is super�uous: all are

needed for our results to hold.

6.1 Independence of Axioms in Theorem 2

We begin with a simple su¢ cient condition for a segregation index to satisfy WGDP.

Lemma 1 For any X 2 CA, let S(X) =
P

n2N(X) f (t
n) be a segregation index, where f is sym-

metric and satis�es f(t) = f(t; : : : ; t| {z }
M times

) for any M � 1. Then the segregation ordering on CA that is

represented by S satis�es WGDP.

Proof. Let X 2 CA. Let X 0 be the result of partitioning each group g 2 G(X) into M � 2

equal-sized groups, g1 through gM , where for all g, the subgroups g1 through gM have the same

distribution across neighborhoods as g itself. Since f is symmetric, we can reorder its arguments

to obtain:

S(X 0) =
X

n2N(X)
f(tn; : : : ; tn| {z }

M times

) =
X

n2N(X)
f (tn) = S(X)

Q.E.D.

The following lemma gives su¢ cient conditions for a segregation index on CK to satisfy GS, SI,

and NDP.

Lemma 2 For any X 2 CK , let S(X) =
P

n2N(X) f (t
n) be a segregation index. Then:

1. S satis�es SI.

2. If f(t) is symmetric, then S satis�es GS.

3. If f is weakly convex and homogeneous of degree 1, then S satis�es NDP.

Proof. For any positive scalar �, tng =
Tng
Tg
=

�Tng
�Tg

; this establishes part 1. Part 2 is trivial. For

part 3, let X be a city and let m and n be two neighborhoods of X. Let X 0 be the city that results

from combining m and n into a single neighborhood. Note that the vector of proportions of each

group who are in the combined neighborhood is just tm + tn. Hence,

S(X)� S(X 0) = f(tm) + f(tn)� f (tm + tn) (7)
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By the weak convexity of f , this is nonnegative, so X < X 0. If one neighborhood (say m) is empty,

then tm is the zero vector; by homogeneity, f(0; :::; 0) = 0, so by (7), X � X 0. Finally, if pmg = png

for all g 2 GK , there must be a constant � > 0 such that tm = �tn; consequently,

S(X)� S(X 0) = f(�tn) + f(tn)� f ((�+ 1) tn)

This is zero by homogeneity, so X � X 0. Q.E.D.

We now consider the axioms in Theorem 2. We �rst show that IND is independent.

Claim 4 The Multigroup Dissimilarity Index D satis�es GS, SI, NDP, N, and WGDP on CA, but

fails IND.

Proof. The function f in (3) is symmetric, weakly convex, and homogeneous of degree one. By

Lemma 2, D satis�es GS, SI, and NDP. D satis�es WGDP by Lemma 1 as f(t) = f(t; :::; t). As

for IND, consider the following cities: X = h(2; 4); (2; 0)i and Y = h(4; 2); (0; 2)i. It can be veri�ed

that D(X) = D(Y ) = 1=2. Consider now the result of annexing to them the one-neighborhood city

Z = h(4; 0)i. One can verify that D(X ]Z) = 3=4 while D(Y ]Z) = 1=2. Hence, D violates IND.

We leave it to the reader to check that D satis�es N. Q.E.D.

We now build an index that violates only GS: an index that is sensitive to how the groups are

labeled. To do so we need to assign labels to the groups. One way is as follows. We begin with

two groups, b (�blacks�) and w (�whites�). We de�ne the set of groups to be the closure of fb; wg

under subdivision. For instance, this set could include the group �black females�, but it does not

include the group �females�since this group includes both blacks and whites. Let � 2 (0; 1). For

any group g, let the function "(g) equal � if g is a subgroup of b and 1� � if it is a subgroup of w.

For any city X with set of groups G, let �G(g) = "(g)
hP

g02G "(g
0)
i�1

. (�G is a normalization of

" that sums to one:
P

g2G �G(g) = 1.) De�ne the asymmetric Atkinson index with parameter �

to be:

A�(X) = 1�
X

n2N(X)

� Y
g2G(X)

�
tng
��G(X)(g)� (8)

This index is like the Atkinson index but it gives weight � to groups with label b and weight 1� �

to groups that have label w. For � = 1=2, these weights are equal: A1=2 is just the Atkinson index.

Claim 5 The index A� satis�es SI, NDP, IND, N, and WGDP on CA, but fails GS unless � = 1=2.
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We have shown that GS and IND are independent of the other axioms. It remains to show that

NDP, N, WGDP, and SI are each independent. To show that NDP is independent, note that the

index 1�A (de�ned by (1�A)(X) = 1�A(X)) satis�es all of the axioms but NDP. As for N, the

trivial segregation order, which ranks all cities as equally segregated, violates N while satisfying all

the other axioms. For WGDP, consider the index S(X) = jG(X)jA(X). This index satis�es GS,

SI, NDP, IND, and N, since it represents the same ordering as A does for any �xed number of groups.

However, it clearly violates WGDP since subdividing each group intoM equally distributed groups

increases the index by a factor of M . For SI, consider the index S(X) = T (X)A(X). It clearly

satis�es GS, NDP, and WGDP, since these axioms involve transformations that do not change a

city�s population. Let X;Y 2 CA be two cities with the same set G of nonempty groups, with the

same group distributions and the same total populations. Let Z 2 CA be such that G(Z) � G.

Then T (X) = T (Y ) and T (X ] Z) = T (Y ] Z) so

S(X ] Z) � S(Y ] Z)

, T (X ] Z)A(X ] Z) � T (Y ] Z)A(Y ] Z) by de�nition of S

, A(X ] Z) � A(Y ] Z)

, A(X) � A(Y ) as A satis�es IND

, T (X)A(X) � T (Y )A(Y )

, S(X) � S(Y ) by de�nition of S

so S satis�es IND. Finally, for all K � 2, A(XK
) = 1, so S(X

K
) = K while S(2X

K
) = 2K. This

implies that S satis�es N but violates SI.

We have shown that the axioms are independent: each axiom has an index that violates it but

that satis�es all other axioms. This is summarized in Table 11. A check mark indicates that the

given index satis�es the given axiom; the absence of a check mark indicates that it does not.

6.2 Independence of Axioms in Theorem 3

We �rst show that WIND is independent. Consider the Weighted Dissimilarity Index de�ned in

Section 3.1. It clearly satis�es GS, WSI, DN, and GDP. As for NDP, let X be a city and let m

and n be two neighborhoods of X. Let X 0 be the city that results from combining m and n into a

single neighborhood. Note that the vector of proportions of each group who are in the combined
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GS SI NDP IND N WGDP

Atkinson: A(X)
p p p p p p

A�(X) for � 6= 1=2
p p p p p

T (X) �A(X)
p p p p p

1�A(X)
p p p p p

Dissimilarity: D(X)
p p p p p

Trivial index
p p p p p

jG(X)j �A(X)
p p p p p

Table 11: Independence of the axioms of Theorem 2.

neighborhood is just tm + tn. Hence,

DW (X)�DW (X 0) =
X

g2G(X)
Pg
��tmg � Pm��+ X

g2G(X)
Pg
��tng � Pn��� X

g2G(X)
Pg
��tmg + tng � Pm � Pn��

=
X

g2G(X)
Pg
���tmg � Pm��+ ��tng � Pn��� ��tmg + tng � Pm � Pn���

By the triangle inequality, DW (X) � DW (X 0). If the group distributions in neighborhoods m

and n are identical, then tmg � Pm and tng � Pn have the same sign, so DW (X) = DW (X 0).

Hence, DW satis�es NDP. As for WIND, consider the following cities: X = h(1=2; 1); (1=2; 0)i and

Y = h(1; 1=2); (0; 1=2)i. It can be checked that DW (X) = DW (Y ) = 1=2. Consider now the result

of combining each of them with the one-neighborhood city Z = h(1; 0)i. It can be checked that

DW (�(X ]Z)) = 3=4 while DW (�(Y ]Z)) = 1=2. Hence, DW violates WIND while satisfying the

other axioms: WIND is independent.

We now show that GS is independent, following an analogous argument in Section 6.1. We

modify the construction of the asymmetric Atkinson index A� (equation (8)) to produce a weighted

version of this index. Let �WG (g) = Pg"(g)
hP

g02G(X) Pg0"(g
0)
i�1

, where " is de�ned in Section 6.1.

For any � 2 (0; 1), de�ne:

AW� (X) = 1�
X

n2N(X)

� Y
g2G(X)

�
tng
��WG(X)(g)� (9)

This index trivially satis�es DN andWSI. As for NDP, letX 0 be the result of splitting neighborhood

n in city X into two neighborhoods, n1 and n2. Then:

AW� (X
0)�AW� (X) =

Y
g2G(X)

�
tng
��WG(X)(g) � Y

g2G(X)

�
tn1g
��WG(X)(g) � Y

g2G(X)

�
tn2g
��WG(X)(g)

31



Since
P

g2G(X) �
W
G(X)(g) = 1, the products are concave functions of the vectors tn, tn1 , and tn2 ;

since tn = tn1+ tn2 , AW� (X
0)�AW� (X) � 0. If the neighborhood distributions in n1 and n2 are the

same, then tn1g = �tng and t
n2
g = (1� �)tng for all g, where � = Tn1=Tn2 , so AW� (X

0)�AW� (X) = 0.

Hence, AW� satis�es NDP. For WIND, let X;Y 2 CI be two normalized cities with the same set G

of nonempty groups. Let Z 2 CA such that G(Z) � G. We wish to show that AW� (X) � AW� (Y )

if and only if AW� (� (X ] Z)) � AW� (� (Y ] Z)). But

AW� (X) � AW� (Y ), A�(X) � A�(Y ) as A� agrees with A
W
� on normalized cities

, A�(X ] Z) � A�(Y ] Z) as A� satis�es IND

, A�(�(X ] Z)) � A�(�(Y ] Z)) as A� satis�es SI

, AW� (�(X ] Z)) � AW� (�(Y ] Z)) as A� agrees with A
W
� on normalized cities

Regarding GDP, let X 2 C and let G = G(X) and N = N(X). Let X 0 be the result of partitioning

some group g 2 G into 2 groups, g1 and g2, each having the same distribution across neighborhoods

as g itself. Then the only change in AW� is that for each n, the term
�
tng
��WG(X)(g) in the product is

replaced by
�
tng1
��WG(X)(g1) �tng2��WG(X)(g2). But tng1 = tng2 = tng and

�WG(X)(g1) + �
W
G(X)(g2) = �WG(X)(g)

so AW� (X
0) = AW� (X): GDP holds. This proves that GS is independent.

Finally, analogous arguments to the ones used in Section 6.1 show that the indices 1�AW , the

trivial index, jG(X)jAW , and T (X)AW satisfy all the axioms except NDP, DN, GDP, and WSI,

respectively.

We have veri�ed that the axioms of Theorem 3 are independent. This is summarized in Table

12.

7 Proofs

We �rst state and prove some preliminary lemmas.

Lemma 3 Let < be a segregation ordering on CK that satis�es NDP, SI, and GS.

1. All cities in which every neighborhood is representative have the same degree of segregation

under <.
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GS WSI NDP WIND DN GDP

Weighted Atkinson: AW (X)
p p p p p p

Asymmetric Weighted Atkinson: AW� (X) for � 6= 1=2
p p p p p

T (X) �AW (X)
p p p p p

1�AW (X)
p p p p p

Weighted Dissimilarity: DW (X)
p p p p p

Trivial index
p p p p p

jG(X)j �AW (X)
p p p p p

Table 12: Independence of the axioms of Theorem 3.

2. Any city in which every neighborhood is representative is weakly less segregated under < than

any city in which some neighborhood is unrepresentative.

Proof.

1. Consider any city Y in which every neighborhood is representative. Number the neighbor-

hoods 1; :::; N . For each i = 1; :::; N , let Yi be city that results from Y when the �rst i neigh-

borhoods of Y are combined into a single neighborhood. By NDP, for each i = 1; :::; N � 1,

Yi � Yi+1. Hence, by transitivity, Y = Y1 � YN . YN contains a single neighborhood. But

by SI and GS, any city with a single neighborhood is as segregated as any other city with a

single neighborhood.

2. Consider any city X in which at least one neighborhood is unrepresentative. Number the

neighborhoods 1; :::; N . For each i = 1; :::; N , let Xi be city that results from X when the

�rst i neighborhoods of X are combined into a single neighborhood. By NDP, for each

i = 1; :::; N � 1, Xi < Xi+1. Hence, by transitivity, X = X1 < XN . XN contains a single

neighborhood.

Q.E.D.

Lemma 4 Let < be a segregation ordering on CK that satis�es NDP, SI, and GS. All completely

segregated cities have the same degree of segregation under <, and are weakly more segregated than

any city in which any neighborhood is mixed.
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Proof. Consider a completely segregated city X. Let X 0 be the city that results from X when,

for each group g 2 GK , all neighborhoods that contain only members of group g are combined

into a single neighborhood. (X 0 thus consists of K neighborhoods, each of which contains all

the members of a single group.) By iteratively applying NDP, X � X 0. By SI and GS, X 0 is

as segregated as any other city that consists of K neighborhoods, each of which contains all the

members of a single group. This implies that all completely segregated cities have the same degree

of segregation.

Now any city that has at least one mixed neighborhood can be converted into a completely

segregated city by dividing each neighborhood n into K distinct neighborhoods, each of which

includes all and only the members of a single group. By NDP, this procedure results in a weakly

more segregated city. Q.E.D.

Lemma 5 Let < be a segregation ordering on CK that satis�es NDP, IND, N, SI, and GS. Then

1. X
K � XK ;

2. for any �; � 2 [0; 1], � > �,

�X
K ] (1� �)XK � �X

K ] (1� �)XK :

Proof.

1. By N, there exist cities X and Y such that X � Y . By lemmas 3 and 4, X
K < X � Y < XK ,

so X
K � XK .

2. By NDP,

�X
K ] (1� �)XK � �X

K ] (�� �)XK ] (1� �)XK

and

�X
K ] (1� �)XK � �X

K ] (�� �)XK ] (1� �)XK :

By part 1 and SI, (� � �)X
K � (� � �)XK . Since the numbers of members of each group

are equal in city X
K
and in XK , they are also equal in city (� � �)X

K
and in (� � �)XK .

So by IND,

�X
K ] (�� �)XK ] (1� �)XK � �X

K ] (�� �)XK ] (1� �)XK :
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The result follows by transitivity.

Q.E.D.

Proof of Theorem 1. Claim 5 implies that the Atkinson index A satis�es all the axioms of the

theorem. We now show that it is the only index to do so.

Fix a number of groups K � 2. We now show that any ordering that satis�es GS, SI, NDP,

IND, and N on CK must be the Atkinson ordering. Let < be such an ordering. Since < satis�es

GS, it depends on the set of groups only via its cardinality. Hence, w.l.o.g., we can restrict attention

to a �xed set of K groups.

Claim 6 Let t 2 [0; 1]K and let X = ht; (1�t1; 0; :::; 0); (0; 1�t2; 0; :::; 0); :::; (0; :::; 0; 1�tK)i. Then,

there exists a unique �X 2 [0; 1] such that X � �XX
K ] (1� �X)X

K
. Further, this unique �X is� KQ

g=1
tg

�1=K
.

Proof. In this proof, all neighborhoods are K-tuples. For existence, there are two cases.

Case 1: Suppose tg = 0 for some g. In this case we have to show that �X = 0 or, equivalently,

that X � X
K
. By symmetry, we can assume WLOG that t1 = 0. Therefore t = (0; t2; t3; :::; tK).

Let �12 be the permutation that relabels groups 1 and 2 into 2 and 1, respectively. Therefore,

�12t = (t2; 0; t3; :::; tK). Let 1 denote a vector of K ones. By GS,

X = t �XK ] (1� t) �XK

� �12t �XK ] (1� �12t) �X
K
= bX:

For any � 2 (0; 1), let  = (�; 1; :::; 1). By IND and SI,

 �X ] (1� ) �XK �  � bX ] (1� ) �XK
:

In other words,

 �
�
t �XK ] (1� t) �XK

�
] (1� ) �XK �  �

�
�12t �XK ] (1� �12t) �X

K
�
] (1� ) �XK

:

Hence, by NDP and GS,

( � t) �XK ] (1�  � t) �XK � ( � �12t) �XK ] (1�  � �12t) �X
K

� [�12 ( � �12t)] �XK ] (1� [�12 ( � �12t)]) �X: (10)
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But note that since ( � t) = t,

( � t) �XK ] (1�  � t) �XK
= t �XK ] (1� t) �XK

= X:

Since �12 ( � �12t) = �12 � t = (0; �t2; t3; :::; tK),

�12 ( � �12t)�XK](1� [�12 ( � �12t)])�X � (0; �t2; t3; :::; tK)�XK](1�(0; �t2; t3; :::; tK))�X
K
:

Therefore, it follows from (10) that

X � (0; �t2; t3; :::; tK) �XK ] (1� (0; �t2; t3; :::; tK)) �X
K
:

We can repeat this procedure for t3; :::; tK to obtain

X � (0; �t2; �t3; :::; �tK) �XK ] (1� (0; �t2; �t3; :::; �tK)) �X
K

� �t �XK ] (1� �t) �XK
:

Now choose some constants �; �0 2 (0; 1), � > �0, We obtain:

X � �t �XK ] (1� �t) �XK

and

X � �0t �XK ] (1� �0t) �XK
:

But by NDP,

�0t �XK ] (1� �0t) �XK � �0t �XK ] (1� �t) �XK ] (� � �0)t �XK

and

�t �XK ] (1� �t) �XK � �0t �XK ] (� � �0)t �XK ] (1� �t) �XK

so by IND,

(� � �0)t �XK � (� � �0)t �XK

and by SI,

t �XK � t �XK :

Now by NDP and IND,

X
K � t �XK ] (1� t) �XK � t �XK ] (1� t) �XK

= X
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so that �X = 0, as claimed.

Case 2. Suppose tg 2 (0; 1] for all g. Let � =
� KQ
g=1

tg

�1=K
, and let

Y = �XK ] (1� �)XK
= h(�; :::; �); (1� �; 0; :::; 0); (0; 1� �; 0; :::; 0); :::; (0; :::; 0; 1� �)i:

We shall show that X � Y and therefore that � is the �X we are looking for.

Let 1 2 (0; 1). For g = 2; :::;K, de�ne g = g�1
tg�1
� . Note that by de�nition of �,

K = 1

K�1Y
g=1

�
tg
�

�
= 1

 K�1Q
g=1

tg

�K�1

!
= 1

 
1=tK
1=�

KQ
g=1

tg

�K

!
= 1

�
1=tK
1=�

�
= 1

�

tK

=) 1 = K
tK
�
:

Now choose 1 small enough that each g � 1; this holds if

max
g2h2;:::;Ki

g = max
g2h2;:::;Ki

1

gY
j=2

�
tj�1
�

�
� 1:

Denote by  = (1; : : : ; K) the K-tuple just built. Note than � is a permutation of  � t. Now

by de�nition of X and Y , by SI and IND, and by NDP

X � Y , t �XK ] (1� t)XK � �XK ] (1� �)XK

,  �
�
t �XK ] (1� t)XK

�
] (1� )XK �  �

�
� �XK ] (1� �)XK

�
] (1� )XK

, ( � t) �XK ] (1�  � t)XK � (�) �XK ] (1� �)XK
:

But the last two cities are equally segregated because � is a permutation of  � t and < satis�es

GS. Q.E.D.

Claim 7 Let t1; t2 2 [0; 1]2 and let X = ht1; t2; (1�t11�t21; 0; :::; 0); (0; 1�t12�t22; 0; ::; 0); :::; (0; :::; 0; 1�

t1K�t2K)i be a city. Then there is a unique �X 2 [0; 1] such that X � �XX
K](1��X)X

K
. Further,

this unique �X is
� KQ
g=1

t1g

�1=K
+
� KQ
g=1

t2g

�1=K
.18

18This is less than or equal to 1 since the geometric average of a set of numbers can be no greater than their

arithmetic average:
� KQ
g=1

t1g

�1=K
+
� KQ
g=1

t2g

�1=K
� 1

K

PK
g=1 t

1
g +

1
K

PK
g=1 t

2
g =

1
K

PK
g=1

�
t1g + t

2
g

�
� 1

K

PK
g=1 1 = 1.
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Proof. Assume �rst that tig � 1=2 for i = 1; 2 and g = 1; :::;K. Uniqueness follows from Lemma

5, part 2, so we need only to show the existence of �X . If tig = 0 for any i or g then the result

follows from Claim 6. Assume WLOG that
KQ
g=1

t1g �
KQ
g=1

t2g. De�ne
etig = tig=(1� t2g) for g = 1; :::;K

and i = 1; 2. Note that
KQ
g=1

et1g � KQ
g=1

et2g. De�ne � = � KQ
g=1

t1g
t2g

�1=K
=
� KQ
g=1

et1get2g
�1=K

� 1. We can write

X = ht1; (1� t11 � t21; 0; :::; 0); (0; 1� t12 � t22; 0; :::; 0); :::; (0; :::; 0; 1� t1K � t2K)i ]


t2
�
:

By SI

X � Y ]
D�et21; :::;ft2K�E (11)

where19

Y =
D�et11; :::;ft1K� ;�1� et11; 0; :::; 0� ; :::;�0; :::; 0; 1�ft1K�E

= et1 �XK ] (1� et1) �XK
:

By Claim 6,

Y � �YX
K ] (1� �Y )X

K
: (12)

where �Y =
� KQ
g=1

et1g�1=K . De�ne
Y 0 = � et2 �XK ] (1� � et2) �XK

: (13)

We must verify that all entries in Y 0 are nonnegative. This holds if � et2g � 1 for all g. Since

t2g � 1=2 for all g, it follows that et2g � 1; since � � 1 as well, it follows that � et2g � 1. Since� KQ
g=1

� et2g�1=K = � KQ
g=1

et1g�1=K = �Y , by Claim 6,

Y 0 � �YX
K ] (1� �Y )X

K
: (14)

It follows from (12) and (14) that Y � Y 0. As a result,

X � Y ]

�et21; :::;ft2K�� by (11)

� Y 0 ]

�et21; :::;ft2K�� by IND

� � et2 �XK ] (1� � et2) �XK ]

�et21; :::;ft2K�� by (13)

� (� + 1) et2 �XK ] (1� � et2) �XK
by NDP

� (� + 1) t2 �XK ] (1� (� + 1) t2) �X by SI and de�nition of et2:
19We must check that Y has no negative entries. Since X cannot have negative entries, it must be that t1g+ t

2
g � 1

for all g. Since in addition t2g < 1 for all g, it follows that
t1g

1�t2g
� 1 for all g. Hence, all entries in Y are nonnegative.
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Therefore, using Claim 6, X � �XX
K ] (1� �X)X

K
, where

�X = (� + 1)

� KY
g=1

t2g

�1=K
=

� KY
g=1

t1g

�1=K
+

� KY
g=1

t2g

�1=K
:

Consider now the case of general t1; t2 2 [0; 1]2. De�ne bti = 1
2 t
i for i = 1; 2. Let

bX = hbt1;bt2; (1� bt11 � bt21; 0; :::; 0); (0; 1� bt12 � bt22; 0; :::; 0); :::; (0; :::; 0; 1� bt1K � bt2K)i:
Each entry in each vector is at most one half. By the preceding argument, there is a uniqueb�X 2 [0; 1] such that bX � b�XXK ] (1� b�X)XK

: (15)

and this unique b�X is
� KQ
g=1

bt1g�1=K + � KQ
g=1

bt2g�1=K . Further note that by NDP, bX � 1
2X ] 1

2X
K
.

Therefore

1

2
X ] 1

2
X
K � b�XXK ] (1� b�X)XK

� 1

2
(2b�X)XK ] (1� 1

2
(2b�X))XK

� 1

2
(2b�X)XK ] 1

2
(1� (2b�X))XK ] 1

2
X
K

where the last line follows from NDP. Finally, by IND and SI

X � (2b�X)XK ] (1� (2b�X))XK

which means that the unique �X that we are looking for is 2b�X =
� KQ
g=1

t1g

�1=K
+
� KQ
g=1

t2g

�1=K
.

Q.E.D.

Lemma 6 For every city X there is a unique �X 2 [0; 1] such that X � �XX
K ] (1 � �X)X

K
.

Further, this unique �X is
P

n2N(X)

� KQ
g=1

tng

�1=K
.20

Proof. We say that a neighborhood is a ghetto if all its residents belong to the same group. By

SI it is enough to prove the statement for cities where all groups have a population measure of one.

Also, by NDP we can restrict attention to cities where for each group there is at most one ghetto.

The proof is by induction on the number of non-ghetto neighborhoods. Claims (6) and (7) already

20By the reasoning given in footnote 18, �X must lie between zero and one.
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show the that the statement is true for cities with at most two non-ghetto neighborhoods. Assume

that the statement of the theorem holds for all cities with m� 1 non-ghetto neighborhoods, let

X = ht1; � � � ; tm; (1�
mX
n=1

tn1 ; 0; :::; 0); (0; 1�
mX
n=1

tn2 ; 0; :::; 0); :::; (0; :::; 0; 1�
mX
n=1

tnK)i

be a city with m non-ghetto neighborhoods, and let tm be one of them. Then one can write

X = Y ] htmi

where Y denotes X with neighborhood tm removed. Y has m� 1 non-ghetto neighborhoods. By

SI

Y ] htmi �
��

1

1� tm1
; :::;

1

1� tmK

�
� Y
�
]
��

tm1
1� tm1

; :::;
tmK

1� tmK

��
:

By the induction hypothesis,
�

1
1�tm1

; :::; 1
1�tmK

�
�Y � �YX

K ] (1� �Y )X
K
where

�Y =

m�1X
n=1

� KY
g=1

tng
1� tmg

�1=K
:

Using (in order) IND, SI, and Claim 7,��
1

1� tm1
; :::;

1

1� tmK

�
� Y
�
]
��

tm1
1� tm1

; :::;
tmK

1� tmK

��
� �YX

K ] (1� �Y )X
K ]

��
tm1

1� tm1
; :::;

tmK
1� tmK

��
� (1� tm1 ; :::; 1� tmK) �

�
�YX

K ] (1� �Y )X
K
�
] htmi

� �XX
K ] (1� �X)X

K

where

�X =

� KY
g=1

�
1� tmg

��1=K
�Y +

� KY
g=1

tmg

�1=K

=

� KY
g=1

�
1� tmg

��1=K m�1X
n=1

� KY
g=1

tng
1� tmg

�1=K
+

� KY
g=1

tmg

�1=K

=

mX
n=1

� KY
g=1

tng

�1=K
:

Q.E.D.
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Now de�ne the function S on the set of cities by S(X) = 1� �X , where for each X, �X is the

unique number identi�ed in Lemma 6. By Lemmas 5 and 6, for any cities X and Y , X < Y if and

only if S(X) � S(Y ). This function (which is just A(X)) thus represents the relation <. Q.E.D.

Proof of Proposition 1. By inspection, A satis�es the Cardinalization Principle. By Theorem

1, there is a unique segregation ordering < that satis�es the �ve axioms, and it is represented by

A. Let S be another index that represents < and that satis�es the Cardinalization Principle. We

must show that S(X) = A(X) for any city X 2 CK . By Lemma 6, there is an �X 2 [0; 1] such

that X � �XX
K ] (1� �X)X

K
. Hence, S(X) = S(�XX

K ] (1� �X)X
K
), which equals �X by

the Cardinalization Principle. But A(X) also equals A(�XXK ] (1� �X)X
K
), which equals �X

by the Cardinalization Principle. Hence, S(X) = A(X). Q.E.D.

Proof of Proposition 3. By inspection, A assigns to the most and least segregated cities the

values of one and zero, respectively, regardless of the number of groups. This implies that the

unique ordering < of Theorem 2 must rank all completely integrated cities as equally segregated:

XK � XK0
for all K;K 0 � 1 (16)

Likewise, it must rank all completely segregated cities as equally segregated:

X
K � X

K0
for all K;K 0 � 2 (17)

Let A0 be any increasing transformation of A that di¤ers from A and let X be a city for which

A(X) 6= A0(X). There are two cases.

1. If X has one group, then X � X1 by NDP and SI. Hence, A(X) = 0, so A0(X) 6= 0. But

A0(X) = A0(X1), so A0(X1) is not equal to zero. By (16), for any K � 2, XK � X1. Hence,

A0(XK) 6= 0, so A0 violates the Cardinalization Principle for K groups (setting � = 0 in

condition 2 and using NDP).

2. If X has K 0 � 2 groups, then by Lemma 6 there is an � 2 [0; 1] such that X � �X
K0
] (1�

�)XK0
. By (16) and (17), X � �X

K ] (1 � �)XK as well, for any K � 2. But A0(X)

cannot equal � since A(X) = � and A(X) 6= A0(X). Hence, A0 violates the Cardinalization

Principle for each �xed number K � 2 of groups.
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Q.E.D.

Our proofs of Claims 1 and 2 make use of several simple properties of the transformations �

and �, which we state without proof.

Lemma 7 1. If < satis�es WGDP and WSI, then for all X 2 CI and for all positive integers

�, �(X) � �(�X).21

2. For any city X 2 C, and for any relabeling �, �(� (X)) = � (�(X)) :

3. For all X 2 CI , �(�(X)) = �(X).

4. For all X 2 C, �(�(X)) = �(X).

Proof of Claim 1. We must show that, for any < de�ned on CI that satis�es GS, WSI, NDP,

GDP, WIND, and DN, the associated ordering < on CA satis�es GS, SI, NDP, WGDP, IND, and

N.

GS: Let X be a city with the set G of nonempty groups and let � be a relabeling. We must

verify that X � �(X). This holds if and only if �(X) � �(�(X)). But �(�(X)) = �(�(X)) by

Lemma 7, part 2. The result follows since � satis�es GS.

SI: Holds by construction.

NDP: Assume that Y is obtained from X by dividing some neighborhood in X into two

neighborhoods. Then �(Y ) is obtained from �(X) after the corresponding neighborhood in �(X)

is subdivided in the same way. Since < satis�es NDP, �(Y ) < �(X); hence, by de�nition of < ,

Y < X. If the two neighborhoods in Y have the same group distribution or one is empty, then

this is also true of �(Y ). In this case, �(Y ) � �(X) by NDP. By de�nition of < , Y � X.

WGDP: Let X be a city in which the set of groups is G. Let X 0 be the result of partitioning

each group g 2 G into M equal-sized groups, g1 through gM , where the subgroups g1 through gM

have the same distribution across neighborhoods as g itself. By WSI, �(X) � M�(X). Note

21Note that �(��(X)) = �(�X). Then,by a sequential application of WSI, and WGDP,

�(X) � ��(X) � �(��(X)) = �(�X):
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that if we partition the groups of M�(X) in the above way, we obtain �(X 0). Therefore; by GDP,

M�(X) � �(X 0). Hence, �(X) � �(X 0), which by de�nition of < implies X � X 0.

IND: Let X and Y be two cities with the same set G of nonempty groups. Suppose X and

Y have the same group distributions and the same total populations. Let Z 2 CA be such that

G(Z) � G. We must show that

X < Y () X ] Z < Y ] Z: (18)

By de�nition of < , equation (18) is equivalent to

�(X) < �(Y )() �(X ] Z) < �(Y ] Z): (19)

For each g 2 G(Z), de�ne �g to be 1
Tg(X)

= 1
Tg(Y )

. Let �!� = (�g)g2G(Z). Then �(X ] Z) =

� (� (X) ] !(Z)) where !(Z) = �!� � Z. Hence, to show (19) it su¢ ces to prove that

�(X) < �(Y )() �(�(X) ] !(Z)) < �(�(Y ) ] !(Z)): (20)

This holds since < satis�es WIND and G(!(Z)) = G(Z) � G.

N: Since < satis�es DN, for any K � 2 there exist cities X and Y in CI , each with exactly K

residents, such that X � Y . By GDP, �(X) � �(Y ); by part 3 of Lemma 7, � (�(X)) � � (�(Y )),

so �(X) � �(Y ). We have produced two cities withK nonempty groups that � ranks di¤erently.

Q.E.D.

Proof of Claim 2. We must show that, for any < de�ned on CA that satis�es GS, SI, NDP,

WGDP, IND, and N, the associated ordering <� on CI satis�es GS, WSI, NDP, GDP, WIND, and

DN.

GS: for any city X 2 CI and any relabeling �, we must show that X �� �(X). By (6), this

holds if and only if � (X) � � (�(X)). � (�(X)) is the result of �attening the city X after its groups

have been relabeled by �. This is equivalent to relabeling the groups of the �attened city �(X):

there is a relabeling b� of the groups of � (X) such that b� (� (X)) = �(�(X)). Since < satis�es GS,

� (X) � b� (� (X)) = �(�(X)).

WSI: for any city X 2 CI and any integral scalar � � 1, we must show that X �� �X. By

(6), this holds if and only if � (X) � � (�X), which follows from part 1 of Lemma 7.
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NDP: Let X 2 CI be a city and let n be a neighborhood of X. Let X 0 be the city that

results from dividing n into two neighborhoods, n1 and n2. We must show that if either (a)

at least one of n1 and n2 is empty or (b) n1 and n2 have the same demographic distributions

(i.e.,
�
pn1g
�
g2G =

�
pn2g
�
g2G), then � (X 0) � � (X) (and hence X 0 �� X by (6)); otherwise,

� (X 0) < � (X) (and hence X 0 <� X by (6)). Under the operation �, each group g in a

city is split up into Tg subgroups of size one but with the same distribution across neighborhoods:

instead of Tng members of group g who live in neighborhood n, there are T
n
g =Tg members of each

of Tg subgroups of g who live in n. Hence, the city �(X 0) results from splitting neighborhood n

of city �(X) into two neighborhoods, n1 and n2, where the number of members of each subgroup

gm of g in neighborhood ni for i = 1; 2 is just Tnig =Tg. Since < satis�es NDP, � (X 0) < � (X). If

(a) holds, then either n1 or n2 in �(X 0) must be empty; if (b) holds, then n1 and n2 have the same

demographic distributions in �(X 0) since for each subgroup m of each group g of X,

pn1gm =
Tn1g =Tg

Tn1
=
pn1g
Tg

=
pn2g
Tg

=
Tn2g =Tg

Tn2
= pn2gm :

(This uses the de�nition pnig = Tnig =Tni .) If (a) or (b) holds, then � (X 0) � � (X) as < satis�es

NDP.

GDP: Let X 2 CI be a city in which the set of groups is G. Let X 0 2 CI be the result of

partitioning some group g 2 G into two groups, g1 and g2, where the number of members of each

group is an integer. We must show that if
�
tng1
�
n2N =

�
tng2
�
n2N then �(X 0) � �(X) and hence

X 0 �� X. But �(X 0) and �(X) are the same up to a permutation of groups. The result follows

from GS.

WIND: Suppose X;Y 2 CI have the same set of nonempty groups, each of which has size one

and let Z 2 CI . We must show that

X <� Y if and only if �(X ] Z) <� �(Y ] Z) (21)

or equivalently, by de�nition of <� , that

�(X) < �(Y ) if and only if �(�(X ] Z)) < �(�(Y ] Z)):
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But

�(X) < �(Y ) , X < Y since X and Y are already �at

, X ] Z < Y ] Z by IND of <

, �(X ] Z) < �(Y ] Z) by SI of <

, �(�(X ] Z)) < �(�(Y ] Z)) by Lemma 7, part 4.

DN: Since < satis�es N, for any K � 2 there exist cities X and Y in C, each with exactly K

groups, such that X � Y . By SI, �(X) � �(Y ); by part 4 of Lemma 7, � (�(X)) � � (�(Y )), so

�(X) �� �(Y ). We have produced two cities each with K residents that �� ranks di¤erently.

Q.E.D.

Proof of Claim 5. If � 6= 1=2, the index fails GS since it is not invariant to permutations that

do not preserve the groups�labels. The index can be rewritten

A�(X) =
X

n2N(X)
f(tn)

where f(tn) =
X

g2G(X)
�G(g)t

n
g �

Y
g2G(X)

�
tng
��G(X)(g) :

Note that f is convex and homogeneous of degree one. By Lemma 2, A� satis�es SI and NDP.

We leave it to the reader to check that A� satis�es N.

As for IND, let X;Y 2 CK be two cities with the same set G of nonempty groups, the same

group distributions, and the same total populations. Let Z 2 CA such that G(Z) � G. We wish

to show that A(X) � A(Y ) if and only if A(X ]Z) � A(Y ]Z). Let g =
Tg(X)

Tg(X]Z) =
Tg(Y )

Tg(Y ]Z) and

�g =
Tg(Z)

Tg(X]Z) =
Tg(Z)

Tg(Y ]Z) . Note that a proportion t
n
gg of group-g residents of the city X ]Z live in

neighborhood n 2 N(X). Likewise, a proportion tng�g of group-g residents of the city X ] Z live

in neighborhood n 2 N(Z). Analogous statements are true for Y ] Z. Accordingly,
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A�(X ] Z) � A�(Y ] Z)

,
X

n2N(X)

�Y
g2G

�
tngg

��G(g)�+ X
n2N(Z)

�Y
g2G

�
tng�g

��G(g)�

�
X

n2N(Y )

�Y
g2G

�
tngg

��G(g)�+ X
n2N(Z)

�Y
g2G

�
tng�g

��G(g)�

,
X

n2N(X)

�Y
g2G

�
tngg

��G(g)� � X
n2N(Y )

�Y
g2G

�
tngg

��G(g)�

,
�Y
g2G

�
g
��G(g)� X

n2N(X)

Y
g2G

�
tng
��G(g) � �Y

g2G

�
g
��G(g)� X

n2N(Y )

Y
g2G

�
tng
��G(g)

,
X

n2N(X)

Y
g2G

�
tng
��G(g) � X

n2N(Y )

Y
g2G

�
tng
��G(g)

, A�(X) � A�(Y )

This shows that A� satis�es IND as well.

Regarding WGDP, let X 2 C and let G = G(X) and N = N(X). Let X 0 be the result of

partitioning each group g 2 G into M � 2 equal-sized groups, g1 through gM , where for all g, the

M subgroups g1 through gM have the same distribution across neighborhoods as g itself. Let G0 be

the set of groups that results from this operation. For any new group g 2 G0, let �(g) 2 G denote

the parent group of g: the group in G of which g is a subgroup. For each g 2 G0, "(g) = "(�(g)),

so �G0(g) = "(�(g))
hP

g02G0 "(�(g
0))
i�1

=M�1�G(�(g)). Hence,

A�(X
0) = 1�

X
n2N

�Y
g2G0

�
tng
��G0 (g)� = 1�X

n2N

�Y
g2G0

�
tn�(g)

�M�1�G(�(g))
�

= 1�
X
n2N

�Y
g2G

h�
tng
�M�1�G(g)

iM�
= A�(X):

Q.E.D.
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