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Abstract

This paper introduces a model of Bayesian decision making where a person’s beliefs

about the likelihood of different outcomes depend upon the anticipated payoff conse-

quences of those outcomes. Optimists (pessimists) are more (less) likely to believe A

relative to B if the payoff consequences of A are better. Based on the assumption that

adding a constant to payoffs does not change the distortion in beliefs, I characterise the

unique representation of payoff-dependent beliefs. Choices determine the payoff conse-

quences of outcomes and hence affect the beliefs that in turn determine the optimality

of those very choices; choice is thus an equilibrium phenomenon. Optimists may have

multiple choice equilibria, and pessimists none. Choice fixes the mapping from states

to payoffs, but the payoff consequences of events may remain uncertain. News that

affects the expected payoff consequences of an event may therefore alter beliefs, even

when it provides no relevant information about its likelihood. Economic consequences

are explored in various settings, including the economics of crime, where increasing

punishment may encourage, rather than deter crime.
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1 Introduction

Beliefs depend not only on what people know to be true, but also on what they want to be

true. In standard models of subjective beliefs the only way we can explain what a person

believes is by reference to the information that person has been exposed to. Any differences

in beliefs that cannot be accounted for by asymmetric information can only be modelled as

random variation. In this paper I explore the idea that there is a second systematic factor

affecting beliefs—that whether the person believes something to be true has to do not only

with the information the person possesses but also to do with what the person stands to gain

or lose from it being true.

The key assumption I make is that there is a time-invariant relationship between people’s

actual beliefs and the beliefs they would hold if their beliefs depended only on information.

The central element in the model is therefore a distortion mapping relating the two sets of

beliefs as a function of the payoffs the agent faces. I define for such mappings necessary

and sufficient properties for a practical model of beliefs that is capable of explaining the

key empirical findings. The assumptions I make enable me to derive the following simple

representation:

ln
πf (B)

πf (A)
= ln

p(B)

p(A)
+ ψ(b− a) (1)

where a and b are the payoffs in events A and B respectively, p(·) is the undistorted probabil-

ity measure, and πf (·) the probability measure distorted by the payoffs defined by f . Beliefs

are represented by the log odds ratio between two events A and B sufficiently fine-grained

that their respective payoffs are well-defined. According to the equation, the distorted log

odds ratio equals the sum of the undistorted log odds ratio plus the parameter ψ times the

payoff difference between the two events. The payoff in other events does not enter the

equation1. Note that the better the agent’s information is, the larger ln p(B)/p(A) is in

absolute terms. The parameter ψ therefore plays the role of a gain factor, determining both

the direction that payoffs affect beliefs and the importance they have relative to information.

If ψ = 0 there is no distortion, if ψ > 0 the agent’s beliefs are distorted in the direction of

the event that makes the agent better off, and if ψ < 0 the agent’s beliefs are distorted in

the direction of the event that makes the agent worse off.

Equation 1 therefore captures optimism and pessimism. Optimism is identified with

ψ > 0 and pessimism with ψ < 0. Moreover, relative optimism (pessimism) is identified

with a more positive (negative) value of ψ. The parameter ψ is defined relative to the

1This is similar to Bayesian updating of the odds ratio between a pair of events, when only the likelihood
odds ratio over that pair of events is required to calculate the posterior odds ratio.
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representation of payoffs—if payoffs are scaled, ψ has to be scaled in the inverse direction in

order to represent the same distortion. No adjustment to ψ is required if payoffs are shifted

by some additive constant, as the payoff differences b− a remain unchanged.

Equation 1 defines current beliefs as a function of current information about events and

current information about the payoff consequences of those events. It follows that, holding

undistorted beliefs constant, changes in payoffs lead to changes in beliefs. This has two key

implications:

1. Choice becomes an equilibrium phenomenon. The choice an agent makes determines

what payoffs are received in each state. Choice is therefore a function of what states

the agent perceives as more likely. But, in the world of Equation 1, beliefs are a

function of those same payoffs. Imagine the decision whether to go on a picnic or

stay at home. The payoff depends on the weather when picnic is chosen but not when

the choice is staying at home. In these conditions Equation 1 implies a distortion of

beliefs about the weather if and only if picnic is chosen. An optimist choosing picnic

would therefore become more optimistic that the weather would be conducive to a high

payoff picnic, making the choice of picnic self-enforcing for the optimist. By contrast, a

pessimist choosing picnic would become more pessimistic about the likelihood of good

weather, making the choice of picnic self-defeating for the pessimist. More generally,

it is possible for optimists to have multiple choices that are strictly optimal given the

associated beliefs, and for pessimists to have no optimal choices from a finite choice

set.

2. News can affect beliefs not only through its normative information value but also by

mediating the effect of belief distortion. In particular, news can affect beliefs even if

it is normatively irrelevant. Suppose the picnic is contingent upon some other event

that has nothing to do with the weather, such as a child recovering from an illness,

or friends being able to join. By assumption news about this event determines the

expected payoff in different weather conditions. According to Equation 1 the news

therefore has the power to affect beliefs about the weather, even though it provides

absolutely no normatively relevant information about it.

The psychology evidence for optimism and pessimism is extensive. In a classical study of

optimistic bias, Weinstein (1980) had students rate the relative likelihood of various events

happening to them, compared to the likelihood of the same event happening to other stu-
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dents. This difference was interpreted as a measure of the students’ optimistic bias2. The

finding is that students judge desirable (undesirable) events to be more (less) likely to happen

to them than to other students. Moreover, the size of the bias correlates with how desirable

or undesirable an event is.

Some of the best evidence for payoff-dependent belief distortion comes from experiments

in which preferences were exogenously manipulated. In Klein and Kunda (1992) subjects

had to assess the ability of a player in a history trivia game. Subjects who were told the

person would play on their team (and so wanted him to be a good player) had considerably

higher ratings of the player’s ability than subjects who expected the person to play on the

opposing team (and so wanted him to be a weak player). Changes in payoffs are also central

to cognitive dissonance (Cooper and Fazio, 1984; Kunda, 1990).

These and similar studies suggest that what people want affects their beliefs, and that

stronger desires affect beliefs more strongly. Moreover, it is clear that the prevailing bias

in the population is optimistic. Nevertheless, pessimism is also an important phenomenon,

in particular in individuals suffering from depression (Seligman, 1998). Interestingly, one of

the symptoms of depression is difficulty making decisions (American Psychiatric Association,

2000), and the purported mechanism seems consistent with the self-defeating dynamics of

pessimistic choice as described in the picnic example: “The patient anticipates making the

wrong decision: Each time he considers one of the various possibilities he tends to regard it

as wrong, and to think that he would regret making the choice.” (Beck, 1967).

Payoff-dependent beliefs have been used to analyse a range of economic phenomena,

such as bargaining (Babcock and Loewenstein, 1997; Yildiz, 2004), monopolistic contract

design (Spiegler and Eliaz, 2008), failure rates and credit rationing in small-business borrow-

ing (De Meza and Southey, 1996), and capital structure in corporate finance (Heaton, 2002).

These and other papers have produced many interesting results, demonstrating the range of

economic phenomena in which payoff-dependent belief distortion plays an important role.

Akerlof and Dickens (1982) was the first economics model to systematically address belief

distortion. More recently, Brunnermeier and Parker (2005) offered a general model of opti-

mism. These and a number of other papers all take a similar approach: they postulate the

existence of anticipatory preferences over beliefs, and derive belief distortion as an optimal

trade-off between the consumption of desirable beliefs and the costs of belief distortion in

terms of misleading future selves into making poor choices. The model of this paper is very

different. Perhaps most importantly, a consistent belief distortion applies at all time points

2Focusing on comparative likelihood judgements makes it possible to net out the effects of other belief
biases (Sjöberg, 2000).

4



given the agent’s current information about payoffs. Consider a person deciding whether to

get a tent for a wedding reception. In the model of this paper beliefs after hiring the tent

would be simply a function of the payoff consequences of different weather conditions. By

contrast, in the model of Brunnermeier and Parker (2005) what matters is what decisions

are to be made, and very different predictions apply if beliefs are chosen before or after the

tent hiring decision. If beliefs are determined prior to hiring the tent then there are substan-

tial costs to belief distortion, and limited or no bias may be chosen. If, instead, beliefs are

determined after the tent has been purchased, then there are no costs to belief distortion,

and a total belief distortion may result.

Beliefs in the model of this paper have nothing to do with the timing of decisions. The

important comparative statics have to do with information on the one hand, and payoff

differences on the other: the higher the payoff differences the greater the bias, and the more

information the smaller the bias. These comparative statics are supported by the available

evidence (Kunda, 1990; Weinstein, 1980; Sjöberg, 2000). A final important difference is that

the model of this paper also extends to pessimism, whereas models in which beliefs are the

outcome of choice are necessarily limited to optimism only3.

Section 2 describes the model. I make a number of assumptions in order to derive a

practical formal representation of the mapping relating distorted and undistorted beliefs

that captures the essence of payoff-dependent beliefs. First, I assume that the distortion

does not change zero probabilities into positive ones, nor positive probabilities into zeroes.

Second I assume the mapping is invariant to a relabelling of states. This captures the idea

that belief distortion derives from payoffs, rather than with what different states represent.

Third, I assume that distorted beliefs conditional on an event depend only on the payoffs in

states consistent with that event. Fourth, I assume the distortion is invariant to shifting all

payoffs by a constant. This property follows if we identify the agent’s gain from the event

being B rather than A with the payoff difference between B and A. Finally, I assume that

distorted beliefs are continuous in payoffs. The shift invariance assumption is perhaps more

controversial than the others. It is therefore noteworthy that a much weaker condition is

sufficient to derive a close variant of Equation 1 in which the ψ(b − a) term is replaced by

ψ(v(b)− v(a)) for a monotonically increasing function v.

Equation 1 has the same form as Bayes Rule4. Taking this interpretation, the effect of

3It is not implausible that some people would choose to have positively biased beliefs, but it is implausible
that pessimists would choose to have negatively biased beliefs.

4In log odds terms Bayes Rule is
π(B|I)
π(A|I)

=
π(B)
π(A)

+
π(I|B)
π(I|A)

(2)
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payoff on beliefs can be seen notionally as evidence, with optimists, for example, assigning

higher likelihood to high-payoff states. Choice aside, agents can therefore be seen as standard

Bayesian updaters except for the systematic dependence of the prior on payoffs. One impor-

tant implication is that beliefs retain the martingale property that agents do not expect to

revise their expectations on average after receiving new information.

In Equation 1 good information translates into a big (in absolute terms) log p(B)/p(A)

term, and hence a relatively small bias in probability terms, while a big payoff difference

translates into a relatively large bias. More generally the greater the stakes the a person

has in an outcome the greater the bias, and the more information the smaller the bias.

These comparative statics are seen most clearly if payoffs are some factor times a normally

distributed variable. The distortion then maintains the normal distribution but shifts the

mean as a function of the size of the stakes (represented by the factor relating payoff to the

normal variable) and of the amount of information (as measured by the variance).

Section 3 explores choice behaviour. Equation 1 associates with each act f a distorted

probability measure πf , but it doesn’t say what determines the reference act f . To close the

model I assume that resolving to choose an act f makes f into the reference act. f is then

a rational choice if it maximises expected utility according to πf , the distorted beliefs that

the agent has when f is the reference act. More generally, the beliefs πf induce a complete

act-specific preference relation �f over the set of acts. f is thus rational if and only if f �f g
for all acts g in the choice set. This notion of rational choice can also be thought of as a

choice equilibrium. This term is particularly appropriate if we think of the choice process

in dynamic terms. Contemplating the choice of f shifts beliefs towards πf , and may either

push preferences further in the direction of f , or else pull the decision maker away from f .

The stable points of this dynamics correspond to choice equilibria as defined above.

Imagine a person has to decide whether to go on a picnic or stay at home, and suppose

picnic beats staying at home if and only if the weather is nice. Then it is possible that

for an optimist (picnic �picnic home) and (home �home picnic), so that both picnic and

staying at home are rational choices, and that for a pessimist (picnic ≺picnic home) and

(home ≺home picnic), so that neither option is rational. More generally, consider any finite

choice set that consists of independent acts (the payoff of which is a function of independent

random variables), such that the expected payoff from each act lies strictly within the possible

payoff distribution of the other acts. Then a sufficiently optimistic agent has multiple rational

choices and that a sufficiently pessimistic agent has none.

Undistorted beliefs take the role of the prior odds ratio, ψ times the payoff difference is the evidence, and
the distorted odds ratio is the posterior.
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Suppose an agent can choose any mixing of payoffs from a finite choice set. By a standard

fixed-point argument there is then at least one choice equilibrium. In game theory each act

in the support of a mixed equilibrium is a best response. An agent faced with a finite choice

set can thus play a mixed equilibrium action by randomising, and then choosing an act from

the original choice set as a function of the outcome of a randomising device. This, however,

is not the case with pessimistic choice, as the acts in the support of a pessimistic mixed

equilibrium are generally not optimal. The pessimist will therefore be unable to rationally

follow through on the choice of act indicated by the result of the randomising device. A

mixed equilibrium is therefore only a realistic option for a pessimist if the pessimist can

irreversibly commit to the mixing. The practical utility of the theoretical existence of mixed

choice equilibria for pessimists is therefore limited.

That an optimist has an optimal choice from any finite choice set is trivial in the case of

independent acts, but is otherwise not so obvious. As a step in proving this result I prove

that the stability of strictly mixed equilibria is determined by whether or not an agent is

optimistic or pessimistic. In particular, the strictly mixed equilibria of optimists are always

unstable. Using this result it is easy to show that an optimist must have a rational choice

from the original finite choice set.

The fact that optimists may have multiple choice equilibria has similarities to the per-

sonal equilibrium predictions of Kőszegi and Rabin (2006, 2007) for agents with loss-averse

preferences. There are notable differences, however. For instance, loss-aversion never results

in the choice of dominated alternatives, whereas it can be a choice equilibrium for an opti-

mistic agent to choose a strictly dominated option, such as an investment associated with a

first-order stochastically dominated payoff distribution.

In Section 4 I look at how the subjective probability of an event can change as a result of

news about its payoff consequences, even if the news provides no relevant information about

its likelihood. News can thus affect beliefs not only directly (by providing relevant evidence),

but also indirectly, by mediating the effects of belief distortion. The key proposition in this

section shows that whenever two variables are complements in the agent’s utility function,

good news about one variable increases the bias in beliefs about the second variable. The

case of substitutes goes in the other direction.

Consider again the picnic example, but suppose now that the picnic plans are contingent

on a friend recovering from an illness. This has the effect of letting an outside event—whether

the friend recovers in time—determine the payoff in the events of rain or shine. As in the

analysis of Section 3 the belief bias depends on whether or not the picnic is on. It follows

that if the friend remains ill the subjective probability of rain would go up, and if the friend

7



recovers it would go down. This, of course, is in spite the fact that the friend’s recovery from

illness provides no normatively relevant information about the weather.

The key to this example is that going out on a picnic and a good weather are complements.

A predictable non-normative change in beliefs also occurs in the case of substitutes. For

example, suppose a sales person needs to hit a certain target in order to be promoted, and

is one deal short of this target. Then different prospective sales that could help achieve the

target are substitutes. The prediction is that success in one such prospect (thereby hitting

the target) reduces the bias on the others, whereas a failure leads to an increase in the bias

over any remaining prospects.

On the assumption that must people are optimistic payoff-dependent belief update ac-

counts for some of the key findings in experiments exploring motivated cognition and cogni-

tive dissonance. For example, Klein and Kunda (1992) found that the expectation to play

with or against a given player alters beliefs about the ability of that player. Letting x denote

the ability of the player, and a ∈ {−1, 1} the side on which she will play, the agent’s payoff

can be modelled by u(a, x) = ax. Thus, a and x are complements, and the prediction of the

model agrees with the empirical findings.

Section 5 considers choices between risky and safe alternatives. Optimists overestimate

gains and underestimate risks, and pessimists do the reverse. Consequently, controlling

for the utility function, optimists make relatively risk-loving choices, whereas pessimists

are risk-averse. Optimistic/pessimistic revealed risk preferences can be distinguished from

underlying risk preferences by comparing bets in conditions of subjective uncertainty with

bets in conditions of objective uncertainty.

An increase in the gap between good and bad outcomes leads to an increase in the bias.

Let f and f ′ be binary bets over events A and B such that f(B) = f ′(B) > f ′(A) > f(A).

Then by Equation 1, πf (B)/πf (A) > πf ′(B)/πf ′(A), and it can even be possible that

Ef (f) > Ef ′(f ′) even though f ′ first-order stochastically dominates f . In an example from

the economics of crime I show that an increase in punishment contingent on getting caught

can lead to an increase in subjective expected utility, and hence to a decrease in deter-

rence. Finally, I show that while first-order stochastic dominance can be violated, stochastic

dominance in the likelihood ratio is preserved under payoff-dependent belief distortion. In

particular, for f ′ to stochastically dominate f in the likelihood ratio is a sufficient condition

for Ef ′(f ′) ≥ Ef (f).
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2 Belief distortion

2.1 Model

Let S = [0, 1] denote the state space and F = {f : S → R} the collection of simple Anscombe-

Aumann acts (for a simple act f , the set of its prizes If = {a ∈ R : ∃s ∈ S, f(s) = a} is

finite). The prize in state s should be interpreted as the expected utility of an appropriate

objective lottery. Let Σ denote the Borel σ-algebra on S, and let ∆ denote the set of

probability measures on Σ. The probability measure µ ∈ ∆ is non-atomic if for every event

A and λ ∈ [0, 1] there is an event B ⊆ A with µ(B) = λµ(A). For µ ∈ ∆ and an event A

with µ(A) > 0 let µ(·|A) denote the conditional probability measure on A. I write a, b for

constant acts (that yield utility a, b in every state) and f, g, h for generic acts. I write aAg

for the act that yields a on the event A, and g on Ac. For disjoint events A and B I write

aAbBh for an act that yields a on A, b on B, and h on (A ∪ B)c. For an act f and a prize

a ∈ If I write f(a,b) for an act that yields b for states in which f yields a, and is otherwise

identical to f .

The primitives of the model are (i) a non-atomic probability measure p (the undistorted

measure), and (ii) a map π that associates to each simple act f ∈ F a distorted probability

measure πf . The first definition describes the basic properties we want this distortion to

satisfy, and the second definition describes the logit formula. The theorem says that the two

definitions are equivalent.

Definition 1 (Payoff-Dependent Distortion). A map π : F → ∆ is a payoff-dependent

distortion of p if the following properties are satisfied:

A1 (state independence). If p(A) = p(B) for disjoint events A and B, and f = aAbBh, g =

bAaBh, then πf (A) = πg(B).

A2 (information independence). If g(s) = f(s) for all s ∈ A, then πf (·|A) = πg(·|A).

A3 (absolute continuity). πf (A) = 0 ⇐⇒ p(A) = 0 for all events A.

A4 (prize continuity). Suppose an → a and let fn = f(a,an) then πfn(·)→ πf (·).

A5 (shift invariance). If f(s) = g(s) + a, then πf = πg.

A1 requires that the labelling of states plays no role in the distortion mapping. This

assumption ensures that the distortion is a function only of payoffs. A2 requires that distorted

beliefs conditional on an event depend only on the payoffs in states that are consistent with
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that event. This assumption has the flavour of an independence of irrelevant alternatives

assumption, and has a rough analogue in Luce’s Choice Axiom (Luce, 1959)5. A3 says that

the log odds ratio between two events may be shifted as the result of the distortion, but only

by a finite amount. A4 imposes continuity in prizes, so that similar acts result in a similar

distortion. To understand assumption A5 note that the distortion mapping is intended to

capture the idea that whether the agent believes A or B depends on what the agent has to

gain or lose if B rather than A were the case. A5 identifies the agent’s net gain from the

event being B rather than A with the payoff difference between B and A. This assumption

is perhaps more controversial than the others. It is therefore noteworthy that a much weaker

condition is sufficient to derive a close variant of Equation 3 in which the ψ(b − a) term is

replaced by ψ(v(b)− v(a)) for a monotonically increasing function v6.

Definition 2 (Logit Distortion). A map π : F → ∆ is a logit-distortion of p if the following

two conditions are satisfied:

1. πf (A) = 0 ⇐⇒ p(A) = 0 for all events A.

2. There exists ψ ∈ R such that for all prizes a, b ∈ If and positive probability events

A ⊆ f−1(a) and B ⊆ f−1(b),

ln
πf (B)

πf (A)
= ln

p(B)

p(A)
+ ψ(b− a) (3)

In Definition 2 the distortion is defined in terms of its effect on the log odds between pairs

of payoff-specific events. Since any event can be written as the disjoint union of such events,

this definition is sufficient to fully specify the distorted probability measure πf . Further

remarks about Equation 3 are deferred to Section 2.2.

Proposition 1 (Representation theorem). A map π : F → ∆ is a logit distortion of p if

and only if it is a payoff-dependent distortion of p.

The proof follows three lemmas. The first establishes that the agent does not distort

the relative probability of states over which he is indifferent. The second shows that the

5Luce’s Choice Axiom is defined in the context of a theory of probabilistic choice. It requires that the
odds ratio for choosing x over y be independent of what other alternatives are in the choice set.

6The essence of the proof that such a representation exists is that for all events A,B and X,
log πf (B)/πf (A) = log πf (B)/πf (X) − log πf (A)/πf (X). The linearity of this expression makes it possi-
ble to define v consistently for all events. Using induction on the set of prizes in a simple act it is possible to
construct a single representation of this type that works for all simple acts with rational prizes. Continuity
of prizes then ensures that this result extends to all simple acts with real prizes. Finally, given the prize
continuity assumption, a requirement that for all acts f and prizes a and b if p(f−1(a)) = p(f−1(b)) and
πf (f−1(a)) = πf (f−1(b)) then a = b is a sufficient condition ensure that v is monotonic.
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distortion of the relative probabilities of three equi-probable events with three prizes a, b and

c satisfying c− b = b− a is the same, namely πf (c)/πf (b) = πf (b)/πf (a). The third lemma

uses these results to relate the distortion of the relative probabilities between any two pair

of events to the ratio of the difference in prizes in each of the two pairs. Finally, in the main

proof a pair of reference events is chosen, ψ is defined to solve Equation 3 for the reference

events, and the lemmas are used to prove that the same ψ represents the distortion for all

pairs of events.

The intuition for this result is that (1) by absolute continuity, the distortion can be

described by a likelihood function; (2) by state independence, this function depends on

states only via the payoffs in these states; (3) by information independence, the distor-

tion over pairs of events can depend only on the payoffs in the two events; (4) by shift

invariance, only the difference in payoffs matter; (5) for any three events A, B and C,

lnπf (B)/πf (A) = ln πf (B)/πf (C) + πf (C)/πf (A). Together with (4) this makes it possible

to relate the distortion of the odds ratio between any two pairs of events, such that the dif-

ference in payoffs within each pair are a rational multiple of the difference in payoffs within

the other pair, and (6) by continuity in prizes, this result extends to all pair of events.

Lemma 1. Suppose B ⊆ A = f−1(a) for some a ∈ If and that p(A) > 0 then πf (B)/πf (A) =

p(B)/p(A).

Lemma 2. Suppose c− b = b− a > 0 for some a, b, c ∈ If , and let A ⊆ f−1(a), B ⊆ f−1(b),

C ⊆ f−1(c), such that p(A) = p(B) = p(C) > 0. Then,

πf (C)

πf (B)
=
πf (B)

πf (A)
(4)

Lemma 3. Suppose A = f−1(a), B = f−1(b), A′ = f−1(a′), and B′ = f−1(b′) are events in

the support of p such that a < b, a′ < b′ and a ≤ a′. Then

ln

(
πf (B

′)

πf (A′)
· p(A

′)

p(B′)

)
=
b′ − a′

b− a
· ln
(
πf (B)

πf (A)
· p(A)

p(B)

)
(5)

2.2 How belief distortion works

Equation 3 describes the distorted beliefs of the agent as the joint function of what the

agent knows and what the agent wants to be true. The same beliefs can result from different

combinations of information and payoffs (Figure 1). The parameter ψ plays the role of a

gain factor, determining both the direction that payoffs affect beliefs, and the importance

of their role. If ψ > 0 the agent’s beliefs are distorted in the direction of events that make
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b− a

ln p(B)
p(A)

0 1 2−1−2

ln
πf (B)

πf (A)

Optimist believes B

Optimist believes A

Figure 1: Iso-belief lines as a function of unbiased beliefs the stakes in the event being B
rather than A. Unbiased beliefs are plotted on the x-axis and the stakes are plotted on the
y-axis. Iso-belief lines are straight with slope 1/ψ. This figure is plotted for an optimist.
Iso-belief lines for a pessimist slope in the opposite direction, while those of a neutral agent
are vertical.

the agent better off. If, instead, ψ < 0 the agent’s beliefs are distorted in the direction of

events that make the agent worse off. Finally, if ψ = 0 the agent’s beliefs are objective—not

in the sense of being necessarily correct, but in the sense that what the agent believes is

independent of what the agent wants to be true. ψ is defined relative to the representation

of payoffs—if payoffs are scaled, ψ has to be scaled in the inverse direction in order for it to

represent the same distortion. No adjustment to ψ is required if payoffs are shifted by some

additive constant, as the payoff differences b− a remain unchanged.

Fixing the act f we can define the likelihood of the payoffs by L(f |E) = eψf(E) where E

is any event for which the payoff is well-defined. Using this definition Equation 3 takes the

form of Bayesian updating:

ln
πf (B)

πf (A)
= ln

p(B)

p(A)
+
L(b|B)

L(a|A)
(6)

This notional equivalence implies that the martingale property of consistent beliefs is re-

tained, as if agents in the model were standard Bayesian agents. In particular, in order to

obtain the agent’s distorted posterior beliefs following the arrival of new information, we can

either (i) apply the Bayesian update to compute the undistorted posterior beliefs, and then

use Equation 3, or (ii) use Equation 3 to obtain the distorted prior beliefs, and the apply

the Bayesian update.

From this perspective there are two key differences between agents in the model and
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standard agents: (i) the distorted prior is only well-defined after the choice of act, and (ii)

the distorted prior depends systematically on payoffs, so that differences in payoffs can be

used to explain differences in beliefs.

2.3 Belief distortion over payoffs

What belief distortion implies for expected payoff is central to our notion of optimism and

pessimism, and is also the key to determining how belief distortion affects preferences between

acts. In this sub-section I formally define beliefs over payoffs, expectations over those payoffs,

and the bias size. I then consider specifically the case of acts with a normally distributed

payoff. The attractive property of such acts is that belief distortion takes a particularly clean

form: since the payoff likelihood term is exponential (Equation 6) the distorted distribution

remains normal, and the distortion is limited to a shift of the mean of the normal distribution

(See also Figure 2).

Definition 3 (Distribution of payoffs from an act). For an act f let Xf denote the real

random variable defined by Xf (s) = f(s). The undistorted probability distribution of f ,

F (x), is the probability distribution of Xf using the undistorted probability measure p.

That is, F (x) = p(Xf ≤ x). For any acts f and g the distorted probability distribution

of f conditional on g, Fg(x) = πg(Xf ≤ x) is the probability distribution of Xf using the

distorted probability measure πg. The undistorted expectation of f is E(f) =
∑

s∈S p(s)f(s).

The expectation of f conditional on g is Eg(f) =
∑

s∈S πg(s)f(s). The payoff bias of an act f

is the difference between the distorted and undistorted expectations with f as the reference:

Ef (f)− E(f).

Proposition 2 (Normally distributed payoffs). Let f be an act such that F (x) is a normal

distribution with mean µ and variance σ2. Then Ff (x) is also a normal distribution with the

same variance σ2, but with mean shifted to µ+ σ2ψ.

2.4 Comparative statics

Equation 3 can be written qualitatively as follows:

Beliefs = Information + ψ · Stakes (7)

Beliefs are thus a tug-of-war between information on the one hand, and what the agent has

at stake on the other. The implied comparative statics for the belief bias are: (i) the more
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is at stake, the bigger the bias, and (ii) the stronger the evidence, the weaker the bias. This

can be seen most clearly for (i) binary payoffs, and (ii) normally distributed payoffs. In the

binary case suppose the payoff of an act f is v if some event E obtains and zero otherwise.

Then using Equation 6 the bias in expected utility terms is given by

Ef (f)− E(f) = (πf (E)− p(E))v =

(
p(E)eψv

1− p(E) + p(E)eψv
− p(E)

)
v

=
(eψv − 1)p(E)(1− p(E))

1 + p(E)(eψv − 1)
v

(8)

The sign of this expression is that of ψ. Its absolute size is increasing in the stakes v, and

is decreasing in the limit of strong information (p(E)→ 0 or p(E)→ 1), in accordance with

the comparative statics above.

In the normal case the bias is proportional to the undistorted variance of the payoff

(Proposition 2). Suppose there is a normally distributed random variable X such that the

payoff of f is proportional to X, i.e. f = aX. The variance of f is then equal to a2/τ

where τ = 1/σ2 is the precision parameter of X. Information can be identified with τ , and

the stakes with a. The bias is thus proportional to the square of the stakes, and inversely

proportional to information.

The evidence for the comparative statics of evidence is overwhelming (Kunda, 1990). For

the comparative statics for the strength of preferences over events see Weinstein (1980) and

Sjöberg (2000). There is also strong evidence that changes in stakes can lead to changes in

beliefs. The theory and evidence for this are explored in Section 4.

It is interesting to note that models of anticipatory preferences (Akerlof and Dickens,

1982; Brunnermeier and Parker, 2005) produce very different comparative statics. The most

obvious comparative statics of such models has to do with the length of time in which the

agent enjoys anticipatory utility: the longer this time, the stronger bias. Anticipatory utility

models have no obvious comparative statics for the stakes the agent has in a given situation.

In fact, if anticipatory utility is increasing less than linearly in the stakes the prediction would

be for the opposite comparative statics. Finally, the comparative statics for information are

unclear, and depend on whether a cost of information distortion is introduced. If there are

no such costs then there are cases in which anticipatory utility models would predict total

bias7.

7It makes a big difference for anticipatory utility models whether the decision the agent has to take is
continuous or discrete. If the latter, then depending on the optimal trade-off, the agent may either choose
just enough bias so as not to make a costly error, or else accept the error and enjoy as much bias as possible.
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g � f

g � f

g �g ff �g g

f �f gg �f f

Neutral OptimistPessimist

Figure 2: Belief distortion in binary choice between two independent alternatives: f in the
solid blue line, and g in the red dotted line. The x-axis denotes expected utility. The top
panel shows beliefs with g as reference, and the bottom panel beliefs with f as reference. As
drawn, g is the efficient choice, both f and g are rational choices for the optimistic agent,
and neither is a rational choice for the pessimistic agent. Comparing f and g, note that there
is more disparity in f , and hence the distortion shifts f more than it shifts g (Section 2.4).

2.5 Optimism and pessimism

Equation 3 suggests that a positive value for ψ can be identified with optimism, and a

negative value with pessimism. In this section I consider how the distribution of payoffs is

distorted under different values of ψ. The main result is that the distorted distributions

corresponding to different values of ψ are related to each other via a monotonic likelihood

ratio. In particular, it follows that, whatever the act, agents with a higher value of ψ expect

a higher payoff. ψ can thus be used as a model of relative as well as absolute optimism and

pessimism.

Stochastic dominance in the likelihood ratio is defined for distributions with the same

support. This, of course, is the case for the distribution of payoffs for the same act distorted

by different values of ψ.

Definition 4. Suppose F (x) and G(x) are two probability distributions with the same

support then F (x) stochastically dominates G(x) in the likelihood ratio, written F �LR G if

dF (x)/dG(x) is non-decreasing for all x in the support of F and G.

Proposition 3 (Relative optimism). Let f be any act, and let Fψ
f (·) denote the distorted

distribution of the payoff of f with act f as the reference for an agent with a distortion

parameter ψ. Then Fψ
f �LR F

ψ′

f if ψ ≥ ψ′.

The proof is immediate from Equation 1. Note that the claim is for the payoff expected

from act f when f is the reference. The effect of ψ on the expected payoff from some other

act g depends on how the two acts are related to each other. If, for example, g = −f then

15



the effect of ψ on the distorted distribution of g will be the opposite of its effect on the

distorted distribution of f .

It is also interesting to consider the limit cases of ψ → ±∞. In the limit of ψ → ∞ all

the probability is put on the best possible outcome. That is, an extremely optimistic agent

believes in the best possible world for him. Similarly, an extreme pessimist believes in the

worst possible world. Note that extreme optimism and pessimism are not themselves logit

distortions (they violate absolute continuity, as events resulting in other than the extreme

payoff are distorted to zero probability). Yildiz (2007) explores a model in which agents

behave like extreme optimists in this sense.

Proposition 4 (Extreme optimism/pessimism). Let f be a simple act. Define amin =

mins∈Supp(p) f(s) and amax = maxs∈Supp(p) f(s) to be the minimal and maximal possible prizes

respectively, and let Amin = f−1(amin) and Amax = f−1(amax) denote the events that these

prizes are obtained. Then limψ→−∞ πf (Amin) = limψ→∞ πf (Amax) = 1.

3 Choice equilibrium

I start with an example, and then proceed to analyse formally how choice works in the model.

Example 1. Picnic

Suppose a person has to decide whether or to go on a picnic or stay at home, and that the

payoff for going out on a picnic is weather dependent, whereas the payoff for staying at home

is not:

Rain Shine

Picnic 0 1

Home 0.5 0.5

Since the payoff difference between “rain” and “shine” depends on the choice between picnic

and staying at home, Equation 3 implies that beliefs over these events also depend on the

choice. Suppose, for example, that the undistorted probability for a sunny day is p(shine) =

1/3, and that the agent is optimistic with eψ = 4. With these numbers the distorted

probability of a sunny day conditional on the choice of picnic is

πpicnic(shine) =
p(shine)eψ

p(shine)eψ + p(rain)
=

(1/3) · 4
(1/3) · 4 + (2/3) · 1

= 2/3 (9)
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whereas the distorted probability of the same event conditional on staying at home is

πhome(shine) =
p(shine)eψ/2

p(shine)eψ/2 + p(rain)eψ/2
=

(1/3) · 2
(1/3) · 2 + (2/3) · 2

= 1/3 (10)

It follows that if picnic is the reference act, the subjective expected utility of picnic is

Epicnic(picnic) = 2/3, whereas if staying at home is the reference, the subjective expected

utility of picnic is only Ehome(picnic) = 1/3. Since the expected utility of staying at home

is 1/2 regardless of the reference act, it follows that both choices are (subjectively) strictly

optimal.

For an example of choice by pessimists, suppose the agent is pessimistic with eψ = 1/4,

and that the undistorted probability of a sunny day is p′(shine) = 2/3. Then by a similar

calculation E ′picnic(picnic) = 1/3, E ′home(picnic) = 2/3, and E ′picnic(home) = E ′home(home) =

1/2, so that neither choice is subjectively optimal.

In the following I formally discuss choice, and investigate the conditions for the existence

and uniqueness of rational choice.

3.1 Rational choice

The preferences of an Anscombe-Aumann agent over the set F of simple acts correspond to

comparisons of subjective expected utility. Act g is preferred to h if and only if the subjective

expected utility of g is higher than that of h:

g � h ⇐⇒
∑
s∈S

p(s){g(s)− h(s)} ≥ 0 (11)

The beliefs of an agent with payoff-dependent beliefs depend on the reference act f .

Equation 11 continues to hold, but p(s) is replaced by πf (s). As a result, preferences over

acts become a function of f :

g �f h ⇐⇒
∑
s∈S

πf (s){g(s)− h(s)} ≥ 0 (12)

or in a different notation,

g �f h ⇐⇒ Ef (g) ≥ Ef (h) (13)

Choosing an act f from some choice set C ⊆ F fixes f as the reference act. f is then a

rational choice if f �f g for all g ∈ C. A rational choice can also be thought of as a choice

equilibrium. In the picnic example the optimist has two rational choices (or two choice
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equilibria), whereas the pessimist has none.

A standard agent may rationally choose both f and g from a choice set, but only if

g ∼ f . By contrast, an optimist can have multiple strict equilibria, such that both f �f g
and g �g f . Obviously, at most one can be a good choice in the sense of maximising expected

utility given undistorted beliefs. It follows that optimists may choose inefficient choices in

equilibrium.

Pessimists may have no rational choice from a finite choice set. Interestingly, one of the

symptoms of depression is difficulty making decisions (American Psychiatric Association,

2000), and the underlying reason can be interpreted as having no choice equilibrium: “The

patient anticipates making the wrong decision: Each time he considers one of the various

possibilities he tends to regard it as wrong, and to think that he would regret making the

choice.” (Beck, 1967).

In the next section I look at the general case of independent acts. I first show that the

choice of one such act does not distort beliefs over other independent acts. I then use this

result to provide a weak condition for binary choice sets that ensures a sufficiently optimistic

agent has multiple rational choices, and that a sufficiently pessimistic agent has none.

3.2 Independent acts

Intuitively, if alternatives are unrelated, the bias induced by choosing one should not affect

beliefs about the others. In the following I show that this is indeed the case. To formalise

the notion of unrelated acts I look at the random variables that describe their payoffs, and

define the acts as independent if those random variables are independent. Independence is

defined relative to the undistorted probability measure8.

Definition 5 (Independent acts). Acts f and g are independent if there exist random vari-

ables Xf and Xg such that f(s) = f(Xf (s)) and g(s) = g(Xg(s)) for all s ∈ S, and Xf and

Xg are independent relative to the undistorted probability measure p(·).

Given this definition it follows that having act f as the reference biases beliefs over f

only. The proof works by expressing the relevant events for g as the union of events that

specify values for both f and g. The likelihood term of the belief distortion (Equation 6)

then drops out, as it depends only on f , and f and g are assumed to be independent.

8Independence of random variables relative to the undistorted beliefs is, in general, neither a necessary
nor a sufficient condition for independence relative to the distorted probability measure. See Section 4.
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Proposition 5 (Independent acts). Suppose f and g are independent acts then the dis-

torted probability distribution of g conditional on f is the same as its undistorted probability

distribution: Gf (x) = G(x) for all x ∈ R.

Suppose now that f and g are independent acts, and that the agent is extremely optimistic

(pessimistic). Then conditional on selecting g the agent perceives g as delivering the best

(worst) possible payoff for g. It follows that both f and g are rational choices for a sufficiently

optimistic agent, unless the expected value of one is better than the best possible payoff of

the other. Similarly, neither f nor g are rational choices for a sufficiently pessimistic agent,

unless the expected value of one is worse than the worst possible payoff of the other:

Proposition 6. Suppose f and g are independent acts, such that E(f) < maxs∈Supp(p) g(s).

Then there is ψ∗ such that g is a rational choice for any agent with a distortion parameter

ψ ≥ ψ∗. Similarly, if E(f) > mins∈Supp(p) g(s) then there is a distortion parameter ψ∗, such

that g is not a rational choice for any agent with a distortion parameter ψ ≤ ψ∗.

3.3 Mixed equilibria

By a standard fixed-point argument if the choice set C is the mixture space over a final set of

acts then the agent has a rational choice. It may seem, therefore, that a pessimist faced with

a finite choice set can compute the mixed equilibrium, and emulate it using a randomising

device. This intuition is wrong, however, as it would be irrational for the pessimist to

follow through on the result of the randomisation. This highlights an important difference

between the mixed equilibria of pessimists and the mixed equilibria we normally encounter

in Game Theory. In games like Matching Pennies the acts in the support of a strictly

mixed equilibrium are themselves optimal choices, but the acts in a mixed equilibrium of

a pessimistic agent are generally not optimal. The pessimist will therefore be unable to

rationally follow through on the choice of act indicated by the result of the randomising

device. A mixed equilibrium is therefore only a realistic option for a pessimist if the pessimist

can irreversibly commit to the mixing9, but actual choice situations need not offer this

possibility even if randomising devices are available.

Another interesting question about equilibria in general and strictly mixed equilibria in

particular is their stability. If we think as choices and beliefs as either being in equilibrium

or not being in equilibrium, then any fixed point is like any other. But if we think of choices

and beliefs in dynamic terms, then it makes sense to ask whether a particular fixed point is

9One interesting example of commitment is to hand over the decision to some other person (who then
decides by tossing a coin, or else makes a decision which the pessimist is unable to predict).
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stable or unstable. In particular, suppose f = αg + (1− α)h is a strictly mixed equilibrium.

Then the agent is necessarily indifferent between g and h in the equilibrium f . Suppose

however that the agent contemplates a mix of g and h with a somewhat higher proportion

α′ > α of g. Given this new reference act it is possible that the agent prefers g to h, in which

case the deviation will be self-enforcing and the equilibrium unstable, and it is also possible

that the agent may then prefer h to g, in which case the deviation will be self-defeating and

the equilibrium stable.

The striking result I show below is that the stability of strictly mixed equilibria is fully

determined as a function of whether the agent is an optimist or pessimist. The strictly mixed

equilibria of optimists are all unstable, and those of pessimists are all stable. The intuition

is that increasing the proportion of some alternative in a strictly mixed equilibrium increases

the bias over that alternative and reduces the bias over the other. Since the optimistic

bias is positive and the pessimistic bias negative, an optimist will tend to move away from

equilibrium, and a pessimistic will move back towards equilibrium. The definition and proofs

assume the equilibrium has only two acts in its support, but since a mixed act is itself an

act there is no loss of generality10.

Definition 6 (Stability of strictly mixed equilibria). Suppose f = αg+ (1−α)h is a strictly

mixed equilibrium for g, h ∈ C, and let f(ε) = (α + ε)g + (1 − (α + ε))h. If there is δ > 0

such that for all 0 < ε < δ, g �f(ε) h then f is an unstable equilibrium. Similarly, if for all

0 < ε < δ, g �f(ε) h then f is a stable equilibrium.

Proposition 7. If f = αg + (1 − α)h for α ∈ (0, 1) is a strictly mixed choice equilibrium

then f is a stable if and only if ψ ≤ 0 and is unstable if and only if ψ ≥ 0.

3.4 Existence of a rational choice

We saw earlier in this section that pessimists may have no rational choice from a finite choice

set. In this section I show that optimists always do. The simplest case is that of independent

acts. By Proposition 5 choosing one such act biases beliefs only over that act. It follows that

for an optimistic agent any efficient act must be a rational choice if the acts in the choice set

are all independent.

More generally, however, there may be complicated logical dependencies between acts,

so that choosing f may actually increase the bias on some other act g more than on f . I

therefore take an indirect approach to the general claim. The intuition of the proof is that if

10A strictly mixed equilibrium
∑
i pixi can be seen as the mixing of xi and

∑
j 6=i pjxk/(1− pi)
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the agent is optimistic any strictly mixed equilibrium is unstable (Proposition 7). It follows

that the equilibrium with the maximum proportion of some alternative cannot be a mixed

one.

Proposition 8. An optimistic agent has a rational choice from any finite choice set.

3.5 Comparison with loss-aversion

Kőszegi and Rabin (2006, 2007) develop a model of choice with reference-dependent pref-

erences, in which loss-aversion makes multiple strict choice equilibria possible. The basic

phenomenon of multiple equilibria is similar to optimistic choice, but the underlying rea-

son is different, and the circumstances in which it is observed also differ. In particular,

loss-aversion never results in the choice of dominated alternatives, but it can be a choice

equilibrium for an optimistic agent to choose a strictly dominated option, such as an in-

vestment associated with a first-order stochastically dominated payoff distribution. On the

other hand, (subjective) uncertainty is necessary for optimistic multiple equilibria, but not

for multiple equilibria arising from loss-aversion.

A further difference is that Kőszegi and Rabin (2006, 2007) interpret utility as compara-

ble between different reference points, and define a notion of equilibrium which maximises

expected utility across all reference-points. In this paper utility is simply a representation of

preferences, and a comparable notion cannot be defined.

4 Non-normative belief updating

Beliefs in the model depend not only on information but also on payoff. Thus they may

change not only through the acquisition of relevant information but also from a change in

payoffs. Section 3 focused on one way this can happen: choosing an act determines the

payoffs in each state and so different choices can lead to different beliefs. In this section,

I assume that the payoffs in each state are fixed, and consider instead the effect of new

information. The key idea is that fixing the mapping between payoffs and states nonetheless

leaves room for information to change the relationship between payoffs and events. News

therefore can affect beliefs not only directly by providing relevant evidence, but also indirectly,

by mediating the effects of belief distortion.

I start by considering two examples. I then proceed to a formal analysis, proving a

proposition that characterises situations in which information leads to a predictable change

in beliefs about a second set of events without providing any relevant information about the
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likelihood of those events. I conclude the section by relating this analysis to psychological

evidence of cognitive dissonance and other motivated beliefs change.

Example 2. Picnic

Consider again the picnic example. In Section 3 I looked at how beliefs over “rain” and

“shine” depend on the decision whether to go out on a picnic. Here I consider a variation

of this example in which the payoff in these events still depends on the activity (picnic or

home), but that which activity takes place depends not on choice, but on an exogenous event

such as whether or not a friend recovers from an illness. If the friend recovers the picnic

is on, and if the friend remains ill the picnic is off. In this situation payoff is defined over

combinations of rain/shine and ill/well. The agent knows what payoff she would obtain in

each of these four possible combinations, but it is only when uncertainty about the health

of the friend is resolved that the agent knows what payoff she would obtain in the events of

rain or shine. I assume the same payoff matrix as in Section 3 on the assumption that the

picnic is on if and only if the friend recovers:

Rain Shine

Well 0 1

Unwell 0.5 0.5

As in the discussion of this example in Section 3, Equation 3 implies that beliefs over

the probability of rain are distorted if the picnic is on but not if the agent stays at home.

Since the choice of activity is up to the unrelated outside event, it follows that the beliefs the

agent ends up with about the weather depend on normatively irrelevant news. Moreover,

the agent’s beliefs are consistent, and so beliefs prior to learning the news about the friend’s

health lie between the two possible posteriors. The subjective probability of rain therefore

moves with the news about the outside event. If the friend recovers, it goes down. If the

friend remains ill, it goes up.

To see further how this works, consider the following numeric example. Suppose each of

the four possible combinations of ill/well and rain/shine have an undistorted probability of

1/4, and suppose the agent is optimistic with eψ = 4. Belief distortion is then as follows:11

Rain Shine

Well 1/4 1/4 1/2

Unwell 1/4 1/4 1/2

1/2 1/2

⇒

Rain Shine

Well 1/9 4/9 5/9

Unwell 2/9 2/9 4/9

1/3 2/3

11For example, the distorted probability of well+shine is given by e2ψ/(e0ψ + e2ψ + 2eψ) = 4/9.
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Note first that while the two sets of events are independent given the undistorted beliefs,

they are not independent given the distorted beliefs. For example, the subjective probability

of rain depends on whether or not the friend recovers. Second, beliefs conditional on friend

recovering are biased, but beliefs conditional on the friend staying ill are not. This follows

from the fact that the payoff in the event of picnic varies as a function of the weather,

but the payoff in the event of staying at home is constant. Third, because of the bias,

subjective expected utility conditional on the risky event (picnic) is higher than subjective

expected utility conditional on the safe event (staying at home). This parallels the result

from Section 5.1 on the preference of optimists for risky choices. Here, however, it is not up

to the agent to choose between these two alternatives. Instead, the higher expected utility

of the risky alternative leads to a bias in the probability that the picnic would be on: the

distorted probability of picnic is 5/9, as compared with an undistorted probability of 1/2.

Fourth, prior beliefs over the event of rain are related to posterior beliefs by the law of

iterated expectations, just as in the case of standard Bayesian agents12. Finally, following

the news that the friend recovers, the subjective probability of rain drops from 1/3 to 1/5.

If, instead, the news is that the friend remains ill, the subjective probability of rain rises to

1/2. These changes in belief occur despite the fact that the news about the friend’s health

carries no real information about the weather.

The key to the picnic example is that good weather is more important if the friend

recovers (and hence the picnic is on; in the example it is only important if the picnic is on).

In other words, good weather and a picnic are complements. Consider a second example,

this time with substitutes:

Example 3. Sales target

A salesperson is one sale short of a target leading to promotion with two prospects left.

The two possible sales are therefore substitutes, and for simplicity I assume they are perfect

substitutes:

B fails B works

A fails 0 1

A works 1 1

I assume independent undistorted prior beliefs of 1/4 for each of the two possible sales to

work, and for illustration, extreme optimism. On this assumption the likelihood of neither

12

π(rain) = π(rain|picnic) · π(picnic) + π(rain|home) · π(home) =
1
5
· 5

9
+

1
2
· 4

9
=

1
3

(14)
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sale working is zero, and that of one or both sales working is 1. Undistorted and distorted

beliefs are therefore as follows:

B fails B works

A fails 9/16 3/16 3/4

A works 3/16 1/16 1/4

3/4 1/4

⇒

B fails B works

A fails 0 3/7 3/7

A works 3/7 1/7 4/7

3/7 4/7

Thus, the undistorted probability of the first sale working is 1/4, but the distorted probability

is a much higher 4/7. However, if the salesperson learns that the first sale is a success, then

she no longer cares about the prospects of the second, and so the subjective probability of

the second deal working drops back to 1/4.

4.1 Formal analysis

The claim I seek to prove is that beliefs about some variable X are shifted in a predictable

direction by good news about another variable Y that is a complement or substitute of X.

The general setting I consider assumes that utility can be written as a separable function of

three random variables, so that u(s) = u(X, Y, Z) = u(X, Y ) + u(Z), where X and Y are

complements or substitutes. For example, the utility function of the sales agent is given by

u(X, Y ) = max(X, Y ) for binary X, Y ∈ {0, 1}, and X and Y are substitutes. A more general

version of this example in which u = max(X1, X2, . . . , Xn) can be put in the above framework

by defining X = X1 and Y = max(X2, . . . , Xn), so that u(X1, . . . , Xn) = max(X, Y ). Finally,

consider an example such as u =
∑

i aiXi. Then ai and Xi are strict complements, so that

good news about ai should raise beliefs about Xi if the agent is optimistic. This example

can be put into the framework by defining X = Xi, Y = ai and Z =
∑

j 6=i ajXj.

I denote the undistorted probability distribution of a random variable X by PX(x) and

its distorted probability distribution by ΠX(x). I denote the corresponding probability dis-

tributions conditional on information I by PX|I(·) and ΠX|I(·). The proposition is about

how news that is about one variable can nonetheless affect beliefs about another unrelated

variable. I define news about a variable as information that is independent of other variables,

and “good news” as news that changes beliefs about the variable it is about in a predictable

direction.

Definition 7 (News about a variable). Suppose X is a random variables then an event I is

news about X if for all random variables Y that are independent of X relative to p(·) and for

all y ∈ R the event Y = y is independent of I relative to p(·). If, furthermore, PX|I �LR PX
then I is good news about X. If the inequality is strict then I is strictly good news about X.
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I define complements and substitutes by adapting a standard definition based on increas-

ing (decreasing) differences (Edgeworth, 1925; Samuelson, 1974; Topkis, 1998) that avoids

any assumptions on differentiability:

Definition 8 (Complements and substitutes). Suppose u = u(X, Y ) +u(Z) as above. Then

X and Y are complements (substitutes) if for all t > t′ in the image of X2, u(x, t)− u(x, t′)

is non-decreasing (non-increasing) as a function of x. X and Y are strict complements

(substitutes) if the differences u(x, t)− u(x, t′) are strictly increasing (strictly decreasing) as

a function of x.

The main claim now follows. I define the proposition for the case of optimism and

complements, but the result generalises for substitutes and pessimism with a sign inversion

for both changes. The effect on X of good news about Y is summarised in the following

table:

Optimist Pessimist

Complements + -

Substitutes - +

Proposition 9. Suppose ψ > 0, X and Y are complements, and I is good news about Y .

Then Π(X|I) �LR Π(X). Moreover, if (i) X and Y are strict complements, (ii) I is strictly

good news about Y , and (iii) the probability distribution of X and Y is not degenerate, then

the result is also strict.

The intuition for this result can be obtained by considering the case of two binary variables.

The claim is then that π(X = 1|I)/π(X = 0|I) ≥ π(X = 1)/π(X = 0). Now,

π(X = 1|I)

π(X = 0|I)
=
π(X = 1, Y = 1|I) + π(X = 1, Y = 0|I)

π(X = 0, Y = 1|I) + π(X = 0, Y = 0|I)

=
p(X = 1, Y = 1|I)eψu(1,1) + p(X = 1, Y = 0|I)eψu(1,0)

p(X = 0, Y = 1|I)eψu(0,1) + p(X = 0, Y = 0|I)eψu(0,0)

=
p(X = 1)

p(X = 0)
· p(Y = 1|I)eψu(1,1) + p(Y = 0|I)eψu(1,0)

p(Y = 1|I)eψu(0,1) + p(Y = 0|I)eψu(0,0)

(15)

with a similar result for π(X = 1)/π(X = 0). Taking the difference between the two several

terms drop out, and what remains is(
p(Y = 1|I)p(Y = 0)− p(Y = 1)p(Y = 0|I)

)(
eψ(u(1,1)+u(0,0)) − eψ(u(0,1)+u(1,0))

)
(16)

25



The expression on the left is weakly positive as I is good news about Y , and the expression

on the right is weakly positive as X and Y are complements and ψ > 013.

4.2 Motivated cognition and cognitive dissonance

The prediction of this section is that information that leads to a change in payoffs can cause

belief change even when it is not normatively relevant. This corresponds to the essence

of the phenomenon known as cognitive dissonance (Festinger and Carlsmith, 1959; Cooper

and Fazio, 1984), and sometimes known as motivated cognition (Kunda, 1990). One way

to summarise the key finding of this literature is that the expected value of a variable is

increasing in the payoff for high values of the variable in question. This finding fits the

predictions of this section on the assumption that most people are optimistic.

For example, Klein and Kunda (1992) found that subjective beliefs about the likelihood

playing with or against a given player in a trivia contest influences beliefs about the ability of

that player. Letting x denote the ability of the player, and a ∈ {−1, 1} the side on which she

will play, the agent’s payoff can be modelled by u(a, x) = ax. Thus, a and x are complements.

The prediction would therefore be that an increase in a (telling subjects that the player will

be on their team) should lead to a higher assessment of x (an increased subjective valuation

of the ability of the player). This prediction agrees with the empirical findings.

Similarly, Berscheid et al. (1976) found that expecting to date a person causes an increased

valuation of that person. Here we can let xi denote the attractiveness of person i, and pi the

probability that person i is to be the date. Then pi and xi are complements, and news that

pi = 1 is predicted to increase the bias over xi, again in agreement with empirical findings.

5 Choice applications

In this section I consider cases where a standard agent sees one risky act f ′ as better than

another risky act f , but where a biased agent may nonetheless view f as better. In terms of

choice behaviour suppose g is a safe (constant) act, and that given undistorted beliefs f � g

implies f ′ � g. The question I ask is under what conditions is it also the case that f �f g
implies f ′ �f ′ g, and under what conditions can it be that f �f g, but f ′ ≺f ′ g?

I start by showing that optimists may prefer a “worse” act in expected utility terms if its

payoff is more uncertain. Optimists are therefore risk-loving. Similarly I show that pessimists

13eψ(u(1,1)+u(0,0)) − eψ(u(0,1)+u(1,0)) ≥ 0 if and only if eψ(u(1,1)+u(0,0)) ≥ eψ(u(0,1)+u(1,0)), and since ln is a
monotonic function, this is true if and only if ψ(u(1, 1) + u(0, 0)− u(1, 0)− u(0, 1)) ≥ 0.
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are risk-averse. I then show that first order stochastic dominance can also be violated. In

an application increased punishment can actually reduce deterrence. Finally, I show that,

unlike the case with first-order stochastic dominance, stochastic dominance in the likelihood

ratio is a sufficient condition to ensure that f �f g implies that also f ′ �f ′ g.

5.1 Uncertainty and risk aversion

In this section I focus on acts with normally distributed payoffs. Suppose Xf has an undis-

torted normal distribution with mean µ and variance σ2, and that g = c for some c ∈ R.

Then by Proposition 2 f �f g ⇐⇒ µ + ψσ2 ≥ c. In particular, for an optimistic agent

f �f g ⇐⇒ σ2 ≥ (c− µ)/ψ, and for a pessimistic agent f �f g ⇐⇒ σ2 ≤ (µ− c)/|ψ|.
Thus, if the agent is optimistic and f is uncertain then (i) it can be that f �f g even if

E(f) < E(g), and (ii) if the agent is more uncertain about f than about f ′ then it is possible

that f �f g but f ′ ≺f ′ g even if E(f ′) > E(f). An optimistic agent is thus risk-loving.

Similarly, if the agent is pessimistic and f is uncertain then (i) it may be that f ≺f g even

if E(g) < E(f), and (ii) if there is more uncertainty in f ′ than in f then it is possible that

f �f g but f ′ ≺f ′ g even if E(f ′) > E(f). A pessimistic agent is thus risk-averse.

This relationship between optimism and risk-loving on the one hand, and pessimism and

risk-aversion on the other, suggests the possibility that agents take risks not because they are

tolerant of the actual risks they are facing, but because they underestimate them. Similarly,

pessimists who take a cautious approach may do so not because of having a particularly

curved utility function, but because they overestimate the probability of losses. These two

sources of observed risk preferences can be separated by controlling for the type of uncertainty

the agent is facing. Optimism and pessimism are only relevant for subjective uncertainty,

and have no effect if uncertainty is objective.

5.2 Violation of first-order stochastic dominance

In this section I use an economics of crime example to show that payoff-dependent belief

distortion can lead to a violation of first-order stochastic dominance. In the example, an

increase in the punishment of criminals can potentially increase the expected utility of crime

and thereby reduce deterrence. The intuition is that the probability of staying out of jail

and level of punishment are complements. Therefore, by the results of Section 4 an increase

in punishment reduces the subjective probability of getting caught. There are therefore two

effects working opposite directions (Figure 3) and with the right parameters an increase in

punishment can lead to a counter-intuitive result.
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Example 4. Crime and punishment

An optimistic criminal can choose a safe act g of payoff = −b (working in McDonald’s) or a

risky life of crime f c, which yields 0 if the criminal stays out of jail and −c in the event, A,

that the criminal is caught. c denotes the level of punishment. The claim is that an increase

in c (lowering the true expected utility of crime) can nonetheless increase the subjective

expected utility of crime, and thereby reduce deterrence.

With these definitions F c first-order stochastically dominates F c′ if c < c′. A standard

agent who chooses crime if f c
′
is offered always chooses crime if f c is offered. Using Equation 3

the perceived odds ratio for A is πfc(A)/πfc(A
c) = p(A)e−ψc/p(Ac), and the subjective

expected utility of crime is given by

Efc(f c) = −cπfc(A) = − p(A)e−ψc

p(A)e−ψc + (1− p(A))
· c (17)

Obviously Efc(f c) is negative for all c > 0, and since limc→∞ e
−ψcc = 0 for ψ > 0 it follows

that limc→∞ Efc(f c) = 0. Thus, there is a certain critical point c∗, such that increasing pun-

ishment beyond c∗ actually increases the subjective expected utility of crime, and therefore

reduces deterrence. As b < 0 it follows that for c large enough f c �fc g. In other words, for

c high enough it is a choice equilibrium for the agent to choose crime, even if there are lower

values of c for which crime is an irrational choice.

Going back to Equation 17 note that an increase in p(E) unambiguously makes Efcf(c)

more negative, and so improves deterrence. There is thus an asymmetry: an increase in

the probability of arrest is predicted to be more effective than an increase in the severity of

punishment, and the latter can even be counter-productive. The evidence on this topic is

interesting. For example, Grogger (1991) looking at the frequency of arrests found a much

larger deterrent effect for the certainty of punishment as compared with severity (-0.562

with t-score of 8.52 for the probability of conviction vs. 0.017 with t-score of 1.65 for average

sentence length). Similarly, Nagin and Pogarsky (2001) also found that the certainty of

punishment was a far more robust a deterrent than severity. Note that the effects of belief

distortion may be particularly strong if optimists self-select a life of crime over less risky

alternatives.

5.3 Stochastic dominance in the likelihood ratio

Though belief distortion can lead to violations of first-order stochastic dominance, the fol-

lowing proposition shows that it respects stochastic dominance in the likelihood ratio:

28



p(not caught)

E
x
p

ec
te

d
u
ti

li
ty

0 1

Utility effect

p(not caught)

π
f
(n

ot
ca

u
gh

t)

0 1

Probability effect

p(not caught)

E
x
p

ec
te

d
u
ti

li
ty

0 1

Combined effect

Figure 3: An example of a violation of first-order stochastic dominance: increased severity
of punishment reducing deterrence. The first panel shows the drop in expected utility that
would follow if the subjective probability of arrest remained the same. The second panel
shows the increase in the subjective probability of staying out of jail that follows from the
increased stakes that result from the increase in punishment. Finally, the third panel shows
the combined effect: the plot for a more severe punishment (dotted line) is lower if the
probability of arrest is high, but is arrest is sufficiently rare, the increase in punishment
actually increases subjective expected utility.

Proposition 10. Let f and f ′ be two acts, such that F ′ �LR F . Then for all constant acts

g, f �f g ⇒ f ′ �f ′ g.

The intuition for this result comes from considering the case of binary bets which differ

only in the probability of the desirable outcome. The distorted probabilities are monotonic

in this probability, and so the ranking of such bets is invariant to the distortion. Stochastic

dominance in the likelihood ratio can be seen as a generalisation of this concept, as the odds

ratio between any two payoffs is higher in the stochastically dominant act.

6 Conclusion

This paper introduces a model of Bayesian decision making where a person’s beliefs about

the likelihood of different outcomes depend upon the anticipated payoff consequences of

those outcomes. This dependence is modelled as a time-invariant distortion linking the

actual beliefs of a person to the beliefs the person would have held if beliefs depended

only on information. The fact that the distortion is time-invariant implies that beliefs at

time t depend only on time t information and payoffs, and are independent of the order in

which payoff was determined or made clear, and the order in which information arrives. In

particular, the same beliefs result if (1) payoffs are determined first, and then information

arrives, in which case the belief distortion may be seen as an optimistic/pessimistic bias in
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interpreting information, (2) information arrives first, and then a decision is made, in which

case the belief distortion makes choice into an equilibrium phenomenon, and (3) information

arrives, but payoffs remain uncertain. Then information about the payoffs arrives. This last

case results in non-normative belief updating following the arrival of information about the

payoffs.

The model accounts for the key evidence for both optimism and pessimism. It is consistent

with the comparative statics for the strength of available evidence on the one hand, and the

stakes in the outcome on the other. The predictions for possible multiple choice equilibria

for optimists and no rational choices for pessimists are supported by evidence for extreme

optimism and pessimism. The predictions of non-normative belief updating are supported

by cognitive dissonance evidence (Cooper and Fazio, 1984), as well as evidence from studies

of “motivated cognition” Kunda (1990).

The model is structured as an extension of the standard Anscombe-Aumann choice

model (Anscombe and Aumann, 1963), and can be readily adapted for use in applications.

Optimistic bias has been applied to a variety of economic areas, such as financial markets,

corporate finance, bargaining, and insurance. One would hope that the model of this paper

can lead to better and stronger predictions in some areas. In financial markets in particu-

lar there are phenomena that look strongly suggestive of the types of mechanisms explored

in this paper. Most obviously, optimistic investors may discount risks. In addition, the

dynamic predictions of the model may help explain such phenomena as inefficient lack of

diversification, and traders avoiding the sale of poorly performing securities.

The model predicts that an early bet on some event leads to belief distortion over the

event. In particular, if the agent is optimistic, then a decision to bet on A increases the

subjective likelihood of A. Suppose the agent then receives more information, and has the

opportunity to make a second bet, then the early bet on A has the effect of increasing the

likelihood that the agent bets on A again. This effect bears on the first-impressions effect, in

that the early information that lead into the first bet on A ends up having more impact on the

agent’s beliefs than later information. The same effect also bears on the sunk-cost effect, in

that the early investment represents a sunk cost by the time the second investment is made,

and yet it impacts the second investment decision. On the second front, it seems particularly

relevant to finance. In corporate finance the result would be an inefficient escalation of

business decisions. In financial markets the result would be an inefficient continual holding

of under-performing assets, and an inefficient lack of diversification.

Another obvious area for expanding the model is strategic interaction, where there are

existing models in the limit of extreme optimism (Yildiz, 2007), but not for more realistic
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levels of optimism or pessimism. Strategic interaction raises a number of interesting the-

oretical issues. For example, in isolated strategic interactions optimistic players may both

believe the other is making a mistake (they agree to disagree). This, however, cannot be

the case if the interaction is repeated to the point that both agents know the true equilib-

rium payoff. The most interesting case may be an intermediate one, in which the payoff in

each interaction is a combination of a fixed factor (which agents can learn), and a second

factor that varies between interactions (and which agents are optimistic about). There are

also interesting issues to do with interactions between optimistic and unbiased agents and

interactions involving pessimists.

Appendix: Proofs

Lemma 1

Proof. If p(B) = 0 the claim follows from absolute continuity. Otherwise, let r = p(B)/p(A),

and consider first the case that r is rational. By the non-atomicity there is a rational number

q, such that p(B) = mq and p(A) = nq for some natural numbersm,n ∈ N. By non-atomicity

and the assumption that B ⊆ A, we can write A as the disjoint union of n events C1, . . . , Cn,

s.t. p(Ci) = q for all i, and B is the disjoint union of C1 . . . Cm. By absolute continuity,

πf (Ci) > 0 for all i. Let Ci and Cj denote two of these events, then by applying state-

independence to Ci and Cj with g = f we have πf (Ci) = πf (Cj). As a probability measure,

πf is additive, and so πf (B)/πf (A) = m/n = p(B)/p(A).

Suppose now that r is irrational. Then there is an increasing sequence of rational numbers

{qn}∞n=1, and a decreasing sequence of rational numbers {q′n}∞n=1, such that limn=∞ qn =

limn=∞ q
′
n = r. By non-atomicity, there are events {Bn}∞i=1 and {B′n}∞i=1, such that for all

n, Bn ⊂ Bn+1 ⊂ B ⊂ B′n+1 ⊂ B′n, p(Bn)/p(A) = qn, and p(B′n)/p(A) = q′n. By the claim

for the rational case it follows that πf (Bn)/πf (A) = qn and πf (B
′
n)/πf (A) = q′n. Taking the

limit of n→∞ we thus obtain that πf (B)/πf (A) = r as required.

Lemma 2

Proof. Let f ′ = aAbBc, g′ = bAaBc, and h′ = bAcBa, and let D = A ∪ B ∪ C. By state

independence πg′(A|D) = πf ′(B|D) and πg′(B|D) = πf ′(A|D), and since C = D \ (A ∪ B)

it also follows that πg′(C|D) = πf ′(C|D). Similarly, πh′(A|D) = πg′(A|D), πh′(B|D) =

πg′(C|D), and πh′(C|D) = πg′(B|D). Combining the two results, we obtain πh′(A|D) =

31



πf ′(B|D), and πh′(B|D) = πf ′(C|D). Thus,

πf ′(C|D)

πf ′(B|D)
=
πh′(B|D)

πh′(A|D)
=
π′h(B|A ∪B)

πh′(A|A ∪B)
=
π′f (B|A ∪B)

πf ′(A|A ∪B)
=
π′f (B|D)

πf ′(A|D)
(18)

where the second step follows from information-independence, the third from shift invari-

ance, and the fourth from information-independence. Finally, by information-independence

πf (·|D) = πf ′(·|D). Combining this with Equation 18 we obtain

πf (C)

πf (B)
=
πf ′(C|D)

πf ′(B|D)
=
πf ′(B|D)

πf ′(A|D)
=
πf (B)

πf (A)
(19)

Lemma 3

Proof. Suppose first that b− a, b′ − a′, and a′ − a are all rational numbers. There is then a

rational number q ∈ Q, and natural numbers k, l,m, n ∈ N, such that b = a+kq, b′ = a′+ lq,

a′ = a + mq and max(b, b′) = a + nq. Let r = min(p(A), p(B), p(A′), p(B′))/(n + 1). By

non-atomicity A can be expressed as the disjoint union of events E0, E2, . . . , En, such that

p(Ei) = r for all i. Furthermore, there are events Br ⊆ B,A′r ⊆ A′ and B′r ⊆ B′ such

that p(Br) = p(A′r) = p(B′r) = r. Define Fk = Br, Fm = A′r, Fl+m = B′r and Fi = Ei

for ∈ {0, 1, . . . n} \ {k,m, l + m}. With this construction p(Fi) = r for all i, and F0 ⊆ A,

Fk ⊆ Ak, Fm ⊆ A′ and Fl+m ⊆ B′ even if A,A′, B and B′ are not all distinct.

Let g denote the act defined by g(Fi) = a+ iq for 0 ≤ i ≤ n then g(Fi+1)− g(Fi) = q for

all i, and so by Lemma 2, there is a constant t ∈ R, s.t. πg(Fi+1)/πg(Fi) = t for all i. For

any j ∈ {0, 1, . . . , n}, πg(Fj)/πg(F0) = (πg(Fj)/πg(Fj−1)) · · · (πg(F1)/πg(F0)) = tj.

Let D = F0∪Fk∪Fm∪Fl+m. By construction F0 = A∩D,Fk = B∩D,Fm = A′∩D, and

Fl+m = B′ ∩D. Moreover, g(s) = f(s) for all s ∈ D, so that by information independence

πf (·|D) = πg(·|D). Thus, πf (B∩D)/πf (A∩D) = πf (B|D)/πf (A|D) = πg(B|D)/πg(A|D) =

πg(Fk)/πg(F0) = tk, and similarly πf (B
′ ∩D)/πf (A

′ ∩D) = tl.

Finally, by Lemma 1, πf (A ∩D) = (p(A ∩D)/p(A))πf (A) = (r/p(A))πf (A). Using the

result from the previous paragraph we obtain πf (B)/πf (A) = (p(B)/p(A))(πf (B∩D)/πf (A∩
D)) = (p(B)/p(A))tk, and similarly, πf (B

′)/πf (A
′) = (p(B′)/p(A′))tl. Thus,

πf (B
′)

πf (A′)
· p(A

′)

p(B′)
= tl = (tk)ql/qk =

(
πf (B)

πf (A)
· p(A)

p(B)

) b′−a′
b−a

(20)
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and the identity in Equation 5 is obtained by taking logs. Finally, the general case in which

b− a, b′ − a′, and a′ − a are not necessarily all rational follows from prize continuity.

Proposition 1

Proof. That any logit distortion is consistent is obvious. For the other direction, note first

that part 1 of the definition of logit distortion is simply absolute continuity. For the second

part, consider first the case where f is a constant act, or that otherwise there is a prize

a ∈ If , such that Supp(p) ⊆ f−1(a). In this case, for any events A and B in the definition

of logit distortion it must be the case that b = a, and so by Lemma 1,

ln
πf (B)

πf (A)
= ln

πf (B)/πf (f
−1(a))

πf (A)/πf (f−1(a))
= ln

p(B)/p(f−1(a))

p(A)/p(f−1(a))
= ln

p(B)

p(A)
+ ψ(b− a) (21)

for all ψ ∈ R. Suppose now that there are at least two different prizes a, b ∈ If , such that

p(f−1(a)) > 0 and p(f−1(b) > 0. Let a∗ < b∗ denote any two such prizes, define A∗ = f−1(a∗)

and B∗ = f−1(b∗), and set ψ = ln(πf (B
∗)/πf (A

∗))− ln(p(B∗)/p(A∗)).

Let now A and B denote any two events, such that p(A) > 0, p(B) > 0, A ⊆ f−1(a), and

B ⊆ f−1(b) for some a, b ∈ If . Suppose first that b > a ≥ a∗. Then by Lemma 3,

ln
πf (B)

πf (A)
− ln

p(B)

p(A)
= ln

(
πf (B)

πf (A)
· p(A)

p(B)

)
=

b− a
b∗ − a∗

· ln
(
πf (B

∗)

πf (A∗)
· p(A

∗)

p(B∗)

)
=

b− a
b∗ − a∗

· (ψ(b∗ − a∗)) = ψ(b− a)

(22)

The other cases (a < a∗ and/or b < a) are very similar.

Proposition 2

Proof. Let ff (x) = dFf (x)/dx denote the probability density function of the payoff of f

under the distorted probability measure πf . Then,

ff (x) ∝
(

1√
2πσ

e−
(x−µ)2

2σ2

)
eψx =

1√
2πσ

e−
(x−µ)2−2ψσ2x

2σ2

=
1√
2πσ

e−
(x−{µ+ψσ2})2−2ψσ2µ−ψ2σ4

2σ2 ∝ 1√
2πσ

e−
(x−{µ+ψσ2})2

2σ2

(23)

Ff (x) is thus a normal distribution with mean µ+ σ2ψ and variance σ2.

Proposition 3
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Proof. By Equation 1 dFψ
f (x)/dFψ′

f (x) = (p(x)eψx)/(p(x)eψ
′x) = e(ψ−ψ

′)x which is a non-

decreasing function of x if ψ ≥ ψ′. The claim thus follows from the definition of stochastic

dominance in the likelihood ratio.

Proposition 4

Proof. The proof is immediate from Equation 3 by considering the events Amin and Acmin

and taking the limit ψ → −∞, and similarly for the events Amax and Acmax with the limit

ψ →∞.

Proposition 5

Proof. The proof follows from Equation 3 and the assumption that Xf and Xg are indepen-

dent relative to the undistorted probability measure p:

Gf (x) = πf (Xg ≤ x) =

∫ ∞
−∞

∫ x

−∞
πf (Xf = u,Xg = v)dudv =

∫∞
−∞

∫ x
−∞ p(Xf = u,Xg = v)eψududv∫∞

−∞

∫∞
−∞ p(Xf = u,Xg = v)eψududv

=

(∫∞
−∞ p(Xf = u)eψudu

)(∫ x
−∞ p(Xg = v)dv

)
(∫∞
−∞ p(Xf = u)eψudu

)(∫∞
−∞ p(Xg = v)dv

) = G(x)

(24)

Proposition 6

Proof. I prove the first part of the claim, as the second part is very similar. Let f and g be

as in the claim, let a∗ = maxs∈Supp(p) g(s), and let A∗ = g−1(a∗) denote the event that a∗

is obtained. By Proposition 4, limψ→∞ πg(A
∗) = 1. Thus, limψ → ∞Eg(g) = a∗. But by

proposition 5 Eg(f) = E(f) < maxs∈Supp(p) g(s) = a∗. Thus, limψ→∞ Eg(g) − Eg(f) ≥ 0, and

so for ψ large enough g �g f .

Proposition 7

Proof. Note that the preference g �f(ε) h equals the sign of the difference in expected utilities,

which is a differentiable function of ε. It follows that an equilibrium is stable (unstable) if and

only if the derivative of this utility difference is non-positive (non-negative) when equated at
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ε = 0. Now, if g(s) = h(s) for all s ∈ Supp(p) then both g and h are rational. Otherwise,

sign

(
∂

∂ε
Ef (g(s)− h(s))

) ∣∣∣∣
ε=0

= sign(
∂

∂α′

∑
s∈S p(s)(g(s)− h(s))eψ((α′g(s)+(1−α′)h(s))∑

s∈S p(s)e
ψ(α′g(s)+(1−α′)h(s)) )

∣∣∣∣
α′=α

= sign(
∂

∂α′

∑
s∈S

p(s)(g(s)− h(s))eψ(α′g(s)+(1−α′)h(s)))

∣∣∣∣
α′=α

= sign(ψ
∑
s∈S

p(s)(g(s)− h(s))2eψ(α′g(s)+(1−α′)h(s)))

∣∣∣∣
α′=α

= sign(ψ)

(25)

where the second inequality follows from g ∼f h for a strictly mixed equilibrium f 14.

Proposition 8

Proof. The proof is by induction on the size, n, of the finite choice set C. The claim is

obviously true for n = 1. For n = 2 let C = {g, h} and define f(α) = αg + (1 − α)h, and

ρ(α) =
∑

s∈S πf(α)(g(s) − h(s)), the expected utility difference between g and h with f(α)

as the reference. ρ(α) is a continuous function of α. If ρ(1) ≥ 0 then g ∈ C is a rational

choice, and if ρ(0) ≤ 0 then h ∈ C is a rational choice. Suppose, contrary to the claim, that

neither is the case. By the intermediate value theorem there is then α∗ ∈ (0, 1) such that

ρ(α∗) = 0 and ρ(α) < 0 for all α ∈ (α∗, 1]. Now, f(α∗) is a fully mixed rational choice in

C ′ = {f(α)}α∈[0,1], and by Proposition 7 is an unstable equilibrium. Thus, there is α ∈ [α∗, 1]

such that ρ(α) > 0, a contradiction to the definition of α∗.

Finally, in the general case there is (by the standard fixed point argument) at least one

rational act f =
∑n

i=1 pixi where xi ∈ C and
∑n

i=1 pi = 1. Without loss of generality

suppose p1 > 0. If p1 = 1 then f ∈ C, and the agent has a rational choice in C. Otherwise,

let g =
∑n

i=2(pi/(1− p1))xi. With this definition f = p1x1 + (1− p1)g and so x1 is a rational

choice by the proof for the n = 2 case.

Proposition 10

Proof. I prove the stronger claim that Ff �LR Ff ′ . Let b and b be two possible prizes with

b > a. I need to prove that πf (Xf = b)/πf (Xf = a) ≥ πf ′(Xf ′ = b)/πf ′(Xf ′ = a). By

Equation 3 this is true if and only if (p(Xf = b)/p(Xf = a))eψ(b−a) ≥ (p(Xf ′ = b)/p(Xf ′ =

14This is a standard result.
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a))eψ(b−a), i.e. if p(Xf = b)/p(Xf = a) ≥ p(Xf ′ = b)/p(Xf ′ = a). But this last inequality

follows from the assumption that F �LR F ′.

Proposition 9

Proof. I need to prove that for all pairs of possible values x > x′ for X, π(X = x|I)/π(X =

x′|I) ≥ π(X = x)/π(X = x′). Now,

π(X = x|I)

π(X = x′|I)
=

∑
y

∑
z π(X = x, Y = y, Z = z|I)∑

y

∑
z π(X = x′, Y = y, Z = z|I)

=

∑
y

∑
z p(X = x, Y = y, Z = z|I)eψu(x,y,z)∑

y

∑
z p(X = x′, Y = y, Z = z|I)eψu(x′,y,z)

=
p(X = x)

p(X = x′)
·
∑

y

∑
z p(Y = y)p(Z = z)eψ(u(x,y)+u(z))∑

y

∑
z p(Y = y)p(Z = z)eψ(u(x′,y)+u(z))

=
p(X = x)

p(X = x′)
·
∑

y p(Y = y|I)eψu(x,y)∑
y p(Y = y|I)eψu(x′,y)

(26)

where the second step uses Equation 6, the third step the assumption that X, Y and Z are

independent, that I is news about Y , and that u(x, y, z) = u(x, y) + u(z). Similarly,

π(X = x)

π(X = x′)
=
p(X = x)

p(X = x′)
·
∑

y′ p(Y = y′)eψu(x,y
′)∑

y′ p(Y = y′)eψu(x′,y′)
(27)

Thus the claim is true if and only if∑
y p(Y = y|I)eψu(x,y)∑
y p(Y = y|I)eψu(x′,y)

−
∑

y′ p(Y = y′)eψu(x,y
′)∑

y′ p(Y = y′)eψu(x′,y′)
≥ 0 (28)

or ∑
y

∑
y′

p(Y = y|I)p(Y = y′) ·
(
eψ(u(x,y)+u(x′,y′)) − eψ(u(x,y′)+u(x′,y))

)
≥ 0 (29)

This expression is antisymmetric in y and y′. The terms with y = y′ therefore drop out, and

terms with y′ > y can be combined with the corresponding term for which y′ < y. Thus, the

following condition is equivalent:∑
y

∑
y′<y

(
p(Y = y|I)p(Y = y′)− p(Y = y′|I)p(Y = y)

)
·
(
eψ(u(x,y)+u(x′,y′)) − eψ(u(x,y′)+u(x′,y))

)
≥ 0

(30)
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Now, p(Y = y|I)p(Y = y′)− p(Y = y′|I)p(Y = y) is non-negative by the fact that y′ < y

and the assumption that I is good news about y, and eψ(u(x,y′)+u(x′,y)) is non-negative by the

assumption that ψ ≥ 0, X and Y are complements, and the fact that ex is a monotonically

increasing function. It therefore follows that the entire expression is non-negative, thereby

concluding the main proof.

Finally, note that if ψ > 0, I is strictly good news about Y and X and Y are strict

complements, then all the expressions are strictly positive. The condition that X and Y are

non-degenerate ensures that the claim is not empty, and that the sums contain at least one

term. When all these conditions hold the inequality is therefore strict.
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