Price Points and Price Rigidity

Daniel Levy*
Bar-Ilan University
Levyda@mail.biu.ac.il

Dongwon Lee
Korea University
mislee@korea.ac.kr

Haipeng (Allan) Chen
Texas A\&M University
hchen@mays.tamu.edu

Robert J. Kauffman
Arizona State University and University of Minnesota
rkauffman@asu.edu

Mark Bergen
University of Minnesota
mbergen@csom.umn.edu

Last revision: October 19, 2008
JEL Codes: E31, L16, D80, M21, M30
Key Words: Price Point, 9-Ending Price, Price Rigidity

* We are grateful to Jurek Konieczny, the discussant at the Central European University Conference on "Microeconomic Pricing and the Macroeconomy" for constructive comments. We thank the conference participants and especially Marco Bonomo, Alan Kackmeister, Attila Ratfai, Julio Rotemberg, Harald Stahl, Jonathan Willis and Alex Wolman for conversations, suggestions and advice. Gershon Alperovich, Bob Barsky, Leif Danziger, Mark Gertler, Carlos Marques and Jacob Paroush provided helpful comments. We thank the seminar participants at Bar-Ilan University, Deutsche Bundesbank, European Central Bank, Hebrew University, Federal Reserve Bank of Kansas City, Tel-Aviv University, and the Departments of Marketing as well as Information and Decision Sciences at the University of Minnesota for comments, and especially Michael Ehrmann, David Genesove, Zvi Hercowitz, Heinz Herrmann, Johannes Hoffmann, Ed Knotek, Saul Lach, Benoît Mojon, and Frank Smets for comments and suggestions, Manish Aggrawal, Ning Liu, and Avichai Snir for research assistance, and the University of Chicago and Dominick's for data. A previous version of this manuscript was circulated under the title "Making Sense of Ignoring Cents: Price Points and Price Rigidity under Consumer Inattention." Portions of this work have been also presented at the 2004 INFORMS Conference on Information Systems and Technology in Denver, the 2004 International Conference on Systems Science in Washington, DC, the 2005 IS Research Symposium, the 2005 Maryland Symposium on Statistical Challenges in E-Commerce, the 2005 AMCIS Doctoral Consortium, and at the 2005 INFORMS Marketing Science Conference. We thank Chris Forman, Hemant Bhargava, D.J. Wu, Barrie Nault, Fred Riggins, Sri Narasimhan, Rahul Telang, Sunil Milthas, and other conference participants for helpful suggestions. Mark Nigrini kindly answered our questions on Benford's Law. Some parts of this manuscript were completed at the Monetary Policy and Research Division, at the Research Department of the European Central Bank, where Daniel Levy was a visiting scholar. He is grateful to the Bank's Research Department members and its management for the hospitality. Daniel Levy gratefully acknowledges also the financial support from the Adar Foundation of the Economics Department at Bar-Ilan University. Dongwon Lee's research is supported by an eBRC Doctoral Support Award from Pennsylvania State University and a Research Grant from Korea University. Rob Kauffman acknowledges partial support from the MIS Research Center, and the W.P. Carey Chair in Information Systems, Arizona State University. All authors contributed equally: we rotate co-authorship. The usual disclaimer applies.

[^0]
Price Points and Price Rigidity

Abstract

We study the link between price points and price rigidity, using two datasets containing over 100 million observations. We find that (i) 9 is the most frequently used price-ending for the penny, dime, dollar and ten-dollar digits, (ii) 9-ending prices are between $24 \%-73 \%$ less likely to change in comparison to non-9-ending prices, (iii) the average size of the price change is higher if it ends with 9 in comparison to non-9-ending prices, and (iv) the most common price changes are multiples of dimes, dollars, and ten-dollars. We conclude that price points might constitute a substantial source of retail price rigidity.

I. Introduction

With the increased popularity of new Keynesian models, the understanding of the sources of nominal price rigidity has become even more important. ${ }^{1}$ One of the recent theories of price rigidity is price point theory, which Blinder, et al. (1998) list among the leading 12 theories of price rigidity. According to Blinder, et al. (p. 26), practitioners' "...belief in pricing points is part of the folklore of pricing..." Consistent with this observation, they offer evidence from interviews on the importance of price points. For example, in their study of 200 large U.S. firms, they find that 88% of the retail firms assign substantial importance to price points in their pricing decisions. ${ }^{2}$ Kashyap (1995), who was the first to explore the link between price points and price rigidity, observes that catalog prices tend to be "stuck" at certain ending prices. He concludes that the existing theories cannot explain his findings, and therefore offers price points theory.

As Blinder, et al. (1998) note, however, a major difficulty with price point theory is that not much is known about the actual importance of price points and their relationship to price rigidity. Price points, although of interest by themselves (e.g., Landsburg, 1995), will be particularly important for macroeconomics if they can be shown to contribute to price rigidity, across a wide range of products and retailers. The literature offers growing evidence on the use of price points, but there is a lack of direct evidence on the link between price points and price rigidity in the U.S. Indeed, the literature documenting a link between price points and price rigidity using the U.S. data is limited to Blinder, et al.'s and Kashyap's (1995) studies. Kashyap emphasizes the need for more direct evidence, stating that—"A study focusing on more goods ... would have much more power to determine the significance of price points".

We fill this gap in the literature by offering new evidence on the link between price points and price rigidity using two datasets. One is a large weekly scanner price dataset, covering 29 product categories over an eight-year period from a major Midwestern U.S. retailer. The second dataset comes from the Internet and includes daily prices over a two-year period for 474 consumer electronic goods with a wide range of prices, such as music CDs, digital cameras, notebook PCs, etc., from 293 different e-retailers. Taken together, the two datasets cover a diverse set of products, a wide range of prices, different retail formats, retailers and time periods.

We find that across the two datasets, 9 is the most popular price point for the penny,

[^1]dime, dollar and the ten-dollar digits. We also find that the most common price changes are in multiples of dimes, dollars, and ten-dollar increments-an outcome that is consistent with efforts to keep the terminal digits at 9 . When we estimate the probability of a price change, we find that 9-ending prices are at least 24% (and as much as 73%) less likely to change in comparison to non 9-ending prices. We also find that the average size of the 9-ending price changes are larger in comparison to non-9-ending prices, which underscores the extent of the 9-ending price rigidity.

We draw from the emerging macroeconomic literature on consumer inattention to explain these findings and argue how 9-ending prices can be the outcome of firms' reaction to consumers' inattention. ${ }^{3}$ Because consumers face large amounts of information, they may choose to be inattentive to the rightmost digits of retail prices. It is well-known that people process numeric information from left-to-right, and the processing of the rightmost digits in the price offers the least net benefit. Consequently time-pressed consumers may choose not to pay attention to them. In response, firms will set those digits to the highest possible number, 9. We conclude that price points may be a substantial source of retail price rigidity, and that consumer inattention may offer a plausible explanation for their use.

The paper is organized as follows. We describe the data in section II. In section III, we study the distribution of price-endings. In section IV, we study the distribution of the size of price changes. In section V, we estimate the effect of 9-endings on price rigidity. In section VI, we study the link between price points and the size of price changes. In section VII, we offer an explanation for the 9 -ending pricing practice. Section VIII concludes.

II. Two Datasets

The most obvious prediction of Kashyap’s (1995) price point theory is that price points should be most important to retail firms (Blinder, et al 1998, Stahl 2009). We examine retail prices from two large datasets. One is Dominick's weekly price data for 29 product categories over an eight-year period. The other contains daily prices from the Internet on 474 products varying from music CDs, to DVDs, to hard disks, and to notebook PCs. The two datasets cover a wide variety of products, a wide price range, and different retail formats. In addition, although Dominick's is a grocery chain where prices are set on a chain-wide basis, our Internet data come from 293 different retailers presumably employing different pricing-decision models. Therefore, the conclusions we draw are not specific to a retail format, retailer, product, or price range.

Dominick's, a large supermarket chain in the Chicago metro area, operates about 100 stores with a market share of about 25%. The data consist of up to 400 weekly observations of

[^2]retail prices in 29 different product categories, covering the period from September 14, 1989 to May 8, 1997. The prices are the actual transaction prices as recorded by the chain's scanners. If an item was on sale, then the price data reflect the sale prices. We use all the data from all stores, a total of over 98 million weekly price observations. The data contains a binary variable indicating whether a product was on sale. We use this variable in estimating the model. See Chevalier, et al. (2003) for more details about the data. Table 1 presents descriptive statistics.

The Internet data were obtained through the use of a price information gathering agent. It was programmed to download price data from www.BizRate.com, a popular price comparison site, from 3:00 a.m. to 5:00 a.m. From a list of products available at BizRate, we generated a large sample of product IDs using stratified proportionate random sampling (Wooldridge, 2002). The software agent then automatically built a panel of selling prices given the product IDs. ${ }^{4}$ The resulting dataset consists of 743 daily price observations for 474 personal electronic products in 10 product categories, from 293 different Internet-based retailers, over a period of more than two years from March 26, 2003 to April 15, 2005. The categories include music CDs, movie DVDs, video games, notebook PCs, personal digital assistants (PDAs), computer software, digital cameras and camcorders, DVD players, PC monitors, and hard drives. ${ }^{5}$ In total, the Internet data contains over 2.5 million daily price observations. Table 2 presents descriptive statistics.

III. Evidence on the Popularity of 9-Ending Prices

"I asked the best economist I know, at least for such things-my wife, if she recalled a price not ending in a 9 at our local grocery store. Not really, she said. Maybe sometimes there are prices ending in a 5, but not really."

Jurek Konieczny (2003), Discussant Comments at the CEU Conference

We begin by presenting results on the frequency distribution of price-endings in the two datasets. In the analysis of Dominick's data, our focus is on $9 \mathbb{\$}$ and $99 \$$ price-endings because

[^3]the overwhelming majority of the prices in retail grocery stores are well below $\$ 10.00 .{ }^{6}$ In the Internet data, the prices range from $\$ 5.49$ to $\$ 6,478.00$, with the average prices in different categories spanning $\$ 12.90$ to $\$ 1,694.58$. In the Internet data, therefore, given the wider price range, we study not only $9 \$$ and $99 \$$ price-endings, but also other 9-ending prices in both the cents and the dollars digits, including \$9, \$9.99, \$99, and \$99.99.

In Figure 1, we report the frequency distribution of the last digit in Dominick's data. If a digit's appearance as a price-ending was random, then we should see 10% of the prices ending with each digit. As the figure indicates, however, about 65% of the prices end with 9 . The next most popular price-ending is 5 , accounting for about 11% of all price endings. Only a small proportion of the prices ends with the other digits. The pattern is very similar at the category level, with 9 as the most popular price-ending for all categories except cigarettes., 8

Next, we consider the frequency distribution of the last two digits. With two digits, there are 100 possible endings, $00 \Phi, 01 \Phi, \ldots, 98 \Phi$, and 99థ. Thus, with a random distribution, the probability of each ending is only 1%. According to Figure 2, however, most prices end with either $09 \Phi, 19 \Phi, \ldots$, or 99 . This is not surprising since 9 is the dominant single-digit ending. But of these, more than 15% of the prices end with 994 . In contrast, only 4% to 6% of the prices end with $09 ¢, 19 \Phi, \ldots$, and 89Φ, each. ${ }^{9}$ We found a similar pattern for individual categories. ${ }^{10}$

Figure 3 displays the frequency distribution of the last digit in the Internet data. 9 is the most popular terminal digit (33.4\%), followed by 0 (24.1\%), and 5 (17.4\%). The frequency distribution of the last two digits exhibits a similar pattern, with 99\$ as the most popular priceending (26.7\%), followed by 00\$ (20.3\%), 95\$ (13.8\%), and 98\$ (4.8\%). See Figure 4.

[^4]As mentioned above, the Internet dataset also includes some high-price product categories, which allows us to examine price-endings in dollar digits as well. In Figure 5, therefore, we present the frequency distribution of the last dollar digit in the Internet data. According to the figure, 9 is the most popular ending for the dollar digit, with $\$ 9$ price-endings over-represented with 36.1%, followed by $\$ 4$ price-endings with 9.9%, and $\$ 5$ price-endings with 9.2%. A similar pattern emerges for the last two dollar digits as indicated by Figure 6. Not surprisingly, the last two dollar digits of most prices contain 9 , such as $\$ 99, \$ 89$, and $\$ 09$. But more prices end with $\$ 99$ than any other 9 price-endings. Moreover, almost 10% end with $\$ 99$ among the 100 possible dollar endings (i.e., $\$ 0$ through $\$ 99$).

We also examined the frequency distribution of the last three digits of prices in the Internet data. ${ }^{11}$ According to Table 3, \$9.99 is the most popular ending for the last three digits (13.2\%), followed by $\$ 9.00$ (10.0\%), and $\$ 9.95$ (4.9\%). ${ }^{12}$ When we examine the last four digits of the prices (last column of Table 4), $\$ 99.99$ is the most popular ending for the last four digits (3.47\%), followed by $\$ 99.00$ (3.46\%), and $\$ 19.99$ (2.16\%). ${ }^{13}$

In the Internet data, three individual product categories with low average prices exhibit some variation in price endings. ${ }^{14}$ For example, for the dollar-digit, $\$ 3, \$ 4$ and $\$ 5$ price-endings are the most common for CDs and DVDs because prices of CDs and DVDs are often between $\$ 13$ and $\$ 16$. Also, the $\$ 99$ and $\$ 99.99$ endings are not common in those two categories and the category of video games (see Table 4), because the average prices in these categories are far less than $\$ 100$ (i.e., $\$ 13.46$ for CDs, $\$ 27.43$ for DVDs, and $\$ 30.83$ for video games). It isn’t surprising, therefore, that we do not see a lot of 9-endings for the dollar and ten-dollar digits in those product categories.

To summarize, in both datasets, 9 is the most popular terminal digit overall. But the popularity of 9 is not limited to the penny digit. Rather, it is present in the dime, dollar, and tendollar digits too. The fact that our data include a variety of products with wide-ranging prices and different retail formats, further underscores the use of 9 as a terminal digit in our datasets.

IV. Frequency Distribution of Price Changes by Size

Having documented the dominance of 9 as the terminal digit in both datasets, we next assess the extent to which the specific price point, 9 , that we have identified may be contributing

[^5]to the retail price rigidity. Figure 7 displays the frequency distribution of price changes in Dominick's data. Although the actual price changes occasionally go over \$1, these are few. We thus limit the analysis to price changes of up to $\$ 1$. According to the figure, the most common price changes, in fact, over 35% of the price changes are multiples of 10 cents. ${ }^{15}$ Consequently, the terminal digits are kept at 9 even after a price change. This indicates that terminal prices are "stuck" at 9.

In the Internet data, the observed price range is much wider and thus we observe a wider range for price changes. The price changes vary in magnitude from 14 to $\$ 1,568$, but the most common changes are in multiples of dollars and in multiples of dimes. As shown in Table 5, among the top ten most common changes, eight are multiples of dollars, and nine are multiples of dimes. The only exception is $1 \$$ which ranks tenth. Thus, similar to Dominick's dataset, the sizes of Internet price changes are such that they preserve the 9-endings.

Because of the wider range of price changes found in the Internet data, the ten most common price changes account for less than 30% of all price changes. As an alternative way to identify the prevalence of price changes in multiples of dimes, dollars, and tens of dollars, we categorize price changes based on how many digits in a price are affected by a price change (i.e., whether it affects the penny digit only, the penny and dime digits, or the penny, dime and dollar digits, etc.). For example, if we focus on price changes affecting the penny digit only, we can group all possible price changes into ten categories: those that change a price by $0 \Phi, 1 \Phi, \ldots, 9 \Phi$. In the first group will be price changes in multiples of dimes (excluding $0 \mathbb{\Phi}$ where a price does not change); in the second group, $1 母, 11$, ..., $91 \$, \$ 1.01, \ldots$. , etc. Similarly, we can group price changes into 100 groups based on how they affect the penny and the dime digits, one of which will be the category into which all price changes in multiples of dollars fall (again, excluding $0 \$$ where price does not change). Finally, we can group price changes into 1,000 groups based on how they affect the penny, dime and dollar-digits, one of which will be the category into which all price changes in tens of dollars fall (again excluding 0¢, where price does not change).

When we categorize price changes in this manner, we find that price changes in multiples of dimes are the most frequent among the ten possible changes to the penny digit, accounting for 55.12\% of all price changes. In addition, we find that among the 100 possible changes to the penny and dime digits, the most popular ones are multiples of dollars, which account for more than 42.86% of all changes. Finally, among the 1,000 possible changes to the last three digits, multiples of ten dollars are the most common, accounting for 9.60% of all changes. Similar

[^6]results are obtained for individual product categories. Changes in multiples of dimes and in multiples of dollars are the most common for all ten product categories in our dataset. Changes in multiples of ten dollars are the most common for seven product categories (video games, software, PDAs, DVD players, PC monitors, digital cameras, and notebook PCs). ${ }^{16}$ Based on the above results, we conclude that when prices change, they most often change in multiples of dimes, multiples of dollars, or in multiples of tens of dollars. Consequently, the terminal digits are kept at 9 even after a price change. This indicates that terminal prices are "stuck" at 9.

V. The Effect of Price Points on Price Rigidity

To more directly study the link between 9-ending prices and price rigidity, we use a binomial logit model to estimate price change probabilities (Agresti, 2002; Hosmer and Lemeshow, 2000; Greene, 2003). Using the method of maximum likelihood, we estimate

$$
\begin{equation*}
\ln (q /(1-q))=a+b D_{9-\text { Ending }}+c D_{\text {Sale }}+e_{t}, \tag{1}
\end{equation*}
$$

where q is the probability of a price change, $D_{9-E n d i n g}$ is a 9 -ending dummy variable which equals 1 if the price ends with 9 (i.e., $9 \$$-ending or 99Φ-ending) and 0 otherwise, and $D_{\text {Sale }}$ is a sale dummy variable which equals 1 if the product is on sale and 0 otherwise. The regression equation includes the sale dummy because, according to Schindler (2006) and Anderson and Simester (2003), prices ending with 9 may be related to sales, and sale prices are more likely to change than regular prices. Indeed, if we consider a sample series of Frozen Concentrate Orange Juice, Heritage House, 12 oz. (UPC $=3828190029$ from Store No. 78), which is plotted in Figure 8 , it is clear that sale prices are always reversed, unless there is a change in the list price, which is rare. For example, in the sample of 400 observations shown in this figure, there are only about $14-16$ changes in the list price. By including the sale dummy, we account for any potential effect of sales when estimating price change probabilities.

The estimation results for Dominick's data are reported in Table 6. In the table, we report the estimated coefficients of each dummy along with the odds ratio that the coefficients imply. For all 27 product categories, the coefficient estimate on the 9-ending dummy is negative, and the coefficient estimate on the sale dummy is positive as expected (all p-values < 0.0001). The odds ratios, which equal $e^{\text {Coefficient }}$, are all smaller than 1 for the 9 -ending dummy, indicating that prices that end with $9 \mathbb{4}$ are less likely to change than prices that do not end with $9 \mathbb{4}$. On average, prices that end with $9 \mathbb{\$}$ are more than 40% less likely to change than prices that do not end with $9 \mathbb{4}$. Sale prices are about 65 times more likely to change than regular prices.

[^7]We obtain similar results for the 99¢-ending prices. The coefficient estimate on the 99\$ending dummy is negative and significant for all 27 categories, as shown in Table 6. The odds ratios indicate that prices that end with $99 \$$ are 24% less likely to change than prices that do not end with 994. Also, all product categories showed positive and significant coefficients on the sale dummy, and sale prices are about 67 times more likely to change than regular prices.

Next, we estimate the same logit regression model for the Internet data, but now we use $9 \$, 99 \Phi, \$ 9, \$ 9.99$, $\$ 99$, and $\$ 99.99$, in turn, as the independent variable. We did not include a sale dummy in these regressions as such information was not available in our data. ${ }^{17}$ The results of the logit regression for each independent variable are reported in Table 7. Similar to what we found with Dominick's data, 9-ending prices are less likely to change than other prices. Overall, $9 \$$-ending prices are 31.90%, $99 \$$-ending prices 44.59%, \$9-ending prices 45.89%, \$99-ending prices 59.74%, $\$ 9.99$-ending prices 58.90%, and $\$ 99.99$-ending prices are 72.87%, less likely to change than other prices. We obtained similar results for each product category. Although music CDs and video games showed some unexpected results, in 95\% of all possible cases in the category-level analyses, the effect of 9 price-endings on the probability of price changes is negative and significant. Thus, we find that prices tend to be "stuck" at 9-endings, making them more rigid: 9-ending prices are 24% to 73% less likely to change than non-9-ending prices.

VI. The Effect of Price Points on the Size of Price Change

".. if pricing points inhibit price changes, then they might also be expected to affect the sizes of price increases. Specifically if prices that are at price points are fixed longer than other prices, then any subsequent price adjustments might be expected to be larger than average."

Anil Kashyap (1995, p. 267)

If 9-ending prices are less likely to change in comparison to non-9-ending prices, then the average size of change of 9-ending prices should be larger when they do change, in comparison to non-9-ending prices. This assumes that the cost of a price change is the same regardless of the price ending, which is indeed the case according to the menu cost estimates of Levy, et al. (1997, 1998 , 2008) and Dutta, et al. (1999) for large U.S. supermarket and drugstore chains.

In Tables 8 and 9, we report the average size of price changes for 9Φ-ending and non- $9 ¢-$ ending prices, and for $99 ¢$ and non- $99 \$$-ending prices, respectively, in the Dominick's data. According to Table 8, in 23 of the 27 categories, the average change is indeed higher for $9 \$$ ending prices. The exceptions are the categories of frozen dinners, frozen entrees, and frozen juices (perhaps because they have short expiration periods), and front-end candies. Across all

[^8]product categories, the average price change is $47 \$$ if the price ends with 9Φ, in contrast to $37 \$$ change when it does not end with $9 \mathbb{}$, a 27% difference.

The findings obtained for the 99\$-ending prices are even stronger. According to Table 9, in 26 of the 27 categories (frozen entrees being the only exception), the average change is higher for $99 \$$-ending prices. The differences for individual categories are also bigger here in comparison to Table 8. Across all product categories, the average price change is 57 f if the price ends with 99Φ, in contrast to $42 \$$ change when it does not end with 99Φ, a 35% difference.

In Tables 10-15, we report the findings for the Internet data. Here we consider prices ending with $9 屯, 99$, $\$ 9$, $\$ 9.99$, $\$ 99$, and $\$ 99.99$. The results are as follows. For $9 \$$-ending prices (Table 10): in 8 out of the 10 categories (the exceptions being PDAs and Notebooks PCs), the average price change is higher by about 12% if the price ends with 9Φ in comparison to non9Φ ending prices. For $99 \$$-ending prices (Table 11): in 9 out of the 10 categories (the exception being PDAs), the average price change is higher by about 29% if the price ends with $99 \$$ in comparison to non-99¢-ending prices. For \$9-ending prices (Table 12): in 9 out of the 10 categories (the exception being Music CDs), the average price change is higher by about 97% if the price ends with $\$ 9$ in comparison to non-\$9-ending prices. For \$9.99-ending prices (Table 13): in all 10 categories, the average price change is higher by about 53% if the price ends with $\$ 9.99$ in comparison to non-\$9.99-ending prices. For \$99-ending prices (Table 14): in all 8 categories (Music CDs and Video Games contain no prices with \$99-ending), the average price change is higher by about 165% if the price ends with $\$ 99$ in comparison to non-\$99-ending prices. For \$99.99-ending prices (Table 15): in all 8 categories (Music CDs and Video Games contain no prices with $\$ 99.99$-ending), the average price change is higher by about 150% if the price ends with $\$ 99.99$ in comparison to non-\$99.99-ending prices.

Thus, the results are very robust in the Internet data as well: in 52 of the 56 cases, the average size of the price change is higher if the price ends with a 9-ending price point. Moreover, in many individual cases the differences in the size of price changes are quite substantial. For example, for $9 \nsubseteq$ price-endings, the average price changes of the 9Φ-ending and non-9\$-ending prices are $\$ 1.30$ and $\$ 1.01$, respectively, a difference of about 30%. In some cases, the differences are even larger. These findings, all significant at the $p<0.0001$ level, are consistent with our predictions: as 9-ending prices are less likely to change, the average size of the change of 9-ending prices are systematically larger when they do change, in comparison to non-9-ending prices.

VII. Making Sense of Ignoring Cents

"Why are so many items sold for $\$ 2.99$ and so few for $\$ 3.00$? There is an enormous temptation to attribute this phenomenon-to a mild form of irrationality in which consumers notice only the first digit of the price and are lulled into thinking that $\$ 2.99$ is 'about $\$ 2.00$ ' instead of 'about $\$ 3.00$.' In fact, this explanation seems so self-evident that even many economists believe it. For all I know, they could be right. Perhaps someday a careful analysis of such behavior will form the basis for a modified economics in which people are assumed to depart from rationality in certain systematic ways."

Steven Landsburg (1995, p. 15)

Having documented overwhelming popularity of 9-ending prices in our data, and having demonstrated that they lead to a substantial degree of price rigidity, we explore what can explain these findings. As Kashyap (1995) notes, the existing economics literature does not offer a "tight" theoretical explanation for the popularity of price points in retail pricing and for their link to price rigidity. ${ }^{18}$

Drawing from the emerging macroeconomic literature on consumer inattention we hypothesize that 9-ending prices may be an outcome of firms' reaction to consumers' inattention. Consumers with limited time often need to assess and compare the prices of dozens and sometimes hundreds of products, and therefore, they are likely to use time-saving devices. One natural action, for example, might be to ignore some price information. ${ }^{19}$ Specifically, we argue that the benefit of paying attention to each additional digit of a price declines as we move from left to right in the price digits. ${ }^{20}$ On the other hand, since people process multi-digit numeric information, including prices, from left to right (Schindler and Kirby, 1997; Hinrichs, et al. 1982; Poltrock and Schwartz, 1984; and Lambert, 1975), the effort they need to recognize, process, and recall numeric information increases as the number of digits increases. Thus, the marginal cost of processing each additional digit increases. The marginal benefit of the rightmost digit is the lowest but its marginal cost is the highest, making it the least valuable among all digits. The last digit, thus, offers the time-constrained consumer the lowest net marginal value giving him an incentive to ignore it. ${ }^{21,22}$ A price-setter that knows that her customers ignore the last digit will

[^9]make it as high as possible, setting it to 9 (Basu, 1997). ${ }^{23}$
This is illustrated in Figure 9. Under consumer inattention, there will be a range of inattention along the demand curve. In this price range, say $\pm 10 ¢$, consumers are inattentive and thus they do not respond to price changes. The optimal pricing strategy in this case will be to set the price at the highest point in the vertical segment of the demand curve, which will be $9 .{ }^{24}$

According to the above argument, consumers' incentive to be attentive increases and therefore, the optimality of the use of the 9 digit decreases as we move from the rightmost digits to the left in the price. This implies that we should still see more 99Φ endings than $89 థ, 79 థ, \ldots$, $9 ¢$ endings among the rightmost two digits, but that the dominance of 99 © over $89 థ, 79$, etc. should be weaker than the dominance of 9Φ over $8 \Phi, 7 \Phi$, and so on. This process will continue towards the dollar-digit as well as the ten-dollar digit. Indeed, this is what we observe in both Dominick’s data (65% for $9 \nmid$ vs. 15% for 99 ¢) and our Internet data (31.9% for $9 \mathbb{4}, 26.3 \%$ for 99థ, 13.5\% for \$9.99, and 3.9\% for \$99.99).

Now consider the implications of consumer inattention for price rigidity. Consumer inattention suggests that there will be a discontinuity in price adjustment within the range of inattention. When changes in market conditions are not large enough to warrant a price change larger than the range of inattention based on the ignored digit, firms might choose not to respond. For example, when the price-setter is facing a price change decision that requires a price increase from $\$ 1.79$ to $\$ 1.80$, the increase will not be optimal if the customers ignore the last digit and perceive the change to be bigger (i.e., as a $10 \$$ increase) than it actually is. Similarly, a price decrease from $\$ 1.79$ to $\$ 1.78$ will have no effect on the quantity demanded if consumers ignore the last digit. Thus, 9Φ-ending prices will lead to price rigidity.

However, when a price change is justified, then the price-setter will have incentive to make price changes in multiples of $10 ¢$. For example, a firm that faces a series of 1Φ cost increases may not change its price for many periods, but when the firm does react, it may increase the price by 10¢, even though the cost increase in that particular period was only $1 \mathbb{4}$. The implication is that the store could change the price from $\$ 1.79$ to $\$ 1.89$, instead of to $\$ 1.80$, without any additional cost, but with much higher benefit. That would be true even in a world with costs of price adjustment (Mankiw 1985) because of the largely fixed nature of such costs in the retail supermarket industry (Levy, et al. 1997, 1998; Dutta, et al. 1999). This explanation, we believe, offers a possible resolution of the puzzle posed by Landsburg (1995). The empirical

[^10]findings we reported in Section IV are consistent with these predictions. ${ }^{25}$

VIII. Conclusion

To our knowledge, this is the first study that directly examines the effect of price points on price rigidity across a broad range of product categories, price levels, and retailers, in traditional retailing and Internet-based selling formats, using date from the U.S. We find that 9ending prices are at least 24% (and as much as 73%) less likely to change compared to non-9ending prices. Further, most common price changes are such that they preserve the terminal digits at 9 , and the size of the price changes is larger for 9-ending than non-9-ending prices. Thus, 9-ending prices form a substantial barrier to price changes. ${ }^{26}$ These findings are robust, occurring in both datasets, with a wide range of prices, products, retail formats, and retailers, and lend strong support to the price point theory.

There are a variety of macroeconomic settings where these insights on price points, price rigidity and consumer inattention might be relevant. For example, dropping the smallest currency unit has been a recent topic of debate in the U.S., Canada and Europe. ${ }^{27}$ The smallest currency unit might define the price ranges of customer inattention. This appears to be true in the case of products that are sold through automated devices, such as soda and candy bar vending machines, parking meters, coin-operated laundry machines, etc. ${ }^{28}$ As another example, the common use of price points has recently received a considerable attention in many European

[^11]Union countries in the context of the conversion of prices from local currencies to the Euro. The concern was about the possibility that retailers may have acted opportunistically by rounding their prices upward after conversion to the Euro in their attempt to preserve the price points. ${ }^{29}$

Our findings also may have other potential macroeconomic implications. Typically nominal magnitudes are not important for optimal decision-making. Yet, our results imply decision rules by customers and firms that may affect price points and price adjustments. In such situations, the nominal magnitude of numeric information attached to economic quantities may matter.

In our data, 9 is the most popular terminal digit overall, consistent with the findings reported by Friedman (1967). There may, however, be a variety of other dimensions of price points still to explore. Price points may vary across countries. ${ }^{30}$ For example, Konieczny and Skrzypacz $(2003,2004)$ and Konieczny and Rumler (2007) note that 9-ending prices are particularly popular in the U.S., Canada, Germany, and Belgium, but they are rare in Spain, Italy, Poland, and Hungary. ${ }^{31}$ In Asian countries (Malaysia, Hong Kong, Singapore, Japan, and China), Heeler and Nguyen (2001) find an unusual popularity of 8-endings. ${ }^{32}$ Knotek (2004, 2006a) focuses on other types of pricing practices: the common use of round prices, which he terms "convenient prices" because their use reduces the amount of the change used in a transaction. Levy and Young (2004) report that the nominal price of Coca Cola was fixed for almost 70 years at 5Φ, also a "convenient price." ${ }^{, 33}$ Future work might study this phenomenon across other products, industries, retailers, and countries to assess the generalizability of our results, and to uncover the boundaries of our reasoning.

We conclude by suggesting that the Internet provides a unique context for micro-level

[^12]studies of price setting behavior (Bergen, et al. 2005). The ability to access transaction price data using software agents allows us to explore pricing and price adjustment patterns at low costs at a previously unimaginable level of microeconomic detail. It allows empirical research methods (e.g., massive quasi-experimental data mining methods), to take advantage of natural experiments in the real world (e.g., Kauffman and Lee, 2007; Kauffman and Wood, 2007, 2008). With the expanding retail activities on the Internet, and new techniques and tools that have become available, we expect such opportunities to increase further in the future.

References

Agresti, A. (2002), Categorical Data Analysis, Second Ed. (NY, NY: John Wiley and Sons). Ameriks, J., A. Caplin, and J. Leahy (2003), "Wealth Accumulation and the Propensity to Plan," Quarterly Journal of Economics 118(3), 1007-1048.
Ameriks, J., A. Caplin, and J. Leahy (2004), "The Absent-Minded Consumer" NBER WP 10216.
Anderson, E. T. and D. I. Simester (2003), "Effects of \$9 Price Endings on Retail Sales, Evidence from Field Experiments," Quantitative Marketing and Economics 1(1), 93-110.
Ball, L. (2000), "Near Rationality and Inflation in Two Monetary Regimes," NBER WP \#7988.
Ball, L. and N. G. Mankiw (1994), "A Sticky-Price Manifesto," Carnegie-Rochester Conference Series on Public Policy 41 (December), 127-151.
Ball, L., N. G. Mankiw, and R. Reis (2005), "Monetary Policy for Inattentive Economies," Journal of Monetary Economics 52(4), 703-725.
Ball, L. and D. Romer (1990), "Real Rigidities and Nonneutrality of Money," Review of Economic Studies 57(2), 183-203.
Ball, L. and D. Romer (2003), "Inflation and the Informativeness of Prices," Journal of Money, Credit and Banking 35(2), 177-196.
Basu, K. (1997), "Why Are So Many Goods Priced to End in Nine? And Why This Practice Hurts the Producers?" Economics Letters 54(1), 41-44.
Basu, K. (2005), "Consumer Cognition and Pricing in the Nines in Oligopolistic Markets," Journal of Economics and Management Strategy, 15(1), 125-141.
Benford, F. (1938), "The Law of Anomalous Numbers," Proceedings of the American Philosophy Society 78, 551-572.
Bergen M., R. J. Kauffman, and D. Lee (2005), "Beyond the Hype of Frictionless Markets: Evidence of Heterogeneity in Price Rigidity on the Internet" Journal of Management Information Systems 22(2), 57-89.
Bergen, M., D. Levy, S. Ray, P. Rubin, and B. Zeliger (2008), "On the Inefficiency of Item Pricing Laws: Theory and Evidence," Journal of Law and Economics 51, 209-250.
Besley, T. and H. Rosen (1999), "Sales Taxes and Prices: an Empirical Analysis," National Tax Journal 52, 157-178.
Bils, M. and P. Klenow (2004), "Some Evidence on the Importance of Sticky Prices" Journal of Political Economy 112 (5), 947-985.
Bizer, G. and R. Schindler (2005), "Direct Evidence of Ending-Digit Drop-Off in Price Information Processing," Psychology and Marketing 22(10), 771-783.
Blinder, A. S., R. Elie, D. Canetti, D. Lebow, and J. Rudd (1998), Asking About Prices: A New Approach to Understanding Price Stickiness (New York, NY: Russell Sage Foundation).
Campbell, J. and B. Eden (2005), "Rigid Prices: Evidence from U.S. Scanner Data," Working Paper No. 2005-08, Federal Reserve Bank of Chicago, Chicago, IL.
Caplin, A (1993), "Individual Inertia and Aggregate Dynamics," in Optimal Pricing, Inflation, and the Cost of Price Adjustment, E. Sheshinski and Y. Weiss (Eds.) (Cambridge, MA: MIT Press), 19-45.
Carlton, D. W. (1986), "The Rigidity of Prices," American Economic Review 76(4), 637-658.
Carlton, D. W. and J. M. Perloff (2000), Modern Industrial Organization, Third Ed. (Reading, MA: Addison-Wesley).
Cecchetti, S. (1986), "The Frequency of Price Adjustment: A Study of the Newsstand Prices of Magazines," Journal of Econometrics 31(3), 255-274.
Chen, H., D. Levy, S. Ray and M. Bergen (2008), "Asymmetric Price Adjustment in the Small," Journal of Monetary Economics 55(4), 728-737.
Chevalier, J., A. Kashyap, and P. Rossi (2003), "Why Don’t Prices Rise during Periods of Peak Demand? Evidence from Scanner Data," American Economic Review 93(1), 15-37.

Copeland, L. (2001), "Bill Would Make Pennies Obsolete," USA Today, Internet Edition (July 19), www.usatoday.com/news/washington/july01/2001-07-19-penny.htm.

Davis, M. C. and J. D. Hamilton (2004), "Why Are Prices Sticky? The Dynamics of Wholesale Gasoline Prices," Journal of Money, Credit and Banking 36(1), 17-37.
Debaene, S. (1997), The Number Sense: How the Mind Creates Mathematics (New York, NY: Oxford University Press).
Dhyne E., L. J. Alvarez, H. Le Bihan, G. Veronese, D. Dias, J. Hoffmann, N. Jonker, P. Lunnemann, F. Rumler, and J. Vilmunenet (2006), "Price Changes in the Euro Area and the United States: Some Facts from Individual Consumer Price Data," Journal of Economic Perspectives 20(2), 171-192.
Dutta, S., M. Bergen, D. Levy, and R. Venable (1999), "Menu Costs, Posted Prices, and Multiproduct Retailers," Journal of Money, Credit, and Banking 31(4), 683-703.
Dutta, S., D. Levy, and M. Bergen (2002), "Price Flexibility in Channels of Distribution: Evidence from Scanner Data," Journal of Economic Dynamics and Control 26, 1845-1900.
Ehrmann, M. (2005), "Inattentive Consumers, Inflation Developments and Perceptions after the Euro Cash Changeover," Working Paper, Research Department, European Central Bank.
Fabiani, S., et al. (2006), "What Firms' Surveys Tell Us about Price-Setting Behavior in the Euro Area: New Survey Evidence," International Journal of Central Banking 2(3), 3-47.
Fengler, M. and J. Winter (2001), "Psychological Pricing Points and Price Adjustment in German Retail Markets," Manuscript, University of Mannheim, Mannheim, Germany.
Fisher, T. and J. Konieczny (2000), "Synchronization of Price Changes by Multiproduct Firms: Evidence from Canadian Newspaper Prices," Economics Letters 68(3), 271-277.
Fisher, T. and J. Konieczny (2006), "Inflation and Costly Price Adjustment: A Study of Canadian Newspaper Prices," Journal of Money, Credit and Banking 38(3), 615-633.
Friedman, L. (1967), "Psychological Pricing in the Food Industry," in Prices: Issues in Theory, Practice and Public Policy, A. Phillips and O.E. Williamson, Eds. (Philadelphia, PA: University of Pennsylvania), 187-201.
Gabor, A. (1988), Pricing: Concepts and Methods for Effective Marketing (Cambridge, UK: Gower).
Gabor, A. and C. Granger (1961), "On the Price Consciousness of Consumers," Applied Statistics 10(3), 170-188.
Genesove, David (2003), "The Nominal Rigidity of Apartment Rents," Review of Economics and Statistics 85, 844-853.
Ginzberg, E. (1936), "Customary Prices," American Economic Review 26(2), 296.
Greene, W. H. (2003), Econometric Analysis, $5^{\text {th }}$ Ed. (Englewood Cliffs, NJ: Prentice Hall).
Heeler, R. and A. Nguyen (2001), "Price Endings in Asia," in B. Murphy and L. Engle (Eds.), Proceedings of Australia-New Zealand Marketing Association, Auckland, New Zealand.
Hill, T. P. (1995), "A Statistical Derivation of the Significant-Digit Law," Statistical Science 10(4), 354-363.
Hoffmann, J. and J. R. Kurz-Kim (2009), "Consumer Price Adjustment under the Microscope: Germany in a Period of Low Inflation," Managerial and Decision Economics, forthcoming.
Hosmer, D. and S. Lemeshow (2000), Applied Logistic Regression, Second Ed. (NY: Wiley).
Hinrichs, J., J. Berie, and M. Mosell (1982), "Place Information in Multi-digit Comparison," Memory and Cognition 7(4), 487-495.
Kalyanaram, G. and J. D.C. Little (1994), "An Empirical Analysis of Latitude of Price Acceptance in Consumer Package Goods," Journal of Consumer Research 21(3), 408-418.
Kashyap, A. K. (1995), "Sticky Prices: New Evidence from Retail Catalogues," Quarterly Journal of Economics 110(1), 245-274.
Kauffman, R. J. and D. Lee (2007), "Should We Expect Less Price Rigidity in Internet-Based Selling?" Manuscript, W. P. Carey School of Business, Arizona State University.

Kauffman, R. J. and C. A. Wood (2007), "Follow the Leader: Price Change Timing and Strategic Pricing in E-Commerce," Managerial and Decision Economics 28(7), 679-700.
Kauffman, R. J. and C. A. Wood (2008), "Revolutionary Research Strategies for E-Business: A Philosophy of Science View in the Age of the Internet," in R. J. Kauffman and P. A. Tallon (Eds.), Economics, Information Systems, and Electronic Commerce Research: Advanced Empirical Methodologies, (Armonk, NY: M. E. Sharpe), 31-62.
Klenow, P and J. Willis (2007), "Sticky Information and Sticky Prices," Journal of Monetary Economics 54(Supplement 1), 79-99.
Knotek, E. S., II (2004), "Nominal Rigidity, Convenient Prices and Currency: Theory with Evidence from Newspaper Prices," Manuscript, University of Michigan, Ann Arbor, MI.
Knotek, E. S., II (2006a), "Connecting Convenient Prices and Price Rigidity: Cross Sectional Evidence," Working Paper, Federal Reserve Bank of Kansas City.
Knotek, E. S., II (2006b), "A Tale of Two Rigidities: Sticky Prices in a Sticky-Information Environment," Working Paper, Federal Reserve Bank of Kansas City.
Konieczny, J. (2003), "Discussant Comments [on this Paper]," Central European University Conference on "Microeconomic Pricing and the Macroeconomy," Budapest, 2003.
Konieczny, J. and A. Skrzypacz (2003), "A New Test of the Menu Cost Model," WP, European Center for Advanced Research in Economic and Statistics, Universite Libre de Brussels.
Konieczny, J. and A. Skrzypacz (2004), "Search, Costly Price Adjustment and the Frequency of Price Changes: Theory and Evidence," Manuscript, Stanford University, Stanford, CA.
Konieczny, J. and A. Skrzypacz (2005), "Inflation and Price Setting: Evidence from a Natural Experiment," Journal of Monetary Economics 52(3), 621-632.
Konieczny, J. and F. Rumler (2007), "Regular Adjustment: Theory and Evidence," Kiel Working Paper No. 1352, Kiel Institute for the World Economy.
Lach, S. and D. Tsiddon (1996), "Staggering and Synchronization in Price-Setting: Evidence from Multiproduct Firms," American Economic Review 86(5), 1175-1196.
Lambert, Z. (1975), "Perceived Prices as Related to Odd and Even Price Endings," Journal of Retailing 51(3), 13-22.
Landsburg, S. (1995), The Armchair Economist: Economics and Everyday Life (NY: Free Press).
Levy, D. (1990), "Specification and Estimation of Forecast Generating Equations in Models with Rational Expectations," Ch. 3 in Three Essays in Dynamic Macroeconomics, Ph.D. Thesis.
Levy D., M. Bergen, S. Dutta and R. Venable (1997), "The Magnitude of Menu Costs: Direct Evidence from Large U.S. Supermarket Chains" Quarterly Journal of Economics 112(3), 791-825.
Levy, D., S. Dutta, M. Bergen, and R. Venable (1998), "Price Adjustment at Multiproduct Retailers," Managerial and Decision Economics 19(2), 81-120.
Levy, D. and A. Young (2004), "The Real Thing: Nominal Price Rigidity of the Nickel Coke, 1886-1959," Journal of Money, Credit and Banking 36(4), 765-799.
Levy, D., G. Müller, H. Chen, M. Bergen, and S. Dutta (2008), "Holiday Price Rigidity and Cost of Price Adjustment," Economica, forthcoming.
Mankiw, N. G. (1985), "Small Menu Costs and Large Business Cycles: A Macroeconomic Model of Monopoly," Quarterly Journal of Economics 100(2), 529-538.
Mankiw, G., and R. Reis (2002), "Sticky Decisions Versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve" Quarterly Journal of Economics 117(4), 1295-1328.
Mirhadi, D. (2000), "Hotels Reach Overseas to Fill Beds, Restaurants, Showrooms," Las Vegas Review-Journal, May 18.
Monroe, K. (1970), "Buyers’ Subjective Perceptions of Price," Journal of Marketing Research 10(1), 70-80.
Monroe, K. (1990), Pricing: Making Profitable Decisions, 2nd Ed. (Boston, MA: McGraw Hill).
Monroe, K. (2001), "Pricing and Sales Promotion," in G. Salvendy (Ed.), Handbook of Industrial Engineering: Technology and Operations Management (NY, NY: Wiley), 665-683.

Mostacci, F. and R. Sabbatini (2003), "Has the Euro Caused Inflation? The Changeover and Consumer Price Rounding in Italy in 2002," WP, Istituto Nazionale di Statistica, Rome, Italy.
Nagle, T. T. and R. K. Holden (1995), The Strategy and Tactics of Pricing: A Guide to Profitable Decision Making, 2nd Ed. (Englewood Cliffs, NJ: Prentice Hall).
Newcomb, S. (1881), "Note on the Frequency of the Use of Digits in Natural Numbers," American Journal of Mathematics 4, 39-40.
Nigrini, M. (2002), Using Microsoft Access for Data Analysis and Interrogation (monograph).
Pfanner, E. (2002), "Euro Quandary: It's No Small Change," International Herald Tribune, TelAviv Edition (March 22), 1.
Poltrock, S. and D. Schwartz (1984), "Comparative Judgments of Multidigit Numbers," Journal of Experimental Psychology 10(1), 32-45.
Rátfai, Attila (2003), "The Dynamics of Pricing Points," WP, Central European University.
Rawe, J. (2004), "Vegas Plays to the World," Time, July 26, 34-35.
Reis, R. (2006a), "Inattentive Consumers" Journal of Monetary Economics 53(8), 1761-1800.
Reis, R. (2006b), "Inattentive Producers," Review of Economic Studies 73(3), 793-821.
Rotemberg, J. (1987), "The New Keynesian Microfoundations," NBER Macro Annual, 69-104.
Rotemberg, J. (2003), "The Benevolence of the Baker: Fair Pricing under Threat of Customer Anger," manuscript, Harvard Business School, Cambridge, MA.
Rotemberg, J. (2005), "Customer Anger at Price Increases, Changes in the Frequency of Price Adjustment, and Monetary Policy," Journal of Monetary Economics 52(4), 829-852.
Rotemberg, J. (2008), "Behavioral Aspects of Price Setting, and Their Policy Implications," NBER, WP \#13754.
Ruffle, B. J. and Z. Shtudiner (2006), "99: Are Retailers Best Responding to Rational Consumers? Experimental Evidence," Managerial and Decision Economics 27(6), 459-475.
Schindler, R. M. (2006), "The 99-Price Ending as a Signal of a Low Price Appeal," Journal of Retailing, 82(1), 71-77.
Schindler, R. and P. Kirby (1997), "Patterns of Rightmost Digits Used in Advertised Prices: Implications for Nine-Ending Effects," Journal of Consumer Research 24(2), 192-201.
Shapiro, B. (1968), "The Psychology of Pricing," Harvard Business Review 46(4), 14-25.
Shugan, S. (1980), "The Cost of Thinking," Journal of Consumer Research 7(2), 99-111.
Slade, M. E. (1998), "Optimal Pricing with Costly Adjustment: Evidence from Retail-Grocery Prices," Review of Economic Studies 65(1), 87-107.
Stahl, H. (2009) "Price Adjustment in German Manufacturing: Evidence from Two Merged Surveys," Managerial and Decision Economics, forthcoming.
Varian, H. (1972), "Benford's Law," American Statistician 26(3), 65-66.
Warner, E. and R. Barsky (1995), "The Timing and Magnitude of Retail Store Markdowns: Evidence from Weekends and Holidays," Quarterly Journal of Economics 110(2), 321-352.
Willis, J. (2003), "Implications of Structural Changes in the U.S. Economy for Pricing Behavior and Inflation Dynamics," Federal Reserve Bank of Kansas City Economic Review, Kansas City, MO (1 ${ }^{\text {st }}$ quarter), 5-26.
Wolman, A. L. (2007), "The Frequency and Costs of Individual Price Adjustment: A Survey," Managerial and Decision Economics 28(6), 531-552.
Wooldridge, J. (2002), Econometric Analysis of Cross Section and Panel Data (Cambridge, UK: MIT Press).
Zbaracki, M., M. Ritson, D. Levy, S. Dutta, and M. Bergen (2004), "Managerial and Customer Costs of Price Adjustment: Direct Evidence from Industrial Markets," Review of Economics and Statistics 86(2), 514-33.

Table 1. Descriptive Statistics for Weekly Retail Price Observations in Dominick's Data

Category	Number of Observations	Number of Products	Number of Stores	Mean Price	Std. Dev.	Min. Price	Max. Price
Analgesics	3,040,159	638	93	\$5.18	\$2.36	\$0.47	\$23.69
Bath Soap	418,087	579	93	\$3.16	\$1.60	\$0.47	\$18.99
Bathroom Tissue	1,149,953	127	93	\$2.10	\$1.68	\$0.25	\$11.99
Beer	1,966,139	787	89	\$5.69	\$2.70	\$0.99	\$26.99
Bottled Juice	4,294,956	506	93	\$2.24	\$0.97	\$0.32	\$8.00
Canned Soup	5,504,477	445	93	\$1.13	\$0.49	\$0.23	\$5.00
Canned Tuna	2,382,969	278	93	\$1.80	\$1.07	\$0.22	\$12.89
Cereals	4,707,750	489	93	\$3.12	\$0.76	\$0.25	\$7.49
Cheeses	6,752,297	657	93	\$2.42	\$1.12	\$0.10	\$16.19
Cigarettes	1,801,440	793	93	\$7.69	\$7.90	\$0.59	\$25.65
Cookies	7,568,399	1,124	93	\$2.10	\$0.63	\$0.25	\$8.79
Crackers	2,228,265	330	93	\$2.01	\$0.57	\$0.25	\$6.85
Dish Detergent	2,164,726	287	93	\$2.34	\$0.90	\$0.39	\$7.00
Fabric Softeners	2,278,536	318	93	\$2.82	\$1.45	\$0.10	\$9.99
Front-End-Candies	4,437,054	503	93	\$0.61	\$0.24	\$0.01	\$6.99
Frozen Dinners	1,654,049	266	93	\$2.37	\$0.89	\$0.25	\$9.99
Frozen Entrees	7,172,065	898	93	\$2.33	\$1.06	\$0.25	\$15.99
Frozen Juices	2,368,129	175	93	\$1.39	\$0.45	\$0.22	\$6.57
Grooming Products	4,065,657	1,381	93	\$2.94	\$1.37	\$0.49	\$11.29
Laundry Detergents	3,277,439	581	93	\$5.61	\$3.22	\$0.25	\$24.49
Oatmeal	981,034	96	93	\$2.65	\$0.66	\$0.49	\$5.00
Paper Towels	940,740	163	93	\$1.50	\$1.41	\$0.31	\$13.99
Refrigerated Juices	2,166,726	225	93	\$2.24	\$0.91	\$0.39	\$7.05
Shampoos	4,676,362	2,930	93	\$2.95	\$1.79	\$0.27	\$29.99
Snack Crackers	3,487,548	420	93	\$2.18	\$0.57	\$0.10	\$8.00
Soaps	1,835,196	334	93	\$2.51	\$1.48	\$0.10	\$10.99
Soft Drinks	10,741,661	1,608	93	\$2.34	\$1.89	\$0.10	\$26.02
Toothbrushes	1,839,530	491	93	\$2.18	\$0.85	\$0.39	\$9.99
Toothpastes	2,981,513	608	93	\$2.43	\$0.89	\$0.31	\$10.99
Total	98,691,750	18,037	93	\$2.59	\$2.16	\$0.01	\$29.99

Note: The table covers the entire weekly price data from the Dominick's in its 93 stores for a period of 400 weeks from September 14, 1989 to May 8, 1997. The data are available at: gsbwww.uchicago.edu/kilts/research/db/dominicks/.

Table 2. Descriptive Statistics for the Daily Price Observations in the Internet Data

Category	Number of Observations	Number of Products	Number of Retailers	Mean Price	Std. Dev.	Min. Price	Max. Price
Music CDs	302,914	46	15	$\$ 13.46$	$\$ 3.50$	$\$ 3.99$	$\$ 26.98$
Movie DVDs	447,519	49	22	$\$ 27.42$	$\$ 26.70$	$\$ 4.95$	$\$ 144.99$
Video Games	244,625	49	38	$\$ 30.83$	$\$ 12.57$	$\$ 4.90$	$\$ 57.99$
Software	382,297	48	83	$\$ 294.07$	$\$ 417.60$	$\$ 4.95$	$\$ 5,695.00$
Hard Drives	263,244	46	73	$\$ 330.67$	$\$ 556.29$	$\$ 39.00$	$\$ 3,670.98$
PDAs	148,731	45	92	$\$ 346.60$	$\$ 193.24$	$\$ 32.99$	$\$ 956.95$
DVD Players	220,236	49	104	$\$ 369.51$	$\$ 247.75$	$\$ 57.99$	$\$ 1,489.00$
PC Monitors	319,369	51	87	$\$ 682.89$	$\$ 659.13$	$\$ 85.78$	$\$ 3,010.41$
Digital Cameras	247,917	46	143	$\$ 760.12$	$\$ 688.76$	$\$ 175.95$	$\$ 6,000.00$
Notebook PCs	79,386	45	45	$\$ 1,666.68$	$\$ 475.80$	$\$ 699.00$	$\$ 3,199.00$
Total	$\mathbf{2 , 6 5 6 , 2 3 8}$	$\mathbf{4 7 4}$	$\mathbf{2 9 3}$	$\$ 337.06$	$\$ 536.13$	$\$ 3.99$	$\$ 6,000.00$

Note: The table covers 743 daily price observations from March 26, 2003 to April 15, 2005, from the Internet retailers. The retailers have many different product categories (e.g., Amazon.com sells books, CDs, DVDs, computer products and electronics, etc.). Consequently, the sum of the number of retailers in each product category will not necessarily be consistent with the total number of stores in all product categories. In addition, some retailers do not have all products (e.g., in our sample, Amazon has 15 music CDs while Barnes \& Noble has 20). Also, the length of individual product's price time series varies due to different life cycle of products. Thus, the number of observations in the Music CDs category, for example, 302,914 , is less than total available combinations (i.e., $46 \times 15 \times 743=$ 512,670.)

Table 3. Top 10 Highest Frequencies of Last Three Digits of Prices in the Internet Data

Rank	CDs	DVDs	Video Games	SW	PDAs	Hard Drives	DVD Players	PC Monitors	Digital Cameras	Notebook PCs	Total
1	4.99	\$9.99	\$9.99	\$9.00	\$9.00	\$9.99	\$9.99	\$9.00	\$9.99	\$9.00	\$9.99
	7.76\%	5.13\%	37.78\%	11.55\%	23.43\%	8.97\%	23.13\%	16.60\%	23.58\%	48.43\%	13.17\%
2	\$2.99	\$4.99	\$9.82	\$9.95	\$9.99	\$9.00	\$9.00	\$9.99	\$9.00	\$9.99	\$9.00
	5.20\%	4.89\%	4.51\%	11.49\%	15.21\%	6.18\%	10.74\%	8.99\%	21.60\%	16.62\%	9.98\%
3	\$3.99	\$3.99	\$8.95	\$9.99	\$9.95	\$9.95	\$9.95	\$9.95	\$9.95	\$9.95	\$9.95
	4.35\%	2.78\%	3.62\%	7.72\%	5.26\%	4.41\%	5.77\%	4.03\%	8.76\%	5.01\%	4.86\%
4	\$1.99	\$0.99	\$7.99	\$5.00	\$8.00	\$5.00	\$9.97	\$5.00	\$5.00	\$9.98	\$4.99
	4.22\%	2.72\%	3.35\%	4.53\%	3.09\%	3.44\%	5.39\%	3.42\%	5.19\%	3.28\%	3.24\%
5	\$3.98	\$5.99	\$4.99	\$0.00	\$5.00	\$4.99	\$9.90	\$0.00	\$8.00	\$5.00	\$5.00
	3.26\%	2.65\%	3.20\%	3.40\%	2.74\%	2.57\%	4.85\%	2.80\%	2.80\%	2.49\%	2.48\%
6	\$5.99	\$2.99	\$9.95	\$8.00	\$4.99	\$2.00	\$5.00	\$5.95	\$4.99	\$7.00	\$2.99
	2.96\%	2.57\%	2.85\%	2.84\%	2.48\%	2.26\%	4.13\%	2.41\%	2.37\%	1.73\%	1.46\%
7	\$9.99	\$6.99	\$9.88	\$4.95	\$0.00	\$7.00	\$4.99	\$0.95	\$7.00	\$4.00	\$8.95
	2.43\%	2.37\%	2.76\%	2.73\%	1.85\%	2.16\%	3.24\%	2.33\%	2.26\%	1.64\%	1.45\%
8	\$4.98	\$5.98	\$8.99	\$8.95	\$4.95	\$6.00	\$8.00	\$2.95	\$0.00	\$4.95	\$8.00
	2.40\%	2.34\%	2.72\%	2.53\%	1.69\%	2.14\%	2.26\%	2.26\%	1.85\%	1.00\%	1.44\%
9	\$7.99	\$1.98	\$6.99	\$2.00	\$8.95	\$8.99	\$9.96	\$8.95	\$9.98	\$7.99	\$7.99
	2.26\%	2.08\%	2.04\%	2.21\%	1.68\%	2.10\%	2.21\%	2.05\%	1.56\%	0.97\%	1.43\%
10	\$8.99	\$7.99	\$6.95	\$7.00	\$5.99	\$3.00	\$9.94	\$6.95	\$9.90	\$5.99	\$4.95
	2.11\%	2.07\%	1.79\%	2.15\%	1.47\%	2.02\%	1.51\%	1.98\%	1.44\%	0.95\%	1.42\%

Note: Each cell contains the last three digits of prices and their proportions in the product category. Boldmarked prices in the first three rows indicate that they are in the top three frequent price endings in each category. The rightmost column includes all categories. The figures in each column are ordered from the most frequent ending to the least frequent ending.

Table 4. Top 10 Highest Frequencies of Last Four Digits of Prices in the Internet Data

Rank	CDs	DVDs	Games	SW	PDAs	Hard	DVD Drives	Players Ponitors	Digital Cameras	Notebook PCs	Total
$\mathbf{1}$	$\mathbf{\$ 1 4 . 9 9}$	$\mathbf{\$ 0 9 . 9 9}$	$\mathbf{\$ 1 9 . 9 9}$	$\mathbf{\$ 9 9 . 0 0}$	$\mathbf{\$ 4 9 . 0 0}$	$\mathbf{\$ 2 9 . 9 9}$	$\mathbf{\$ 9 9 . 9 9}$	$\mathbf{\$ 9 9 . 0 0}$	$\mathbf{\$ 9 9 . 9 9}$	$\mathbf{\$ 9 9 . 0 0}$	$\mathbf{\$ 9 9 . 9 9}$
	7.48%	2.66%	$\mathbf{1 4 . 3 4 \%}$	3.54%	5.77%	1.30%	7.87%	5.98%	13.51%	27.47%	3.47%
$\mathbf{2}$	$\mathbf{\$ 1 2 . 9 9}$	$\mathbf{\$ 1 3 . 9 9}$	$\mathbf{\$ 2 9 . 9 9}$	$\mathbf{\$ 9 9 . 9 5}$	$\mathbf{\$ 9 9 . 0 0}$	$\mathbf{\$ 5 9 . 9 9}$	$\mathbf{\$ 4 9 . 9 9}$	$\mathbf{\$ 9 9 . 9 9}$	$\mathbf{\$ 9 9 . 0 0}$	$\mathbf{\$ 4 9 . 0 0}$	$\mathbf{\$ 9 9 . 0 0}$
	4.90%	2.56%	10.47%	3.46%	5.76%	1.27%	3.72%	3.78%	9.02%	9.29%	3.46%
$\mathbf{3}$	$\mathbf{\$ 1 1 . 9 9}$	$\mathbf{\$ 1 4 . 9 9}$	$\mathbf{\$ 4 9 . 9 9}$	$\mathbf{\$ 9 9 . 9 9}$	$\mathbf{\$ 9 9 . 9 9}$	$\mathbf{\$ 0 9 . 9 9}$	$\mathbf{\$ 1 9 . 9 9}$	$\mathbf{\$ 4 9 . 0 0}$	$\mathbf{\$ 9 9 . 9 5}$	$\mathbf{\$ 9 9 . 9 9}$	$\mathbf{\$ 1 9 . 9 9}$
	4.00%	2.31%	9.05%	3.33%	4.82%	1.09%	2.90%	1.89%	3.26%	8.00%	2.16%
$\mathbf{4}$	$\$ 13.99$	$\$ 15.99$	$\$ 39.99$	$\$ 89.95$	$\$ 59.00$	$\$ 49.99$	$\$ 99.00$	$\$ 49.99$	$\$ 49.99$	$\$ 79.00$	$\$ 49.99$
	3.57%	2.14%	3.21%	1.71%	2.44%	1.01%	2.35%	1.72%	3.18%	3.04%	2.00%
$\mathbf{5}$	$\$ 13.98$	$\$ 15.98$	$\$ 19.82$	$\$ 49.95$	$\$ 79.00$	$\$ 59.00$	$\$ 69.99$	$\$ 29.00$	$\$ 49.00$	$\$ 99.98$	$\$ 29.99$
	3.26%	2.03%	2.74%	1.50%	2.44%	0.91%	2.30%	1.62%	3.15%	2.84%	1.55%
$\mathbf{6}$	$\$ 15.99$	$\$ 10.99$	$\$ 18.95$	$\$ 79.95$	$\$ 49.99$	$\$ 99.99$	$\$ 49.00$	$\$ 39.00$	$\$ 29.00$	$\$ 29.00$	$\$ 49.00$
	2.43%	1.83%	2.11%	1.37%	2.41%	0.86%	1.87%	1.35%	1.99%	2.84%	1.43%
$\mathbf{7}$	$\$ 14.98$	$\$ 11.98$	$\$ 19.88$	$\$ 19.00$	$\$ 19.00$	$\$ 79.99$	$\$ 79.99$	$\$ 59.00$	$\$ 79.99$	$\$ 29.99$	$\$ 14.99$
	2.40%	1.44%	1.99%	1.35%	2.00%	0.86%	1.83%	1.27%	1.81%	2.17%	1.40%
$\mathbf{8}$	$\$ 10.99$	$\$ 10.95$	$\$ 17.99$	$\$ 79.00$	$\$ 19.99$	$\$ 39.99$	$\$ 39.99$	$\$ 19.00$	$\$ 79.00$	$\$ 30.00$	$\$ 99.95$
	1.89%	1.40%	1.33%	1.14%	1.59%	0.83%	1.65%	1.07%	1.62%	1.89%	1.09%
$\mathbf{9}$	$\$ 15.18$	$\$ 16.99$	$\$ 48.95$	$\$ 89.00$	$\$ 29.99$	$\$ 79.00$	$\$ 29.00$	$\$ 69.00$	$\$ 39.00$	$\$ 19.99$	$\$ 09.99$
	1.89%	1.39%	1.28%	1.1%	1.41%	0.73%	1.64%	1.04%	1.34%	1.55%	0.97%
$\mathbf{1 0}$	$\$ 7.99$	$\$ 17.99$	$\$ 49.95$	$\$ 19.95$	$\$ 39.00$	$\$ 39.00$	$\$ 79.00$	$\$ 79.00$	$\$ 69.00$	$\$ 49.99$	$\$ 79.00$
	1.85%	1.34%	1.24%	1.05%	1.34%	0.71%	1.62%	1.00%	1.32%	1.53%	0.87%

Note: Each cell contains the last four digits of prices and their proportions in the product category. Boldmarked prices in the first three rows indicate that they are in the top three frequent price endings in each category. The rightmost column includes all categories.

Table 5. Top 10 Highest Frequencies of Price Changes in the Internet Data

Rank	CD	DVD	Video Game	SW	PDA	Hard Drive	DVD Player	PC Monitor	Digital Camera	Notebook PC	Total	$\begin{aligned} & \text { W/O } \\ & 3 \text { Cat } \end{aligned}$
1	\$1.00	\$1.00	\$10.00	\$1.00	\$10.00	\$1.00	\$10.00	\$1.00	\$10.00	\$50.00	\$1.00	00
	10.26\%	7.73\%	11.44\%	6.78\%	7.54\%	10.03\%	4.46\%	3.29\%	8.09\%	11.30\%	6.74\%	5.63\%
2	\$0.10	\$0.20	\$1.00	\$2.00	\$5.00	\$2.00	\$20.00	\$2.00	\$20.00	\$100.00	\$2.00	\$2.00
	6.77\%	3.42\%	9.82\%	5.15\%	4.41\%	7.54\%	3.95\%	3.29\%	5.89\%	7.63\%	4.49\%	4.66\%
3	\$2.00	\$2.00	\$5.00	\$5.00	\$2.00	\$3.00	\$30.00	\$10.00	\$4.00	\$200.00	\$10.00	\$10.00
	5.22\%	3.40\%	7.40\%	4.11\%	4.02\%	5.55\%	2.70\%	3.27\%	3.46\%	3.97\%	3.24\%	4.31\%
4	\$0.20	\$0.01	\$2.00	\$10.00	\$1.00	\$4.00	\$5.00	\$3.00	\$5.00	\$20.00	\$3.00	\$3.00
	3.59\%	2.34\%	5.57\%	3.76\%	3.41\%	4.00\%	2.51\%	3.02\%	3.44\%	3.05\%	3.09\%	3.60\%
5	\$0.01	\$0.09	\$20.00	\$3.00	\$20.00	\$5.00	\$1.00	\$5.00	\$2.00	\$10.00	\$5.00	\$5.00
	3.46\%	2.30\%	4.69\%	3.56\%	3.24\%	3.98\%	2.13\%	2.23\%	3.28\%	2.44\%	2.72\%	3.38\%
6	\$0.50	\$0.10	\$3.00	\$4.00	\$30.00	\$10.00	\$3.00	\$4.00	\$6.00	\$60.00	\$4.00	\$4.00
	2.45\%	2.29\%	4.25\%	3.04\%	2.57\%	2.83\%	2.13\%	1.91\%	3.28\%	2.14\%	2.30\%	2.90\%
7	\$0.06	\$3.00	\$3.06	\$20.00	\$3.00	\$6.00	\$4.00	\$6.00	\$50.00	\$30.00	\$20.00	\$20.00
	2.06\%	2.21\%	2.64\%	2.44\%	2.35\%	2.10\%	1.95\%	1.83\%	2.97\%	1.98\%	1.80\%	2.56\%
8	\$0.14	\$0.30	\$0.11	\$6.00	\$6.00	\$7.00	\$2.00	\$20.00	\$1.00	\$40.00	\$6.00	\$6.00
	1.88\%	1.79\%	2.05\%	2.19\%	2.29\%	1.84\%	1.57\%	1.61\%	2.87\%	1.83\%	1.55\%	2.18\%
9	\$0.02	\$0.08	\$18.00	\$0.01	\$4.00	\$8.00	\$6.00	\$30.00	\$30.00	\$150.00	\$0.10	\$30.00
	1.69\%	1.31\%	1.61\%	2.03\%	1.90\%	1.08\%	1.51\%	1.54\%	2.87\%	1.83\%	1.38\%	1.50\%
10	\$0.30	\$0.50	\$7.00	\$8.00	\$15.00	\$20.00	\$50.00	\$7.00	\$3.00	\$70.00	\$0.01	\$7.00
	1.69\%	1.26\%	1.39\%	1.54\%	1.79\%	1.06\%	1.51\%	1.44\%	2.64\%	1.68\%	1.38\%	1.47\%

Note: The rightmost column shows the results after three product categories (CDs, DVDs, and video games) are left out. Bold-marked prices in the first three rows indicate that they are in the top three frequent price changes in each category.

Table 6. Results of the Logit Regression (Equation 1) Estimation for Dominick's Data

Category	9¢-Ending				99¢-Ending			
	D_{9} (9-Ending $=1$)		$D_{\text {Sale }}($ Sale = 1)		D_{99} (9-Ending $=1$)		$D_{\text {Sale }}($ Sale = 1)	
	Coeff.	O/R	Coeff.	O/R	Coeff.	O/R	Coeff.	O/R
Analgesics	-0.6781	0.51	3.9829	52.63	-0.1847	0.83	3.9805	52.63
Bath Soap	-0.8155	0.44	4.6464	100.00	-0.2273	0.80	4.7925	125.00
Bathroom Tissues	-0.5036	0.60	3.6723	40.00	-0.3426	0.71	3.6795	40.00
Bottled Juices	-0.2891	0.75	4.1268	62.50	-0.2042	0.81	4.1422	62.50
Canned Soup	-0.1112	0.89	4.6189	100.00	-0.1629	0.85	4.6238	100.00
Canned Tuna	-0.5331	0.59	4.5788	100.00	-0.4714	0.62	4.5281	90.91
Cereals	-0.2558	0.77	4.7368	111.11	-0.1603	0.85	4.7239	111.11
Cheeses	-0.9142	0.40	3.8187	45.45	-0.6098	0.54	3.8378	45.45
Cookies	-0.8173	0.44	4.1490	62.50	-0.1876	0.83	4.2162	66.67
Crackers	-0.4412	0.64	4.0389	55.56	-0.0441	0.96	4.1185	62.50
Dish Detergent	-0.6283	0.53	4.7074	111.11	-0.6024	0.55	4.7350	111.11
Fabric Softeners	-0.3779	0.69	4.6161	100.00	-0.1980	0.82	4.5797	100.00
Front-end-candies	-0.4477	0.64	4.8119	125.00	-1.3781	0.25	4.8630	125.00
Frozen Dinners	-0.5808	0.56	3.5407	34.48	-0.4377	0.65	3.7235	41.67
Frozen Entrees	-0.5642	0.57	3.2641	26.32	-0.1291	0.88	3.4461	31.25
Frozen Juices	-0.2451	0.78	3.9482	52.63	-0.1008	0.90	3.9182	50.00
Grooming Products	-0.9030	0.41	3.3588	28.57	-0.2406	0.79	3.6612	38.46
Laundry Detergents	-0.5783	0.56	4.1731	66.67	-0.1446	0.87	4.1543	62.50
Oatmeal	-0.5805	0.56	4.1839	66.67	-0.2548	0.78	4.1707	66.67
Paper Towels	-0.5186	0.60	4.3241	76.92	-0.1546	0.86	4.2669	71.43
Refrigerated Juices	-0.5042	0.60	3.6385	38.46	-0.2908	0.75	3.6428	38.46
Shampoos	-0.7868	0.46	3.1548	23.26	-0.2957	0.74	3.3005	27.03
Snack Crackers	-0.8517	0.43	3.8756	47.62	-0.3930	0.68	4.1214	62.50
Soaps	-0.6709	0.51	4.2641	71.43	-0.3583	0.70	4.2807	71.43
Soft Drinks	-0.6709	0.51	4.2641	71.43	-0.3583	0.70	4.2807	71.43
Tooth Brushes	-0.3154	0.73	3.6447	38.46	-0.0709	0.93	3.6285	37.04
Tooth Pastes	-0.2343	0.79	3.7560	43.48	-0.2760	0.76	3.7405	41.67
Average		0.59		64.90		0.76		66.83

Note: D_{9} (or D_{99}) is 9-ending dummy variable, which equals 1 if the price ends with 9 (or 99) and 0 otherwise. $D_{\text {Sale }}$ is a sale dummy, which equals 1 if the product is on sale in the given week and 0 otherwise. All p-values are less than 0.0001 . The average odds ratios (O / R) reported in the last row of the table are the simple averages of the odds ratios for each product category.

Table 7. Results of Logit Regression (Equation 1) Estimation for the Internet Data

Category	9థ- Endings	99¢- Endings	\$9- Endings	\$99- Endings	\$9.99- Endings	\$99.99- Endings
Music CDs	$\begin{array}{r} \hline-0.0743^{* *} \\ (0.9284) \\ \hline \end{array}$	$\begin{array}{r} \hline-0.5085^{* * *} \\ (0.6014) \\ \hline \end{array}$	$\begin{gathered} \hline \hline-0.0174 \\ (0.9827) \\ \hline \end{gathered}$		$\begin{array}{r} \hline-0.4283^{* *} \\ (0.6516) \\ \hline \end{array}$	
Movie DVDs	$\begin{array}{r} -0.5036^{* * *} \\ (0.6043) \\ \hline \end{array}$	$\begin{array}{r} -0.6154^{* * *} \\ (0.5404) \end{array}$	$\begin{array}{r} -0.2596^{* * *} \\ (0.7714) \end{array}$		$\begin{array}{r} -0.7835^{* * *} \\ (0.4568) \end{array}$	
Video Games	$\begin{aligned} & 0.1087^{*} \\ & (1.1148) \end{aligned}$	$\begin{aligned} & 0.0558 \\ & (1.0573) \\ & \hline \end{aligned}$	$\begin{array}{r} -0.2951^{* * *} \\ (0.7445) \\ \hline \end{array}$		$\begin{array}{r} -0.2779^{* * *} \\ (0.7574) \\ \hline \end{array}$	
Software	$\begin{gathered} -0.3011^{* * *} \\ (0.7400) \\ \hline \end{gathered}$	$\begin{array}{r} -0.48899^{* * *} \\ (0.6133) \\ \hline \end{array}$	$\begin{array}{r} -0.6148^{* * *} \\ (0.5407) \\ \hline \end{array}$	$\begin{array}{r} -1.0667^{* * *} \\ (0.3441) \\ \hline \end{array}$	$\begin{array}{r} -0.9012^{* * *} \\ (0.4061) \\ \hline \end{array}$	$\begin{array}{r} -1.3153^{* * *} \\ (0.2684) \\ \hline \end{array}$
PDAs	$\begin{array}{r} -0.2553^{* *} \\ (0.7747) \\ \hline \end{array}$	$\begin{array}{r} -0.3586^{* * *} \\ (0.6986) \\ \hline \end{array}$	$\begin{array}{r} -0.4654^{* * *} \\ (0.6279) \\ \hline \end{array}$	$\begin{array}{r} -0.7911^{* * *} \\ (0.4533) \\ \hline \end{array}$	$\begin{array}{r} -0.5418^{* * *} \\ (0.5817) \\ \hline \end{array}$	$\begin{array}{r} -1.1819^{* * *} \\ (0.3067) \\ \hline \end{array}$
Hard Drives	$\begin{array}{r} -0.2806^{* * *} \\ (0.7553) \\ \hline \end{array}$	$\begin{array}{r} -0.3698^{* * *} \\ (0.6909) \\ \hline \end{array}$	$\begin{array}{r} -0.4711^{* * *} \\ (0.6243) \\ \hline \end{array}$	$\begin{array}{r} -0.6199^{* * *} \\ (0.5380) \\ \hline \end{array}$	$\begin{array}{r} -0.6796^{* * *} \\ (0.5068) \\ \hline \end{array}$	$\begin{array}{r} -0.5254^{* * *} \\ (0.5913) \end{array}$
DVD Players	$\begin{array}{r} -0.4939^{* * *} \\ (0.6102) \\ \hline \end{array}$	$\begin{gathered} -0.5763^{* * *} \\ (0.5620) \end{gathered}$	$\begin{array}{r} -0.6695^{* * *} \\ (0.5120) \end{array}$	$\begin{gathered} -0.6790^{* * *} \\ (0.5071) \end{gathered}$	$\begin{gathered} -0.6389^{* * *} \\ (0.5279) \\ \hline \end{gathered}$	$\begin{array}{r} -0.8103^{* * *} \\ (0.4447) \\ \hline \end{array}$
PC Monitors	$\begin{array}{r} -0.2729^{* * *} \\ (0.7612) \\ \hline \end{array}$	$\begin{array}{r} -0.4617^{* * *} \\ (0.6302) \end{array}$	$\begin{array}{r} -0.5507^{* * *} \\ (0.5766) \\ \hline \end{array}$	$\begin{array}{r} -0.8433^{* * *} \\ (0.4303) \\ \hline \end{array}$	$\begin{array}{r} -0.8375^{* * *} \\ (0.4328) \\ \hline \end{array}$	$\begin{array}{r} -1.2927^{* * *} \\ (0.2745) \\ \hline \end{array}$
Digital Cameras	$\begin{array}{r} -0.4389^{* * *} \\ (0.6447) \\ \hline \end{array}$	$\begin{array}{r} -0.4933^{* * *} \\ (0.6106) \end{array}$	$\begin{array}{r} -0.5297^{* * *} \\ (0.5888) \end{array}$	$\begin{array}{r} -1.1229^{* * *} \\ (0.3253) \end{array}$	$\begin{array}{r} -0.5879^{* * *} \\ (0.5500) \end{array}$	$\begin{array}{r} -1.4480^{* * *} \\ (0.2350) \end{array}$
Notebook PCs	$\begin{array}{r} -0.5566^{* * *} \\ (0.5731) \\ \hline \end{array}$	$\begin{array}{r} -0.8885^{* * *} \\ (0.4113) \\ \hline \end{array}$	$\begin{gathered} -1.0680^{* * *} \\ (0.3437) \\ \hline \end{gathered}$	$\begin{gathered} -0.7654^{* * *} \\ (0.4652) \\ \hline \end{gathered}$	$\begin{array}{r} -0.9528^{* * *} \\ (0.3856) \\ \hline \end{array}$	$\begin{array}{r} -1.1891^{* * *} \\ (0.3045) \\ \hline \end{array}$
Total	$\begin{array}{r} -0.3690^{* * *} \\ (0.6914) \\ \hline \end{array}$	$\begin{array}{r} -0.5703^{* * *} \\ (0.5653) \end{array}$	$\begin{array}{r} -0.6472^{* * *} \\ (0.5235) \end{array}$	$\begin{array}{r} -1.0179^{* * *} \\ (0.3613) \end{array}$	$\begin{array}{r} -0.8761^{* * *} \\ (0.4164) \\ \hline \end{array}$	$\begin{array}{r} -1.3528^{* * *} \\ (0.2585) \\ \hline \end{array}$
Note: Each cell contains a coefficient and odds ratio in parenthesis; significance levels: ${ }^{* * *}<0.01$, ${ }^{* *}$ $<0.05,{ }^{*}<0.10$. The estimated coefficients in italics indicate unsupportive results.						

Table 8. Average Size of Price Change in Dominick's Data: 9¢- vs. Non-9¢-Ending Prices

Category	9¢-Ending		Non-9¢-Ending		Corr.	t-Stat	p-Value
	Mean Price Change	Sample Size	Mean Price Change	Sample Size			
Analgesics	\$0.7625	367,969	\$0.4672	102,550	0.173	76.47	0.000
Bath Soap	\$0.5786	58,735	\$0.5473	18,298	0.019	64.41	0.000
Bathroom Tissues	\$0.2499	156,863	\$0.2260	184,414	0.031	210.19	0.000
Bottled Juices	\$0.3121	457,490	\$0.2650	583,025	0.060	255.92	0.000
Canned Soup	\$0.2196	304,439	\$0.1948	741,357	0.033	162.99	0.000
Canned Tuna	\$0.1946	170,023	\$0.1421	281,703	0.091	268.59	0.000
Cereals	\$0.5010	271,757	\$0.4701	494,597	0.027	-153.45	0.000
Cheeses	\$0.2943	872,489	\$0.2128	1,039,738	0.122	505.32	0.000
Cookies	\$0.4947	1,135,112	\$0.3656	709,697	0.129	359.98	0.000
Crackers	\$0.2964	283,278	\$0.2366	279,353	0.098	317.30	0.000
Dish Detergent	\$0.2798	240,532	\$0.2119	183,222	0.133	392.69	0.000
Fabric Softeners	\$0.3955	212,288	\$0.2597	191,319	0.168	210.90	0.000
Front-end-candies*	\$0.1454	137,453	\$0.2164	385,234	-0.113	86.40	0.000
Frozen Dinners*	\$0.5008	230,423	\$0.5452	336,201	-0.033	-109.08	0.000
Frozen Entrees*	\$0.7031	883,284	\$0.7551	1,183,557	-0.029	-432.43	0.000
Frozen Juices*	\$0.2567	301,114	\$0.2816	395,344	-0.029	203.22	0.000
Grooming Products	\$0.6285	1,017,513	\$0.4849	287,969	0.085	266.89	0.000
Laundry Detergents	\$0.9036	446,767	\$0.5548	210,342	0.194	-103.55	0.000
Oatmeal	\$0.4239	72,753	\$0.4115	107,971	0.012	-8.37	0.000
Paper Towels	\$0.1913	109,596	\$0.1702	152,846	0.030	205.91	0.000
Refrigerated Juices	\$0.3780	405,144	\$0.2987	418,402	0.115	243.81	0.000
Shampoos	\$1.4476	1,916,061	\$1.0888	238,976	0.065	-440.40	0.000
Snack Crackers	\$0.3251	488,341	\$0.2903	405,005	0.047	371.01	0.000
Soaps	\$0.3147	180,935	\$0.1700	190,632	0.218	280.21	0.000
Soft Drinks	\$1.0409	4,614,455	\$0.6155	1,219,151	0.140	-311.91	0.000
Tooth Brushes	\$0.5063	350,705	\$0.3653	123,840	0.191	376.47	0.000
Tooth Pastes	\$0.4255	468,688	\$0.3497	291,045	0.108	340.88	0.000
Total	\$0.7452	16,154,207	\$0.4033	10,755,788	0.181	-44.00	0.000
Average	\$0.4730		\$0.3777				
Median	\$0.3955		\$0.2987				
Note: Categories with unsupportive results are indicated by $*$ and italic. Corr. is the correlation between 9 -ending prices and the size of price change. The \boldsymbol{p}-value is a significance level derived from a paired-sample t-test. Cross-category paired t-tests showed that the price changes are of a larger magnitude when prices end with $9\left(t_{26}=3.911, p=.001\right)$.							

Table 9. Average Size of Price Change in Dominick’s Data: 99¢- vs. Non-99¢-Ending Prices

Category	99¢-Ending		Non-99¢-Ending		Corr.	t-Stat	p-Value
	Mean Price Change	Sample Size	Mean Price Change	Sample Size			
Analgesics	\$0.8931	106,038	\$0.6415	364,481	0.149	-424.68	0.000
Bath Soap	\$0.7149	15,608	\$0.5346	61,425	0.102	-130.63	0.000
Bathroom Tissues	\$0.3302	36,944	\$0.2257	304,333	0.085	-159.40	0.000
Bottled Juices	\$0.3760	104,451	\$0.2756	936,064	0.077	-397.80	0.000
Canned Soup	\$0.2703	56,527	\$0.1981	989,269	0.048	-378.08	0.000
Canned Tuna	\$0.3303	19,566	\$0.1543	432,160	0.128	-246.09	0.000
Cereals	\$0.6374	56,437	\$0.4686	709,917	0.080	-602.23	0.000
Cheeses	\$0.3563	160,237	\$0.2403	1,751,990	0.097	-557.70	0.000
Cookies	\$0.5612	270,448	\$0.4251	1,574,361	0.099	-707.64	0.000
Crackers	\$0.4902	62,297	\$0.2489	500,334	0.165	-292.33	0.000
Dish Detergent	\$0.3273	52,117	\$0.2397	371,637	0.113	-211.97	0.000
Fabric Softeners	\$0.5585	62,370	\$0.2896	341,237	0.241	-237.44	0.000
Front-end-candies	\$0.2326	11,923	\$0.1969	510,764	0.019	-405.47	0.000
Frozen Dinners	\$0.5585	56,617	\$0.5237	510,007	0.016	-449.31	0.000
Frozen Entrees*	\$0.7229	188,496	\$0.7339	1,878,345	-0.004	-1002.78	0.000
Frozen Juices	\$0.2794	67,862	\$0.2699	628,596	0.007	-279.32	0.000
Grooming Products	\$0.6756	247,298	\$0.5785	1,058,184	0.054	-595.05	0.000
Laundry Detergents	\$1.1475	158,974	\$0.6785	498,135	0.239	-527.15	0.000
Oatmeal	\$0.5420	12,921	\$0.4068	167,803	0.068	-261.98	0.000
Paper Towels	\$0.3555	15,137	\$0.1682	247,305	0.126	-158.70	0.000
Refrigerated Juices	\$0.4874	101,063	\$0.3168	722,483	0.162	-447.38	0.000
Shampoos	\$1.6000	503,157	\$1.3492	1,651,880	0.062	-987.01	0.000
Snack Crackers	\$0.3673	97,690	\$0.3022	795,656	0.055	-403.24	0.000
Soaps	\$0.3907	43,874	\$0.2203	327,693	0.166	-176.49	0.000
Soft Drinks	\$1.2138	1,385,935	\$0.8704	4,447,671	0.118	-1370.09	0.000
Tooth Brushes	\$0.5972	108,407	\$0.4317	366,138	0.215	-351.86	0.000
Tooth Pastes	\$0.5097	117,086	\$0.3758	642,647	0.141	-457.98	0.000
Total	\$0.9156	4,119,480	\$0.5532	22,790,515	0.143	-2494.28	0.000
Average	\$0.5750		\$0.4209				
Median	\$0.5097		\$0.3168				

Note: Categories with unsupportive results are indicated by * and italic. Corr. is the correlation between 9ending prices and the size of price change. The \boldsymbol{p}-value is a significance level derived from a paired-sample t -test. Cross-category paired t -tests showed that the price changes are of a larger magnitude when prices end with $9\left(t_{26}=7.657, p=.000\right)$.

Table 10. Average Size of Price Change in Internet Data: 9¢- vs. Non-9¢-Ending Prices

	9世-Ending		Non-9¢-Ending				
Category	Mean Price Change	Sample Size	Mean Price Change	Sample Size	Corr.	t-Stat	p-Value
Music CDs	$\$ 1.30$	2,268	$\$ 1.01$	2,352	0.097	29.45	0.000
Movie DVDs	$\$ 2.71$	2,813	$\$ 1.68$	5,888	0.122	40.16	0.000
Video Games	$\$ 8.12$	832	$\$ 6.95$	532	0.075	34.55	0.000
Software	$\$ 14.94$	778	$\$ 13.51$	4,751	0.014	27.60	0.000
PDAs*	$\$ 22.30$	355	$\$ 25.86$	1,436	-0.039	28.88	0.000
Hard Drives	$\$ 27.65$	1,435	$\$ 14.29$	5,517	0.097	25.10	0.000
DVD Players	$\$ 36.02$	383	$\$ 28.43$	1,210	0.065	24.07	0.000
PC Monitors	$\$ 41.35$	809	$\$ 28.45$	5,150	0.072	37.83	0.000
Digital Cameras	$\$ 45.76$	852	$\$ 36.97$	3,018	0.046	30.60	0.000
Notebook PCs*	$\$ 86.42$	92	$\$ 97.58$	563	-0.031	19.57	0.000
Total*	$\$ 16.08$	10,617	17.87	30.417	-0.016	69.30	0.000
Average	$\$ 28.66$		$\$ 25.47$				
Median	$\$ 25.00$		$\$ 20.00$				

Note: Categories with unsupportive results are indicated by * and italic. Corr. is the correlation between 9 -ending prices and the size of price change. The \boldsymbol{p}-value is a significance level derived from a paired-sample t-test. Cross-category paired t-tests showed that the price changes are of a larger magnitude when prices end with $9\left(t_{9}=1.324, p=.10\right)$.

Table 11. Average Size of Price Change in Internet Data: 99¢- vs. Non-99¢-Ending Prices

	99థ-Ending		Non-99థ-Ending				
Category	Mean Price Change	Sample Size	Mean Price Change	Sample Size	Corr.	t-Stat	\boldsymbol{p}-Value
Music CDs	$\$ 1.95$	1,142	$\$ 0.89$	3,478		43.25	0.000
Movie DVDs	$\$ 3.39$	1,532	$\$ 1.72$	7,169	0.160	43.81	0.000
Video Games	$\$ 8.45$	744	$\$ 6.72$	620	0.113	34.96	0.000
Software	$\$ 16.58$	553	$\$ 13.39$	4,976	0.026	27.69	0.000
PDAs*	$\$ 23.74$	300	$\$ 25.44$	1,491	-0.017	28.92	0.000
Hard Drives	$\$ 30.28$	1,083	$\$ 14.60$	5,869	0.102	25.17	0.000
DVD Players	$\$ 39.32$	329	$\$ 27.90$	1,264	0.093	24.10	0.000
PC Monitors	$\$ 48.86$	544	$\$ 28.33$	5,415	0.096	37.89	0.000
Digital Cameras	$\$ 47.53$	852	$\$ 36.78$	3,018	0.054	30.62	0.000
Notebook PCs	$\$ 103.15$	64	$\$ 95.24$	591	0.019	19.58	0.000
Total	$\$ 20.59$	7,056	$\$ 16.75$	33,978	0.029	69.68	0.000
Average	$\$ 32.33$		$\$ 25.10$				
Median	$\$ 27.00$		$\$ 20.00$				

Note: Categories with unsupportive results are indicated by * and italic. Corr. is the correlation between 9 -ending prices and the size of price change. The \boldsymbol{p}-value is a significance level derived from a paired-sample t-test. Cross-category paired t-tests showed that the price changes are of a larger magnitude when prices end with $9\left(t_{9}=3.148, p=.006\right)$.

Table 12. Average Size of Price Change in Internet Data: \$9- vs. Non-\$9-Endings

Category	\$9-Ending		Non-\$9-Ending		Corr.	t-Stat	p-Value
	Mean Price Change	Sample Size	Mean Price Change	Sample Size			
Music CDs*	\$1.04	587	\$1.17	4,033	-0.030	45.25	0.000
Movie DVDs	\$3.20	926	\$1.87	7,775	0.104	45.20	0.000
Video Games	\$9.01	659	\$6.41	705	0.172	35.40	0.000
Software	\$20.38	1,347	\$11.56	4,182	0.104	27.42	0.000
PDAs	\$31.66	710	\$20.88	1,081	0.144	28.72	0.000
Hard Drives	\$19.88	1,169	\$16.47	5,783	0.023	25.14	0.000
DVD Players	\$42.22	641	\$22.21	952	0.197	23.97	0.000
PC Monitors	\$53.71	1,436	\$22.74	4,523	0.216	37.74	0.000
Digital Cameras	\$48.29	1,899	\$29.86	1,971	0.117	30.41	0.000
Notebook PCs	\$126.22	344	\$62.61	311	0.254	19.52	0.000
Total	\$33.13	9,718	\$12.53	31,316	0.175	69.50	0.000
Average	\$38.56		\$19.58				
Median	\$26.00		\$18.70				
Note: Categories with unsupportive results are indicated by * and italic. Corr. is the correlation between 9 -ending prices and the size of price change. The \boldsymbol{p}-value is a significance level derived from a paired-sample t-test. Cross-category paired t-tests showed that the price changes are of a larger magnitude when prices end with $9\left(t_{9}=2.598, p=.01\right)$.							

Table 13. Average Size of Price Change in Internet Data: \$9.99- vs. Non-\$9.99-Endings

Category	\$9.99-Ending		Non-\$9.99-Ending		Corr.	t-Stat	p-Value
	Mean Price Change	Sample Size	Mean Price Change	Sample Size			
Music CDs	\$2.52	76	\$1.13	4,544	0.118	52.01	0.000
Movie DVDs	\$5.82	188	\$1.93	8,513	0.143	47.19	0.000
Video Games	\$9.62	433	\$6.75	931	0.176	36.21	0.000
Software	\$22.93	186	\$13.39	5,343	0.047	27.82	0.000
PDAs	\$26.86	170	\$24.97	1,621	0.015	29.02	0.000
Hard Drives	\$32.40	335	\$16.27	6,617	0.062	25.32	0.000
DVD Players	\$48.23	219	\$27.40	1,374	0.144	24.16	0.000
PC Monitors	\$72.98	247	\$28.35	5,712	0.145	37.95	0.000
Digital Cameras	\$53.91	566	\$36.34	3,304	0.079	30.67	0.000
Notebook PCs	\$110.03	47	\$94.93	608	0.031	19.59	0.000
Total	\$36.24	2,467	\$16.20	38,567	0.095	70.15	0.000
Average	\$38.53		\$25.15				
Median	\$29.60		\$20.60				

Note: Categories with unsupportive results are indicated by * and italic. Corr. is the correlation between 9 -ending prices and the size of price change. The \boldsymbol{p}-value is a significance level derived from a paired-sample t-test. Cross-category paired t-tests showed that the price changes are of a larger magnitude when prices end with $9\left(t_{9}=3.224, p=.005\right)$.

Table 14. Average Size of Price Change in Internet Data: \$99- vs. Non-\$99-Endings

Category	\$99-Ending		Non-\$99-Ending		Corr.	t-Stat	p-Value
	Mean Price Change	Sample Size	Mean Price Change	Sample Size			
Music CDs	N/A	0	\$1.15	4,620			NA
Movie DVDs	\$6.47	60	\$1.98	8,641	0.094	47.40	0.000
Video Games	N/A	0	\$7.66	1,669			NA
Software	\$23.09	251	\$13.26	5,278	0.056	27.80	0.000
PDAs	\$46.75	122	\$23.57	1,669	0.160	29.08	0.000
Hard Drives	\$26.70	137	\$16.85	6,815	0.024	25.36	0.000
DVD Players	\$58.98	132	\$27.66	1,461	0.173	24.21	0.000
PC Monitors	\$98.11	332	\$26.19	5,627	0.269	37.96	0.000
Digital Cameras	\$85.88	476	\$32.32	3,394	0.224	30.70	0.000
Notebook PCs	\$144.42	161	\$80.24	494	0.221	19.57	0.000
Total	\$71.83	1,671	\$15.10	39,363	0.224	70.26	0.000
Average	\$61.30		\$23.09				
Median	\$52.90		\$20.20				

Note: Categories with unsupportive results are indicated by * and italic. Corr. is the correlation between 9 -ending prices and the size of price change. The \boldsymbol{p}-value is a significance level derived from a paired-sample t-test. Cross-category paired t-tests showed that the price changes are of a larger magnitude when prices end with $9\left(t_{7}=3.598, p=.004\right)$.

Table 15. Average Size of Price Change in Internet Data: \$99.99- vs. Non-\$99.99-Endings

Category	\$99.99-Ending		Non-\$99.99-Ending		Corr.	t-Stat	p-Value
	Mean Price Change	Sample Size	Mean Price Change	Sample Size			
Music CDs	N/A	0	\$1.15	4,620			NA
Movie DVDs	\$12.01	24	\$1.99	8,677	0.133	47.50	0.000
Video Games	N/A	0	\$7.66	1,364			NA
Software	\$20.06	37	\$13.66	5,492	0.014	27.87	0.000
PDAs	\$30.80	24	\$25.04	1,757	0.021	29.10	0.000
Hard Drives	\$34.75	36	\$16.95	6,916	0.023	25.38	0.000
DVD Players	\$73.51	56	\$28.68	1,537	0.166	24.24	0.000
PC Monitors	\$112.24	64	\$29.31	5,895	0.139	37.98	0.000
Digital Cameras	\$83.74	139	\$37.24	3,731	0.110	30.75	0.000
Notebook PCs	\$144.12	17	\$94.73	638	0.063	19.60	0.000
Total	\$70.56	407	\$16.87	40,627	0.106	70.33	0.000
Average	\$63.90		\$25.64				
Median	\$54.10		\$20.00				
Note: Categories with unsupportive results are indicated by * and italic. Corr. is the correlation between 9 -ending prices and the size of price change. The \boldsymbol{p}-value is a significance level derived from a paired-sample t-test. Cross-category paired t-tests showed that the price changes are of a larger magnitude when prices end with $9\left(t_{7}=3.390, p=.006\right)$.							

Figure 1. Frequency Distribution of the Last Digit in the Dominick's Data

Figure 2. Frequency Distribution of the Last Two Digits in the Dominick's Data

Figure 3. Frequency Distribution of the Last Digit in the Internet Data

Figure 4. Frequency Distribution of the Last Two Digits in the Internet Data

Figure 5. Frequency Distribution of the Last Dollar Digit in the Internet Data

Figure 6. Frequency Distribution of the Last Two Dollar Digits in the Internet Data

Figure 7. Frequency Distribution of the Price Changes in the Dominick's Data

Figure 8. Price of Frozen Concentrate Orange Juice, Heritage House, 12 oz (UPC = 3828190029, Store No. 78), September 14, 1989 - May 8, 1997

Figure 9. Demand Curve under Consumer Inattention

Not for Publication - Reviewer's Appendix

Contents

Abstract

A. Results on Price Endings for Individual Product Categories in Dominick's and Internet Data

Similar to the aggregate results reported in the paper, the following figures show that $9 \mathbb{4}$ and 99Φ are the most popular price-endings for most of the individual product categories in both Dominick's and the Internet data.

Figures R1a-R1c. Frequency Distribution of the Last Digit by Product Category - Dominick’s Figures R2a-R2c. Frequency Distribution of the Last Two Digits by Product Category Dominick's

Figure R3. Frequency Distribution of the Last Digit by Product Category - Internet Data Figure R4. Frequency Distribution of the Last Two Digits by Product Category - Internet Data Figure R5. Frequency Distribution of the Last Dollar Digit by Product Category - Internet Data Figure R6. Frequency Distribution of the Last Two Dollar Digits by Product Category - Internet Data

B. Results on Price Changes for Individual Product Categories in Dominick's Data

 Similar to the aggregate results reported in the paper and the results for individual product categories in our Internet data in Table 5, the following figures show that price changes in multiples of dimes are most common among all price changes in Dominick's data.Figures R7a-R7c. Frequency Distribution of the Price Changes by Category - Dominick’s

C. Sample Price Series for Our Internet data

The following figures provide sample price series for ten randomly selected products, one from each of the ten product categories in our Internet data. All data are for 743 days, from March 26, 2005 to April 15, 2005.

Figure R8a. Price of a CD (Product\# 3, Store\# 194)
Figure R8b. Price of a DVD (Product\# 23, Store\# 194)
Figure R8c. Price of a Notebook PC (Product\# 422, Store\# 258)
Figure R8d. Price of a Hard Drive (Product\# 71, Store\# 324)
Figure R8e. Price of a DVD Player (Product\# 262, Store\# 230)
Figure R8f. Price of a Digital Camera (Product\# 273, Store\# 108)
Figure R8g. Price of a PC Monitor (Product\# 189, Store\# 17)
Figure R8h. Price of a PDA (Product\# 490, Store\# 207)
Figure R8i. Price of a Software (Product\# 96, Store\# 292)
Figure R8j. Price of a Video Game (Product\# 205, Store\# 68)

D. Proportion of Price Changes that Preserve 9-Endings

The following tables report in detail the proportion of 9-ending preserving price changes. I.e., price changes of $10 \Phi, \$ 1, \$ 10, \$ 100$, etc. For the Dominick's data, in all but one category (Front-End-Candies), there are considerably more price changes that are multiples of dimes and dollars for 9-ending prices. For the Internet data, in the low-priced product categories (Music CDs, Movie DVDs, Video Games), we find considerably more price changes that are multiples of dimes and dollars for 9-ending prices. For high-priced product categories (DVD Players, PC Monitors, Digital Cameras, Notebook PCs), we find considerably more price changes that are multiples of $\$ 10$ and $\$ 100$ for 9-ending prices.

Table R1: Price Changes in Multiples of Dimes in Dominick’s Data: 9\$-Ending vs. Non-9\$Ending Prices

Table R2: Price Changes in Multiples of Dollars in Dominick’s Data: 99\$-Ending vs. Non-99\$Ending Prices

Table R3. Price Changes in Multiples of Dimes in Internet Data: 9¢-endings vs. Non-9థ-endings
Table R4. Price Changes in Multiples of Dollars in Internet Data: 99\$-Endings vs. Non-99థEndings

Table R5. Price Changes in Multiples of \$10 in Internet Data: \$9-Endings vs. Non-\$9-Endings
Table R6. Price Changes in Multiples of \$10 in Internet Data: \$9.99-Endings vs. Non-\$9.99Endings

Table R7. Price Changes in Multiples of \$100 in Internet Data: \$99-Endings vs. Non-\$99Endings

Table R8. Price Changes in Multiples of \$100 in Internet Data: \$99.99-endings vs. Non-\$99.99endings

Figure R1a. Frequency Distribution of the Last Digit by Product Category - Dominick's

Figure R1b. Frequency Distribution of the Last Digit by Product Category - Dominick's

Figure R1c. Frequency Distribution of the Last Digit by Product Category - Dominick's

Figure R2a. Frequency Distribution of the Last Two Digits by Product Category - Dominick's

Figure R2b. Frequency Distribution of the Last Two Digits by Product Category - Dominick's

Figure R2c. Frequency Distribution of the Last Two Digits by Product Category - Dominick's

Figure R3. Frequency Distribution of the Last Digit by Product Category - Internet Data

Figure R4. Frequency Distribution of the Last Two Digits by Product Category - Internet Data

Figure R5. Frequency Distribution of the Last Dollar Digit by Product Category - Internet Data

Figure R6. Frequency Distribution of the Last Two Dollar Digits by Product Category - Internet Data

Figure R7a. Frequency Distribution of the Price Changes by Category - Dominick's

Figure R7b. Frequency Distribution of the Price Changes by Category - Dominick's

Figure R7c. Frequency Distribution of the Price Changes by Category - Dominick's

Figure R8a. Price of a CD (Product \#3, Store \#194) 743 Days (March 26, 2003 -April 15, 2005)

Figure R8b. Price of a DVD (Product \#23, Store \#194)
743 Days (March 26, 2003 - April 15, 2005)

Figure R8c. Price of a Notebook PC (Product \#422, Store \#258) 743 Days (March 26, 2003 - April 15, 2005)

Figure R8d. Price of a Hard Drive (Product \#71, Store \#324)
743 Days (March 26, 2003 - April 15, 2005)

Figure R8e. Price of a DVD Player (Product \#262, Store \#230) 743 Days (March 26, 2003 - April 15, 2005)

Figure R8f. Price of a Digital Camera (Product \#273, Store \#108) 743 Days (March 26, 2003 - April 15, 2005)

Figure R8g. Price of a PC Monitor (Product \#189, Store \#17) 743 Days (March 26, 2003 - April 15, 2005)

Figure R8h. Price of a PDA (Product \#490, Store \#207)
743 Days (March 26, 2003 - April 15, 2005)

Figure R8i. Price of a Software Product (Product \#96, Store \#292)
743 Days (March 26, 2003 - April 15, 2005)

Figure R8j. Price of a Video Game (Product \#205, Store \#68)
743 Days (March 26, 2003 - April 15, 2005)

Table R1: Price Changes in Multiples of Dimes in Dominick's: 9¢- vs. Non-9థ-Ending Prices

Category	9¢-Ending		Non-9¢-Ending		p-Value
	Multiples of Dimes	Sample Size	Multiples of Dimes	Sample Size	
Analgesics	78.25\%	367,969	5.60\%	102,550	. 0000
Bath Soap	74.93\%	58,735	12.65\%	18,298	. 0000
Bathroom Tissues	47.97\%	156,863	4.09\%	184,414	. 0000
Bottled Juices	42.10\%	457,490	5.33\%	583,025	. 0000
Canned Soup	26.14\%	304,439	4.12\%	741,357	. 0000
Canned Tuna	36.10\%	170,023	6.15\%	281,703	. 0000
Cereals	37.21\%	271,757	8.32\%	494,597	. 0000
Cheeses	46.49\%	872,489	4.57\%	1,039,738	. 0000
Cookies	58.73\%	1,135,112	9.01\%	709,697	. 0000
Crackers	46.99\%	283,278	7.31\%	279,353	. 0000
Dish Detergent	56.10\%	240,532	4.75\%	183,222	. 0000
Fabric Softeners	51.41\%	212,288	5.96\%	191,319	. 0000
Front-end-candies	18.47\%	137,453	11.66\%	385,234	. 0000
Frozen Dinners	32.72\%	230,423	5.70\%	336,201	. 0000
Frozen Entrees	42.49\%	883,284	5.93\%	1,183,557	. 0000
Frozen Juices	46.75\%	301,114	5.40\%	395,344	. 0000
Grooming Products	71.30\%	1,017,513	10.22\%	287,969	. 0000
Laundry Detergents	68.07\%	446,767	4.68\%	210,342	. 0000
Oatmeal	36.27\%	72,753	7.17\%	107,971	. 0000
Paper Towels	37.01\%	109,596	4.26\%	152,846	. 0000
Refrigerated Juices	46.25\%	405,144	4.59\%	418,402	. 0000
Shampoos	80.84\%	1,916,061	29.23\%	238,976	. 0000
Snack Crackers	48.53\%	488,341	4.61\%	405,005	. 0000
Soaps	48.23\%	180,935	4.79\%	190,632	. 0000
Soft Drinks	76.54\%	4,614,455	15.36\%	1,219,151	. 0000
Tooth Brushes	74.22\%	350,705	2.46\%	123,840	. 0000
Tooth Pastes	61.64\%	468,688	6.18\%	291,045	. 0000
Total	62.81\%	16,154,207	7.64\%	10,755,788	. 0000
Note: Categories with unsupportive results are indicated by * and italic. p-Value is an asymptotic significance level derived from Pearson χ^{2} test.					

Table R2: Price Changes in Multiples of Dollars in Dominick's: 99¢- vs. Non-99¢-Ending Prices

Category	99¢-Ending		Non-99¢-Ending		p-Value
	Multiples of Dollars	Sample Size	Multiples of Dollars	Sample Size	
Analgesics	17.09\%	106,038	1.39\%	364,481	. 0000
Bath Soap	21.06\%	15,608	3.11\%	61,425	. 0000
Bathroom Tissues	1.66\%	36,944	0.04\%	304,333	. 0000
Bottled Juices	2.02\%	104,451	0.27\%	936,064	. 0000
Canned Soup	0.19\%	56,527	0.01\%	989,269	. 0000
Canned Tuna	2.96\%	19,566	0.03\%	432,160	. 0000
Cereals	6.60\%	56,437	0.99\%	709,917	. 0000
Cheeses	3.03\%	160,237	0.16\%	1,751,990	. 0000
Cookies	5.41\%	270,448	1.01\%	1,574,361	. 0000
Crackers	9.79\%	62,297	0.06\%	500,334	. 0000
Dish Detergent	1.83\%	52,117	0.22\%	371,637	. 0000
Fabric Softeners	10.67\%	62,370	0.31\%	341,237	. 0000
Front-end-candies*	0.00\%	11,923	0.01\%	510,764	. 1887
Frozen Dinners	3.38\%	56,617	0.65\%	510,007	. 0000
Frozen Entrees	8.47\%	188,496	0.53\%	1,878,345	. 0000
Frozen Juices	0.21\%	67,862	0.04\%	628,596	. 0000
Grooming Products	5.21\%	247,298	1.63\%	1,058,184	. 0000
Laundry Detergents	20.15\%	158,974	2.53\%	498,135	. 0000
Oatmeal	1.28\%	12,921	0.82\%	167,806	. 0000
Paper Towels	8.38\%	15,137	0.03\%	247,305	. 0000
Refrigerated Juices	4.76\%	101,063	0.25\%	722,522	. 0000
Shampoos	12.99\%	503,157	5.86\%	1,651,880	. 0000
Snack Crackers	3.23\%	97,690	0.13\%	795,656	. 0000
Soaps	4.43\%	43,874	0.20\%	327,693	. 0000
Soft Drinks	12.87\%	1,385,935	2.86\%	4,447,671	. 0000
Tooth Brushes	19.06\%	108,407	0.89\%	366,138	. 0000
Tooth Pastes	4.85\%	117,086	0.57\%	642,647	. 0000
Total	9.86\%	4,119,480	1.39\%	22,790,515	. 0000
Note: Categories with unsupportive results are indicated by * and italic. p-Value is an asymptotic significance level derived from Pearson χ^{2} test.					

Table R3. Price Changes in Multiples of Dimes in Internet: 9¢- vs. Non-94-endings

	9世-Endings		Non-9¢-Endings		
Category	Multiples of Dimes	Sample Size	Multiples of Dimes	Sample Size	p-Value
Music CDs	73.32%	2,268	21.17%	2,352	
Movie DVDs	66.90%	2,813	23.08%	5,888	.0000
Video Games	80.05%	832	44.17%	532	.0000
Software*	57.32%	778	60.43%	4,751	.1015
PDAs	66.76%	355	59.40%	1,436	.0110
Hard Drives	74.36%	1,435	57.39%	5,517	.0000
DVD Players*	57.18%	383	59.83%	1,210	.3569
PC Monitors*	47.71%	809	56.08%	5,150	.0000
Digital Cameras*	72.77%	852	77.07%	3,018	.0093
Notebook PCs*	73.91%	92	78.51%	563	.3250
Total	68.32%	10,617	50.50%	30,417	.0000
Note					

Note: Categories with unsupportive results are indicated by * and italic. \boldsymbol{p}-Value is an asymptotic significance level derived from Pearson χ^{2} test.

Table R4. Price Changes in Multiples of Dollars in Internet: 99¢- vs. Non-99¢-Endings

	99థ-Endings		Non-99¢-Endings		
Category	Multiples of Dollars	Sample Size	Multiples of Dollars	Sample Size	p-Value
Music CDs	62.43%	1,142	5.69%	3,478	
Movie DVDs	72.19%	1,532	6.89%	7,169	.0000
Video Games	77.69%	744	33.71%	620	.0000
Software	56.42%	553	50.18%	4,976	.0054
PDAs	70.33%	300	52.45%	1,491	.0000
Hard Drives	84.95%	1,083	45.14%	5,869	.0000
DVD Players	59.27%	329	50.08%	1,264	.0030
PC Monitors*	47.98%	544	47.17%	5,415	.7174
Digital Cameras*	65.02%	852	74.12%	3,018	.0000
Notebook PCs	84.38%	64	72.76%	591	.0444
Total	69.13%	7,056	37.40%	33,978	.0000
Nannnn					

Note: Categories with unsupportive results are indicated by * and italic. p-Value is an asymptotic significance level derived from Pearson χ^{2} test.

Table R5. Price Changes in Multiples of $\$ 10$ in Internet: $\$ 9$ - vs. Non-\$9-Endings

Category	\$9-Endings		Non-\$9-Endings		p-Value
	$\begin{gathered} \text { Multiples of } \\ \$ 10 \end{gathered}$	Sample Size	$\begin{gathered} \text { Multiples of } \\ \$ 10 \end{gathered}$	Sample Size	
Music CDs*	0.00\%	587	0.25\%	4,033	. 2271
Movie DVDs	2.92\%	926	0.35\%	7,775	. 0000
Video Games	32.78\%	659	11.99\%	705	. 0000
Software	29.62\%	1,347	3.25\%	4,182	. 0000
PDAs	43.38\%	710	4.07\%	1,081	. 0000
Hard Drives	22.50\%	1,169	2.11\%	5,783	. 0000
DVD Players	33.23\%	641	7.35\%	952	. 0000
PC Monitors	33.43\%	1,436	4.13\%	4,523	. 0000
Digital Cameras	48.98\%	1,899	9.84\%	1,971	. 0000
Notebook PCs	74.13\%	344	19.29\%	311	. 0000
Total	31.65\%	9,718	2.76\%	31,316	. 0000
Note: Categories with unsupportive results are indicated by * and italic. p-Value is an asymptotic significance level derived from Pearson χ^{2} test.					

Table R6. Price Changes in Multiples of $\mathbf{\$ 1 0}$ in Internet: \$9.99- vs. Non-\$9.99-Endings

Category	\$9.99-Endings		Non-\$9.99-Endings		p-Value
	Multiples of \$10	Sample Size	Multiples of \$10	Sample Size	
Music CDs*	0.00\%	76	0.22\%	4,544	. 6822
Movie DVDs	11.70\%	188	0.38\%	8,513	. 0000
Video Games	42.26\%	433	5.05\%	931	. 0000
Software	44.62\%	186	8.46\%	5,343	. 0000
PDAs	38.82\%	170	17.64\%	1,621	. 0000
Hard Drives	50.45\%	335	3.26\%	6,617	. 0000
DVD Players	42.47\%	219	13.83\%	1,374	. 0000
PC Monitors	34.41\%	247	10.19\%	5,712	. 0000
Digital Cameras	55.48\%	566	24.06\%	3,304	. 0000
Notebook PCs	78.72\%	47	9.63\%	608	. 0000
Total	42.64\%	2,467	7.49\%	38,567	. 0000

Note: Categories with unsupportive results are indicated by * and italic. p-Value is an asymptotic significance level derived from Pearson χ^{2} test.

Table R7. Price Changes in Multiples of \$100 in Internet: \$99- vs. Non-\$99-Endings

Category	\$99-Endings		Non-\$99-Endings		p-Value	
	$\begin{gathered} \hline \text { Multiples of } \\ \$ 100 \\ \hline \end{gathered}$	Sample Size	$\begin{gathered} \text { Multiples of } \\ \$ 100 \end{gathered}$	Sample Size		
Music CDs	N / A					
Movie DVDs						
Video Games						
Software	1.59\%	251	0.23\%	5,278	. 0000	
PDAs	10.66\%	122	0.30\%	1,669	. 0000	
Hard Drives*	0.00\%	197	0.06\%	6815	. 7993	
DVD Players	6.06\%	132	0.41\%	1,461	. 0000	
PC Monitors	15.36\%	332	0.32\%	5,627	. 0000	
Digital Cameras	19.12\%	476	0.77\%	3,394	. 0000	
Notebook PCs	38.51\%	161	6.07\%	494	. 0000	
Total	13.70\%	1,671	0.26\%	39,363	. 0000	

Note: Categories with unsupportive results are indicated by * and italic. p-Value is an asymptotic significance level derived from Pearson χ^{2} test.

Table R8. Price Changes in Multiples of $\mathbf{\$ 1 0 0}$ in Internet: $\$ 99.99$ - vs. Non- $\$ 99.99$-endings

Category	\$99.99-Endings		Non-\$99.99-Endings		p-Value	
	Multiples of \$100	Sample Size	Multiples of \$100	Sample Size		
Music CDs	N / A					
Movie DVDs						
Video Games						
Software*	0.00\%	37	0.29\%	5,492	. 7423	
PDAs*	2.94\%	34	0.97\%	1,757	. 2531	
Hard Drives*	0.00\%	36	0.06\%	6,916	. 8852	
DVD Players	8.93\%	56	0.59\%	1,537	. 0000	
PC Monitors	12.50\%	64	1.03\%	5,895	. 0000	
Digital Cameras	14.39\%	139	2.60\%	3,731	. 0000	
Notebook PCs	41.18\%	17	13.32\%	638	. 0011	
Total	10.07\%	407	0.71\%	40,627	. 0000	

Note: Categories with unsupportive results are indicated by * and italic. p-Value is an asymptotic significance level derived from Pearson χ^{2} test.

[^0]: * Corresponding author: Daniel Levy, Department of Economics, Bar-Ilan University, Ramat-Gan 52900, ISRAEL. Tel: + 972-3-531-8331, Fax: + 972-3-738-4034, Email: Levyda@mail.biu.ac.il.

[^1]: ${ }^{1}$ See, for example, Blinder, et al. (1998), Carlton (1986), Cecchetti (1986), Caplin (1993), Warner and Barsky (1995), Lach and Tsiddon (1996), Slade (1998), Ball and Romer (1990, 2003), Davis and Hamilton (2004), Fisher and Konieczny (2000, 2006), Konieczny and Skrzypacz (2005), and Rotemberg (1987, 2005). For recent surveys, see Willis (2003) and Wolman (2007).
 ${ }^{2}$ See also the studies of the European Central Bank's Inflation Persistence Network, e.g., Fabiani, et al. (2006).

[^2]: ${ }^{3}$ See, e.g., Ball, Mankiw and Reis (2005), Mankiw and Reis (2002), Reis (2006a, 2006b), and Woodford (2003).

[^3]: ${ }^{4}$ In case of missing data because the sellers' web sites were inaccessible or the price information was not available, then we used the following procedure. If 10% or more observations were missing for a product, then that series was excluded from the data altogether. If less than 10% of the data was missing, then we examined if the prices for the day before and the day after were the same. If they were the same, then the software agent automatically filled in for the missing data with that price. Otherwise, the agent filled in for the missing data with the price for the day after. We recognize that this is an arbitrary procedure. However, there are only 0.075% missing prices in the entire dataset, and thus missing data are unlikely to affect our results significantly.
 ${ }^{5}$ The categories were selected based on their popularity on the Internet. In addition, the products in these categories are sold by a large number of stores. For example, in the category of digital cameras, "Canon-EOS Digital Rebel XT" is sold by 63 stores. The selection of products was random. For example, in the category of DVDs, we chose products from multiple sub-categories (e.g., action, drama, comedy, etc.). Similarly, in the music CDs category, we chose from many different sub-categories (e.g., blues, jazz, country, etc.). However, in some categories (e.g., notebook PCs and hard drives), we included all the products available. In other categories (e.g., DVD players, digital cameras, PC monitors, software), we randomly chose products from all sub-categories. For example, in DVD players, we chose half of the products from standard DVD players while the other half came from the more expensive DVD/VCR combo players. In digital cameras and camcorders, we chose half from regular digital cameras while the other half came from digital camcorders. In PC monitors, we chose half from CRT and flat CRT models, and the other half from LCD and TFT. In the software category, we chose products from multiple genres of software (e.g., educational software, operating systems, programming software, utility software, etc.). Similarly, in video games, we included multiple genres (adventure, action, sports, etc.). See Figures R8a-R8i in the reviewer's appendix for sample price series.

[^4]: ${ }^{6}$ Indeed, according to Dutta, et al. (1999) and Levy, et al. (1997, 1998), the average price of an item in large U.S. supermarket chains during 1991-92 was about \$1.70. According to Bergen, et al. (2008), the figure increased to $\$ 2.08$ by 2001.
 ${ }^{7}$ To save space, most of figures and tables on individual product categories are included in a separate reviewer's appendix to this paper. We shall note that the results for individual product categories are similar to the aggregate results we report here.
 ${ }^{8}$ The products in the Beer and Cigarettes categories are highly regulated that could potentially skew the results (Besley and Rosen, 1999, footnote 6). We, therefore, do not discuss the results of their analyses.
 ${ }^{9}$ Benford's Law, also known as the Significant Digit Law, predicts that in many naturally occurring settings such as tables, measurements, etc., the distribution of the leftmost digits is logarithmic, and not uniform as one would expect. See, for example, Varian (1972) and Hill (1995). For example, the probability of 1 occurring as the leftmost digit is $\log _{10} 2 \approx 0.301$, the probability of 2 occurring as the leftmost digit is $\log _{10}(3 / 2) \approx 0.176$, etc. This surprising fact was discovered in 1881 by Newcomb (1881), who noticed that the pages of logarithm tables containing numbers starting with 1 were more worn out than the other pages. In 1938 Benford (1938) studied over 20,000 different data sets, including areas of rivers, baseball statistics, numbers in magazine articles, and the street addresses of the first 342 people listed in the book American Men of Science and concluded that these indeed obeyed the Law. Under Benford's Law, the probabilities of the digits tend to being uniformly distributed as we move from left to right. For the second digits the skew is from 12 percent for the 0 down to 8.5 percent for the 9 . Nigrini (2002, Ch. 7) shows that as a first approximation, one can argue that the last-two digits are equally likely for each combination from 00 to 99 in three-digit and higher numbers. Therefore, the distribution of the rightmost digits that we find in our data cannot be explained by Benford's Law. We thank Mark Nigrini for his insight on this.
 ${ }^{10}$ With the exception of five categories (canned tuna, cigarettes, front-end-candies, oatmeal, and paper towels), the 99\& ending prices are the most common than other two-digit ending prices. Even in the five categories where the 994 ending is not the most popular, it is still very common and ranks in the top five price-endings among the 100 possible endings. See Figures R2a-R2c in the reviewer's appendix.

[^5]: ${ }^{11}$ The results on the use of 9 for the last three and four digits in the Internet data, and some of the results in the section on price changes in the Internet data are presented only in tables as they are too numerous to be plotted.
 ${ }^{12}$ Note that there are 1,000 possible endings here.
 ${ }^{13}$ Note that there are 10,000 possible endings here.
 ${ }^{14}$ For results on individual product categories in the Internet data, see the reviewer's appendix.

[^6]: ${ }^{15}$ Category level data indicate some cross-category variation, although in general they are consistent with the above finding. I.e., in most categories, price changes in multiples of 10 cents are more common than other price changes. See the reviewer appendix.

[^7]: ${ }^{16}$ For hard drives, changes in multiples of ten dollars are the fourth most popular category. For CDs and DVDs, they are not ranked in the top 20, because the prices for both products are low and thus the price changes rarely reach $\$ 10$.

[^8]: ${ }^{17}$ We should note, however, that the internet price series seem to have far fewer sales and promotions. Indeed, inspection of the internet price series suggests that there are not many cases of temporary price decreases which are reversed after two-three weeks. See, for example, the sample time series shown in Figures R8a-R8j, in the Referee Appendix.

[^9]: ${ }^{18}$ Landsburg (1995) describes the historical origins of 9-ending prices. See also Ginzberg (1936).
 ${ }^{19}$ See Shugan (1980), Ball and Mankiw (1994), Ball (2000), Mankiw and Reis (2002), Ameriks, et al. (2003, 2004), Zbaracki, et al (2004), Ball, et al (2005), Rotemberg (2003, 2005, 2008), Reis (2006a, 2006b), Klenow and Willis (2007), and Knotek (2006).
 ${ }^{20}$ This is known as the place-value principle (Debaene, 1997). For example, each one of the three digits that make up number 999 signifies different magnitude because of their different location in the number, even though the three digits are identical. This principle applies only to Arabic numerals. It does not apply, for example to Roman numerals.
 ${ }^{21}$ The argument holds even if the marginal cost remains constant because marginal benefit declines as we move from left to right.
 ${ }^{22}$ This is consistent with recent laboratory experiment findings that people tend to drop the rightmost digit in processing price information (Bizer and Schindler, 2005). This kind of selective consumer inattention to price information is consistent with evidence from surveys of consumer behavior in this industry (Progressive Grocer, November 1974, p. 39 and Progressive Grocer, February 1964, pp. C104-C106, as cited by Gabor and Granger (1961) and Carlton and Perloff (2000)). This behavior is consistent also with the marketing literature on "just noticeable differences" in consumer behavior (Monroe, 1970, 2001), where consumers do not react to small price changes because they do not "notice" them (Kalyanaram and Little 1994).

[^10]: ${ }^{23}$ The optimality of inattention to the last digit is not universal. For example, the strategy of ignoring the last digit as a timesaving device will not be very efficient in processing such numeric information as phone numbers, social security numbers, etc. ${ }^{24}$ Consistent with this idea is a recent study by Chen, et al. (2008), which also uses the Dominick's data and finds more frequent "small" price increases than decreases, for price changes of up to about 10¢. After ruling out standard models of price adjustment or inflation as explanation, they argue that the asymmetry might be due to consumer inattention.

[^11]: ${ }^{25}$ The phenomenon of 9-ending prices has also received considerable attention in the marketing literature, where most studies explain the 9 -ending pricing phenomena on psychological grounds. Our explanation shares their emphasis on behavioral considerations for pricing phenomena. Most of these explanations, however, rely on some form of irrational behavior, making them more difficult to incorporate into economic analyses. For example, according to Nagle and Holden (1995, p. 300), buyers perceive the 9 -ending prices "... as significantly lower than the slightly higher round numbers that they approximate." As another example, Schindler and Kirby (1997) posit that consumers might perceive a 9-ending price as a round-number price with a small amount given back. Other theories argue that sellers like to give change or that buyers like to receive a change. It has been suggested also that 9 -ending prices may be interpreted as discount prices and thus are indicative of good bargains. Finally some authors note the cognitive accessibility of certain numbers, such as 0 and 5 , to explain pricing points. See Shapiro (1968) and Monroe (1990) for reviews of earlier literature. Basu (1997, 2006), Anderson and Simester (2003), and Ruffle and Shtudiner (2006) provide reviews of more recent literature. Rotemberg (2008) contains critical analyses of these and other related studies. ${ }^{26}$ We shall note an important caveat. While our data suggests that 9 -ending prices tend to be significantly more rigid than the non-9-ending prices, it is not clear that this rigidity, by itself, is necessarily an indicator of monetary non-neutrality. It could be that the retailers are actually charging the maximum flexible price and merely round the price up to the nearest 9 (if that price does not already end with 9). In such a world money would have no systematic effect on output, even though nominal prices are sticky. The average price level, in that case, would approximately equal the flexible price level plus half the gap between the price points (the average distance from the frictionless price to the next price point). In this sense, our finding of the 9-ending dominance suggests that retailers price on a grid (see, e.g., Genesove, 2003).
 ${ }^{27}$ USA Today has reported that "France, Spain and Britain quit producing low-denomination coins in recent decades because production costs kept going up while the coins' purchasing power went down" (Copeland 2001). More recently, it has been reported that in many EU countries which have adopted the Euro, the public seems to be exhibiting resistance to the use of 1-cent and 2-cent denomination coins. This is due to the inconvenience their use entails. The International Herald Tribune reports that these coins are "small, nearly valueless-and a nuisance to millions of Europeans. The tiny denomination 1- and 2-cent Euro coins are annoying shoppers and disrupting business from Paris to Milan" (Pfanner 2002, p. 1). In 2001, Rep. Jim Kolbe (RArizona) introduced the "Legal Tender Modernization Act," to make the U.S. penny obsolete. The bill was defeated. Previous attempts made in 1990 and 1996 also died in Congress (Copeland 2001). Recently, CBC featured an article on October 10, 2007, on "A 'penniless' Canada," and reported that Australia and New Zealand have already eliminated their pennies.
 ${ }^{28}$ See Bils and Klenow (2004), Levy and Young (2004), and Campbell and Eden (2005).

[^12]: ${ }^{29}$ See, for example, Ehrmann (2005) and Hoffmann and Kurz-Kim (2009), and the studies cited therein.
 ${ }^{30}$ The use of price points might have a strong normative component. We are unlikely to see 9 -ending prices in certain settings. For example, imagine the patients' reaction if the dentist tells them that "A tooth filling costs $\$ 79.99$ - it's today's Special!" Or how about our reaction if we are considering corrective eye surgery, and the eye doctor's office manager tells us: "First eye - full price; the second eye - 50% off."
 ${ }^{31}$ See Fengler and Winter (2001), Ratfai (2003), Mostacci and Sabbatini (2003), and Konieczny and Rumler (2007).
 ${ }^{32}$ According to Heeler and Nguyen (2001), in the Chinese culture, numbers have special significance and symbolism. Even the sounds of the numbers can suggest good or bad luck. For example, the number 8 represents luck to Cantonese Chinese because it sounds like multiply or get rich ($f a$ in Cantonese). In Japan, 8 also has great symbolic significance because the writing of the number 8 looks like a mountain ("八"), and thus the number 8 signifies growth and prosperity. Heeler and Nguyen (2001) find that close to 50% of restaurant menu prices sampled in Hong Kong had 8 -endings, which they refer to as "happy endings." Also, a Time Magazine article (Rawe, 2004) reports that at the casino of a recently-built $\$ 240$ million hotel, Sands Macao in Macao, China, the slot machines' winning trios of 7's have been replaced with trios of 8's. Consistent with these observations, note that the opening ceremony of the Beijing Olympic Games, held in the Beijing National Stadium, began exactly at 08:08:08pm on 8/8/2008. The cultural importance of numbers is not limited to "happy endings." For example, according to Mirhadi (2000), when the Masquerade Tower was added to Hotel Rio in Las Vegas in 1997, the architects decided to skip the $40^{\text {th }}$ to the $49^{\text {th }}$ floors because the Arabic numeral " 4 " in Chinese sounds similar to the word "death." The elevators in the building went directly from the $39^{\text {th }}$ floor to the $50^{\text {th }}$ floor.
 ${ }^{33}$ Additional analyses (not reported here to save space) show that 9 is indeed more rigid than any other digit in our datasets. Other popular digits in our data (e.g., 5), do not consistently lead to more price rigidity, and even when they do, the rigidity associated with them is considerably less compared to that associated with 9.

