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Abstract

Users of social, economic, or medical networks share personal information in

exchange for tangible benefits, but may be harmed by leakage and misuse of the

shared information. I analyze the effect of enhancing privacy in the presence

of two opposing forces: network effects and informational interdependencies. I

show that two privacy enhancements—reducing the likelihood of leakage and

decreasing the level of informational interdependence—have opposite effects

on the volume of information sharing, and that although they always seem

beneficial to non-strategic users, both privacy enhancements may backfire when

users are strategic.

1 Introduction

Consumers’ personal information is a valuable commodity in the booming information

economy, as such data is a major driver of growth and innovation. And in a variety

of contexts, ranging from online social networks to healthcare information technol-

ogy, consumers willingly share their personal information in exchange for perceived

benefits. However, firms’ increasing use of consumers’ personal information has been

accompanied by the latter’s growing concerns for their privacy.1 A key question for

∗Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA. E-mail:

r-gradwohl@kellogg.northwestern.edu.
1In a recent Pew survey, for example, over 90% of participants expressed such a concern (Pew

Research Center, 2014).
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innovation policy is thus how to balance the tradeoffs between information sharing

and privacy concerns (Goldfarb and Tucker, 2012). In particular, what are the ef-

fects of various privacy policies on the level of information sharing and on consumer

welfare?

One context in which the tradeoff is particularly salient is in online social networks,

whose popularity has skyrocketed over the past decade. For example, Facebook’s 1.5

billion users2, who share intimate details of their lives on the platform, are increasingly

demanding greater privacy for their personal information (Johnson et al., 2012; Pew

Research Center, 2014). Facebook, as well as other social networking platforms, photo

sharing sites, and search engines, have enacted policy modifications in response to

these concerns, modifications that have affected the level of activity on the sites.

There are other contexts in which a similar tradeoff between information sharing

and privacy arises. Examples include healthcare information technology, when health

and genomic information is digitized and shared; and consumer loyalty programs,

when shoppers share shopping habits in exchange for discounts (Rainie and Duggan,

2016).

In this paper I analyze the effects of privacy enhancements on the tradeoffs faced

by privacy-concerned individuals. The main insight is that privacy enhancements

directly affect welfare by lowering costs, but also indirectly affect welfare by altering

users’ levels of sharing. I show that different privacy enhancements may have opposite

effects on the volume of information sharing, and that although they always seem

beneficial to non-strategic users, privacy enhancements may backfire when users are

strategic.

The observation that privacy regulation may be harmful is not new, and the

burgeoning empirical and experimental literature on the topic has shown that the

effects of regulation may be positive or negative, depending on the context (see the

excellent survey of Acquisti et al., 2016). The theoretical literature on privacy has its

roots in the work of Posner (1981) and Stigler (1980), who derive a similar conclusion

in a signaling context: under stronger privacy regimes individuals can more readily

hide negative traits, which may be harmful to other market participants and to social

welfare. More recent theoretical work, all of which builds on the signaling model, has

2As of 2015. See Facebook (2016).
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pointed out that the benefits or harms of privacy enhancements are highly context-

dependent (Acquisti et al., 2016).

This paper’s goal is to identify properties of interactions that determine the ef-

fects of various privacy regulations. The point of departure is the observation that

the conception of privacy commonly studied in the theory literature—namely, as a

technology for altering the signaling capabilities of individuals—misses a key dimen-

sion of privacy harm: a concern not about third parties’ inferences about individuals’

types, but rather about misuse of the information itself (Milberg et al., 1995; Calo,

2011). Individuals concerned about identity theft, spam, harassment, stalking, re-

identification, online tracking, excessive profiling, and targeted advertising care less

about whether the information leaked about them is positive or negative, and more

about the fact that information has been leaked and misused in the first place.3 This

dimension of privacy concerns, highlighted in opinion surveys (Turow et al., 2009;

Pew Research Center, 2014; Rainie and Duggan, 2016) and in general analyses of

privacy risks associated with Facebook and other online social networks (Gross and

Acquisti, 2005; Consumer Reports, 2012; Wilson et al., 2012; Liang et al., 2015), is

the focus of the paper.

We frame the paper within the context of online social networks, but describe its

applicability in other contexts as well. In the model, agents are not concerned about

what the leaked information signals about their type, but rather about the quantity

of personal information leaked. For a concrete example, consider a Facebook user

posting photographs on the platform. The user enjoys this online activity, but also

faces some risks: the more photos are posted, the greater the chance that they are

misused by stalkers, thieves, lawyers, or employers (O’Donnell, 2016). In particular,

the privacy concern is not as much about the personal traits signaled by the photos—

the user can choose not to post embarrassing photos—but rather about the user’s

daily habits, whereabouts, appearance, and associations, which can all be deduced

from the posted trove of photographs.

3Profiling and targeted advertising may also be beneficial to users (just as price discrimination

is not necessarily harmful). However, this dimension of the associated privacy concern is less about

which advertisements are targeted at an individual, and more about the fact that advertisers track

the individual across websites (Gross and Acquisti, 2005; Turow et al., 2009; Rainie and Duggan,

2016).
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As a preliminary formalization, consider a user of a social network who wishes to

share some information. The user derives a benefit from sharing information on the

platform, a benefit captured by an increasing function of the amount of information

shared. However, there is some chance λ of information leakage and misuse—the

user’s account is hacked, the information he shared is seen by another user who was

not the intended recipient, or the information reaches a malicious third party—in

which case the user incurs a cost, captured by another increasing function of the

amount of information shared. The user thus faces a tradeoff between benefit and

cost. Is a privacy enhancement, in the form of lowering λ, beneficial to the user?

The answer is easily seen to be positive. Interestingly, if the network owner desires to

maximize the amount of information shared on the platform, then that same privacy

enhancement is, in this respect, also beneficial to him.4

Of course, this simple example ignores the collective nature of social networks.

More realistically, suppose there are many users of the network, each deciding on the

amount of information to share. The interaction between users is captured by two

opposing forces: First, users enjoy network effects from participation in the platform:

the more information others share, the more benefit an individual user derives from

his own participation. Users of Facebook, for example, benefit from the consumption

of information shared with them by others (Grimmelmann, 2009; Wilson et al., 2012).

Second, a key feature of personal information on social networks is its interdepen-

dent nature: Individuals hold information not only about themselves, but also about

others (boyd, 2012). If others share information about a particular user, that user

may suffer from the leakage of information that he did not himself share. A simple

example is photo sharing on Facebook: One can post a photo and tag another user in

it, thereby sharing information about the other’s facial features, dress, location, and

the fact that he has a social tie with the user who posted the photo.5

4 The first statement is a corollary of Claim 1, and the second of Theorem 2.
5Sarigol et al. (2014) study the amount of information posted about users by others, and Olteanu

et al. (2014) quantify co-location data (data about joint location of a user and someone else) present,

for instance, in photos. Other examples of interdependencies include information automatically

shared by users about their social connections when installing third-party apps on Facebook (Biczók

and Chia, 2013; Pu and Grossklags, 2014, 2015; Symeonidis et al., 2016), as well as interdependencies

in genetic/genomic data (boyd, 2012; Humbert et al., 2015): sharing one’s genome also reveals

information about family members, including currently unborn ones!
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Given these forces shaping interaction, I study two distinct privacy enhancements

for online social networks: lowering the probability λ of leakage and misuse of informa-

tion, and reducing the level of interdependence in users’ information. On Facebook,

for example, the former may correspond to a reduction in the number of other users

who can view an individual’s posts, limiting the ability of others to re-post one’s in-

formation, or increasing the security of users’ accounts (for example, using two-factor

authentication). The latter privacy enhancement might be achieved by limiting the

ease with which users tag others in their photos (for example, by removing the use of

facial recognition technology on users’ photos), or restricting the amount of informa-

tion users can share about others with third-party apps.

A very different context for the model is healthcare information technology. The

digitization of medical records and, more recently, their incorporation in health in-

formation exchanges, holds many potential benefits: As more patient information is

digitized and shared, patients get easier access to their data and healthcare providers

can more readily communicate, leading to fewer duplicate tests, lower costs, and

overall more efficient care. On the other hand, the more information is shared, the

greater the concern for privacy, as leaked and misused records lead to fraud and

discrimination6 (Schwartz, 1997). Possible privacy enhancements include lowering

the probability of leakage by reducing access and limiting re-disclosure of electronic

records (Adjerid et al., 2015), and lowering the level of interdependence by more

strictly regulating access to genetic/genomic information (McGuire et al., 2008).

The main results of this paper are that although both enhancements—lowering

the probability of leakage and lowering the level of interdependence—have a positive

direct effect on user welfare, they have opposite effects on the volume of informa-

tion sharing. The impact on the volume of sharing drives an indirect effect on user

welfare, and its direction depends on the tradeoff between network effects and interde-

pendencies. If the indirect effect is positive—when the privacy enhancement increases

sharing and network effects dominate interdependencies, or when the enhancement

decreases sharing and interdependencies dominate network effects—then the net ef-

6While the concern for discrimination is a “signaling” concern, it can also be seen as a quantitative

one, as patients withhold information and may avoid medical tests (prior to knowing the results)

out of the fear that these will appear on their medical records and possibly leaked (Congress, 1993).
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fect of the privacy enhancement on user welfare is positive. However, if the indirect

effect is negative, then the net effect depends on the structure and intensity of the

interdependencies.

To better understand the change in welfare when the indirect is negative, I examine

two extreme forms of interdependencies: overlapping information and additive infor-

mation. Under overlapping information, the information shared by one user about

another overlaps what the other shares about himself, and so contributes additional

information only if he shares more of it. For example, on Facebook, profile infor-

mation shared about others with third-party apps is overlapping information. Under

additive information, in contrast, the information shared by one user about another is

distinct from what the other has shared about himself. For example, original photos

shared by two users of a social network are distinct, and so the facial-feature infor-

mation they contain about a third user is additive. I show that enhancing privacy

by lowering the leakage probability is beneficial when information is overlapping, but

not necessarily when it is additive. In contrast, enhancing privacy by decreasing the

level of interdependence is harmful if information is overlapping, but beneficial when

it is additive.

The general intuition that drives these results is that under overlapping infor-

mation, the interaction between users is locally similar to an interaction with no

informational interdependencies. Hence, the response to small changes in λ is driven

by its direct effects. Furthermore, small changes to the interdependencies have no di-

rect effect, and so the response to those is driven by its indirect effects. Under additive

information, in contrast, the indirect effect of varying the level of interdependencies

is neutralized, and so only the direct effect influences utility.

Finally, I show that user-optional privacy enhancements lead to privacy “para-

doxes”, in which an enhancement is welfare-improving but each user optimally refrains

from implementing it.

Related Literature There is by now a large and growing literature on the eco-

nomics of privacy, both theoretical and empirical (see the survey of Acquisti et al.,

2016, and the many references therein). The current paper is most closely related

to a subset of this literature that focuses on the behavior of individuals whose pri-

vacy concerns are intrinsic—they would either like to signal a particular trait (e.g.,
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Daughety and Reinganum, 2010), or minimize the amount of signaling altogether

(e.g., Gradwohl and Smorodinsky, 2017). However, unlike this paper, nearly all of

the work in the literature focuses on the signaling aspect of privacy concerns.

One thread that runs through the economics of privacy literature is that privacy

enhancements can be beneficial or detrimental, depending on the setting (Acquisti

et al., 2016). In particular, several papers show that enhancing privacy may backfire

due to strategic behavior (see, for example, Cummings et al., 2016; Gradwohl and

Smorodinsky, 2017; Gradwohl, forthcoming). In this paper we show that, even in the

same setting, different privacy enhancements can have very different effects. Further-

more, we try to point out features of the setting that determine the direction of the

effect.

A separate quantitative measure of the amount of information leaked is captured

by the notion of differential privacy (Dwork, 2008). This quantitative measure is also

related to the signaling aspect of privacy: when differential privacy is guaranteed at

a certain level, it implies an upper bound on the accuracy of any Bayesian deduction

made from the leaked information (Kasiviswanathan and Smith, 2008).

Another related strand of the literature consists of work on the economics of

security (Anderson and Moore, 2006). While issues of interdependence also arise

there (see, e.g., Kunreuther and Heal, 2003), the emphasis is quite distinct from the

current paper, and consists of a focus on firms’ incentives for investing in security.

In addition, this paper contributes to the growing literature on Facebook and

other online social networks, a literature comprised of research from a variety of fields

ranging from economics and law to psychology and sociology (see the survey of Wilson

et al., 2012, and the many references therein).

Finally, our modeling of personal information is closely related to the notion of

evidence in Dziuda and Gradwohl (2015): it is nonatomic and must be revealed

truthfully, but its holders can refrain from revealing some or all of it. Dziuda and

Gradwohl also analyze a tradeoff between the amount of information revealed and a

privacy concern, but do so in the context of inter-firm communication.

7



2 Model and Preliminaries

We examine a family of parametrized games denoted by Γ = (I, (Si, vi, ci)i∈I). The

first element, I, is the finite set of players, which we henceforth call users. Each user

i ∈ I shares information xi ∈ Si, and we will assume for simplicity that Si = [0, 1].7

Let x = (x1, . . . , x|I|) and S = (S1, . . . , S|I|). The value of the network to user i, which

captures the benefits of sharing information with its intended audience, is modeled by

the function vi : S 7→ R+, which we assume to be nondecreasing as users enjoy network

effects. The cost due to leakage and misuse of information, which captures the harms

caused by shared information reaching an unintended recipient, is formalized by the

function ci : S × [0, 1) 7→ R+, which we also assume to be nondecreasing in S—the

more information about a user is available, the greater the harm caused by misuse of

this information. The second kind of element in domain of ci is a parameter ρ ∈ [0, 1),

which is an interdependence parameter: the greater ρ, the more of i’s information is

contained in x−i.
8 The precise interaction between ci and ρ is explicated below, but

for now we simply assume that ci is increasing in ρ: under greater interdependence,

the information x shared by users contains more information about user i, and so the

corresponding cost is higher.

We assume vi and ci are continuous in xi for fixed x−i and in x−i for fixed xi, for

every ρ ∈ [0, 1). Γ is a family of games, each parametrized by a leakage probability λ ∈
[0, 1] and an interdependence parameter ρ ∈ [0, 1). Taken together, these determine

the utility functions of users in the game Γ(λ, ρ), as follows.

When users share information x, each user i derives value vi(x). There is a prob-

ability λ that this information is leaked and misused, and in this case the user

suffers cost ci(x, ρ). The utility of each user i ∈ I in the game Γ(λ, ρ) is thus

ui(·, λ, ρ) : S 7→ R, where

ui(x, λ, ρ) = vi(x)− λ · ci (x, ρ) .9

7The analysis in this paper can be extended to the case in which Si is a complete lattice given

appropriate supermodularity conditions. As this does not seem to add much insight, we stick with

the simpler formulation.
8We assume that ρ < 1 in order to avoid trivial equilibria.
9Note that the leakage probability and interdependencies do not add value to the network, as v

depends only on x. In Section 7.3 we extend the model to allow for the possibility that v increases

with λ and ρ.
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For fixed ρ (respectively, λ), denote by Γ(ρ) (respectively, Γ(λ)) the subset of

games of Γ in which ρ (respectively, λ) is fixed. We will also write ui(x, λ), ui(x, ρ),

and ui(x) when ρ, λ, and both, respectively, are clear from context.

Some of our analysis relies on the dependence of ci on ρ, which we now describe

in greater detail. Suppose users share information x. First, this means user i shares

xi about himself. Second, while j 6= i shares xj about himself, some of xj contains

information about i as well. Specifically, we suppose that a ρ fraction of the informa-

tion j shared is also about i, namely ρxj.
10 The information shared by all users about

a particular user i is thus captured by the vector (xi, (ρxj)j 6=i), which we denote by

x(ρ) or by (xi, ρx−i). Note that this is a vector, rather than a number, since there

may be an overlap in different users’ information shared about i. The aggregated

information about user i is then Ai(x(ρ)) where Ai : [0, 1]|I| 7→ R+. Finally, the cost

function ci depends only on the information revealed about user i, and so we write

ci(x, ρ) = ĉi(Ai(ρ(x))), where ĉi : R+ 7→ R+ is nondecreasing.

Two examples of informational interdependencies, captured by two aggregation

functions Ai, play a prominent role in the analysis: overlapping personal information

and additive personal information.

Under overlapping personal information, when two users j and k share information

then the shared information of user j about user i completely overlaps the shared

information of user k about user i (note that we may have i = j). Thus, j shares

“new” information about i only if he shares more information about i than k does.

Formally, for overlapping information we have Ai(x(ρ)) = max{xi,maxj 6=i{ρxj}}.
On Facebook, for example, data shared with third-party apps is overlapping, as the

demographic information shared by a user about i overlaps the information shared

by a different user about i.

Under additive personal information, in contrast, when two users j 6= k share

information then the shared information of user j about user i is completely distinct

from the shared information of user k about user i. Formally, for additive information

we have Ai(x(ρ)) = xi +
∑

j 6=i ρxj. On Facebook, for example, original photos shared

by two users are distinct, as is thus the facial-feature information they contain about

10We assume the same level ρ of interdependence between any pair of users for simplicity only.

An extension with heterogeneous, possibly non-linear interdependence is discussed in Appendix 7.2.
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a third user.

Of course, in general, personal information need not be entirely overlapping or

additive, but rather may lie somewhere on the spectrum between them or may depend

on the identity of the users. For example, the genomes of two users j and k reveal

information about the genome of a relative i, but if j and k are themselves blood-

relatives then the information is neither additive nor overlapping. On the other hand,

the information about i revealed by the genomes of j and k overlaps the information

revealed by the genome of i about himself. Regardless, one assumption that we

maintain throughout is that the information shared by distinct users about user i are

substitutes. Formally, this means that the aggregation function Ai satisfies decreasing

differences: for any x′i > xi ∈ Si and x′−i > x−i ∈ S−i it holds that

Ai(xi, ρx′−i)−Ai(xi, ρx−i) ≥ Ai(x′i, ρx′−i)−Ai(x′i, ρx−i).

This is a natural assumption in this context. To see why, suppose first that user i

shares xi and the others share x−i, but then that others increase the amount they share

to x′−i > x−i. This increase now includes additional information about user i, namely

an addition of A
(
xi, ρx

′
−i
)
−A (xi, ρx−i). The amount of additional information, of

course, depends on the overlap in information between xi and the information that

is present in x′−i that was not present in x−i. Next, suppose i shares x′i > xi, and

once again consider the difference in information shared by others when they increase

the information shared from x−i to x′−i. Since x′i > xi, the overlap in information

between x′i and the information that is present in ρx′−i that was not present in ρx−i is

larger than when i shared xi. Thus, the new informational content in the difference

between ρx′−i and ρx−i should be smaller when i shares x′i than when he shares xi.

This is precisely decreasing differences.

We emphasize that this does not imply that the cost associated with different

users’ shared information satisfies decreasing differences, only that ownership of the

information does. For a more formal justification of this assumption see Appendix A.

The goal of this paper is to analyze the effect of increasing privacy, and this has

two distinct meanings in this model. The first is to decrease the probability λ of

leakage and misuse, and the second is to reduce the interdependencies between users,

by lowering the interdependence ρ.
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Before proceeding, a few notes about simplifying assumptions are in order. First,

we assume that the amount of information user j shares about user i is linear in xj:

specifically, it is ρxj. In Section 7.2 we argue that neither this linearity nor the fact

that it is the same parameter for all users has any bearing on the results. Second,

we assume that the probability λ of information leakage and misuse is identical for

all users. Again, however, this is not necessary, and all our results are easily seen

to hold when this probability is different for each user. We next discuss some more

substantive assumptions.

Assumptions and their implications Our analysis rests on the following as-

sumption about users’ utilities, made entirely for tractability: that each game Γ(λ, ρ)

is one of strategic complements. Formally, this means that the utility functions in

each game satisfy the single-crossing property in (xi;x−i) (see Milgrom and Shannon,

1994). Intuitively, under this property the best-reply of each user i is increasing in

others’ strategies. Whether it holds in practice is of course an open question, but

there is some empirical evidence that is consistent with it (Moon, 2000; Burke et al.,

2009; Acquisti et al., 2012).

The following theorem summarizes two useful facts about games of strategic com-

plements.

Theorem 1 (Milgrom and Roberts, 1990) Fix a partially-ordered set T . For ev-

ery τ ∈ T let G(τ) = (I, (Si, ui)i∈I) be a parametrized game of strategic complements,

where I is the set of users and ui : S × T 7→ R is user i’s utility function. Then:

• G(τ) has a maximal and a minimal pure Nash equilibrium (together called the

extremal equilibria).

• If for every i ∈ I the function ui has increasing differences in xi ∈ Si and τ ∈ T
(for every fixed x−i ∈ S−i) then the extremal Nash equilibria are nondecreasing

in τ .

We will use pure Nash equilibrium as the solution concept. Not only do such equilibria

always exist in the class of games we study, but they also have additional robustness

properties—see Milgrom and Roberts (1990).
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In most of the paper we will make an additional assumption: that, for every ρ,

the cost ci satisfies decreasing differences in (xi;x−i). Formally, for every x′i > xi and

x′−i > x−i,

ci(x
′
i, x−i, ρ)− ci(xi, x−i, ρ) ≥ ci(x

′
i, x
′
−i, ρ)− ci(xi, x′−i, ρ).

Recall that ci(x, ρ) = ĉi(Ai(x(ρ))). Then our second assumption is satisfied whenever

ĉi is “not too convex”.11 The meaning of “not too convex” depends on the aggre-

gation function Ai. For example, if information is overlapping then the assumption

is satisfied for any ĉi. In contrast, if information is additive then the assumption is

satisfied only if ĉi is concave. More generally, the assumption will be satisfied for

concave, as well as mildly-convex, ĉi.

We note that our two assumptions, that ui satisfies single-crossing and that ci

satisfies decreasing differences, go “in the same direction”. Given a function ci that

satisfies decreasing differences, a sufficient condition for ui to satisfy single-crossing

is that vi satisfy increasing differences.

2.1 Direct effects and non-strategic users

Given a game Γ(λ, ρ) and a level x of information sharing, the direct effect of lowering

λ (respectively, ρ) is the change in users’ utilities, holding ρ (respectively, λ) and x

fixed. It is easy to see that the direct effects of both lowering λ and lowering ρ are

positive—they lead to an increase in users’ utilities.

We next consider the baseline case in which users of the social network are not

strategic: they optimize the amount of information they share based on the param-

eters λ and ρ, viewing the information shared by others as fixed. Equivalently, such

users take only the direct effects of privacy enhancements into account, ignoring the

indirect effect—the welfare difference caused by the change in others’ level of informa-

tion sharing, brought about by the privacy enhancement. For the rest of this section

fix a user i and an amount of information x−i shared by other users.

Claim 1 Fix ρ and λ, and let xi be any element of arg maxz∈Si
ui(z, x−i, λ, ρ). Then

for any λ′ ≤ λ, ρ′ ≤ ρ, and x′i ∈ arg maxz∈Si
ui(z, x−i, λ

′, ρ′) it holds that

ui(x
′
i, x−i, λ

′, ρ′) ≥ ui(xi, x−i, λ, ρ).
11But see Section 7.4 for discussion of the opposite assumption.
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In words, Claim 1 states that when users are non-strategic then they believe that

enhancing privacy either by lowering λ or by lowering ρ (or both) unequivocally leads

to a welfare increase. Thus, such users would be in favor of both forms of privacy

enhancement.

Proof: First observe that ui(xi, x−i, λ
′, ρ′) ≥ ui(xi, x−i, λ, ρ), since reductions in

both λ and ρ lead to lower costs due to information misuse. But x′i is an optimal

response to x−i under λ′ and ρ′, and so ui(x
′
i, x−i, λ

′, ρ′) ≥ ui(xi, x−i, λ
′, ρ′).

3 Network Owner

In this section we analyze the effects of increasing privacy by decreasing λ or ρ on

the amount of information x shared by users in equilibrium. The purpose is twofold:

First, it will facilitate the analysis of user welfare in subsequent sections, as the volume

of information sharing is the conduit for the indirect effect of privacy enhancements.

Claim 1 states that if users are non-strategic then both privacy enhancements are

welfare increasing. However, what such users miss is the indirect effect, through the

amount of information shared by others. But of course this is relevant, as others’

information impacts a user’s utility via both network effects and interdependencies.

Second, the volume of information shared is one comparative static with which

the network owner may be concerned. In particular, the network owner may wish

users to increase the amount of information shared on his network. Of course, he

may have additional concerns, but the basic question we seek to answer here is: if

enhancing privacy were costless, would the network owner find it desirable? In this

section we show that the answer depends on the form of privacy enhancement.

The first theorem is about enhancing privacy by decreasing the probability λ of

information leakage.

Theorem 2 For any ρ, the extremal equilibria of Γ(ρ) are decreasing with λ.

Thus, as privacy protection increases (i.e., λ decreases), the amount of personal in-

formation shared by each user increases. If such an enhancement were not too costly,

then, the network owner may find it desirable.

13



Proof: We will show that ui(x, λ) has decreasing differences in xi and λ, and so

increasing differences in xi and −λ. The result will then follow from Theorem 1.

Fix x−i ∈ S−i, as well as any xi < x′i ∈ Si and λ < λ′. Then:

[ui(x
′
i,x−i, λ

′)− ui(xi, x−i, λ′)]− [ui(x
′
i, x−i, λ)− ui(xi, x−i, λ)]

= [vi(x
′
i, x−i)− λ′ · ci(x′i, ρx−i)− vi(xi, x−i) + λ′ · ci(xi, ρx−i)]

− [vi(x
′
i, x−i)− λ · ci(x′i, ρx−i)− vi(xi, x−i) + λ · ci(xi, ρx−i)]

= λ′[(ci(xi, ρx−i)− ci(x′i, ρx−i)]− λ[(ci(xi, ρx−i)− ci(x′i, ρx−i)]

= (λ′ − λ)[(ci(xi, ρx−i)− ci(x′i, ρx−i)]

≤ 0,

where the inequality follows from the fact that λ < λ′ and the assumption that ci is

nondecreasing.

Next, we consider the second privacy enhancement: lowering the level of informa-

tional interdependence between users.

Theorem 3 For any λ ∈ [0, 1], the extremal equilibria of Γ(λ) are increasing in ρ.

Thus, as this form of privacy protection increases (i.e., ρ decreases), the amount of

personal information shared by each user decreases. So even if such an enhancement

were costless, the network owner would not find it desirable.

Proof: We will show that ui(x, λ, ρ) has increasing differences in xi and ρ. The

result will then follow from Theorem 1.

Fix x−i ∈ S−i, as well as any xi < x′i ∈ Si and ρ < ρ′. Then:

[ui(x
′
i,x−i, ρ

′)− ui(xi, x−i, ρ′)]− [ui(x
′
i, x−i, ρ)− ui(xi, x−i, ρ)]

= [vi(x
′
i, x−i)− λ · ci(x′i, ρ′x−i)− vi(xi, x−i) + λ · ci(xi, ρ′x−i)]

− [vi(x
′
i, x−i)− λ · ci(x′i, ρx−i)− vi(xi, x−i) + λ · ci(xi, ρx−i)]

= λ[ci(xi, ρ
′x−i)− ci(x′i, ρ′x−i)]− λ[ci(xi, ρx−i)− ci(x′i, ρx−i)]

≥ 0,

where the inequality follows from the fact that λ ≥ 0 and the assumption that ci has

decreasing differences in xi and x−i.
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We noted above that the network owner may be concerned with the amount of

information x shared by users, and asked: if privacy enhancements were costless,

would the network owner desire their implementation? Theorems 2 and 3 show that

the answer is yes for lowering λ, but no for lowering ρ.

Now, what if the network owner wishes to maximize the total amount of informa-

tion shared about each user, namely A(x, ρ) = (A1(x(ρ)), . . . ,A|I|(x(ρ)))? Clearly,

he would still wish to lower λ, as this leads to higher x and so higher A(x, ρ). The

case of lower ρ is a bit subtler, however, since lower ρ leads to lower x but also affects

A(x, ρ). But note that lowering ρ leads to lower A(x, ρ) (holding x fixed), and so the

two effects go in the same direction. Thus, a network owner who wishes to maximize

A(x, ρ) would not want to lower ρ.

In this section we analyze the effects of the privacy enhancements on user welfare.

There are two cases, differentiated by whether indirect effects are positive or negative.

In this section we consider the former.

4 User welfare with positive indirect effects

The simpler case is the one in which indirect effects are positive—in which lowering

λ or ρ leads to a beneficial change in the equilibrium level of information sharing—

and this, together with positive direct effects, leads to a net increase in user welfare.

Whether or not indirect effects are positive depends on the relationship between

network effects and informational interdependencies. We consider two opposite con-

ditions. In the first, network effects dominate the informational interdependencies:

Condition 1 ui(xi, x−i, λ, ρ) is nondecreasing in x−i for every i ∈ I and xi ∈ Si.

A special case of games that satisfy Condition 1 are ones in which users do not suffer

from informational interdependencies:

Definition 1 (no interdependencies) A game Γ(λ, ρ) has no interdependencies if

ci(x, ρ) = ci(xi, x
′
−i, ρ) for all x ∈ S and x′−i ∈ S−i. In this case we write ci(x, ρ) =

ci(xi).
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Under Condition 1, more information sharing by others is beneficial to users, and so a

privacy enhancement that leads to greater information sharing has a positive indirect

effect. In particular, we have the following theorem:

Theorem 4 Under Condition 1 the utility of every user increases as λ decreases.

The intuition behind Theorem 4 is simple: lowering λ increases a user’s utility both

directly and indirectly. The direct increase follows from lower costs. The indirect one

results from an increase the amount of information shared by others (by Theorem 2),

which is beneficial to the user when network effects dominate interdependencies.

Proof: Fix any λ′ < λ, and let x′ and x be the maximal (minimal) equilibria of

Γ(λ′, ρ) and Γ(λ, ρ), respectively. Theorem 2 implies that x′ ≥ x. Then

ui(x
′, λ′) = vi(x

′)− λ′ · ci(x′i, x′−i, ρ)

≥ vi(xi, x
′
−i)− λ′ · ci(xi, x′−i, ρ)

≥ vi(xi, x−i)− λ′ · ci(xi, x−i, ρ)

≥ vi(x)− λ · ci(xi, x−i, ρ)

= ui(x, λ),

where the first inequality follows from the fact that x′ is an equilibrium, the second

from the facts that x−i < x′−i and that ui(xi, x
′
−i, λ

′) is nondecreasing in x′−i, and the

third since λ > λ′.

A corollary of Theorem 4 is that if there are no interdependencies then lowering

λ increases user welfare.

The second condition is the opposite of Condition 1, namely that informational

interdependencies dominate network effects:

Condition 2 ui(xi, x−i, λ, ρ) is nonincreasing in x−i for every i ∈ I and xi ∈ Si.

A special case of games that satisfy Condition 2 are ones in which users do not

enjoy network effects:

Definition 2 (no network effects) A game Γ(λ, ρ) has no network effects if vi(x) =

vi(xi, x
′
−i) for all i, x ∈ S, and x′−i ∈ S−i. In this case we write vi(x) = vi(xi).
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Under Condition 2, less information sharing by others is beneficial to users, and so

a privacy enhancement that leads to less information sharing has a positive indirect

effect. In particular, we have the following theorem:

Theorem 5 Under Condition 2 the utility of every user increases as ρ decreases.

Note the contrast between Theorem 5 and Theorem 4. While both provide a

sufficient condition for a privacy enhancement to be welfare improving, both the

enhancement and the sufficient condition are different: lowering λ vs. lowering ρ, and

Condition 1 vs. Condition 2.

Like Theorem 4, the intuition behind Theorem 5 is simple: lowering ρ increases

a user’s utility both directly and indirectly. The direct increase follows from lower

costs. The indirect one results from a decrease the amount of information shared

by others (by Theorem 3), which is beneficial to the user when interdependencies

dominate network effects.

Proof: Fix any ρ′ < ρ for which Γ(λ, ρ′) and Γ(λ, ρ) satisfy Condition 2. Let x′ and

x be the respective maximal (minimal) equilibria of Γ(λ, ρ′) and Γ(λ, ρ), and observe

that x′ ≤ x by Theorem 3. Then

ui(x
′, λ, ρ′) = vi(x

′)− λ · ci
(
x′i, x

′
−i, ρ

′)
≥ vi(xi, x

′
−i)− λ · ci

(
xi, x

′
−i, ρ

′)
≥ vi(xi, x−i)− λ · ci (xi, x−i, ρ′)

≥ vi(x)− λ · ci (xi, x−i, ρ)

= ui(x, λ, ρ),

where the first inequality follows from the fact that x′ is an equilibrium, the second

from Condition 2 and the fact that x−i ≥ x′−i, and the third from the facts that ρ > ρ′

and ci is nondecreasing.

A corollary of Theorem 5 is that if there are no network effects then lowering ρ

increases user welfare.
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5 Use welfare with negative indirect effects

When indirect effects are positive, the net effects of privacy enhancements are easy

to determine. In contrast, when indirect effects are negative, the situation is more

complicated. We will analyze the effect of privacy enhancements when indirect effects

are negative in the two extreme forms of informational interdependencies: overlapping

personal information and additive personal information.

5.1 Overlapping personal information

Recall that when information is overlapping, when two users j and k share information

then the shared information of user j about user i completely overlaps the shared

information of user k about user i: Ai(x(ρ)) = max{xi,maxj 6=i{ρxj}}. We will

show that in this case lowering λ is beneficial for user welfare, whereas lowering ρ

is harmful. The general intuition underlying these results is that, when information

is overlapping, the interaction between users is locally similar to an interaction with

no informational interdependencies. Hence, the indirect effect of small changes in λ

are similar to their effect when there are no interdependencies (which we know to be

positive, by Theorem 4). Furthermore small changes to ρ have no direct effect, since

the cost is determined by the maximum, and so the response to those is determined

by its indirect effects.

Our theorems on the effects of privacy enhancements in games with overlapping

information each consist of two parts, the first claiming that there exists a user whose

utility increases or decreases with a change in λ or ρ, and the second stating that

every user’s utility increases or decreases, under a certain property. We call this

property of information sharing self-exposing: a user is self-exposing when he shares

more information about himself than others share about him. In the following section

we formalize this notion, and provide two settings in which this property is guaranteed

to hold in the extremal equilibria: when the probability of leakage λ is small enough,

and when there is a high level of homophily in the game. The two subsequent sections

then contain analyses of the effects of privacy enhancements, first lowering λ and then

lowering ρ.
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5.1.1 Self-exposing levels of sharing

We begin with a definition.

Definition 3 (concave games) The family of games Γ(ρ) is concave if for every

i ∈ I and x−i ∈ S−i both vi(·, x−i) and vi(·, x−i)−ci(·, x−i, ρ) are concave (as functions

of xi).

In particular, a game is concave if vi is concave and ci is convex. The main relevant

property of concave games is captured by the following lemma:

Lemma 1 In any game Γ(λ, ρ) belonging to a concave class of games Γ(ρ), the utility

function ui(·, x−i, λ, ρ) is concave for every i ∈ I and x−i ∈ S−i.

Proof: Let v′i(xi) = vi(xi, x−i), c
′
i(xi) = ci(xi, x−i, ρ), and u′i(xi) = ui(xi, x−i, λ, ρ).

Fix some xi, x
′
i ∈ Si and some λ ∈ [0, 1]. Concavity of v′i implies that

v′i(λxi + (1− λ)x′i) ≥ λv′i(xi) + (1− λ)v′i(x
′
i),

and so

(1− λ) · v′i(λxi + (1− λ)x′i) ≥ (1− λ) · (λv′i(xi) + (1− λ)v′i(x
′
i)) . (1)

Concavity of v′i − c′i implies that

w′i(λxi + (1− λ)x′i) ≥ λw′i(xi) + (1− λ)w′i(x
′
i),

where w′i(xi) = v′i(xi)− c′i(xi), and so

λ · w′i(λxi + (1− λ)x′i) ≥ λ · (λw′i(xi) + (1− λ)w′i(x
′
i)) . (2)

Adding inequalities (1) and (2) and yields

u′i(λxi + (1− λ)x′i) ≥ λu′i(xi) + (1− λ)u′i(x
′
i)

as desired.
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Small λ

Definition 4 (self-exposing (SE)) User i is self-exposing (SE) in a game Γ(λ, ρ)

with level of sharing x if xi > ρxj for all j 6= i. The level of sharing x is an SE profile

if every user is SE. Finally, Γ(λ, ρ) is an SE game if its extremal equilibria are SE

profiles.

For our first proposition we need a slight strengthening of concavity: a class of

games Γ(ρ) is strictly concave if it is concave, and if vi(xi, 0, . . . , 0) is strictly concave

in xi, for every i ∈ I.

Proposition 1 Fix ρ and a strictly concave class Γ(ρ). Then there exists λ0 =

λ0(Γ(ρ))) > 0 such that Γ(λ, ρ) ∈ Γ(ρ) is an SE game for every λ < λ0.

Proof of Proposition 1: Fix a user i. We will show that there is λ0 > 0 such that

the best response of user i to others sharing 0 satisfies xi > ρ, in the game Γ(λ, ρ)

with λ < λ0. This will imply that when others share x′−i ≥ 0, the optimal level of

sharing of i will be x′i ≥ xi, because of strategic complements. This implies that

x′i > ρ ≥ ρx′j for all j 6= i in every equilibrium of Γ(λ, ρ), as claimed.

Fix λ and ρ, and denote by u0i (xi) = ui(xi, 0, λ, ρ), by v0i (xi) = vi(xi, 0), and by

c0i (xi) = ci(xi, 0, ρ). Consider the minimal best response of user i to others sharing 0:

BRi = min arg maxxi u
0
i (xi). If BRi = 1 then the claim follows immediately. We next

show that, for small enough λ, it must be the case that BRi > 0. To see this, note

that BRi > 0 is equivalent to

dv0i (0)

dxi
> λ · dc

0
i (0)

dxi
.

The LHS must be positive due to vi being nondecreasing and strictly convex. Thus,

the inequality is satisfies whenever λ is small enough (but positive).

Thus, the best response of user i is in the interior. Let x0i (λ) denote BRi in the

game Γ(λ, ρ). We now show that, given that BRi is in the interior, x0i (λ) → 1 as

λ→ 0. This will prove the claim.

To this end, fix some ε > 0. We will show that there exists λ > 0 such that
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x0i (λ) > 1− ε. Now,

x0i (λ) > 1− ε

⇔ du0i (1− ε)
dxi

> 0

⇔ dv0i (1− ε)
dxi

> λ · dc
0
i (1− ε)
dxi

,

where the first iff follows from concavity of u0i . Note that the LHS of the last inequality

above is positive since v0i is strictly convex and increasing. Thus, the inequality holds

for small enough (but positive) λ.

Networks In more realistic settings, users derive utility only from some other users’

shared information, and not all. Furthermore, users’ information is interdependent

with some other users’ information, but not with all. We can describe such a network

of interaction by two graphs, one capturing network effects and the other capturing

informational interdependencies. Let Gv(I, Ev) and Gc(I, Ec) be two directed graphs,

where the nodes in each are the users I. The idea is that there is a directed edge eij

from node i to node j in the graph Gv (formally, eij ∈ Ev) if and only if vi depends on

xj, and there is a directed edge eij from node i to node j in the graph Gc (formally,

eij ∈ Ec) if and only if ci depends on xj. Fixing a network N = (Gv, Gc), the utilities

of users in the game Γ(λ, ρ) on network N are

ui(x, λ, ρ) = vi (xi, {xj : eij ∈ Ev})− λ · ci (xi, {xj : eij ∈ Ec}, ρ) .

In the following, we restrict attention to networks with a high amount of ho-

mophily: in particular, we will require that users who are connected on the network

(more specifically, on the interdependency graph) have the same utility functions (see

McPherson et al., 2001, for a survey of homophily in social and other networks). In

words, the following definition states that if xj is an input to ci—that is, if user j

has information about user i—then the functions ui and uj are equivalent (up to a

permutation of the inputs). More formally,

Definition 5 (network-symmetric) A game Γ(λ, ρ) on network N = (Gv, Gc) is

network-symmetric if for every i ∈ I and j satisfying eij ∈ Ec there exists a permu-

tation π : I 7→ I with π(i) = j, for which vk ≡ vπ(k) ◦ π and ck ≡ cπ(k) ◦ π.
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A trivial example of a network-symmetric game consists of symmetric games, in

which both Gv and Gc are cliques, and ui(x1, . . . , x|I|) = uπ(i)(xπ(1), . . . , xπ(|I|)) for

every permutation π on I.

We slightly modify the definition of self-exposing, to accommodate the presence

of the network.

Definition 6 (self-exposing (SE) on a network) User i is self-exposing (SE) in

a game Γ(λ, ρ) on network N = (Gv, Gc) with level of sharing x if xi > ρxj for all

j 6= i with eij ∈ Ec. The level of sharing x is an SE profile on network N if every user

is SE on N . Finally, Γ(λ, ρ) is an SE game on network N if its extremal equilibria

are SE profiles on N .

Proposition 2 Every network-symmetric game Γ(λ, ρ) on network N = (Gv, Gc) is

an SE game on N .

Proof of Proposition 2: Fix users i, j ∈ I with eij ∈ Ec. We first show that in

the maximal equilibrium x it holds that xi ≥ xj, and so, in particular, xi > ρxj.

Suppose towards a contradiction that xi < xj. Let π be the permutation with

π(i) = j guaranteed by the network-symmetry of the game. Furthermore, consider

the profile x that satisfies xk = xπ(k) for all k ∈ I. Due to network-symmetry, x is

also an equilibrium, but note that in this equilibrium xi = xj. Finally, since the set of

pure Nash equilibria of games of strategic complements form a lattice (Zhou, 1994),

there exists a third equilibrium x′ such that x′ > x and x′ ≥ x. The former inequality

is strict since x′i ≥ xi = xj > xi. The existence of x′ contradicts the maximality x.

Next, we show that in the minimal equilibrium x it holds that xi ≥ xj, and so

xi > ρxj. Suppose towards a contradiction that xi < xj. Consider the profile x that

satisfies xk = xπ(k) for all k ∈ I. Due to network-symmetry, x is also an equilibrium,

but note that in this equilibrium xi = xj. Once again, because the set of equilibria

form a lattice, there exists a third equilibrium x′ such that x′ ≤ x and x′ ≤ x. It

remains to show that x′ 6= x, which will imply that x′ < x and so contradict the

minimality of x.

To see why x′ 6= x, consider the cycle implied by the permutation π, starting

at node i
def
= i1, namely the set {i1, . . . , im} ⊆ I satisfying π(in) = in+1 for all n ∈

{1, . . . ,m − 1}, and π(im) = i1. Since x′ ≤ x, x′ ≤ x, and x is a permutation of x,
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it would only be possible that x′ = x if xi = xin for all n ∈ {1, . . . ,m}. This is false,

however, since, in particular, xi < xj = xi2 .

5.1.2 Decreasing λ

Our first main theorem for games with overlapping information is:

Theorem 6 In any concave game Γ(λ, ρ) with overlapping personal information there

exists a user whose utility increases as λ decreases. If either Γ(λ, ρ) is strictly con-

cave with λ < λ0(Γ(ρ))) or Γ(λ, ρ) is network-symmetric, then every user’s utility

increases as λ decreases.

The intuition behind Theorem 6 is that for a user who shares more information

about himself than others share about him, the nature of overlapping information

is such that he only incurs costs from information he shares. Hence, as long as he

does not vary the amount of information he shares by much, it is as if there were no

interdependencies. And in a game with no interdependencies lowering λ is beneficial,

as demonstrated by Theorem 4. Finally, concavity of the game renders this “local”

property sufficient.

Theorem 6 relies on the following lemmas:

Lemma 2 Fix a concave game with no interdependencies, a strategy profile x, and

a strategy x′i. If ui(x
′
i, x−i) > ui(x) then for every ε > 0 there exists x′′i such that

|x′′i − x′i| < ε and such that ui(x
′′
i , x−i) > ui(x).

Proof: Fix any δ ∈ (0, 1), and let x′′i = (1−δ)xi+δx′i. By Lemma 1, ui is a concave

function of xi for every fixed x−i. Thus,

ui(x
′′
i , x−i) ≥ (1− δ)ui(xi, x−i) + δui(x

′
i, x−i) > ui(xi, x−i).

Choosing δ sufficiently small completes the proof.

Lemma 3 Fix a concave game Γ(λ, ρ) with overlapping information, an equilibrium

x, and an SE user i. Then for every x′i,

vi(x)− λ · ci(xi) ≥ vi(x
′
i, x−i)− λ · ci(x′i).
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Note that the left-hand-side of the inequality is the utility of user i, since the facts

that the game has overlapping information and that xi is SE mean that ci(x) = ci(xi).

Now, since x is an equilibrium it must be the case that ui(x) ≥ ui(x
′
i, x−i), but note

that this does not imply the right-hand-side of the inequality in the lemma, since it

is possible that ui(x
′
i, x−i) < vi(x

′
i, x−i)− λ · ci(x′i).

Proof of Lemma 3: Consider the game Γ(λ, 0), which is the same game as Γ(λ, ρ)

except that there are no interdependencies (that is, ui(x, λ, 0) = vi(x)− λ · ci(xi)). If

xi is a best response to x−i in Γ(λ, ρ), then I claim it must also be a best-response

in Γ(λ, 0). To see this, suppose towards a contradiction that there is a profitable

deviation x′i to x−i in Γ(λ, 0):

vi(x
′
i, x−i)− λ · ci(x′i) > vi(x)− λ · ci(xi).

Note that this does not immediately imply the contradiction that x′i is a profitable de-

viation in Γ(λ, ρ) as well, since a deviation to x′i in Γ(λ, ρ) leads to utility vi(x
′
i, x−i)−

λ ·ci (max{x′i,maxj 6=i{ρxj} }), and this may not be higher than vi(x)−λ ·ci(xi). How-

ever, by Lemma 2, for any ε > 0 there exists x′′i such that in Γ(λ, 0), x′′i is also a

profitable deviation. Choose ε small enough so that x′′i > maxj 6=i{ρxj}. This is

possible since i is an SE user. This implies that in the game Γ(λ, ρ),

vi(x
′′
i , x−i)− λ · ci (max{x′′i ,max

j 6=i
{ρxj} })

= vi(x
′′
i , x−i)− λ · ci(x′′i )

> vi(x)− λ · ci(xi),

where the inequality follows from Lemma 2. Thus, x′′i is a profitable deviation in

Γ(λ, ρ), implying the contradiction that xi is not a best response to x−i in Γ(λ, 0).

Hence, xi is a best response to x−i in Γ(λ, 0), which implies that ui(x, λ, 0) ≥
ui(x

′
i, x−i, λ, 0). This is equivalent to the inequality in the statement of the lemma.

We now prove Theorem 6.

Proof of Theorem 6: Since Γ(λ, ρ) has overlapping information, the cost function

ci depends only on the maximum of its inputs. Fix any λ′ < λ, and let x′ and x be the
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respective maximal (minimal) equilibria of Γ(λ′, ρ) and Γ(λ, ρ). As before, Theorem 2

implies that x′ ≥ x. For the first part of the theorem, fix some i ∈ arg maxj x
′
j, and

note that i is an SE user under x′ since x′i ≥ x′j for all j 6= i, and so x′i > ρx′j for all

j 6= i. Then

ui(x
′, λ′) = vi(x

′)− λ′ · ci
(

max{x′i,max
j 6=i
{ρx′j}}

)
= vi(x

′)− λ′ · ci(x′i) (3)

≥ vi(xi, x
′
−i)− λ′ · ci(xi) (4)

≥ vi(x)− λ · ci
(

max{xi,max
j 6=i
{ρxj}}

)
(5)

= ui(x, λ),

where (3) follows from the choice of x′i as maximal, (4) from Lemma 3, and (5) from

the facts that λ′ < λ, x ≤ x′, and vi is nondecreasing.

The second part of the theorem follows from the observations that if λ < λ0(Γ(ρ)))

then also λ′ < λ0(Γ(ρ))), and if Γ(λ, ρ) is network-symmetric then so is Γ(λ′, ρ). Thus,

by Propositions 1 and 2, the game Γ(λ′, ρ) is an SE game. Finally, in such games

the analysis above holds for every user (replacing maxj 6=i by maxj:eij∈Ec if the game

is network-symmetric).

Remark 7 The fact that all users’ utilities increase as λ decreases does not hold when

the resulting game Γ(λ′, ρ) is not SE, and in that case it is possible that lowering λ

leads some users to obtain strictly lower welfare. This is demonstrated by Example 3,

a concave 2-user game without network effects, in Appendix B.

Remark 8 Results analogous to Theorem 6 do not generally hold in games that are

not concave. This is demonstrated by Example 4 in Appendix B, a symmetric, non-

concave game with overlapping information with the property that lowering λ leads

to a decrease in all users’ utilities.

5.1.3 Lowering ρ

We have seen that under overlapping personal information, lowering λ is beneficial.

How about lowering ρ? Here we have two sets of results, one for games that satisfy
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Condition 1 and one for concave games. For both, the broad conclusion is that

enhancing privacy by lowering ρ is harmful to users.

Theorem 9 In any game Γ(λ, ρ) with overlapping personal information satisfying

Condition 1 there exists a user whose utility decreases as ρ decreases. If either Γ(λ, ρ)

is strictly concave with λ < λ0(Γ(ρ))) or Γ(λ, ρ) is network-symmetric, then every

user’s utility decreases as ρ decreases.

To see the intuition, note that for for a user who shares more information about

himself than others share about him, informational interdependencies do not matter,

and so for him there is no indirect effect of lowering ρ. He does, however, face the

indirect effect of less sharing by others, and this, by Condition 1, is harmful.

Proof: Fix any ρ′ < ρ, and let x′ and x be the respective maximal (minimal)

equilibria of Γ(λ, ρ′) and Γ(λ, ρ). As before, Theorem 3 implies that x′ ≤ x. For the

first part of the theorem, fix some i ∈ arg maxj x
′
j, and note that i is an SE user under

x′ since x′i ≥ x′j for all j 6= i, and so x′i > ρ′x′j for all j 6= i. Then

ui(x, λ, ρ) = vi(x)− λ · ci (max{xi,max
j 6=i
{ρxj} })

≥ vi(x
′
i, x−i)− λ · ci (max{x′i,max

j 6=i
{ρxj} }) (6)

≥ vi(x
′)− λ · ci (max{x′i,max

j 6=i
{ρ′x′j} }) (7)

= vi(x
′)− λ · ci(x′i) (8)

= vi(x
′)− λ · ci (max{x′i,max

j 6=i
{ρ′x′j} })

= ui(x
′, λ, ρ′),

where (6) follows since x is an equilibrium; (7) by Condition 1; and (8) by the choice

of x′i as maximal.

The second part of the theorem follows from the observations that if λ < λ0(Γ(ρ)))

then also λ < λ0(Γ(ρ′))), and if Γ(λ, ρ) is network-symmetric then so is Γ(λ, ρ′). Thus,

by Propositions 1 and 2, the game Γ(λ′, ρ) is an SE game. Finally, in such games

the analysis above holds for every user (replacing maxj 6=i by maxj:eij∈Ec if the game

is network-symmetric).
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Our second result on lowering ρ in games with overlapping personal information

concerns con cave games. Recall Theorem 6, which states that in such games, in-

creasing privacy by lowering λ increases user welfare utility. The following theorem,

in contrast, states that in such games increasing privacy by lowering ρ decreases user

welfare. Furthermore, in SE games, user welfare is unaffected by decreases in ρ.

Theorem 10 In any game concave Γ(λ, ρ) with overlapping personal information

there exists a user whose utility decreases as ρ decreases. If either Γ(λ, ρ) is strictly

concave with λ < λ0(Γ(ρ))) or Γ(λ, ρ) is network-symmetric, then no user’s utility is

affected by a decrease in ρ.

The intuition for Theorem 10 is similar to that of Theorem 9: for a user who

shares more information about himself than others share about him, there are no

direct effects from lowering ρ (for small variations). The indirect effect here lowers

the benefit of network effects, which is harmful. And as before, concavity guarantees

that these local effects suffice.

Proof: Fix any ρ′ < ρ, and let x′ and x be the respective maximal (minimal)

equilibria of Γ(λ, ρ′) and Γ(λ, ρ). As before, Theorem 3 implies that x′ ≤ x. For the

first part of the theorem, fix some i ∈ arg maxj xj, and note that i is an SE user under

x since xi ≥ xj for all j 6= i, and so xi > ρxj for all j 6= i.

ui(x, λ, ρ) = vi(x)− λ · ci
(

max{xi,max
j 6=i
{ρxj}}

)
= vi(x)− λ · ci(xi) (9)

≥ vi(x
′
i, x−i)− λ · ci(x′i) (10)

≥ vi(x
′)− λ · ci

(
max{x′i,max

j 6=i
{ρ′x′j}}

)
(11)

= ui(x
′, λ, ρ′),

where (9) follows since xi is maximal; (10) by Lemmas 2 and 3; and (11) since vi and

ci are nondecreasing.

For the second part of the theorem, observe that if λ < λ0(Γ(ρ))) then also

λ < λ0(Γ(ρ′))), and if Γ(λ, ρ) is network-symmetric then so is Γ(λ, ρ′). Thus, by

Propositions 1 and 2, the game Γ(λ′, ρ) is an SE game. We will show that in this
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case, x = x′, implying also that ui(x, λ, ρ) = ui(x
′, λ, ρ′), since then both inequalities

above become equalities (replacing maxj 6=i by maxj:eij∈Ec if the game is network-

symmetric).

To show that x = x′, we will argue that any equilibrium in an SE game Γ(λ, ρ)

is also an equilibrium in Γ(λ, ρ′), and vice versa. Observe that in both Γ(λ, ρ) and

Γ(λ, ρ′), for any profile x it holds that ui(x) = vi(x) − λ · ci(xi). Now, consider the

profile x that is an equilibrium in Γ(λ, ρ), as well as a possible deviation x′′i by some

user i. By Lemmas 2 and 3, if x′′i is a profitable deviation in Γ(λ, ρ′), then there

exists another profitable deviation x′′′i in Γ(λ, ρ′) that is arbitrarily close to xi. In

particular, one can choose x′′′i > ρxj for all j 6= i (or for all j with eij ∈ Ec if the

game is network-symmetric). But this implies that

ui(x
′′′
i , x−i) = vi(x

′′′
i , x−i)− λ · ci(x′′′i ) > ui(x)

in both Γ(λ, ρ) and Γ(λ, ρ′), contradicting the assumption that x is an equilibrium in

the former. Thus, an equilibrium x in Γ(λ, ρ) is also an equilibrium in Γ(λ, ρ′).

Observing that the argument above does not depend on whether ρ < ρ′ or vice

versa completes the proof.

5.2 Additive personal information

In the previous section we showed that when information is overlapping, decreasing

λ is beneficial while decreasing ρ is harmful to user welfare. The situation is not as

clear-cut with additive information, however. We will show that even in perhaps the

simplest class of games—symmetric, concave games without network effects and with

linear cost functions ĉi—lowering λ can be both beneficial and harmful to user welfare,

depending on the magnitude of ρ. In contrast, we show that in the general class of

games with additive information and linear costs lowering ρ is always beneficial.

Consider the following example:

Example 1 Suppose I = {1, 2}, and fix some k ∈ (.5, 1) and λ ∈ (1/(1 + k), 1/k).

Furthermore, for both i ∈ I let vi(xi, x−i) = log(k + xi) − log(k), and ci(x) = (xi +

ρx2−i).

The conditions on λ guarantee that the solution is interior, and in equilibrium we
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have

xi =
1

λ
− k

for each user i. Then in equilibrium,

ui(x, λ, ρ) = log
1

λ
− λ(1 + ρ)

(
1

λ
− k
)

= log
1

λ
+ (1 + ρ)λk − (1 + ρ).

Now fix λ′ = 1 and λ = 1/(2k), and observe that λ < λ′. Let x and x′ be the maximal

(minimal) equilibria of Γ(λ) and Γ(λ′), respectively.

Plugging in these values of λ and λ′ we get that

ui(x, λ, ρ) = log(2k) +
1 + ρ

2
− (1 + ρ),

and

ui(x
′, λ′, ρ) = (1 + ρ)(k − 1).

Then

ui(x, λ, ρ) > ui(x
′, λ′, ρ)

⇔ log(2k) +
1 + ρ

2
− (1 + ρ) > (1 + ρ)(k − 1)

⇔ log(2k) +
1 + ρ

2
> (1 + ρ)k

⇔ log(2k) > (1 + ρ)

(
k − 1

2

)
⇔ ρ <

log(2k)

k − 1
2

− 1.

Now, when k approaches 1, the right-hand-side of the bound approaches roughly

0.386. In this case, when the information correlation is relatively small (i.e., below

0.386), lowering λ′ to λ leads to higher user welfare. However, when the informational

interdependencies are relatively high (i.e., above 0.386), lowering λ′ to λ leads to lower

user welfare.

The conclusion from this example is rather intuitive. Recall that the direct effect

of reducing λ is positive. The indirect effect is an increase in the volume of information

shred, which by assumption is harmful. Hence, if this harm is large—which happens
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when the level of interdependence is high—then the indirect effect dominates, and

welfare decreases. Similarly, when the harm is small then the direct effect dominates

and welfare increases.

In contrast with the ambiguous nature of lowering λ, the following theorem states

that under additive personal information with linear costs, lowering ρ leads to higher

utility to all users. This contrasts with the effect of lowering ρ in games with overlap-

ping personal information, in which utilities either remained unchanged, or at least

one user obtains lower utility.

Theorem 11 In any game with additive information and linear costs, user welfare

increases as ρ decreases.

The main intuition is that under additive personal information, lowering ρ has

no direct effect on welfare. This follows from the following lemma, which is one

component of the subsequent statement that the extremal equilibria of a game with

additive personal information are unaffected by changes in ρ.

Lemma 4 If personal information is additive and cost functions ĉi linear, then the

extremal equilibria of Γ(λ, ρ) are remain fixed as ρ varies.

Proof: We will show that ui(x, λ, ρ) has both decreasing and increasing differences

in xi and ρ. The result will then follow from Theorem 1.

Fix x−i ∈ S−i, as well as any xi < x′i ∈ Si and ρ < ρ′. Then:

[ui(x
′
i,x−i, ρ

′)− ui(xi, x−i, ρ′)]− [ui(x
′
i, x−i, ρ)− ui(xi, x−i, ρ)]

= vi(x
′
i, x−i)− λĉi

(
x′i +

∑
j 6=i

ρ′xj

)
− vi(xi, x−i) + λĉi

(
xi +

∑
j 6=i

ρ′xj

)

− vi(x′i, x−i) + λĉi

(
x′i +

∑
j 6=i

ρxj

)
+ vi(xi, x−i)− λĉi

(
xi +

∑
j 6=i

ρxj

)

= −λĉi(x′i)− λĉi

(∑
j 6=i

ρ′xj

)
+ λĉi(xi) + λĉi

(∑
j 6=i

ρ′xj

)

+ λĉi(x
′
i)− λĉi

(∑
j 6=i

ρxj

)
− λĉi(xi)− λĉi

(∑
j 6=i

ρxj

)
= 0.
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Theorem 11 relies on Lemma 4, which states that the extremal equilibria of Γ(λ, ρ)

are both nondecreasing and nonincreasing in ρ, or in other words: unchanged.

Proof of Theorem 11: Fix any ρ′ < ρ, and let x′ and x be the respective maximal

(minimal) equilibria of Γ(λ, ρ′) and Γ(λ, ρ). Lemma 4 implies that x′ = x. Now,

ui(x
′, λ, ρ′) = vi(x

′)− λci (x′, ρ′)

= vi(x)− λci (x, ρ′)

≥ vi(x)− λci (x, ρ)

= ui(x, λ, ρ).

6 Privacy Paradoxes

The so-called “privacy paradox” is the apparent dichotomy between consumers’ stated

privacy concerns and actual behavior (Norberg et al., 2007). There are different “ex-

planations” for this paradox: for example, stated preferences may be generic attitudes

about privacy, whereas behavior occurs within a particular context (see Acquisti et al.

(2016) for additional discussion and references).

Here we will use an extension of the model to offer another explanation: Privacy-

enhancing behavior is costly, and so individuals refrain from engaging in it. However,

they may be in favor of such behavior if all individuals are forced to comply.

Fix a game Γ(λ0, ρ). Suppose each user i may choose to enhance his own privacy,

so that the probability of his information being leaked is λi < λ0, at an additional

cost of c. The other user’s probability of leakage remains λ0 unless he also pays the

cost. Then there are games Γ(ρ) and values λ = λ1 = λ2 < λ0 and c in which the

following hold: (i) In equilibrium, no user chooses to enhance privacy; but (ii) the

utility of every user in every equilibrium of Γ(λ, ρ), minus the cost c, is higher than

in every equilibrium of Γ(λ0, ρ).

Example 2 Consider a symmetric game with two users and no informational inter-

dependencies, in which vi(x) = x1 + x2 and ci(x) = k · x2i /2 for some positive k.
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For any (λ1, λ2) observe that, if the maximal equilibrium is interior, then it satis-

fies xi = 1/(λik) for both users i (the equilibrium is interior whenever λik > 1).

Denote by u(λ) the utility of a user in the maximal equilibrium, when the leakage

probabilities are both λ. Then

u(λ) =
2

λk
− λk

2
· 1

(λk)2
=

3

2λk
.

Consider a privacy enhancement that lowers both users’ leakage probabilities to

λ < λ0. Then the utility gain under the privacy enhancement is u(λ) − u(λ0) =
3
2k

(
1
λ
− 1

λ0

)
. Thus, if the cost c < u(λ) − u(λ0), there is a welfare gain in requiring

all users pay to implement the privacy enhancement.

But what if the enhancement is optional? Suppose users simultaneously decide

whether or not to pay c to lower their own leakage probability, at the same time

as they choose their respective levels of sharing. We will show that under the right

setting of parameters, the unique equilibrium will be for both users not to choose the

privacy enhancement. Fix a user i, and suppose the other user is sharing an amount

y of information. Given a leakage probability, user i will best respond to y. What

is the difference in his utility gain when going from λ0 to λi < λ0, given that he

best-responds? We will show that this utility gain is less than u(λ)− u(λ0).

Under λ0, user i’s best response is 1/(λ0k), and under λi it is 1/(λik) (assuming

interior equilibria). Then the utility gain is

u(1/(λik), y,λ, ρ)− u(1/(λ0k), y, λ0, ρ)

=
1

λik
+ y − λik

2(λik)2
− 1

λ0k
− y +

λ0k

2(λik)2

=
1

2k

(
1

λ
− 1

λ0

)
.

Note that this is lower than u(λ) − u(λ0) since it does not contain the benefits of

network effects. Thus, one can choose a value c < u(λ)− u(λ0) under which no user

will choose to pay the cost c—in particular, c ∈ (k′, 3k′), where k′ = 1
2k

(
1
λ
− 1

λ0

)
—

and so the unique equilibrium is for neither user to choose the privacy enhancement

and x = (1/(λ0k), 1/(λ0k)). However, the privacy enhancement would be welfare

improving, since c < u(λ)− u(λ0).
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The “paradox” above is driven by network effects: each user’s gain from a higher

action and lower λ is less than c. However, each user’s utility gain from others’ higher

actions, together with gain from lower λ, is greater than c.

The “opposite” paradox is also possible. That is, there exist games and values c in

which: (i) In equilibrium, all users choose the privacy enhancement; and (ii) the utility

of every user in every equilibrium of Γ(λ0, ρ0) is higher than in every equilibrium of

Γ(λ, ρ), even without taking costs c into account.

For example, this holds if c = 0, indirect effects are negative and dominate direct

effects (as in Example 1 with ρ > 0.386), and ρ = ρ0. In every equilibrium, each user

chooses the privacy-enhancing policy: it is costless, and directly improves welfare. In

Γ(λ, ρ0), users share more information than in Γ(λ0, ρ0). However, because indirect

effects dominate direct effects, this is harmful.

7 Extensions

7.1 Lowering the cost of information misuse

An additional privacy enhancement not considered in the current paper involves low-

ering the costs associated with information leakage and misuse. For example, lower

costs may be implemented by insurance against identity theft. This could be formal-

ized in our model by changing the function ci to some c′i, where for every x it holds

that c′i(x, ρ) ≤ ci(x, ρ). One might ask the same questions as we have asked: does

such an enhancement increases the amount of information shared, and does it lead

to a welfare increase for the users?

One special case of such a privacy enhancement is to lower costs by a fixed factor,

namely c′(x, ρ) = δ·c(x, ρ) for some positive λ < 1. In fact, this special case is identical

to lowering λ in our model. Before the enhancement, utilities are ui(x, λ, ρ) = vi(x)−
λ·ci(x, ρ), and after lowering costs to c′ = δc they are ui(x, λ, ρ) = vi(x)−λ·δ ·ci(x, ρ).

This is easily seen to be equivalent to lowering λ to λ′ = δ · λ, and maintaining the

same cost function ci. Thus, at least in this special case, the benefits of lowering costs

are the same as those of lowering the probability of information leakage.

33



7.2 General information overlap

One simplifying assumption we made is that the amount of information about user

i that a different user j discloses is ρxj—that is, it is linear in xj, with the same

parameter ρ for each pair of players. One simple extension is to instead have an

interdependency matrixR, with entries ρji for every j 6= i. The amount of information

user j discloses about i would then be ρjixj. The corresponding privacy enhancement

would be to lower all the entries of R. Note that games on a network, described in

Section ??, are a special case of this.

Even more generally, we could allow ρji to be an arbitrary increasing function of

xj. In this case the utility of user i would be

ui(x) = vi(x)− λ · ci
(
xi, (ρji(xj))j 6=i

)
.

Denote by R = (ρji)i,j∈I the vector of such functions, with the partial order that

satisfies R′ ≺ R if and only if ρ′ji(xj) ≤ ρji(xj) for all i, j ∈ I and xj ∈ Sj.
Note that the set of parameters T in Theorem 1 can be any partially-ordered set,

so we can use R as the parameter. In particular, this implies that Theorems 2 and 3

hold in this more general model, as do all other theorems in this paper.

7.3 Added value for greater leakage and interdependence

In this section we consider the effect of extending our model to incorporate a possible

benefit to greater interdependence or greater leakage, in addition to the cost discussed

thus far. Observe first that the privacy paradox of Section 6 is actually a special case:

when λ is larger there is a greater chance of leakage, but there is also the benefit of not

having to pay the cost c for the privacy enhancement. As we have seen in that section,

this can lead to a so-called “privacy paradox” in which the privacy enhancement is

welfare enhancing, but users prefer not to implement it. Thus, when there is a benefit

to greater leakage or interdependence, we can expect such “paradoxes” to arise.

For the rest of this section we examine the robustness of our results to extensions

of the model that allow for a more general way of incorporating a benefit to greater

λ and ρ.
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Benefits of greater leakage While we have thought of leakage of personal in-

formation as necessarily harmful, there are settings where a greater probability of

leakage—caused by greater exposure to others—has some benefits. For example, on

Facebook there may be value to making one’s shared photos public. In order to

incorporate this benefit, define the class of games Γ as before, but now let vi be a

function of both x and λ. To capture the benefit of greater exposure, suppose that vi

is increasing with λ.

A first observation in the extended model is that all the results about lowering

ρ still hold, as they take λ to be fixed. Additionally, Theorem 2 holds as long as

ui satisfies decreasing differences in (xi;λ). This holds, for example, if vi satisfies

decreasing differences in (xi;λ). The extension to the proof is straightforward.

Next, consider the following condition (in the spirit of Conditions 1 and 2) on

the tradeoff between the benefit of greater exposure, captured by vi, and the cost

associated with this leakage, captured by λ · ci: For every i ∈ I and x ∈ S, increasing

λ leads to a decrease in ui(x, λ). That is, while there is a benefit to increased λ, the

cost associated with this increase is always greater. In this case it is straightforward to

see that Theorem 6 will continue to hold (in particular, inequality (5) would continue

to hold.

Benefits of interdependence While the interdependence of information leads to

increased cost due to information leakage, there are some settings in which such in-

terdependence may be beneficial. For example, users of a social network may benefit

from the interdependence amongst their peers, as they thus obtain more information:

a user may observe not only the information xi shared by peer i, but also the in-

formation ρxj shared by peer j about i. Furthermore, a user may also benefit from

others sharing information about him—for example, being tagged in someone else’s

photo is often desirable.

To take such benefits of interdependence into account, extend our model to incor-

porate ρ into the vi function. Thus, define the class of games Γ as before, but now let

vi be a function of both x and ρ. To capture the benefit of interdependence, suppose

that vi is increasing with ρ.

As above, a first observation in the extended model is that Theorem 2 still holds,

as do all the results that apply to lowering λ. For other results the situation is a bit
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different, and in general they require additional assumptions in order to hold. First,

Theorem 3 holds as long as vi has increasing differences in xi and ρ. The extension

of the proof is straightforward.

Next, consider the following condition (in the spirit of Conditions 1 and 2) on

the tradeoff between the benefit of greater interdependence, captured by vi, and the

cost associated with interdependence, captured by ci: For every i ∈ I and x ∈ S,

increasing ρ leads to an increase in ui(x, ρ). If this holds, then Theorem 9 and the

first part of Theorem 10 will go through. Similarly, if increasing ρ leads to a decrease

in ui(x, ρ), then Theorem 11 goes through.

Finally, whether or not the second part of Theorem 10 holds depends on more

structural assumptions about the dependence of vi on ρ. In particular, lowering ρ

now has two opposing direct effects: decreasing ci as before, but now also decreasing

vi. This implies that the direct effect of the privacy enhancement is no longer as

beneficial.

7.4 Convex ĉi

Throughout the paper we assumed that the cost function ci satisfies decreasing dif-

ferences in (xi;x−i). This assumption is the driving force behind Theorem 3, that the

extremal equilibria are increasing in ρ. Furthermore, it is straightforward to see that

if ci instead satisfies increasing differences, then the conclusion of Theorem 3 would

be reversed: the extremal equilibria would be decreasing in ρ.

Now, recall that the severity of our assumption depends on the structure of the

informational interdependencies. In particular, under overlapping personal informa-

tion it is always satisfied, whereas under additive personal information it is satisfied

only if ĉi is concave. So what can be said when ĉi is convex?

One interesting result is that lowering ρ can have opposite effects on the volume

of information sharing, depending on the structure of information. In particular, if

information is overlapping then lowering ρ will decrease the volume of sharing, as

per Theorem 3. In contrast, however, if information is additive then a convex ĉi

implies that ci satisfies increasing differences in (xi;x−i), and so lowering ρ leads to

an increase in the volume of sharing.
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8 Conclusion

This paper presents a new model of information sharing subject to privacy concerns,

whose focus is on the quantitative aspect of the information shared. Using this model,

I analyzed two distinct privacy enhancements—lowering the probability λ of informa-

tion leakage and misuse, and lowering the level ρ of informational interdependencies

amongst users—and showed that they can have opposite effects. The first enhance-

ment is welfare improving when network effects dominate interdependencies, and the

second when interdependencies dominate network effects. However, it is also possible

that a privacy-diminishing policy is beneficial to all parties: for example, increasing

ρ is beneficial to the network owner, as it increases the volume of information shared,

and at the same time it may also improve user welfare (for example, Theorem 9

illustrates such a case for concave, network-symmetric games).

In the paper I analyzed the welfare of users, and one factor that impacts the utility

of the network owner (the volume of information shared). However, a full welfare

analysis might also take into account the third party to whom information has been

leaked. Appendix C contains a preliminary version of such an analysis, with the main

conclusion that, irrespective of network effects and informational interdependencies,

the impact of lowering λ on the third party is ambiguous.
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Appendix

A Aggregation Function

In this section we provide some formal justification for the assumption that the ag-

gregation function Ai satisfies decreasing differences: that for every x′ > x it holds

that

Ai
(
x′i, ρx

′
−i
)
−Ai (x′i, ρx−i) ≤ Ai

(
xi, ρx

′
−i
)
−Ai (xi, ρx−i) .

For the formal justification we will consider a variant in which there are finitely many

pieces of information about each user, different users may hold different pieces of

information, and users reveal information in some a priori fixed order. We will see

that in this setup the decreasing differences assumption holds, and then one may view

our model as the limit case that has a continuum of pieces of information.

For simplicity, assume there are two users, i and j. Consider user i, and suppose

there are m total pieces of information about i, and denote them by M = {1, . . . ,m}.
Let P ⊆ M and Q ⊆ M be the pieces of information held by i and j, respectively,

about i. Finally, fix orders on the elements of P and Q, denoted by p1, p2, . . . and

q1, q2, . . .. The interpretation is that if user i reveals k pieces of information then

they are p1, . . . , pk. Similarly, if user j reveals k pieces of information then they

are q1, . . . , qk. Finally, if i reveals k pieces of information and j reveals ` pieces

of information, then the total number of pieces of information revealed about i is

Ai({p1, . . . , pk}, {q1, . . . , q`}) = |{p1, . . . , pk} ∪ {q1, . . . , q`}|.
Fix (k′, `′)� (k, `). Then decreasing differences of Ai amounts to

|{p1, . . . , pk′} ∪ {q1, . . . , q`′}| − |{p1, . . . , pk′} ∪ {q1, . . . , q`}|

≤ |{p1, . . . , pk} ∪ {q1, . . . , q`′}| − |{p1, . . . , pk} ∪ {q1, . . . , q`}| .

This inequality is equivalent to

`′ − `− |{p1, . . . , pk′} ∩ {q`+1, . . . , q`′}| ≤ `′ − `− |{p1, . . . , pk} ∩ {q`+1, . . . , q`′}|

⇔ |{p1, . . . , pk′} ∩ {q`+1, . . . , q`′}| ≥ |{p1, . . . , pk} ∩ {q`+1, . . . , q`′}| ,

which follows from the assumption that k′ ≥ k.
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B Counter-Examples

Example 3 Suppose I = {1, 2}, and fix ρ12 = ρ21 = ρ. Let v1(x) = log(1 + x1),

c1(x) = C · (max{x1, ρx2}) for some C > 0, v2(x) = 0, and c2(x) = max{x2, ρx1}.
Since v2(x) = 0, user 2 would like to minimize the amount of information shared

about him (by himself and by user 1). However, in an interior solution, user 1 does

share some information. In particular, for any λ ∈ (1/(2C), 1/C), the optimal amount

of information shared by user 1 satisfies v′1(x) = λ · c′1(x), yielding the solution

x1 =
1

λC
− 1.

Given that user 1 shares x1, the amount shared by user 2 is x2 ∈ [0, ρx1]. The utility

of user 2 in equilibrium (for any optimal choice of x2) is thus

u2(x, λ) = −λρ
(

1

λC
− 1

)
= λρ− ρ

C
.

Now, fix any λ, λ′ ∈ (1/(2C), 1/C) with λ < λ′, and let x and x′ be the maximal

(minimal) equilibria of Γ(λ) and Γ(λ′), respectively. By Theorem 6, there must be a

user whose utility is higher in Γ(λ), and, as we will see momentarily, this user must

be user 1. The utility of user 2, however, decreases as λ decreases:

u2(x, λ) = λρ− ρ

C
< λ′ρ− ρ

C
= u2(x

′, λ′).

Example 4 Suppose I = {1, 2}, and fix ρ12 = ρ21 = ρ. For both users i let vi(x) =

xi. Denoting by zi = max{xi, ρxj}, let ci(xi, ρxj) = 0 if zi ≤ .5 and ci(xi, ρxj) =

sin(3zi − 1.5) otherwise. Note that both vi and ci are increasing, and satisfy the

increasing/decreasing differences assumptions.

Fix ρ = 0.8, and consider the leakage probabilities λ = 1 and λ′ = 0.9. Consider

the symmetric profiles (x, x), which are potential symmetric equilibria. Figure 1 plots

the utilities of a user associated with such profiles (with x on the horizontal axis).

For both λ and λ′, there are two potential equilibria: one at (0.5, 0.5) and one at

(1, 1). Under λ only (0.5, 0.5) is an equilibrium, yielding a utility of 0.5 to each user.

The profile (1, 1) is not an equilibrium here, since each user can gain by a unilateral

deviation to 0.8. Under λ′, however, both (0.5, 0.5) and (1, 1) are equilibria. At the
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Figure 1: Utilities of users using strategies (x, x) under λ and λ′.

maximal equilibrium the utility of each user is 1 − 0.9 · sin(3 − 1.5) ≈ 0.1. Thus,

lowering the probability of leakage from 1 to 0.9 yields lower welfare at the maximal

equilibrium.12

Example 5 Suppose I = {1, 2}, and fix ρ12 = ρ21 = ρ. Let v1(x) = log(1 +

x1) + log(1 + x2), c1(x) = C · (max{x1, ρx2}) for some C > 0, v2(x) = 0, and

c2(x) = max{x2, ρx1}. Since v2(x) = 0, user 2 would like to minimize the amount of

information shared about him (by himself and by user 1). However, in an interior so-

lution, user 1 does share some information. In particular, for any λ ∈ (1/(2C), 1/C),

the optimal amount of information shared by user 1 satisfies v′i(x) = λ ·c′i(x), yielding

the solution

x1 =
1

λC
− 1.

Given that user 1 shares x1, the amount shared by user 2 is x2 ∈ [0, ρx1]. Let us focus

on the maximal equilibrium, in which x2 = ρx1.

Observe that user 1’s utility in this equilibrium is

u1(x) = log

(
1 +

1

λC
− 1

)
+ log

(
1 + ρ

(
1

λC
− 1

))
,

which is strictly increasing with ρ. In other words, lower ρ implies strictly lower

utility.

Furthermore, the utility of user 2 in this equilibrium is

u2(x, λ) = −bρ
(

1

λC
− 1

)
= λρ− ρ

C
.

12Note, however, that welfare in the minimal equilibrium increases as λ decreases.
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Note that this is strictly decreasing with ρ, since λ < 1/C, and so a lower ρ yields

strictly higher utility for user 2.

C Hacker

In order to analyze the full effect on welfare, we may wish to consider the welfare

of the party to whom the information is leaked. We refer to that party here as the

hacker. The utility of the hacker depends on the probability of information leakage,

as well as amount of information obtained. Of course, if the hacker is sufficiently risk

averse, then lowering the probability of leakage λ (say, by strengthening security and

thus increasing the cost to the hacker of obtaining the information) will be harmful to

him. However, what if the hacker is not so risk averse? In an extreme case, suppose

the hacker is risk neutral, and his utility is an increasing function of the expected

amount of information leaked, namely λ · (
∑

i xi). Does this quantity increase or

decrease as λ decreases?

Suppose ci(x) = ci(xi), and that there are no network effects. In this case, user

i must simply balance the benefit vi(xi) with the cost λ · ci(xi). Denote by x∗i the

optimal amount of information shared by user i. We will provide two examples: in

one, decreasing λ increases λx∗i , and in the other it decreases it. Hence, this privacy

enhancement has an ambiguous effect on the hacker even without network effects and

interdependent information.

Example 6 Consider the game Γ(λ, ρ) defined as follows: fix constants k ∈ (0, 1)

and C > 0, and for every user i ∈ I set vi(xi) = xki and ci(xi) = C ·xi. If the solution

is interior then the optimal level of sharing satisfies v′i(xi) = (λCxi)
′, which implies

that kxk−1i = λC.

Now, fix some λ < λ′, and let xi and x′i be the corresponding optimal levels of

sharing. Suppose the solutions are interior—namely, that xi, x
′
i ∈ (0, 1)—which holds
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whenever k < λC. Observe that

λxi > b′x′i

⇔ xi · v′i(xi)
C

>
x′i · v′i(x′i)

C

⇔ xi · v′i(xi) > x′i · v′i(x′i)

⇔ xi
x′i
>
v′i(x

′
i)

v′i(xi)
.

Furthermore,
v′i(x

′
i)

v′i(xi)
=

(
x′i
xi

)k−1
=

(
xi
x′i

)1−k

<
xi
x′i

since xi > x′i by Theorem 2. Thus, λxi > λ′x′i, and so a decrease in λ leads to higher

λxi.

We now consider an example in which a decrease in λ leads to a corresponding

decrease in λxi.

Example 7 Consider the game Γ(λ, ρ), which will use numbers 0 < a1 < a2 < 1 and

m1 > m2 > m3 > 0 to be chosen later. Set

vi(xi) =


m1xi if xi ∈ [0, a1],

m2(xi − a1) +m1a1 if xi ∈ (a1, a2],

m3(xi − a2) +m1a1 +m2(a2 − a1) if xi ∈ (a2, 1].

Thus, vi is concave and piecewise linear. Additionally, set ci(x) = Cxi for some

C > 0.

Now, for any λ, in an interior solution v′i(xi) = λ · c′i(xi). Choose λ = m3/C and

b′ = m2/C, and note that λ < λ′. Furthermore, the solutions of Γ(λ, ρ) consist of all

xi ∈ [a2, 1], and those of Γ(λ′, ρ) consist of all x′i ∈ [a1, a2]. Thus, for any choice of

solutions xi and x′i it holds that

λxi ≤ λ =
m3

C

and

λ′x′i ≥ λ′a1 =
m2

C
· a1.

We thus obtain that

λxi < λ′x′i
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whenever
m3

C
<
m2

C
· a1,

and this last inequality holds for sufficiently small m3 > 0.
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