
Proportional use of force in counter-terrorism

Artyom Jelnov∗

October 18, 2015

Abstract

This paper studies a concept of proportional use of force in a counter-terrorism

action. The terrorist organization decides whether to attack or not to attack the state,

while the state decides about his counter-terrorist measure. The state is supposed

not to use a ”non-proportional” force, namely, the counter-terrorist measure taken by

the state should be sufficient to remove a threat imposed by terrorists, but not higher

than that. The level of force required against the terrorist organization is a private

information of the organization. The model predicts under which conditions terrorists

will not attack the state, and under which conditions with a positive probability the

attack will take place, the state will react with a tough counter-terrorist measure and

the state may be accused for non-proportional use of violence.

1 Introduction

In the modern world many states encounter a threat of terrorist attack. I suggest here a model

of conflict between a state and a terrorist organization. The state, once attacked by terrorists,

has to decide about its counter-measure. It is assumed that the state is military stronger,

but its action is limited by moral considerations, international law etc. In particular, state’s
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reaction should meet ”necessity and proportionality” criteria. This paper is dedicated to

the concept of proportional use of force. A question of what is a proportional use of force is

widely discussed in the international law literature. For this analysis I adopt the following

approach, as stated in Duffy (2015, p. 267): ”...Proportionality requiring that the force used

be no more than necessary to repel the threat presented”. However, in most cases there is no

clearness which force is necessary to repeal the threat presented by terrorist organization. In

my model the terrorist organization can be one of two types: the ”weak” and the ”strong”.

If the terrorist organization is ”strong”, only large military effort by the state can eliminate

its threat. But to repel the threat of the ”weak” organization, even low effort by the state

is enough. Thus, to use the large force against the ”weak” organization might be considered

as an excessive, or a non-proportional reaction. I assume that the type of organization is its

private information, so the state does not know which threat it meats. Moreover, it should

be taken into account that the weak organization may may be interested to provoke the state

to use excessive force. The terrorist organization may benefit if the state was accused in a

non-proportional reaction. As wrote Wilkinson (2011, p.7), one of goals of terrorism may be

”provoking government security forces into over-reaction”.

I start with a two-actors model. There are two players: the terrorist organization and

the state and its government (since it is assumed that the state’s government is a decision

maker, both terms ”government” and ”’state” are synonymous in this paper). The terrorist

organization may be ”weak” or ”strong”, and its exogenously given type is its private in-

formation. It may attack or not attack the state/government. If there was no attack, the

government is not allowed to use the force in this model.1 It is not the worst outcome for

the terrorist organization, for instance since it can threaten the state in the future.

If the government was attacked, it should take some counter-terrorist action. The action

can be ”weak” or ”strong”. The ”weak” action is sufficient to repel the threat presented

1A legitimation of use of preventive force, when a state was not attacked, is a controversy in the inter-
national law literature. Many scholars argue that such an action by the state is not legitimate. See Duffy
(2015) for a discussion.
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by the weak terrorist organization, but is not sufficient against the strong organization.

Therefore, if the weak action was taken against the weak organization, it is the best outcome

for the government and the worst for the organization. If the weak action was taken against

the strong organization, this outcome is better for terrorist organization rather than if it

does not attack. It enjoys from benefit of successful attack on the rival government and

survived its countermeasure.

The government may also decide to take the strong action as a response to the attack.

Then the threat from the terrorist organization of both types will be repelled. But once

performed the strong action against the weak organization, the government will be ex-post

accused in an over-reaction. I assume here that political consequences of this situation for the

government are extremely tough and this is the worst ex-post outcome for the government.

Since the terrorist organization’s goal is to cause a maximal damage to the government, it

is the best outcome for it. Actually, the reason for the weak organization to attack the state

is to provoke its government to over-react. On the other hand, if the government took the

strong action against the strong organization, this action is considered to be legitimate, and

it is successful in the meaning that it eliminates the threat on the government, thus it is the

best outcome for the government and the worst for the terrorist organization.

I show that if the payoff of the terrorist organization when it does not attack is sufficiently

high, in any Nash equilibrium of this game the organization of both types will not perform an

attack with certainty. If the payoff of the organization for the not attacking is not sufficiently

high, then the Nash equilibrium is unique, and in the equilibrium the organization attacks

with a positive probability. If the government assigns a high probability that the organization

is weak, then the strong organization attacks with probability one. And vice verse, if the

prior belief that the organization is weak is relatively low, the weak organization attacks for

sure. The intuition is, that if the government expects to meet the weak organization with

relatively high probability, its reaction on the attack will be weak with higher probability.

The strong organization takes advantage on it and attacks. If the government assigns a high
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probability to being the organization strong, its reaction on the attack will be strong with

higher probability, and since the strong action against the weak organization is the best

outcome for terrorists, the weak organization will prefer to attack.

This model is described in Section 2.

In the two-actors model the government constraints itself in the sense that it would prefer

not to take the strong anti-terrorist action if it knows that the weak action is sufficient. In

the next, three-actors model, this self-constraint is removed. The government goal, once

attacked, is just to destroy the terrorist organization, even by using an exaggerated force.

But there is some third party, for example, the international community, or a domestic

juridical system, which checks that the attacked government does not use a non-proportional

force. I call this party a Judge.

As in the two-actors model, there are terrorist organization of two possible types, which

can attack or not attack, and the government, which reacts weakly or strongly once attacked.

If there was no attack, or if the reaction on attack was weak, payoffs of the organization

and of the government are as in the previous model.2 But if the government’s reaction was

strong, the Judge decides whether to intervene and to punish the government for (probably)

over-reaction, or not. If the Judge intervenes and punishes the government, it is the worst

outcome for the government and the best for the terrorist organization. If the Judge does

not intervene, while the organization is destroyed by the strong anti-terrorist action, and

it is the worst outcome for it and the best for the government. As for the Judge, his/her

ex-post preferences depend on whether the ”justice” was done. Namely, s/he most prefers to

intervene if the strong action was taken against the weak organization, and not to intervene

in the opposite case.

As in the two-actors game, if the payoff of the terrorist organization when it does not

attack is sufficiently high, in any Nash equilibrium of this game the organization of both

2For simplicity of analysis I assume here that in the case of no attack, the payoff of the terrorist organi-
zation of both types is equal.
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types will not perform an attack with certainty. As for the case where the organization’s

payoff for not attacking is relatively low, multiplicity of Nash equilibria cause to ambiguity

of results. To resolve it, I suggest a concept of an ”equilibrium compatible with symmetric

mistakes”. This concept is in spirit of the ” trembling-hand perfectness” concept due to

Selten (1975)), but has stronger requirements that ”trembles of hand” are symmetric for all

players and types.

Assume that there is some minimal probability, symmetric for all players and types of

players, with which each strategy is chosen. It reflects an idea that each strategy, even if

it is inferior for some player, may be chosen ”by mistake” with some probability, and this

probability is symmetric. Then one can find an equilibrium of the new game, when the

”symmetric probability of mistakes” is taken into account. If this equilibrium converges to

some Nash equilibrium of the initial game, as the probability of mistakes converges to zero,

the limit equilibrium is called compatible with symmetric mistakes. I argue that in the case of

multiplicity of Nash equilibria, a compatible with symmetric mistakes equilibrium, if exists,

is a more reasonable one.

The prediction of the model for the case where terrorist organization’s payoff when it

does not attack is relatively low is that if a prior belief that the terrorist organization is

strong is high, then the government will take the strong counter-terrorist measure with a

high probability, and the Judge will not intervene with a high probability; taking this into

account, the terrorist organization will not attack with certainty. However, if there is high

prior belief that the terrorist organization is of the weak type, the government will choose

the weak action with a high probability (but less than 1); once it chooses the strong action,

the Judge will intervene with a high probability; the terrorist organization of both types

will attack with a positive probability. Therefore, it may happen with a positive probability

that the strong organization attacks, the government takes the proportional strong counter-

measure, but is unjustifiably punished by the third party.

This model appears in Section 3.
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The game-theoretic literature on military issues is very rich (see O’Neill (1994) for survey).

For a survey of economic approach in studies of terrorism see Enders and Sandler (2011).

Lapan and Sandler (1993) study a signalling game model with incomplete information about

terrorist resources, but their motivation and model differ from mine. In other researches an

incomplete information about terrorists purposes is assumed. For example, see Arce and

Sandler (2007).

2 Two-sides game

Consider two players: the first player is a terrorist organization, denoted by T; the second

player is a government of the country, threatened by T, and it is denoted by G.

T can be one of two types: the ”weak” (W) or the ”strong” (S). G assigns a probability p

that T is of the type S, and probability 1− p that it is W. There are two strategies available

for T: to attack the country of G (a) or not to attack it (na) (for simplicity I write hereafter

”T attacks/do not attack G”). If he chooses not to attack, the game stops. In this case the

payoff of S is β and of W is γ. The payoff of G is λ if it meets W and µ if it meets S.

If T chooses to attack, G has to decide about its reaction counter-terrorist measure. G

chooses one of two strategies: the ”weak” reaction (w) or the ”strong” reaction (s). If T is of

the W-type, it is destroyed even by the ”weak” reaction, and that is the worst outcome for W

and the best outcome for G (it succeed to remove the threat from the terrorist organization).

On the other hand, if T is of the S-type, the ”weak” counter-terrorist measure is not sufficient

to destroy it. This outcome is better for S than if it does not attack: it performed an attack

on his enemy country and succeed to survive its reaction. In the latter case α > β is the

payoff of S and ν is the payoff of G.

If G chooses the ”strong” reaction, it destroy the terrorist organization of both types.

If the terrorist organization is S, G receives the highest payoff, and S receives the lowest.

But if G takes the”strong” measure against the ”weak” type of T, it will be accused for
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Figure 2.1: The two- players game Γ2

”overreaction” and ”non proportional use of force”, and this the worst outcome for G and

the best for W.

To summarize, the game, denoted by Γ2, is presented in the Figure 2.1.

Proposition 2.1. In the game Γ2, in a Nash equilibrium G mixes w and s strategies and :

(i) if β > α(1 − γ) then in all Nash equilibria T of both types will not attack G with

certainty.

(ii) if β < α(1− γ) and p < 1
2−ν then S attacks G with certainty, while W mixes a and na

strategies.

(iii) if β < α(1− γ) and p > 1
2−ν then W attacks G with certainty, while S mixes a and na

strategies.

The proof appears in Appendix.
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3 Three-sides game

Consider now the game with three players: T and G, as in the Section 2, and the third

country, the ”Judge”, denoted by J. As previously, T can be one of two types: the ”weak”

(W) or the ”strong” (S), p is the common prior belief that T is of the type S. The strategies

of T are to attack (a) or not to attack (na). If he chooses not to attack, the game stops.

Payoffs of T and G in this case are as in Γ2. J’s outcomes in these cases are denoted by σ if

T is of the W-types, and τ otherwise. If T chooses to attack, G chooses one of two strategies:

the ”weak” reaction (w) or the ”strong” reaction (s). If it have chosen the strategy w, the

game finishes, and payoffs of T and G are as in Γ2. J’s outcomes in are θ if T is of the

W-types, and φ otherwise.

If G is attacked and chooses the ”strong” reaction s, it destroy the terrorist organization

regardless its type. After G have chosen s, J decides abouts its reaction. J prefers the terrorist

threat to be removed, but not by ”non-proportional” use of force. Namely, it prefers that

the ”strong” counter terrorist measure would be not used by G against T of the ”weak” type

W. While observing s strategy used by G, J decides whether to intervene (i) against G, for

example, to impose sanctions on G, or not to intervene (ni). The intervention is the worst

outcome of G, and the best for T. If G destroyed the terrorist organization by s without

afterward intervention, it the most preferable result for G and the worst outcome for T. As

for J, its ex-post payoffs depend on the type of T. Its best outcome is to intervene when the

type of T is W and not to intervene when the type is S. J’s worst outcome is to intervene

when the type is S and not to intervene when the type is W.

I denote this game by Γ3, and it is presented in the Figure 3.1.

In the next proposition, I make an additional assumption: when T chooses not to attack

its payoff does not depend on it type. Moreover,to avoid some extreme cases, I assume p 6= 1
2
.

Proposition 3.1. Let β = γ and p 6= 1
2
. In the game Γ3, all existing Nash equilibria are of

one of the following types:
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Figure 3.1: The three- players game Γ3
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(i) T of both types does not attack, G chooses s with positive probability and J chooses

ni with positive probability.

(ii) Both S and W attack with positive probability, G chooses s with positive probability,

J mixes i and ni strategies. These equilibria exist only if β ≤ 1−ν
2

. In addition, if

p > 1
2
, in equilibrium with positive probability of the strategy a G has to choose s with

certainty.

The proof appears in Appendix.

Equilibria in Proposition 3.1 are not unique. There are different well-known solution con-

cepts, whose general purpose is to eliminate some Nash equilibria. Among those are solutions

due to Selten (1975), to Myerson (1978), to Kreps and Wilson (1982), to Cho and Kreps

(1987) and to Banks and Sobel (1987). The basic idea of concepts above is to make some

assumptions about beliefs of players, and then to eliminate equilibria which are not com-

patible with those beliefs. Unfortunately, none of those concepts can resolve the ambiguity

of Nash equilibrium results problem. To eliminate some equilibria I introduce a condition

of ”compatibility with symmetric mistakes”. It is in spirit of Selten (1975), but imposes a

stronger requirement.

In equilibria characterized in part (i) of Proposition 3.1 T does not attack, thus the pos-

sibilities of the ”strong” reaction by G and of the intervention by J are on an off-equilibrium

path. Let us assume that there is a infinitesimally small, but positive, probability that T

will attack ”by mistake”. This is the basic idea in Selten (1975). But my assumption is

stronger. I assume that the probability of a ”mistake”is symmetric for both types of T.

Formally, let

Π = {(ProbW (a), P robS(a), P robG(s|a), P robJ(i|s, a))|

0 ≤ ProbW (a), P robS(a), P robG(s|a), P robJ(i|s, a) ≤ 1}

10



be the set of strategy profiles in Γ3 ( ProbI(a), I ∈ {W,S} is a probability that T of type I

chooses the strategy a, ProbG(s|a) is a probability that G will choose the strategy s, if it was

attacked, ProbJ(i|s, a) is a probability that J intervene if G was attacked by T and reacted

by s). For ε > 0 let

Πε = {(ProbW (a), P robS(a), P robG(s|a), P robJ(i|s, a)|

ε ≤ ProbW (a), P robS(a), P robG(s|a), P robJ(i|s, a) ≤ 1− ε}

be the set of strategy profiles where each pure strategy is chosen with a probability at least

ε. That includes profiles where T attacks ”by mistake” with some probability. Let Eε ⊆ Πε

be the set of ε-equilibria. This is the set of strategies profiles in Πε, where each strategy is a

best reply to strategies of other players, given the constraint that the probability to choose

each pure strategy is at least ε. Namely,

(ProbW (a), P robS(a), P robG(s|a), P robJ(i|s, a)) ∈ Eε iff

ProbW (a) = arg max
ε≤ProbW (a)≤1−ε

{(1− ProbW (a))γ + ProbW (a)[ProbG(s|a) · ProbJ(i|s, a)]}

ProbS(a) = arg max
ε≤ProbS(a)≤1−ε

{(1−ProbS(a))β+ProbS(a)[(1−ProbG(s|a))α+ProbG(s|a)·ProbJ(i|s, a)]}

ProbG(s|a) = arg max
ε≤ProbG(s|a)≤1−ε

{(1− ProbG(s|a))[(1− Prob(W |a))ν + Prob(W |a)]+

+ ProbG(s|a)(1− PJ(i|s, a))}

PJ(i|s, a) = arg max
ε≤PJ (i|s,a)≤1−ε

{(1− PJ(i|s, a))(1− Prob(W |a)) + PJ(i|s, a)Prob(W |a)}

where Prob(W |a) is given by (3).

A Nash equilibrium (ProbW (a), P robS(a), P robG(s|a), P robJ(i|s, a)) ∈ Π is compatible

with symmetric mistakes if exists a sequence of (εk)
∞
k=1 which converges to 0, and a sequence
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of

((ProbkW (a), P robkS(a), P robkG(s|a), P robkJ(i|s, a)) ∈ Eεk)∞k=1 which converges to

(ProbW (a), P robS(a), P robG(s|a), P robJ(i|s, a)) as εk → 0. The next proposition states that

for some values of p one can eliminate some equilibria as not compatible with symmetric

mistakes. As previously, I assume β = γ.

Proposition 3.2. Let β = γ and β ≤ 1−ν
2

.

(i) Let p < 1
2
. In the game Γ3 there is no equilibrium compatible with symmetric mistakes

where ProbW (a) = ProbS(a) = 0.

(ii) Let p > 1
2
. In the game Γ3 there is no equilibrium compatible with symmetric mistakes

where ProbW (a) > 0 and ProbS(a) > 0.

The proof appears in appendix.

Remark Note that in the proof of part (ii) of the proposition, the symmetry of mistakes

is not used. Thus, it could be shown that there is no perfect equilibrium (in the sense of

Selten (1975)) of the form specified in part (ii) of Proposition 3.2. In the proof of part (i)

the symmetry of mistakes is crucial.

The next proposition shows existence of an equilibrium compatible with symmetric mis-

takes for β ≤ 1−ν
2

and p 6= 1
2
.

Proposition 3.3. Let β ≤ 1−ν
2

and p 6= 1
2
. There exists at least one equilibrium compatible

with symmetric mistakes.

Let us summarize findings of Theorems 3.1, 3.2 and 3.3. If β > 1−ν
2

then in all Nash

equilibria T does not attack. If β ≤ 1−ν
2

and p < 1
2
, in all equilibria compatible with

symmetric mistakes there is positive probability that T of both types will attack, G react

with s, and J will choose i. Moreover, such an equilibrium exists. Namely, there is a positive

probability that W will attack, and G will use than a ”non proportional force” against it.

However, it may happen with a positive probability that S attacks, G uses an ”appropriate”
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force s, but is unjustifiably punished by J.

As for the case β ≤ 1−ν
2

and p > 1
2
, in all equilibria compatible with symmetric mistakes,

and at least one such an equilibrium exists, T does not attack with certainty.
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Appendix

Proof of Proposition 2.1 Denote by ProbI(a), I ∈ {W,S} as a probability that T of type

I will choose the strategy a. Denote also by ProbG(w|a) a probability that G will choose the

strategy w, given it was attacked. By Figure 2 W prefers the strategy a iff

γ ≤ 1− ProbG(w|a) (1)

S prefers a to na iff

β ≤ αProbG(w|a) (2)

Given that G was attacked, the probability it assigns to being T of the type W is

Prob(W |a) =
(1− p)ProbW (a)

(1− p)ProbW (a) + pProbS(a)
(3)

G prefers w to s iff

(1− Prob(W |a))ν + Prob(W |a) ≥ 1− Prob(W |a) (4)

Lemma 1. In equilibrium ProbW (a) > 0 implies ProbS(a) > 0, and ProbS(a) > 0 implies

ProbW (a) > 0.

Proof Assume to the contrary that ProbW (a) > 0, but ProbS(a) = 0. Then if G is

attacked it knows for sure that T is of the type W and G’s best reply is w. But then W is

better off by deviating to ProbW (a) = 0, contradiction. Similarly, it could be shown that

ProbS(a) > 0 implies ProbW (a) > 0.�

Lemma 2. G is not playing any pure strategy in an equilibrium.

Proof If G chooses w with certainty when attacked, then W will not attack for sure,
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but S will play the strategy a with certainty, contradiction to Lemma 1. If G plays pure s

when attacked, W is the best off by choosing a, while S’s best choice is to play na. Still, a

contradiction to Lemma 1.�

Lemma 3. Let p 6= 1
2−ν . Then there is no equilibrium with ProbW (a) = ProbS(a) = 1.

Proof Suppose an equilibrium with ProbW (a) = ProbS(a) = 1 exists. By (3), Prob(W |a) =

1− p, and by (4), G strongly prefers w iff p < 1
2−ν and strongly prefers s iff p > 1

2−ν . There-

fore, for p 6= 1
2−ν , G is better off by choosing a pure strategy w or s, depending whether p is

low or high, contradiction to (2). �

Observe that 0 < ProbW (a) < 1 and 0 < ProbS(a) < 1 imply equality in (1) and (2), and

it holds only if 1 − γ = β
α

. Thus, and by lemmas 1, 2 and 3, for 1 − γ 6= β
α

and p 6= 1
2−ν ,

only three possible equlibrium profiles should be considered: (ProbW (a) = 0, P robS(a) =

0, 0 < ProbG(w|a) < 1), (ProbW (a) = 1, 0 < ProbS(a) < 1, 0 < ProbG(w|a) < 1) and

(ProbS(a) = 1, 0 < ProbW (a) < 1, 0 < ProbG(w|a) < 1).

Case (ProbW (a) = 0, P robS(a) = 0, 0 < ProbG(w|a) < 1)

By (1) and (2) this implies 1− γ ≤ ProbG(w|a) ≤ β
α

.

Case (ProbW (a) = 1, 0 < ProbS(a) < 1, 0 < ProbG(w|a) < 1)

S is indifferent between a and na, when W prefers a. Thus, by (1) and (2) this implies

ProbG(w|a) = β
α
≤ 1− γ.

Given a, G is indifferent between na an a. From (3) and (4), after plugging in ProbW (a) = 1

ProbS(a) =
1− p

p(1− ν)
,

and

ProbS(a) < 1⇔ 1

2− ν
< p

Case (ProbS(a) = 1, 0 < ProbW (a) < 1, 0 < ProbG(w|a) < 1)
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W is indifferent between a and na, when S prefers a. Thus, by (1) and (2) this implies

ProbG(w|a) = 1− γ ≥ β
α

.

Given a, G is indifferent between na an a. From (3) and (4),

ProbS(a) =
p(1− ν)

1− p
,

and

ProbS(a) < 1⇔ 1

2− ν
> p

That completes the proof of Proposition 2.1. �

Proof of Proposition 3.1 Denote by ProbJ(i|s, a) the probability that J chooses to

intervene given that T have chosen a and G, as a reaction, have chosen s. As in the proof

of Proposition 2.1, let ProbI(a), I ∈ {W,S} be a probability that T of type I chooses the

strategy a, and ProbG(w|a) be a probability that G will choose the strategy w, given it

was attacked. Let ProbJ(i|s, a) be probability that J intervene if G was attacked by T and

reacted by s. From Figure 3.1, and by assumption β = γ, W prefers a to na iff

β ≤ ProbG(s|a) · ProbJ(i|s, a), (5)

and S prefers a to na iff

β ≤ α(1− ProbG(s|a)) + ProbG(s|a) · ProbJ(i|s, a). (6)

The existence of equilibria, where T of both types prefers not to attack, ProbJ(i|s, a) < 1

and ProbG(s|a) > 1 is straightforward from (5) and (6).

I proceed now to show conditions for existence of equilibria where T chooses a with

positive probability.

Given T attacked G, G and J assign a probability given by (3) that T is of the type W.
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While attacked, G prefers the strategy s to w iff

ν(1− Prob(W |a)) + Prob(W |a) ≤ 1− ProbJ(i|s, a) (7)

Given T attacked and G reacted by s, J prefers i iff

Prob(W |a) ≤ 1− Prob(W |a) (8)

If ProbJ(i|s, a) = 0 , the only equilibrium is the one with properties of part (i) of the

Proposition 3.1. Indeed, the most preferable strategy for G is the only equilibrium possible

is s and then the best outcome for T is when na is chosen. To proceed to analyze equlibria

with positive probability of an attack, I consider hereafter only equilibria with

ProbJ(i|s, a) > 0. (9)

Lemma 4. In equilibrium ProbW (a) > 0 implies ProbS(a) > 0.

Proof Assume to the contrary that ProbW (a) > 0, but ProbS(a) = 0. Then if G is

attacked it knows for sure that T is of the type W, and takes into account (9), thus G’s best

reply is w. But then W is better off by deviating to ProbW (a) = 0, contradiction.�

Lemma 5. In equilibrium ProbG(s|a) > 0.

Proof Suppose ProbG(s|a) = 0, namely, G plays w for sure given a. Then the best

strategy for W is na, while the best strategy for S is a, contradiction to Lemma 1.�

Lemma 6. In equilibrium ProbS(a) > 0 implies ProbW (a) > 0.

Proof Assume to the contrary that ProbS(a) > 0, but ProbW (a) = 0. Then if G is

attacked, G and J know with certainty that T is of the type S. By Lemma 5 there is positive
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probability that G chooses s, and given it is chooses, the best reply of J, which knows that

T’s type is S, is ni with certainty. Therefore G’s strategy in equilibrium should be s with

certainty. But then S is better off by deviating to ProbS(a) = 0, contradiction.�

Lemma 7. There is no equilibrium where ProbJ(i|s, a) = 1.

Proof If ProbJ(i|s, a) = 1, then the best strategy of G is ProbG(s|a) = 0, contradiction

to Lemma 5.�

By (9) and by Lemma 7, I consider only equilibria with

0 < ProbJ(i|s, a) < 1 (10)

and equality holds in (8). Therefore,

Prob(W |a) =
1

2
(11)

Lemma 8. There is no equilibrium where ProbW (a) = 1

Proof Suppose ProbW (a) = 1 in equilibrium. By (3) and (11), ProbW (a) = ProbS(a) =

1 is possible in equilibrium only if p = 1
2
, but it is assumed that p 6= 1

2
.

Thus, 0 < ProbS(a) < 1 ((ProbS(a) > 0) by Lemma 4), and it implies equality in (6), but

by (5) W strongly prefers na, contradicting ProbW (a) = 1. �

By Lemmas 4-8 and by (10), only two following equilibrium profiles with positive prob-

ability of the attack should be considered.

1. (0 < ProbW (a) < 1, 0 < ProbS(a) < 1, P robG(s|a) > 0, 0 < (ProbJ(i|s, a) < 1)

This equilbria implies equality in both (5) and (6), and this is possible only if ProbG(s|a) = 1.

Therefore, by (5), ProbJ(i|s, a) = β, and thus 0 < ProbJ(i|s, a) < 1 as required, and (11)

holds. Thus, any pair of ProbW (a), ProbS(a) such that when they are substituted into (3),

(11) is satisfied, may be in equilibrium. Since G prefers s, by (7), β ≤ 1−ν
2

.
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2. (0 < ProbW (a) < 1, P robS(a) = 1, P robG(s|a) > 0, 0 < (ProbJ(i|s, a) < 1)

If ProbG(s|a) = 1 this case coincides with the previous one. As previously, ProbJ(i|s, a) =

β. Consider 0 < ProbG(s|a) < 1. Then equality in (7) holds. By (11) this implies

ProbJ(i|s, a) = 1−ν
2

. Since equality holds in (5),

ProbG(s|a) =
2β

1− ν

and 0 < ProbG(s|a) < 1 iff β < 1−ν
2

. By (11) and (3),

ProbW (a) =
p

1− p

and 0 < ProbW (a) < 1 iff p < 1
2
.

This completes the proof of Proposition 3.1. �.

Proof of Proposition 3.2 Let the strategic profile (ProbW (a), P robS(a), P robG(s|a), P robJ(i|s, a))

be an Nash equilibrium in the game Γ3. Suppose this profile is compatible with symmetric

mistakes, namely, there are sequences (εk)
∞
k=1 → 0 and

((ProbkW (a), P robkS(a), P robkG(s|a), P robkJ(i|s, a)) ∈ Eεk)∞k=1 which converges to

(ProbW (a), P robS(a), P robG(s|a), P robJ(i|s, a)) as εk → 0. Recall, εk ≤ ProbkW (a) ≤ 1− εk,

εk ≤ ProbkS(a) ≤ 1− εk, εk ≤ ProbkG(s|a) ≤ 1− εk and εk ≤ ProbkJ(i|s, a) ≤ 1− εk.

Part (i). Consider the case p < 1
2
. Suppose a Nash equilibrium (ProbW (a) = 0, P robS(a) =

0, 0 < ProbG(s|a) ≤ 1, 0 ≤ ProbJ(i|s, a) < 1) is compatible with symmetric mistakes. Let

us distinguish two cases.

a. β > ProbG(s|a) · ProbJ(i|s, a) and β > α(1 − ProbG(s|a)) + ProbG(s|a) · ProbJ(i|s, a).

Then there exists K such that for k > K, β > ProbkG(s|a) · ProbkJ(i|s, a) and β >

α(1−ProbkG(s|a)) +ProbkG(s|a) ·ProbkJ(i|s, a), and by Figure 3.1 T of both types prefers

na. Therefore, ProbW (a) = ProbS(a) = εk (T assigns the minimal allowed probability to
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its inferior strategy a). By (3),

Prob(W |a) = 1− p,

but since p < 1
2
, J should strongly prefer i, contradiction to ProbJ(i|s, a) < 1.

b. β > ProbG(s|a) · ProbJ(i|s, a) and β = α(1 − ProbG(s|a)) + ProbG(s|a) · ProbJ(i|s, a).

This implies 0 < PG(s|a) < 1, therefore G is indifferent between w and s once attacked.

PG(s|a) < 1 also implies 0 < PJ(i|s, a) < 1, since if 0 = PJ(i|s, a), G strongly prefers s.

Thus, J is also indifferent between i and ni. Then by (7) and (8),

ProbJ(i|s, a) =
1− ν

2
,

and β = α(1− ProbG(s|a)) + ProbG(s|a) · ProbJ(i|s, a) implies

ProbG(s|a) =
α− β
α− 1−ν

2

but

α− β
α− 1−ν

2

< 1⇒ β >
1− ν

2
,

contradiction to assumption β ≤ 1−ν
2

.

Part (ii). Consider the case p > 1
2
. Suppose the Nash equilibrium (0 < ProbW (a) <

1, 0 < ProbS(a), 0 < ProbG(s|a) ≤ 1, 0 < ProbJ(i|s, a) < 1) is compatible with symmetric

mistakes. By Proposition 3.1, for p > 1
2
, ProbG(s|a) = 1. Moreover, similar to the proof of

Proposition 3.1, ProbS(a) = 1 is impossible in the region p > 1
2
. Therefore, 0 < ProbW (a) <

1, 0 < ProbS(a) < 1, and there is K such that for k > K, εk < ProbkW (a) < 1 − εk,

εk < ProbkS(a) < 1− εk. Namely, W and S are indifferent between na and a. By Figure 3.1,

β = ProbkG(s|a) · ProbkJ(i|s, a) and β = α(1 − ProbkG(s|a)) + ProbkG(s|a) · ProbkJ(i|s, a) and

this is contradiction to ProbkG(s|a) ≤ 1− εk < 1. �
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Proof of Proposition 3.3 Let p < 1
2
. Consider

ProbW (a) =
p

1− p
, ProbS(a) = 1, P robG(s|a) =

2β

1− ν
, ProbJ(i|s, a) =

1− ν
2

It is shown in the proof of Proposition 3.1 that it is an Nash equilibrium for p < 1
2

and

β ≤ 1−ν
2

. To prove that it is compatible with symmetric mistakes one should show existence

of sequences (εk)
∞
k=1 → 0 and

((ProbkW (a), P robkS(a), P robkG(s|a), P robkJ(i|s, a)) ∈ Eεk)∞k=1 which converges to

(ProbW (a), P robS(a), P robG(s|a), P robJ(i|s, a)) as εk → 0.

For εk sufficiently low one can define

εk < ProbW (a) = ProbkW (a) < 1− εk,

εk < ProbG(s|a) = ProbkG(s|a) < 1− εk,

and

εk < ProbJ(i|s, a) = ProbkJ(i|s, a) < 1− εk.

Let ProbkS(a) = 1 − εk. Since from 0 < ProbW (a) < 1, β = ProbG(s|a) · ProbJ(i|s, a) and

ProbG(s|a) = ProbkG(s|a) < 1, then β < α(1 − ProbkG(s|a)) + ProbkG(s|a) · ProbkJ(i|s, a).

Therefore, ProbkS(a) = 1− εk is the best strategy for S, and it converges to ProbS(a) = 1.

Next consider the case p > 1
2
. Let us consider a Nash equilibrium

ProbW (a) = ProbS(a) = 0, P robG(s|a) = 1, P robJ(i|s, a) = 0

Consider

ProbkW (a) = ProbkS(a) = ProbJ(i|s, a) = εk, P robG(s|a) = 1− εk

It is sufficient to show that this strategy profile belongs to Eεk for sufficient low εk.
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β > ProbkG(s|a) · ProbkJ(i|s, a) and β > α(1 − ProbkG(s|a)) + ProbkG(s|a) · ProbkJ(i|s, a) for

sufficient low εk, therefore ProbkW (a) = ProbkS(a) = εk are the best strategies for W and S.

By (3),

Prob(W |a) = 1− p < 1

2

and therefore ProbJ(i|s, a) = εk is the best reply for J. Then, for εk sufficiently low, pν +

1− p < 1− εk = 1− ProbkJ(i|s, a), and G’s best strategy is ProbG(s|a) = 1− εk. �
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