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Abstract

This paper characterizes the family of truthful double-
sided auctions. Despite the importance of double-sided
auctions to market design, to date no characterization
of truthful double-sided auctions was made. This pa-
per characterizes truthful mechanisms for double-sided
auctions by generalizing Roberts classic result [29], to
show that truthful double-sided auctions must ”almost”
be affine maximizers.

Our main result of characterizing double-sided auc-
tions required the creation of a new set of tools, reduc-
tions that preserve economic properties. This paper
utilizes two such reductions; a truth-preserving reduc-
tion and a non-affine preserving reduction. The truth-
preserving reduction is used to reduce the double-sided
auction to a special case of a combinatorial auction to
make use of the impossibility result proved in [20]. Intu-
itively, our proof shows that truthful double-sided auc-
tions are as hard to design as truthful combinatorial
auctions.

Two important concepts are developed in addition
to the main result. First, the form of reduction used
in this paper is of independent interest as it provides
a means for comparing mechanism design problems by
design difficulty. Second, we define the notion of ex-
tension of payments; which given a set of payments for
some players finds payments for the remaining play-
ers. The extension payments maintain the truthful and
affine maximization properties.

1 Introduction

This paper characterizes the class of truthful double-
sided auctions. In recent years a large body of research
has focused on designing algorithms for environments
where the input to the algorithm is distributed among
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players. Each player attempts to maximize its output
function (utility) without considering the environment
as a whole. Such environments are increasingly com-
mon e.g. the Internet and communication networks.
One of the main approaches to designing such auctions
is to design truthful mechanisms which motivate the
players to reveal their true input to the algorithm.

In this paper we look at a double-sided auction
which is a market that consists of multiple buyers and
sellers who wish to exchange goods. The market’s main
objective is to produce an allocation of sellers’ goods to
buyers that maximizes the total gain from trade (i.e.,
the total value associated with an allocation).

A commonly studied model of participant behavior
is taken from the field of economic mechanism design in
such papers as e.g., [1, 11, 13, 17, 21, 25, 26, 28]. In this
model each player has a private valuation function that
assigns real (non-negative) values to each possible allo-
cation. The auction algorithm uses the payments to the
mechanism in order to motivate players to truthfully re-
veal their functions. Each player is a utility maximizing
rational agent, i.e., the player maximizes the difference
between his valuation of the algorithm’s allocation and
his payment. The couplet consisting of an algorithm
and a payment is called a mechanism. Mechanisms
for which reporting the truth is a dominant strategy
for each player are called truthful. Although, truthful
mechanisms are the central paradigm of the literature
most work has focused on the model consisting of a sin-
gle seller and multiple buyers1. Double-sided auctions
remain an important open question.

In a double-sided auction mechanism, there are n
sellers each offering a unique good. Each seller si, 1 ≤
i ≤ n has a valuation function vi that assigns a real
value vi(gi) for his good gi and each buyer bj , 1 ≤ j ≤ m
has a valuation function vj that assigns a real value
vj(gi) for every good gi, 1 ≤ i ≤ n. The goal is to
find a match M between buyers and sellers such that
the total gain from trade

∑
i,j|(si,bj)∈M vj(gi)− vi(gi) is

maximized. The problem of a double-sided auctions
where all sellers’ goods are identical has been exten-

1Or equivalently a single buyer and multiple sellers
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sively studied in the literature (see e.g. [22]). Rela-
tively little work, e.g., [3] attempts to look at the more
general case, where sellers may sell different goods.

Our goal in this paper, is to characterize the set of
truthful mechanisms for the double-sided auction. Our
proof is partially based on a truthful preserving reduc-
tion to a special case of a combinatorial auction. In
a combinatorial auction, n unique goods are auctioned
among m players. Players value bundles of goods in a
way that may depend on the combination they win, i.e.,
each player has a valuation function vi that assigns a
real value vi(λ) for each possible subset of goods. The
goal is to find a partition λ1...λm of the goods that max-
imizes the total social welfare

∑
i vi(λi). The combina-

torial auction problem is NP-complete and has been
extensively studied as it is an important instance of the
interplay between computational difficulty and game
theoretic difficulty. A thorough study of combinatorial
auctions can be found in e.g., [4, 5, 8, 9, 15, 19, 27].

To better explain the background to the problem
of characterizing the class of truthful double-sided auc-
tion mechanisms, we formalize the basic model slightly
more. Let A denote the range of all mechanism’s pos-
sible outcomes and let vi : A → R be player i’s val-
uation function that specifies his value vi(a) for each
possible outcome a ∈ A where vi is chosen out of a val-
uations domain Vi. Given the valuations v = (v1, ..., vn)
the mechanism computes the function φ(v) that is re-
ferred to as the social choice function. In the context of
double-sided auction mechanisms A is all the possible
matchings of buyers and sellers and Vi depends only on
ai (as we assume ”no externalities”2) The mechanism
computes φ(v) and payments ~p to the players. We say
that a social choice function φ is implementable if there
exists payments supporting φ such that the pair (φ, ~p)
yields a truthful mechanism. So the basic question is
what are the implementable social choice functions?

The well known VCG payment scheme insures the
truthfulness of a welfare maximizing social choice func-
tion φ(v) ∈ arg maxa∈A

∑
i vi(a) [31, 16, 7]3. The VCG

payment scheme can be generalized in three ways: (1)
The range can be restricted to A′ ⊆ A; (2) Non-negative
weights can be assigned to the players; (3) weights can
be added to different outcomes. When applying those
generalizations to the VCG payment scheme we obtain

2For simplicity of the analysis, we make throughout this paper
the standard assumption of free disposal, i.e., that the functions
are monotone non decreasing.

3It also insures truthfulness for the welfare maximizing exten-
sion for double-sided mechanisms, i.e., the gain from trade social
choice function φ(v) ∈ arg maxa∈A

∑
j vj(a)−∑

i vi(a)

an implementation for any social choice function that
is an affine maximizer.

Definition: A social choice function φ is an affine
maximizer if for some A′ ⊂ A, non-negative {ωi}, and
{γa}, for all v1 ∈ V1, ..., vn ∈ Vn the function
φ(v1, ..., vn) ∈ arg maxa∈A′(

∑
i ωivi(a) + γa).

Are there other implementable social choice func-
tions that are not affine maximizers? The answer to
that question was given by Roberts [29] in his classic
negative result showing that if the players’ valuation
domain is unrestricted and the outcome range is non-
trivial then there does not exist an implementable social
choice function that is not an affine maximizer.

Theorem (Roberts, 1979): If there are at least 3
possible outcomes, and players’ valuations are unrestricted
(Vi = R|A|), then any implementable social choice func-
tion is an affine maximizer.

The requirement for players’ valuations domain to
be unrestricted is very strong as it implies that players
have a value for every possible outcome of the social
choice function. In most realistic and practical applica-
tions this is not the case. For example for double-sided
auctions, players’ valuations are restricted by the de-
mand that there are no externalities as mentioned above
and for combinatorial auctions, players’ valuations are
restricted in two ways: free disposal (i’s valuation is
monotone by inclusion in ai) and no externalities. On
the other hand restrictions on the players’ valuation
domain sometimes simplify the problem in a way that
does not capture problems of interest. For instance in
single dimensional valuation spaces (single value), im-
plementable social choice functions do not imply affine
maximization. Such is the case with single minded
bidders in combinatorial auctions where the valuation
function is given by a single positive value vi which is of-
fered for a single set of items. For instance, [19] present
a computationally efficient truthful approximation that
is not affine maximizing. Additional mechanisms for
the single-minded case were presented e.g., in [2, 24].

However, most interesting problems (computation-
ally and practically) lie somewhere between the two ex-
tremes of unrestricted domains and single dimensional
domains. This intermediate range includes double-sided
auctions with heterogenous goods (which is the model
we focus on), a number of single sided auctions (multi-
ple buyers, single seller), non-single-minded combinato-
rial auctions, and multi-unit (homogeneous) auctions.
Little is known about the intermediate range. The only
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positive example of a non-VCG mechanism for non-
single-dimensional domains is for multi-unit combina-
torial auctions where each bidder is restricted to de-
mand at most a fraction of the number of units of each
type [4]4. On the negative side [20] showed that for
multi-minded bidders a truthful combinatorial auction
essentially implies affine maximization.

In all of the mechanisms discussed so far we assume
players have quasi-linear utility. Interestingly in the
non-quasi-linear case the classic Gibbard-Satterthwaite
result [16, 30] shows that no non-trivial social choice
function over an unrestricted domain is implementable.
However, for restricted single peaked domains (which
is a single dimension domain) [6, 23] implement a non-
trivial social choice function.

1.1 Our Results

In this paper we characterize the implementable so-
cial choice functions of the double-sided auction mech-
anism over restricted domains in quasi-linear environ-
ments. The work follows the initiative of [20] to ex-
tend Roberts’s impossibility result to multi dimensional
but restricted domains. [20]’s work extends Roberts
work for multi-minded combinatorial auctions while our
work extends Roberts work for double-sided auctions.
The double-sided auction is the principle mechanism for
many real life markets (such as the stock market) and
therefore is fundamental to mechanism design.

To prove their main theorem [20] characterize con-
ditions over the domain in which implementable social
choice functions implies affine maximization. The ba-
sic conditions require that the domain is an order based
domain in which valuations over different possible out-
comes in the domain can be compared, and that the
best outcome for one player is the worst outcome for
the other players, i.e. ”conflicting preferences”. Those
domain conditions capture combinatorial auctions and
multi-unit auctions. However, since matching problems
do not have conflicting preferences [20] left open the
question of whether implementable social choice func-
tions implies affine maximization for matching. Our
work answers that question positively by showing that
the implementable social choice double-sided auctions
imply affine maximization.

Our work builds on Roberts results and the results
achieved by [20] integrating a classic tool of computer
science theory: reductions. Although reduction is a

4Other examples are known for relaxations of the determin-
istic dominant strategy model such as random algorithms and
implementations in undominated strategies [10, 5]

widely used tool in proving the hardness of problems by
reducing them to other hard problems this tool has not
been used before in the context of mechanism design.
Moreover the existing literature does not try to classify
the difficulty of different mechanism design problems
in terms of game theory but rather classifies difficulty
in the context of computational complexity. This work
makes use of the negative result in [20] for combinatorial
auctions to show the same negative result for double-
sided auctions by the means of a reduction. We believe
that the use of reduction in the context of mechanism
design is of independent interest.

The task of building a reduction between the com-
binatorial auction and the double-sided auction is not
as straightforward as it may sound. Since our main
theorem shows that: a mechanism with the property
of truthfulness implies affine maximization, we need to
construct a reduction that maintains the truthfulness
property and the non affine property. In order to use a
reduction in the context of mechanism design we define
the new concepts of truth-preserving reduction and non-
affine preserving reduction. These new concepts are in-
spired by the well established concept of gap-preserving
reductions [18, 12] which expand the concept of a re-
duction.

Definition: A social choice function φ is reducible to
a social choice function φ̄, namely, φ ≤ φ̄, if φ’s input
can be reduced to φ̄’s input such that the target function
of φ is optimum if and only if the target function of φ̄
on the reduced input is optimum.

Definition: Truth preserving reduction: Given mech-
anisms α = (φ, p1, ..., pn) and β = (φ̄, p̄1, ..., p̄m), a re-
duction α ≤ β is a truth preserving reduction if there
exists a function h : φ → φ̄ such that φ ≤ φ̄ and for ev-
ery 1 ≤ i ≤ m there exists a function hi : {p1, ..., pn} →
p̄i s.t. if (φ, p1, . . . , pn) is truthful then
(h(φ), h1(p1 . . . pn), . . . , hm(p1 . . . pn)) is truthful.

Definition: Non-affine maximizing preserving reduc-
tion: Given social choice functions φ and φ̄, a reduction
φ ≤ φ̄ is a non-affine maximizing preserving reduction
if the following holds: if φ is a non-affine maximizing
social choice function then φ̄ is a non-affine maximizing
social choice function.

Our proof that any implementable double-sided auc-
tion’s (DSA) social choice function is affine maximizing
utilizes the main theorem of [20] for a special case of
combinatorial auction which we call the combinatorial
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auction product space (CAPS)5. The first stage in our
proof is then:

Lemma: The social choice function of any truthful
CAPS mechanism is an almost affine-maximizer.

We then utilize a reduction from a special case of
DSA (where the sellers all have value zero for their
good) which we call double-sided auction cost 0 prob-
lem (DSAC0) to CAPS. This reduction preserves the
truthfulness and the non-affine properties. This reduc-
tion will then yield the following theorem:

Lemma: The social choice function of any truthful
DSAC0 mechanism is an almost affine maximizer.

Once any implementable DSAC0 is shown to be
affine maximizing a reduction from DSA to DSAC0
is constructed which again preserves the truthfulness
and non-affine properties6. As the sellers’ values (and
therefore the sellers’ prices) in the DSAC0 are zero,
the reduction DSA ≤ DSAC0 preserves the non-max
affine property only for the DSA buyers. To prove
the max-affine maximizing property for the sellers as
well, we define and perform a price expansion of the
induced buyers’ prices and define critical value prices
for sellers. The critical prices are shown to be truth-
ful affine-maximizing prices. To complete the structure
we prove that the integration of two price vectors that
are truthful and affine maximizing is also truthful and
affine maximizing.

This then yields our main result:

Main Theorem: The social choice function of any
truthful DSA mechanism is an almost affine maximizer.

The ”almost” in the above theorems is an artifact
from the proof of [20]’s main theorem and any improve-
ment in the proof of [20] will benefit our theorem.

[20]’s theorem only shows that the social choice func-
tion must be an affine maximizer for large enough input
valuations.

Definition ([20]): Almost Affine maximizer: A so-
cial choice function φ is an almost affine maximizer if
there exists a threshold H s.t. the function is an affine

5Although CAPS is defined as a special case of single-minded
combinatorial auction it is no wonder that the following lemma
holds as we show later on in the paper that the CAPS problem
is equivalent to a special case of multi-minded combinatorial auc-
tion.

6Although DSAC0 is a special case of DSA we show that all
cases of DSA can be expressed as an instance of DSAC0

maximizer if vz(a) ≥ H for all a and z.

[20] believe that this restriction is a technical arti-
fact of their current proof.

Our proof differs significantly from both Roberts’
proof and from [20]’s proof. The definitions that we
need to get our main result naturally yields the question
of whether it is possible to classify mechanism design
problems into classes of problems. Such classification
can be either into equivalency classes or into a hierar-
chal relationship. This classification is a refinement of
the standard computational complexity classes. For in-
stance, our reduction shows that the double-sided auc-
tion is at least mechanism design hard as a particular
case of combinatorial auction. This despite the fact
that from a computational complexity point of view,
double-sided auctions can be solved in polynomial time
(if the input is given truthfully). This observation em-
phasizes that the difficulty of mechanism design does
not necessarily require us to focus on computationally
hard problems but rather, a simple polynomial problem
such as the double-sided auction can already capture
the essence of the mechanism’s design difficulty

Organization: The rest of the paper is organized
as follows. The next section gives notations, defines
the new concepts of a truth preserving reduction and
non-affine preserving reduction and defines the CAPS,
DSAC0 and DSA problems. Section 4 and 5 gives the
characterization of the CAPS and DSAC0 problems re-
spectively. Sections 6 and 7 give the characterization
of the DSA problem for buyers and for sellers, respec-
tively. Finally, in section 8 we prove the main theorem.
We conclude with Section 9.

2 Setting, Notations and Problems
Definitions

We use the standard setting and notations. The formal
setting can be found in appendix B. In this section we
informally define the problems that we use. The formal
definitions can be found in Appendix C.

The first problem is the combinatorial auction prod-
uct space (CAPS). The CAPS has nm players and m+n
different goods where each player is interested in a sub-
set (of size two) of the goods. The objective is to max-
imize the players’ social welfare. To convince the scep-
tical reader that the CAPS problem can follow [20]’s
theorem although it is single minded, we show in sec-
tion C and 4 that the CAPS problem is equivalent to a
multi-minded CA special case which has 2n∗m/(n+m)
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players and m+n different goods where each player has
a preference over m+n different bundles each of which
is of size two. We denote the multi-minded CA special
case CAPS-MM.

Thus the CAPS and the CAPS-MM are maximizing
essentially the same objective function.

The second problem is the double-sided auction (DSA)
in which there is a set of buyers and a set of sellers and
the objective is to maximize the gain from trade be-
tween buyers and sellers. Finally, the third problem is
the double-sided auction cost 0 (DSAC0) is the DSA in
which all of the sellers costs are set to 0.

The intuition behind our reduction construction is
that each of the CAPS’ players corresponds to a possi-
ble trade between a pair of players in the DSA and the
goods are used as indicator functions to ensure that no
player buys more than one good and no good is sold
more than once. By maximizing the welfare in CAPS
we maximize the gain from trade in the original DSA.

3 Road Map

In order to prove our main theorem we prove that the
social choice function of any truthful CAPS mechanism
is an almost affine maximizer. By showing that the
DSAC0 is reducible to CAPS, and that the reduction
is truthful non-affine maximizing preserving, it follows
that the social choice function of any truthful DSAC0
mechanism is almost affine maximizer. We move on to
prove that DSA is reducible to DSAC0, and that the
reduction is truthful non-affine maximizing preserving
for buyers. It follows that the social choice function of
any truthful DSA mechanism is an almost affine max-
imizer for buyers. The solution is expanded to sellers
by defining critical value prices. We then prove that
any mechanism when applying critical price payment
scheme to the sellers in the DSA problem is a truth-
ful mechanism for sellers. In addition we show that
the social choice expansion of any truthful DSA mech-
anism with critical value prices to sellers is an affine
maximizer for sellers. It follows that the social choice
function of any truthful DSA mechanism is an almost
affine maximizer for sellers. Thus our main theorem is
concluded.

Figure 1: Roadmap of our proof

4 Combinatorial Auction Product
Space (CAPS) Characterization

In this section we prove that the social choice function
of any truthful CAPS mechanism is an almost affine-
maximizer, using the result of [20]:

[20]’s Main Theorem: Every social choice function
over an order-based domain with conflicting preferences
and onto non-degenerate range, that is player decisive
and satisfies S-MON, must be an almost affine maxi-
mizer.

In appendix E we prove that the CAPS mechanism
maintains the properties required by [20]. Therefore:

Lemma 4.1. The social choice function of any truthful
CAPS mechanism is an almost affine-maximizer.

Remark 4.1. One might be concerned that the results
of lemma 4.1 are not aligned with the existing litera-
ture as CAPS is a known single-minded combinatorial
auction and therefore should have many truthful mech-
anisms (e.g. [19, 24]) which are not affine. However
when one is aware of the fact that CAPS can be eas-
ily translated to CAPS-MM and maximize essentially
the same objective function as CAPS-MM, then actu-
ally lemma 4.1 is not surprising and is fully aligned with
the literature.

Moreover, lemma 4.1 illustrates the delicate analysis
of the affine property. Although the CAPS is a known
single-minded combinatorial auction (KSM) the prob-
lem is defined such that the players preferences are com-
pletely symmetric and in addition the players’required
bundles have intersections with other players’ bundles
only in part of the outcome space. The above structure
allows for a reach enough alternative space and there-
fore maintains the properties of a multi-minded com-
binatorial auction setting problem. And in fact CAPS-
MM is the equivalent multi-minded problem in that struc-
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ture of preferences.7

Also note that the KSM combinatorial auction is
a special case of all possible preferences [29] (the gen-
eral case GC) which must be affine. Schematically,
CAPS ⊂ KSM ⊂ GC here both CAPS and the gen-
eral case must be affine maximizers but KSM does not
require affineness.

To insure the reader that lemma 4.1 is fully aligned
with the literature. We prove the following Theorem
which claims that CAPS and CAPS-MM are equivalent
problems:

Theorem 4.1. CAPS ≤ CAPS−MM , CAPS−MM ≤
CAPS.

The proof of Theorem 4.1 is in Appendix H.

5 DSAC0 Characterization

In this section we prove that the social choice func-
tion of any DSAC0 truthful mechanism is (almost) an
affine-maximizer by showing that DSAC0 is reducible to
CAPS, using a truthful and non-affine-maximizer pre-
serving reduction.

The intuition behind the DSAC0 ≤ CAPS reduction
construction is to turn each pair of seller and buyer in
DSAC0 to a player in the CAPS, to turn each seller
and each buyer in the DSAC0 to a good in CAPS, such
that the valuation of each player in the CAPS for a pair
of goods defined by a seller and a buyer in the DSAC0
is the valuation of the buyer for the seller’s good. Due
to lack of space the technical details of the reduction
construction, reduction proofs and the properties pre-
serving proofs are defer to appendix F.

6 DSA Characterization for Buyers

In this section we proof that the social choice function of
any DSA truthful mechanism is an affine-maximizer for
buyers by showing that DSA is reducible to DSAC0,
using a truthful and non-affine-maximizer preserving
reduction.

The intuition behind the DSA ≤ DSAC0 reduction
construction is to turn every seller si with valuation

7Interestingly, when restricting the truthful non-affine mech-
anisms for the known single-minded combinatorial auction to a
known single-minded with all bundles of size 2 case, both [19, 24]
are affine. The above observation should not necessarily be true
for any truthful non-affine mechanism unless the problem is of the
CAPS’s symmetric form.

greater than 0 for his good g′i in the DSA to both a
buyer with the same valuation as si for g′i, and to a
seller who has the good g′i but who has a valuation of
0 for the good g′i in the DSAC0.

Due to lack of space the technical details of the re-
duction construction, reduction proofs and the proper-
ties preserving proofs are defer to appendix G.

7 DSA Characterization for Sellers

In this section we sketch the prove that the social choice
function of any truthful DSA mechanism for sellers is
an almost affine maximizer.

Our sellers are a special case of a more general class
of players:

Definition 7.1. (Single Value Player) A single value
player is a player that a single value determines his
valuation. I.e., for a single value player j, good gi and
allocation a where gi ∈ aj, for all allocations e, vj(a) =
vj(e) if gi ∈ ej and vj(e) = 0 otherwise.

We first prove a generalization of the folk theorem
that states that critical price payment scheme used for
single value players is truthful. We then conclude that
a critical price payment scheme for sellers in the DSA
problem is truthful as sellers are single value players.

It is important to note that sellers are inherently
single value players (their cost). Even if our DSA model
allowed seller to sell multiple goods, the sellers are still
single value player as there are no dependencies between
the different goods. Therefore, a seller with multiple
goods for sale can be viewed as multiple sellers with a
single good for sale. On the other hand the buyers in the
DSA are not single value players as they are interested
in only one good out of number of goods which they
value. Due to lack of space the technical details of this
section are defer to appendix J.

8 Proof of Main Theorem

In this section we conclude the main theorem using
Lemma G.1 and Corollary J.2 from previous sections,
and prove two new Lemmas that integrate the truth-
ful and non-affine properties maintained for buyer and
sellers separately into truthful and non-affine proper-
ties maintained for all players. Due to lack of space the
technical details of the main theorem proof is defer to
appendix I.
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9 Conclusions and future work

Our conclusions and future work can be found in ap-
pendix A.
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A Conclusions and future work

In this paper we generalized Roberts theorem to the
case of a double-sided auctions. The generalization is
achieved by reducing the double-sided auction problem
to a variation of a combinatorial auction problem. As a
building block for our work we define the new notions of
a truth-preserving reduction and a non-affine preserv-
ing reduction. These notions introduce the possibility
of creating a taxonomy of mechanism design problems
similar to the polynomial hierarchy of computational
complexity.

We also introduced the notion of payments’ exten-
sions which appears to be of independent interest and
proved several properties of such extensions.

Our main theorem shows that for every truthful so-
cial choice function φ there exists a vector of prices
supporting the allocation such that φ is affine maxi-
mizing. The main open question is: Are there other
price vectors supporting φ that are not of affine max-
imizing form? If so can they be characterized?. An-
other interesting question is expanding the open ques-
tion which we answered from [20] to further generalize

Roberts theorem to additional classes of mechanism de-
sign problems.

B Setting and Notations

In this paper we characterize the properties of the dou-
ble sided auction mechanism (DSA). In the DSA prob-
lem there are n sellers each willing to sell a single good
of a unique type and m buyers potentially interested
in every good but willing to buy only one of them. To
characterize the properties of the DSA problem we char-
acterize a different problem: the combinatorial auction
product space (CAPS). The CAPS has n∗m players and
m+n different goods where each player is interested in
a subset (of size two) of the goods8.

For clarity we present our basic notations and defini-
tions for mechanisms with n players and later on make
use of the basic notations and definitions for different
numbers of players and goods. We assume that all of
our mechanisms have a finite set of possible outcomes
(range of alternatives to choose from) and denote this
set by A, where |A| = l. Each player z, 1 ≤ z ≤ n,
assigns a real value vz(a) to each possible alternative
a from A. Namely, vz(a) is the valuation of player
z on an output a. The vector vz ∈ Rl specifies z’s
preferences on all possible a ∈ A. The set Vz ⊆ Rl

is the set of all possible valuations vz on all possible
a ∈ A we refer to Vz also as z’s domain. The set of
all possible valuations of all the players is denoted by
V = V1 × ...× Vn. Let v(a) = (v1(a), ..., vn(a)) ∈ Rn be
the vector of valuations of all the players on outcome
a. Let v−z = (v1, ..., vz−1, vz+1, ..., vn) be the vector of
valuations of all the players besides player z, and let
V−z be the set of all possible vectors v−z.

In this paper we assume players have quasi linear
utility namely that player z’s utility is vz(a) − pz(v)
where pz(v) is the price player z is charged by the mech-
anism when alternative a is chosen given v as the valu-
ation vector.

As our main theorem extends the main result in [20]
we present our allocations in terms of social choice func-
tions as in [20]. In appendix D the necessary definitions
from [20] used in our paper can be found.

In order to prove our main theorem we reduce the
8To convince the sceptical reader that the CAPS problem can

follow [20]’s theorem although it is single minded, we show in
section C and 4 that the CAPS problem is equivalent to a multi-
minded CA special case which has 2n ∗ m/(n + m) players and
m + n different goods where each player has a preference over
m + n different bundles each of which is of size two.
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DSA mechanism to (a variation of) a combinatorial auc-
tion. Moreover, we prove that the reduction maintains
the necessary properties (in order to use [20]’s main
theorem) of the combinatorial auction, i.e., truthful-
ness and non-affine maximization. To prove that our
reduction preserves the desired properties, we need to
define new concepts of reduction:

Definition B.1. A social choice function φ is reducible
to a choice function φ̄, namely, φ ≤ φ̄, if φ’s input can
be reduced to φ̄’s input such that the target function of
φ is optimum if and only if the target function of φ̄ on
the reduced input is optimum.

Definition B.2. Truth Preserving Reduction: Given
mechanisms α = (φ, p1, ..., pn) and β = (φ̄, p̄1, ..., p̄m),
a reduction α ≤ β is a truth preserving reduction if
there exist a function h : φ → φ̄ such that φ ≤ φ̄
and for every 1 ≤ i ≤ m there exists a function gi :
{p1, ..., pn} → p̄i s.t. if (φ, p1, . . . , pn) is truthful then
(h(φ), g1(p1 . . . pn), . . . , gm(p1 . . . pn)) is truthful.

Definition B.3. Non-affine maximizing preserving re-
duction: Given social choice functions φ and φ̄, a re-
duction φ ≤ φ̄ is a non-affine maximizing preserving
reduction if the following holds: if φ is a non-affine
maximizing social choice function then φ̄ is a non-affine
maximizing social choice function.

C Problem Definition

In this section we give the formal definitions of the prob-
lems we use in our reductions.

Problem 1. Combinatorial Auction product space
(CAPS): Let D be a set of m∗n players, and let G be a
set of goods of size m + n. Namely, D = {dji|1 ≤ j ≤
m, 1 ≤ i ≤ n} and G = {gk|1 ≤ k ≤ n + m}. For every
player dji ∈ D there is mapping fji : 2G → R+. We
assume that for all 1 ≤ i ≤ n, 1 ≤ j ≤ m and for all sets
Q ∈ 2G it holds that if gi, gj+n ∈ Q then fji(Q) ≥ 0, and
if gi /∈ Q or gj+n /∈ Q then fji(Q) = 0. We also assume
free disposal, i.e., for every Q ∈ 2G and every i, j such
that gi, gj+n ∈ Q it holds that fji(Q) = fji({gi, gj+n}).

Intuitively, each player dji corresponds to a possi-
ble trade between players j, i and the goods are used as
indicator functions to ensure that no player buys more
than one good and no good is sold more than once. By
maximizing the welfare in this auction we will maximize
the gain from trade in the original auction.

The m + n goods are allocated to the mn players,
namely, players dji ∈ D receives a set of goods Gji ∈
2G, such that

∑
j,i fji(Gji) is maximum.

Since we assume free disposal we can assume w.l.o.g.
that either Gji = {gi, gj+n}, or Gji = φ.

Note that for each player dji ∈ D and any allocation
a vji(a) = fji(Q), where Q is the set of goods allocated
in a to players dji.

The CAPS problem can be easily translated into a
multi-minded version: CAPS-MM.

Problem 2. CAPS-MM:
Let D̃ be a set of m players, and let G̃ be a set of goods
of size m + n. Namely, D̃ = {d̃j |1 ≤ j ≤ m} and
G̃ = {gk|1 ≤ k ≤ n + m}. For every player d̃j ∈ D̃
there is a vector of mappings Fj = (f̃j1, ..., f̃jn) s.t. f̃ji :
2G̃ → R+ and the following hold: for all sets Q ∈ 2G̃

if g̃i, g̃j+n ∈ Q then f̃ji(Q) ≥ 0, if g̃i /∈ Q or g̃j+n /∈ Q
then f̃ji(Q) = 0. We also assume free disposal.

The m + n goods are allocated to the m players,
namely, player d̃j ∈ D̃ receives a set of goods G̃ji ∈ 2G̃

s.t.
∑

j,i f̃ji(G̃ji)xji is maximum, under the following
constraints:

1. for all 1 ≤ i ≤ n, 1 ≤ j ≤ m xji ∈ {0, 1}.
2. for all 1 ≤ j ≤ m

∑n
i=1 xji ≤ 1.

Intuitively, each multi minded player d̃j in CAPS-
MM corresponds to n players dji where 1 ≤ i ≤ n
in CAPS. Every bundle player d̃j in CAPS-MM val-
ues (more than zero) has an equivalent bundle that is
valued (more than zero) identically by one of the players
dji where 1 ≤ i ≤ n in CAPS. The objective function
maximize welfare under the constraint that every player
can be allocated at most single bundle out of all his de-
sired bundles.

Thus the CAPS and the CAPS-MM are maximizing
essentially the same objective function.

Problem 3. DSA:
Let S = {s1, ..., sn} be a set of sellers each having

a single good. Let G′ = {g′1, ..., g′n} be the set of goods,
where g′i denotes the good of seller si. For each seller
si 1 ≤ i ≤ n there is mapping f ′′i : {g′i} → R+. Let
B = {b1, ..., bm} be a set of buyers. For each 1 ≤ j ≤ m
there is mapping f ′j : G′ → R+ meaning that every
buyer has a value for every good. Let M be a set of
pairs (si, bj), where si ∈ S and bj ∈ B, such that M is
a matching between S and B.

We want to match buyers to sellers such that the
gain from trade (social welfare) of the allocation is max-
imized, i.e., our target function is

max
∑

i,j|(si,bj)∈M

f ′j(g
′
i)− f ′′i (g′i).
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Note that for all matching M and 1 ≤ i ≤ n vi(a) =
−f ′′i (g′i), where a is the allocation immersed from M .
Moreover, for all matching M and 1 ≤ j ≤ m vj+n(a) =
f ′j(g

′
i), where g′i is the good of seller si that is matched

to buyer bj.

The DSAC0 problem is a special case of the DSA
problem for which f ′′ = 0.

We will refer to the prices charged by the DSA
mechanism to players in set B as buyers’ prices and
the prices charged by the DSA mechanism to players in
set S as sellers’ prices.

The intuition behind our reduction construction is
that each of the CAPS’ players corresponds to a possi-
ble trade between a pair of players in the DSA and the
goods are used as indicator functions to ensure that no
player buys more than one good and no good is sold
more than once. By maximizing the welfare in CAPS
we maximize the gain from trade in the original DSA.

D Necessary Definitions from
LMN:03

Definition D.1. Social choice function: Social choice
function φ : V1 × ... × Vn ⇒ A is a function that gets
as input a vector of players’ preferences and chooses an
alternative among a finite set of possible alternatives A.
We assume w.l.o.g that φ is onto A.

Definition D.2. ([20]) Truthfulness: A mechanism
(φ, p1, .., pn), where φ : V → A and pz : V → R
is called truthful if for any player z, any v−z ∈ V−z,
and any vz, uz ∈ Vz it holds that vz(φ(v)) − pz(v) ≥
vz(φ(uz, v−z))− pz(uz, v−z). The social choice function
φ is implementable or simply truthful if there exist some
mechanism that implements it.

Definition D.3. ([20]) Affine maximization: A so-
cial choice function φ is an affine maximizer if there
exist constants ω1, ..., ωn ≥ 0 and {γa}a∈A such that
for any v ∈ V : φ(v) ∈ arg maxa∈A{

∑n
z=1 ωzvz(a) +

γa}. In this case φ is implemented by the prices pz =
−ω−1

z (
∑n

k 6=z ωkvk(a) + γa).

Our main theorem shows that the social choice func-
tion of any truthful DSA mechanism is an almost affine
maximizer, using the same social choice function. The
almost affine maximization is an artifact of our use of
[20]’s main theorem. [20]’s theorem only shows that the

social choice function must be an affine maximizer for
large enough input valuations.

Definition D.4. ([20]) Almost Affine maximization: A
social choice function φ is an almost affine maximizer if
there exists a threshold H s.t. the function is an affine
maximizer if vz(a) ≥ H for all a and z

[20] believe that this restriction is a technical arti-
fact of their current proof.

Definition D.5. Critical price: A mechanism uses a
critical price payment scheme if given an allocation it
charges players the minimum value they need to report
to the mechanism in order to receive the same alloca-
tion.

Definition D.6. ([20]) Order-based domains: Domains
where each Vz is defined by a (finite) family of inequal-
ities and equalities of the form vz(a) ≤ vz(e), vz(a) <
vz(e), vz(a) = vz(e) or vz(a) = 0

We denote by Rz(a, e) the relation of player z be-
tween alternatives a, e, and use 0z = {a ∈ A|vz(a) = 0}.
Definition D.7. ([20]) Top and Bottom Alternatives
of Player z: Suppose Vz is order based. The alternative
a ∈ A\0z is a top alternative if its value is never smaller
than the value of any other alternative. I.e., if for all
other e ∈ A, Rz(a, e) ∈ {>,≥, null}. Similarly, the
alternative a ∈ A is a bottom alternative if for all other
e ∈ A, Rz(a, e) 6∈ {>,≥}.
Definition D.8. ([20]) Conflicting preferences: An or-
der based domain has conflicting preferences if:

1. Any player z has at least one top alternative (de-
noted Cz).

2. For all z and k 6= z, ck is a bottom alternative for
player z, and Ck ∈ 0z.

Definition D.9. ([20] definition 8) Non-degenerate
range: A is non-degenerate if for any player z > 1 there
exist a ∈ A such that a /∈ 01 and a /∈ 0z.

Definition D.10. ([20]) Player decisiveness: φ is player
decisive if for any v ∈ V and any player z there exist
uz(Cz) = vz(Cz) + δ, and for all e 6= Cz, uz(e) = vz(e)
for some δ > 0 such that φ(uz, v−z) = Cz

Definition D.11. ([20]) S-MON: A social choice func-
tion φ satisfies S-MON if for any v ∈ V , player z, and
uz ∈ Vz: φ(v) = a and φ(uz, v−z) = e 6= a imply that
uz(e)− vz(e) > uz(a)− vz(a).
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E CAPS Characterization

Lemma E.1. The CAPS is an order-based domain

Proof. Define the CAPS domain by the following set
of inequalities: for all a, e ∈ A such that aji = eji :
vji(a) = vji(e) (no externalities); for all a, e ∈ A such
that aji allocates goods gi and gj+n to players dji and
aji ⊆ eji : vji(a) = vji(e) (free disposal);for all a ∈
A such that aji = ∅ : vji(a) = 0. It follows by the
definition of the order-based domains that the CAPS is
an order-based domain.

Lemma E.2. The CAPS has conflicting preferences

Proof. According to lemma E.1 CAPS is an order-based
domain. The following holds for CAPS:

• Any players dji in CAPS has a top alternative
denoted Cji where all goods for k, t 1 ≤ k ≤ n
and n + 1 ≤ t ≤ n + m gk and gt are allocated to
dji.

• For all dji and j 6= t, k 6= i, Ctk is a bottom
alternative for players dji, and Ctk ∈ 0ji.

Lemma E.3. The CAPS has non-degenerate range

At first glance it looks like we can not prove lemma
E.3 as the definition of non-degenerate range (definition
D.9) taken from [20] requires that the players dj1 for all
j > 1 and d1i for all i > 1 be allocated their preferred
goods when d11 is allocated his preferred goods. Since
there is only one good gi and one good gj+n this can not
be done. We can easily overcome the problem by adding
a dummy good g̃1 and a dummy player d̃11 where the
only good he values more than 0 is g̃1. The addition of
such dummy goods and dummy players does not change
any of our other claims. So we prove lemma E.3 by
requiring that both j and i are greater than 1.

Proof. As every player dji has a value greater than 0
only for the pair of goods gi and gj+n, there exist an
allocation a that would allocate the pair of goods g1

and g1+n to player d11 and the pair of gi and gj+n to
some other player dji where j 6= 1 and i 6= 1. Thus for
any player dji j > 1 and i > 1 there exist a ∈ A such
that a /∈ 011 and a /∈ 0ji.

Lemma E.4. The CAPS is player decisive

Proof. Let Q be the set of all goods in CAPS. Any
player dji where fji(Q) >

∑
t,k ftk(Q)+fjk(Q)+fti(Q)

for every k 6= i and t 6= j will be allocated all goods
as fji(Q) must be in any allocation that maximizes∑

ji fji(G) for all j, i.

Lemma E.5. The CAPS satisfies S-MON

Proof. There are two cases to check where the alloca-
tion of the CAPS could have been changed by player
dji valuation change:

• Player dji was allocated his goods gi and gj+n

in allocation a and not allocated any goods in
allocation e. It follows that ui(a) < vi(a). As
player dji is not allocated goods in e it follows
that ui(e) = vi(e) = 0. Thus ui(e) − vi(e) >
ui(a)− vi(a).

• Player dji was not allocated goods in allocation
a and allocated goods gi and gj+n in allocation
e. It follows that ui(a) > vi(a). As player dji is
not allocated goods in a it follows that ui(a) =
vi(a) = 0. Thus ui(e)− vi(e) > ui(a)− vi(a).

F DSAC0 Characterization

In this section we prove that the social choice func-
tion of any DSAC0 truthful mechanism is (almost) an
affine-maximizer by showing that DSAC0 is reducible to
CAPS, using a truthful and non-affine-maximizer pre-
serving reduction.

F.1 Reduction: DSAC0 ≤ CAPS

In this subsection we proof that the DSAC0 problem is
reducible to the CAPS problem.

Construction 1. Let n, m in CAPS be the same n,
m as in DSAC0. Let D = {dji|si ∈ S, bj ∈ B}, and let
G = {gi|si ∈ S} ∪ {gj+n|bj ∈ B}. For each 1 ≤ j ≤ m,
1 ≤ i ≤ n let fji({gi, gj+n}) = f ′j(g

′
i), and for every

Q ⊂ G s.t. gi /∈ Q or gj+n /∈ Q it holds that fji(Q) = φ.

Definition F.1. Let a = {Gji} be an allocation of the
CAPS problem. Then the induced matching M0 of the
DSAC0 problem is the following matching:

(si, bj) ∈ M0 ⇔ Gji = {gi, gj+n}.

The induced allocation a0 of DSAC0 is the allocation
invokes from the induced matching M0. In a similar
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manner, if M0 is a matching of the DSAC0 problem,
then the induced allocation a = {Gji|1 ≤ i ≤ n, 1 ≤
j ≤ m} of the CAPS problem is

Gji = {gi, gj+n}

if (si, bj) ∈ M0. Otherwise

Gji = φ.

Let M0 be a matching of the DSAC0 problem, then:

Claim F.1. The matching M0 maximizes
∑

(si,bj)∈M0
f ′j(g

′
i)

if and only if the induced allocation a = {Gji|1 ≤ i ≤
n, 1 ≤ j ≤ m} maximizes

∑
j,i fji(Gji).

Intuitively claim F.1 is true as the allocation of
DSAC0, i.e., the matches of buyers and sellers are trans-
lated exactly to the equivalent allocation in CAPS. As
the sellers valuations is zero and f ′j(g

′
i) = fji({gi, gj+n})

the DSAC0 social welfare is equivalent to the CAPS so-
cial welfare and thus the maximum is achieved for the
same allocation.

Proof. Assume that M0 maximizes
∑

j,i|(si,bj)∈M0
f ′j(g

′
i).

Let a = {Gji} be its induced allocation. Assume to the
contrary that the allocation a′ = {G′

ji} that maximizes∑
j,i fji(G′

ji) is not the allocation a induced by M0. Let
M ′

0 be the matching induced by the allocation a′. Then
∑

j,i|(si,bj)∈M ′
0

f ′j(g
′
i) =

∑

j,i|(si,bj)∈M ′
0

fji({gi, gj+n}) (1)

=
∑

j,i

fji(G′
ji) >

∑

j,i

fji(Gji)

=
∑

j,i|(si,bj)∈M0

fji({gi, gj+n})

=
∑

j,i|(si,bj)∈M0

f ′j(g
′
i).

This contradicts the fact that M0 maximizes the target
function of DSAC0.

Let a = {Gji} be an allocation of the CAPS prob-
lem that maximizes

∑
j,i fji(Gji), where fji, D, G are

defined as in the construction. Let M0 be the induced
matching. Assume to the contrary that the matching
M ′

0 that maximizes the target function of DSAC0 is
not the induced matching M0. Let a′ = {G′

ji} be the

induced allocation of M ′
0. Then we get that

∑

j,i

fji(G′
ji) =

∑

j,i|(si,bj)∈M ′
0

fji({gi, gj+n}) (2)

=
∑

j,i|(si,bj)∈M ′
0

f ′j(g
′
i)

>
∑

j,i|(si,bj)∈M0

f ′j(g
′
i)

=
∑

j,i|(si,bj)∈M0

fji({gi, gj+n})

=
∑

j,i

fji(Gji).

This contradicts the fact that the allocation a = {Gji}
maximizes the target function of the CAPS problem.

F.2 Truthful Non-Affine Maximizer Preserv-
ing Reduction

In order to prove that the DSAC0 ≤ CAPS reduction
is a truthful non-affine maximizing preserving reduction
it is left to show that:

• the reduction maintains the truthfulness property
for buyers.

• the reduction maintains the non-affine maximiza-
tion property for buyers.

Let a0 be an allocation in DSAC0, and let a be its
induced allocation in CAPS. Denote by vji(a) the valu-
ation of the player dji in allocation a in CAPS. Denote
the valuation of buyer bj (seller si) in allocation of the
DSAC0 a0 by vj(a0) (vi(a0)) respectively. Then the re-
duced valuations of the players in the CAPS problem
are defined as follows:

Definition F.2. Reduced Valuations of players in the
CAPS problem: for all 1 ≤ i ≤ n,1 ≤ j ≤ m the
induced valuation of player dji is vj,i(a) = vj(a0).

Denote by pji the price computed for player dji

when telling the truth in an allocation a. Denote by pC0
ji

buyer bj ’s price in the DSAC0 problem when matched
to seller si. Let M0 be a maximum matching of the
DSAC0 problem and a its induced allocation. Then
the induced prices of the CAPS players from the prices
of the DSAC0 buyers is defined as follows:

Definition F.3. Induced Prices of CAPS players from
the prices of DSAC0 buyers: for every i, j s.t. (si, bj) ∈
M0 pji = pC0

ji . Otherwise pji = 0.
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Claim F.2. The DSAC0 ≤ CAPS reduction is a truth
preserving reduction, using the induced prices.

Proof. Recall that by definition B.2 we have to prove
that given a truthful DSAC0 mechanism we can define
a truthful CAPS mechanism, using the reduced input of
DSAC0, the reduced valuations, and the induced prices.
Assume to the contrary that the described CAPS mech-
anism is not a truthful mechanism. It follows that there
exists a player dji in the CAPS problem that can report
a lie value about a pair of goods Gji and improve his
utility. Denote the true value reported by player dji to
the mechanism as fji(Gji) and the lie value as f̂ji(Gji).
Recall that the price computed for dji when telling the
truth is pji. Let p̂ji denote the computed price when
lying. There are three different cases to consider:

• dji was allocated goods when telling the truth and
allocated goods when lying: if f̂ji(Gji) > fji(Gji)
then by the reduction construction it means that
f̂ ′j(g

′
i) > f ′j(g

′
i). By our contrary assumption we

know that p̂ji < pji in CAPS. This implies that
p̂C0

ji < pC0
ji for buyers in DSAC0 as pji = pC0

ji .
It follows that buyer bj in DSAC0 is better off
reporting f̂ ′j(g

′
i) as f ′j(g

′
i)− p̂C0

ji > f ′j(g
′
i)− pC0

ji in
contradiction to the DSAC0 truthfulness assump-
tion. Similar arguments can be made for the case
f̂ji(Gji) < fji(Gji) as we consider in this case only
allocations that did not change by the lie report.

• dji was allocated goods when telling the truth and
not allocated goods when lying. As the player was
not allocated goods when lying it means that the
DSAC0 could not have given a price for buyer
bj on good g′i as he was not matched to seller si

and therefore the player in CAPS could not have
possibly improved his utility by lying and losing
the allocation of goods.

• dji was not allocated goods when telling the truth
and allocated goods when lying. It follows from
the reduction that buyer bj in DSAC0 when re-
porting f̂ ′j(g

′
i) was matched to seller si and allo-

cated good g′i. Since it is given that the DSAC0 is
a truthful mechanism f ′j(g

′
i)− p̂C0

ji < 0, otherwise
buyer bj is better off reporting f̂ ′j(g

′
i) = f̂ji(Gji)

when his true value is f ′j(g
′
i). Since according

to the reduction p̂C0
ji = p̂ji, and the fact that

f ′j(g
′
i) < p̂C0

ji , it follows that fji(Gji) < p̂ji which
contradicts the assumption that the player dji im-
proved his utility by lying and reporting the value
f̂ji(Gji).

Claim F.3. The DSAC0 ≤ CAPS reduction maintains
the non-affine maximization property.

Proof. Recall that by definition B.3 we have to show
that, given a non-affine maximizer DSAC0 social choice
function, the CAPS social choice function received by
the reduction and the reduced valuations is not an affine
maximizer.

Assume for a contradiction that the described CAPS
social choice function is an affine maximizer. By the
affine maximizing social choice function definition it fol-
lows that there exist ω1, ..., ωm ≥ 0 and {γa}a∈A such
that for any vector of valuations of players, the CAPS
allocation a is such that
a ∈ arg maxa∈A{

∑m
j=1 ωjvji(a) + γa}. It follows from

the DSAC0 ≤ CAPS reduction and the reduced valua-
tions definition that vj(a0) = vji(a). This means that
the affine prices of the players in CAPS are the prices
of the buyers in DSAC0. Moreover, by the definition of
DSAC0 it is known that for all 1 ≤ i ≤ n f ′′i (g′i) = 0
for all allocations, so for all 1 ≤ i ≤ n vi(a0) = 0.
Therefore it follows that for any ωm+1, .., ωmn ≥ 0,
{γa}a∈A, and the ω1, ..., ωm found for CAPS, it holds
that for any vector of valuations in the DSAC0 problem
a0 ∈ arg maxa∈A{

∑n+m
j=1 ωjvj(a) + γa}. But this means

that the described DSAC0 social choice function is an
affine maximizer social choice function, contradicting
the negation assumption.

Lemma F.1. The social choice function of any truthful
DSAC0 mechanism is an almost affine maximizer.

The Lemma immediately follows from Lemma 4.1,
Claim F.2, and Claim F.3: Let α = (φ, ~pC0

ji ) be a truth-
ful mechanism for DSAC0. Let β = (φ̄, ~pji) be the
mechanism received from the DSAC0 ≤ CAPS reduc-
tion and the induced prices. From Claim F.2 it follows
that β is truthful. Therefore, according to Lemma 4.1,
φ̄ is almost affine maximizer. Assume to the contrary
that φ is an almost non-affine maximizer social choice
function. Then according to Claim F.3 φ̄ is almost non-
affine maximizer - a contradiction. Thus φ is an almost
affine maximizer social choice function.

G DSA Characterization for Buyers

In this section we proof that the social choice function of
any DSA truthful mechanism is an affine-maximizer for
buyers by showing that DSA is reducible to DSAC0,

13



using a truthful and non-affine-maximizer preserving
reduction.

G.1 Reduction: DSA ≤ DSAC0

In this subsection we prove that DSA is reducible to
DSAC0.

Construction 2. Let S+ be the set of sellers in the
DSA with f ′′i (g′i) > 0. We use ” − ” notation for the
reduced input parameters. Then S̄ = S, Ḡ = G′, and
B̄ = B ∪ {bm+1, ..., b|S+|+m+1}. In addition, for every
1 ≤ i ≤ n, for all 1 ≤ j ≤ m f̄ ′j(g

′
i) = f ′j(g

′
i), and for

all m + 1 ≤ j ≤ |S+|+ m + 1, f̄ ′j(g
′
i) = f ′′i (g′i).

The intuition behind construction 2 is to turn every
seller si with valuation greater than 0 for his good g′i in
the DSA to both a buyer with the same valuation for
g′i and to a seller who has the good g′i but who has a
valuation of 0 for the good in the DSAC0.

Definition G.1. Induced Matching: Let M be a match-
ing of the input of the DSA problem. Then the induced
matching M0 of the DSAC0 problem is the following
matching:
(si, bj) ∈ M0 ⇐⇒ (si, bj) ∈ M or (j ≥ m + 1 and
f̄ ′j(g

′
i) > 0)
Let M0 be a matching of the reduced input of the

DSAC0 problem. Then the induced matching M of the
DSA problem is defined in the following manner:
(si, bj) ∈ M ⇐⇒ (si, bj) ∈ M0 and j ≤ m

Claim G.1. M is a maximum matching of the DSA
problem if and only if its induced matching M0 is a
maximum matching of the reduced input of the DSAC0
problem.

Proof. Let M be a matching that maximizes the gain
from trade (and hence the welfare) in the DSA, i.e.,
maximizes

∑
(si,bj)∈M f ′j(g

′
i)− f ′′i (g′i). Assume to the

contrary that the induced matching M0 does not max-
imize∑

(si,bj)∈M0
f̄ ′j(g

′
i). Let M ′

0 be a matching of the re-
duced input of the DSAC0 problem that maximizes∑

(si,bj)∈M ′
0
f̄ ′j(g

′
i). Let M ′ be the induced matching of

M ′
0. Then it holds that
∑

(si,bj)∈M ′
f ′j(g

′
i)− f ′′i (g′i) =

∗
∑

(si,bj)∈M ′
0

f̄ ′j(g
′
i)−

∑

i

f ′′i (g′i)

>
∑

(si,bj)∈M0

f̄ ′j(g
′
i)−

∑

i

f ′′i (g′i)

=
∑

(si,bj)∈M

f ′j(g
′
i)− f ′′i (g′i)

Note that (∗) is true since if M is a matching of DSA
and M0 its induced matching then for all si s.t f ′′i (g′i) >
0 there exists j s.t (si, bj) ∈ M0.

This contradicts the fact that M is a maximum
matching.

Let M0 be a matching s.t
∑

(si,bj)∈M0
f̄ ′j(g

′
i) is max-

imum. Assume to the contrary that the induced match-
ing M of M0 does not maximize

∑
(si,bj)∈M f ′j(g

′
i)− f ′′i (g′i).

Let M ′ be a matching of DSA that does maximize∑
(si,bj)∈M ′ f ′j(g

′
i)− f ′′i (g′i). Let M ′

0 be the induced match-
ing of M ′. Then it holds that

∑

(si,bj)∈M ′
0

f̄ ′j(g
′
i) =

∑

(si,bj)∈M ′
f̄ ′j(g

′
i) +

∑

(si,bj)∈M ′
0\M ′

f̄ ′j(g
′
i)

=
∑

(si,bj)∈M ′
f ′j(g

′
i)− f ′′i (g′i) +

∑

i

f ′′i (g′i)

>
∑

(si,bj)∈M

f ′j(g
′
i)− f ′′i (g′i) +

∑

i

f ′′i (g′i)

=
∑

(si,bj)∈M

f̄ ′j(g
′
i) +

∑

(si,bj)∈M0\M
f̄ ′j(g

′
i)

=
∑

(si,bj)∈M0

f̄ ′j(g
′
i)

This contradicts the fact that M0 is a maximum match-
ing.

G.2 Truthful Non-Affine Maximizer Preserv-
ing Reduction

The DSA ≤ DSAC0 reduction defines how to find the
maximizing gain from trade allocation for a DSA prob-
lem using a DSAC0 mechanism. In order to construct
a complete solution we also need to compute the play-
ers prices in the DSAC0 given the allocation and buyer
prices produced by the DSA.

Let vC0(a0) be the valuation vector of the DSAC0
mechanism in allocation a0, and let v(a) be the valua-
tion vector of the DSA mechanism in allocation a. Let
M be a maximum matching of the DSA problem and
let M0 be its induced matching. Let a be the alloca-
tion immersed from M , and let a0 be the allocation
immersed from M0.

Definition G.2. Reduced Valuations of DSAC0 buyers
from the valuations of DSA buyers: For all 1 ≤ j ≤ m
vC0
j (a0) = vj(a).

Denote by pD
ji buyer bj ’s price in the DSA when

matched to seller si. Recall that pC0
ji denotes buyer bj ’s

price in the DSAC0 when matched to seller si.
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Definition G.3. Induced Prices of DSAC0 buyers from
the prices of DSA buyers: for every buyer bj ∈ B s.t
there exists i s.t.(si, bj) ∈ M we define pC0

ji = pD
ji. For

all others buyers bj ∈ B pC0
ji = 0.

The claims showing the truthfulness property and
the non-affine property maintaining by the reduction
follow:

Claim G.2. The DSA ≤ DSAC0 is a truth preserving
reduction for buyers.

Proof. Recall that by definition B.2 we have to prove
that given a truthful DSA mechanism for buyers we can
define a truthful DSAC0 mechanism for buyers, using
the reduced input of DSA, the reduced valuations, and
the induced prices.

Assume to the contrary that the reduction does not
maintain truthfulness for buyers. It follows that there
exists a buyer bj in the DSAC0 that, given the induced
prices, can report a false value for one of the goods
and improve his utility. Assume that f̄ ′j(g

′
i) is the true

value reported by buyer bj on good g′i, and denote by
ˆ̄′

jf(g′i) the false value. Denote by pC0
ji the induced price

of buyer bj when telling the truth and winning good g′i,
and denote by p̂C0

ji the induced price of buyer bj when
lying and winning good g′i. There are four different
cases to consider:

• Buyer bj is matched with seller si when telling the

truth and when lying: assume that ˆ̄′
jf(g′i) > f̄ ′j(g

′
i)

in DSAC0. Then by the reduction construction
for 1 ≤ j ≤ m f̂ ′j(g

′
i) > f ′j(g

′
i) in DSA . By our

contrary assumption we know that p̂C0
ji < pC0

ji in
DSAC0. This implies that p̂D

ji < pD
ji as pC0

ji = pD
ji .

It follows that buyer bj in DSA is better off re-
porting f̂ ′j(g

′
i) as f ′j(g

′
i) − p̂D

ji > f ′j(g
′
i) − pD

ji in
contradiction to the DSA truthfulness assump-
tion. A similar argument can be made for the case
ˆ̄′

jf(g′i) < f̄ ′j(g
′
i) as we consider in this case only al-

locations that are not changed by the false report.
For the case where m+1 ≤ j ≤ |S+|+m+1 even
if buyer bj is lying he can not change his price as
pC0

ji = 0 by the reduction construction and there-
fore can not improve his utility in DSAC0.

• Buyer bj is matched with seller si when telling the
truth and with seller sk, k 6= i when lying: it must
be the case that ˆ̄′

jf(g′i) < f̄ ′j(g
′
i) in DSA and that

1 ≤ j ≤ m (buyers j where m+1 ≤ j ≤ |S+|+m+
1 all values the other goods 0). Therefore, by the

reduction construction, for 1 ≤ j ≤ m f̂ ′j(g
′
i) <

f ′j(g
′
i) in DSA. By our contrary assumption we

know that f̄ ′j(g
′
k)− p̂C0

jk > f̄ ′j(g
′
i)− pC0

ji in DSAC0.
This implies that f ′j(g

′
k) − p̂D

jk > f ′j(g
′
i) − pD

ji as
pC0

jk = pD
jk and pC0

ji = pD
ji. It follows that buyer bj

in DSA is better off reporting f̂ ′j(g
′
i) in contradic-

tion to the DSA truthfulness assumption.

• Buyer bj is matched with seller si when telling the
truth and not matched when lying: as buyer bj is
not matched when lying it means that the DSA
could not have given a price for buyer bj on good
g′i. Therefore buyer bj in DSAC0 could not have
possibly improved his utility by lying and losing
the match.

• Buyer bj is not matched when telling the truth
and matched when lying: if 1 ≤ j ≤ m it follows
from the reduction that buyer bj in DSA when
reporting f̂ ′j(g

′
i) was matched to seller si and al-

located good g′i. Since it is given that the DSA is
a truthful mechanism f ′j(g

′
i)− p̂D

ji < 0, Otherwise

buyer bj is better off reporting f̂ ′j(g
′
i) = ˆ̄′

jf(g′i)
when his true value is f ′j(g

′
i). Since according to

the reduction p̂D
ji = p̂C0

ji and the fact that f ′j(g
′
i) <

p̂D
ji , it follows that f̄ ′j(g

′
i) < p̂C0

ji which contradict
the counter assumption that buyer bj improved

his utility by lying and reporting the value ˆ̄′
jf(g′i).

For the case where m+1 ≤ j ≤ |S+|+m+1 even
if buyer bj is lying he can not change his price as
pC0

ji = 0 by the reduction construction and there-
fore can not improve his utility in DSAC0.

Claim G.3. The DSA ≤ DSAC0 reduction maintains
the non-affine maximization property for buyers.

Proof. Recall that by definition B.3 we have to show
that, given a non-affine maximizer DSA social choice
function, the DSAC0 social choice function received by
the reduction and the reduced valuations is non-affine
maximizer.

Assume to the contrary that the described DSAC0
social choice function is an affine maximizer for buy-
ers. Let v = {v1, ..., vm} be a set of valuations in the
DSA mechanism for an allocation a that is immersed
from a maximum matching M . We have to prove that
there exist ω1, ..., ωm ≥ 0 and {γa}a∈A such that a ∈
arg maxa∈A{

∑m
j=1 ωjvj(a)+γa}. Let ā be the allocation

immersed from the induced matching M0. Then, since
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the DSAC0 mechanism is an affine maximizer mech-
anism for buyers, there exist ω1, ..., ωm+|S+| ≥ 0 and

{γa}a∈A such that ā ∈ arg maxa∈A{
∑m+|S+|

j=1 ωjv
C0
j (a)+

γa}. Since vj(a) = vC0
j (ā), using the same ω1, ..., ωm

and {γa}a∈A we get that a ∈ arg maxa∈A{
∑m

j=1 ωjvj(a)+
γa}. (Otherwise there exist ω̄1, ..., ω̄m, {γ̄a}a∈A, and a′

such that a′ ∈ arg maxa∈A{
∑m

j=1 ω̄jvj(a) + γ̄a}.
Therefore

∑m
j=1 ω̄jv

C0
j (a) + γ̄a+

∑m+|S+|
j=m+1 ωjv

C0
j (a) + γa

>
∑m+|S+|

j=1 ωjv
C0
j (a) + γa contradicting the fact that

a ∈ arg maxa∈A{
∑m+|S+|

j=1 ωjv
C0
j (a) + γa}). This con-

tradicts the fact that our DSA social choice function is
a non-affine maximizer for buyers.

Lemma G.1. The social choice function of any truthful
DSA mechanism for buyers is an almost affine maxi-
mizer.

The Lemma immediately follows from Lemma F.1,
Claim G.2, and Claim G.3: Let α = (φ, ~pD

ji) be a truth-
ful mechanism for DSA. Let β = (φ̄, ~pC0

ji ) be the mech-
anism received from the DSA ≤ DSAC0 reduction and
the induced prices. From Claim G.2 it follows that β
is truthful. Therefore, according to Lemma F.1, φ̄ is
an almost affine maximizer. Assume to the contrary
that φ is an almost non-affine maximizer social choice
function. Then according to Claim G.3 φ̄ is an almost
non-affine maximizer - a contradiction. Thus φ is an
almost affine maximizer social choice function.

H Proof of Theorem 4.1

Construction 3. Let m,n in CAPS-MM be the same
as in CAPS. Let D̃ = {d̃j |1 ≤ j ≤ m}. Let G̃ = G. For
all 1 ≤ i ≤ n, 1 ≤ j ≤ m let f̃ji = fji.

Definition H.1. Let a = {Gji} be an allocation of
the CAPS problem. Then the induced allocation ã of
CAPS-MM is the following allocation:

ã = {G̃ji|Gji ∈ a}.

Obviously, by the reduction’s construction we get
the following claim:

Claim H.1. An allocation a maximizes
∑

j,i fji(Gji) if
and only if its induced allocation ã maximizes∑

j,i f̃ji(G̃ji)xji.

Construction 4. Let m,n in CAPS be the same as in
CAPS-MM. Let D = {dji|1 ≤ j ≤ m, 1 ≤ i ≤ n}. Let
G = G̃. For all 1 ≤ i ≤ n, 1 ≤ j ≤ m let fji = f̃ji.

Definition H.2. Let ã = {G̃ji} be an allocation of the
CAPS-MM problem. Then the induced allocation a of
CAPS is the following allocation:

a = {Gji|G̃ji ∈ ã}.

Obviously, by the reduction’s construction we get
the following claim:

Claim H.2. An allocation ã maximizes
∑

j,i f̃ji(G̃ji)xji

if and only if its induced allocation a maximizes∑
j,i fji(Gji).

Theorem 4.1 immediately follows from claims H.2
and H.1.

I Proof of Main Theorem

In this section we conclude the main theorem using
Lemma G.1 and Corollary J.2 from previous sections,
and prove two new Lemmas that integrate the truth-
ful and non-affine properties maintained for buyer and
sellers separately into truthful and non-affine properties
maintained for all players.

Lemma I.1. Given two disjoint sets of players B and
S and an allocation a where each set has a price vector
~pB and ~pS supporting allocation a such that mechanism
µB with allocation a is truthful for players in B under
~pB and mechanism µS with allocation a is truthful for
players in S under ~pS, then the mechanism µ with allo-
cation a is truthful for players in B ∪S under the price
vector which is the concatenation of the two price’s vec-
tors.

Proof. Assume to the contrary that the mechanism µ
is not truthful for players in B ∪ S under the union
of the two price vectors. Then there exist a player in
B∪S denoted i that is better off reporting a lie value to
the mechanism. Assume w.l.o.g that i ∈ B. I.e., there
exist allocation such that vi(e)−p̂B

i ≥ vi(a)−pB
i , thus it

means that i was better of lying also in µB contradicting
our assumption that i is telling the truth in µB.

Lemma I.2. Given two disjoint sets of players B and S
and two affine maximizing social choice functions φB :
VB ⇒ A, φS : VS ⇒ A, then the social choice function
φ : VB × VS ⇒ A is affine maximizing for players in
B ∪ S.

Proof. Since φB is affine maximizing then there exist
constants ωB

1 , ..., ωB
m and {γB

a }a∈A s.t for all vB ∈ V B
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φB(vB) ∈ arg maxa∈A{
∑m

z=1 ωB
z vB

z (a) + γB
a }. Since φS

is affine maximizing then there exist constants ωS
1 , ..., ωS

n

and {γS
a }a∈A s.t for all vS ∈ V S ,

φS(vS) ∈ arg maxa∈A{
∑n

z=1 ωS
z vS

z (a) + γS
a }. Therefore

if we choose ωz = ωS
z for 1 ≤ z ≤ n, and ωz+n = ωB

z for
1 ≤ z ≤ m, and {γa}a∈A = {γB

a + γS
a }a∈A, then for any

v ∈ VB × VS : φ(v) ∈ arg maxa∈A{
∑n+m

z=1 ωzvz(a) + γa}.
Thus φ is affine maximizing.

Theorem I.1. Main theorem: the social choice func-
tion of any truthful DSA mechanism is an almost affine
maximizer.

Proof. of main theorem: The proof immediately fol-
lows from Corollary J.2, Lemma G.1, Lemma I.1, and
Lemma I.2.

J DSA Characterization for Sellers

In this section we sketch the proof that the social choice
function of any truthful DSA mechanism for sellers is
an almost affine maximizer.

Our sellers are a special case of a more general class
of players:

Definition: 7.1 single-value-player: A single value player
is a player that a single value determines his valuation.
I.e., for a single value player j, good gi and allocation
a where gi ∈ aj , for all allocations e, vj(a) = vj(e) if
gi ∈ ej and vj(e) = 0 otherwise.

We first prove a generalization of the folk theorem
that states that critical price payment scheme used for
single value players is truthful. We then conclude that
a critical price payment scheme for sellers in the DSA
problem is truthful as sellers are single value players.

It is important to note that sellers are inherently
single value players (their cost). Even if our DSA model
allowed seller to sell multiple goods, the sellers are still
single value player as there are no dependencies between
the different goods. Therefore, a seller with multiple
goods for sale can be viewed as multiple sellers with a
single good for sale. On the other hand the buyers in the
DSA are not single value players as they are interested
in only one good out of number of goods which they
value.

Lemma J.1. Any monotonic mechanism when applying
critical price payment scheme to single value players is
a truthful mechanism.

Proof. Given a mechanism µ with n single value play-
ers each with valuation function vj(gi) where gi is some
good. Assume to the contrary that when applying crit-
ical price payment scheme to the players in µ one of
the players j can benefit by reporting a false value for
his desired good gi. Denote player j’s true value for
good gi as vj(gi) and his reported lie value for the good
as v̂j(gi)9. Let the critical price of player j charged by
the mechanism µ on allocating good gi denoted as pj .
There are several cases to consider.

• player j is allocated gi when reporting the truth
vj(gi) and when reporting a lie v̂j(gi). We need
to show that vj(gi) − pj ≥ vj(gi) − p̂j . As the
mechanism µ allocates to player j a good gi

10 both
when reporting the true value and when reporting
a lie pj = p̂j as pj is a critical value.

• player j is allocated gi when reporting the truth
meaning vj(gi) and is not allocated any good when
reporting v̂j(gi). It needs to be shown that vj(gi)−
pj ≥ 0 which is true by the critical price defini-
tion.

• player j is not allocated any good when report-
ing the truth meaning vj(gi) and is allocated gi

when reporting v̂j(gi). We need to show that
0 ≥ vj(gi) − p̂j . Since p̂j is the minimum value
player j had to report in order to be allocated
good gi by the critical price definition and since
player j was not allocated any good when report-
ing vj(gi) it follows that p̂j > vj(gi).

Corollary J.1. Any monotonic DSA mechanism when
applying critical price payment scheme to the sellers is
a truthful mechanism for sellers.

Proof. Recall that the sellers of the DSA problem are
single value players, so the Corollary immediately fol-
lows from Lemma J.1.

Lemma J.2. The social choice function of any truthful
DSA mechanism with critical value prices to sellers is
an affine maximizer for sellers.

Proof. Fix seller si and his reported value f ′′i (g′i). First
we want to show that a critical value exists for f ′′i (g′i).
Since truthful mechanisms are monotone nondecreas-
ing in the reported value of si. Meaning that if si is

9Note that if there are multiple goods valued at the same price
we can look at the good allocated

10or another good of same value
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matched in the optimal allocation a when reporting
f ′′i (g′i), then by reporting f̂ ′′i (g′i) where f̂ ′′i (g′i) < f ′′i (g′i)
si does not decrease his chance to be matched in a.
Thus there exists a critical value f̃ ′′i (g′i) from which si is
matched in a and any value f̂ ′′i (g′i) > f̃ ′′i (g′i) will result in
si not being matched in a. It is left to prove that there
exist constants ω1, ..., ωm+n ≥ 0 and {γa}a∈A such that
f̃ ′′i (g′i) = −ω−1

i (
∑n

k 6=i ωkf
′′
k (g′k) +

∑
(sk,bt∈a) ωtf

′
t(g

′
k) +

γa).
Let a∗ be the optimal allocation such that the

matched pair (si, bj) ∈ a∗. Let a1 and a2 be two allo-
cations of the mechanism achieving Wa1 and Wa2 gain
from trade respectively. Let a1 be such that it is iden-
tical to a∗ but without the pair (si, bj), and let bj ’s
value f ′j(g

′
i). Let a2 be such that si is not matched in

it and Wa1 − f̃ ′′i (g′i) + f ′j(g
′
i) = Wa2 . It follows that

f̃ ′′i (g′i) = Wa1 − Wa2 + f ′j(g
′
i). All is left to be shown

is that Wa1 −Wa2 + f ′j(g
′
i) is affine maximizing. As for

all 1 ≤ i ≤ n + m according to definition D.3 ωi ≥ 0
we need to show that there are no positive values in
Wa2 that are not in Wa1 and no negative values in Wa1

that are not in Wa2 to insure affine maximization in
Wa1−Wa2 . Since we consider gain from trade of a DSA
problem, Wa1 and Wa2 are composed of sellers’ values
in a negative sign and buyers’ values in a positive sign.
So we need to insure that there does not exist buyers
that are matched in a2 that are not matched in a1 and
sellers that are matched in a1 that are not matched in
a2.

There are two cases to consider:

• if buyer bj is not matched in allocation a2: In that
case both a1 and a2 do not match buyer bj and do
not match seller si. Assume to the contrary that
a1 and a2 matches different pairs. As a1 is iden-
tical to the optimal allocation a∗ except for not
matching buyer bj and seller si there exist a value
˜̃f ′′i (g′i) < f̃ ′′i (g′i) and an allocation a3 that does not
matches buyer bj and does not matches seller si

such that Wa1 −˜̃f ′′i (g′i) + f ′j(g
′
i) = Wa3 > Wa2 .

It follows that˜̃f ′′i (g′i) is si’s critical value contra-
dicting the value f̃ ′′i (g′i) as si critical value. Thus
a1 and a2 match the same pairs and all buyers
matched in a2 are matched in a1 and all sellers
matched in a1 are matched in a2.

• if buyer bj is matched in allocation a2: Let G
be the bipartite graph where the players on one
side of G represent the buyers and the players on
the other side represent the sellers. The potential
allocations represented by bipartite matchings in

G. It will be convenient for the proof to think
of the edges that belong to each of the matchings
as colored with a specific color representing this
matching.

Assign color 1 to the edges in the allocation match-
ing a1 and assign color 2 to the edges in the allo-
cation matching a2.

Define an alternating path P starting at bj . Let
s1 be the seller matched to bj in a2. Let b1 be
the buyer matched to s1 in a1, s2 be the seller
matched to b1 in a2, b2 be the buyer matched to s2

in a1, and so on. This defines an alternating path
P , starting at bj , whose edges’ colors alternate
between colors 1 and 2 (starting with 2). This
path ends either with a seller who is not matched
in a1 or with a buyer who is not matched in a2. So
all buyers on the path P are matched in a1 except
for bj and all sellers on the path P are matched in
a2. As f̃ ′′i (g′i) = Wa1 −Wa2 + f ′j(g

′
i) the negative

value of bj , f ′j(g
′
i) in Wa2 is reduced. It is also

concluded that on the path there are no negative
values of sellers in a1 that are not in a2. Similarly
to the first case any matching outside of path P
should be identical between a1 and a2 otherwise
there exist matching Wa3 > Wa2 such that a3

matching is identical to a1 matching outside path
P and si has a lower critical value.

Thus for ωi = 1 γa1 = 0, γa2 and any ωk ≥ 0
k 6= i the critical value of player si can be expressed
as −ω−1

i (
∑n

k 6=i ωkf
′′
k (g′k) +

∑
(sk,bt)∈a1

ωtf
′
t(g

′
k)

+
∑

(sk,bt)∈a2
ωtf

′
t(g

′
k)).

Corollary J.2. The social choice function of any truth-
ful monotonic DSA mechanism is an affine maximizer
for sellers.

Proof. The proof immediately follows from Corollary J.1
and Lemma J.2.
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