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Abstract  

We study sequential innovation in two pyramidal structures. In both, patent pools are 

socially desirable. In a regular pyramid, patent pools are stable. In an inverse pyramid, 

patent pools are not stable when following a standard formation process. We offer a more 

elaborate formation protocol that allows for the creation and stability of the largest pool 

possible. We also examine welfare implications of patent protection in both structures. In 

the regular pyramid, as it expands, patent protection increases the likelihood of innovation. 

In the inverse pyramid patent protection always decreases the likelihood of innovation.   
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1. Introduction 

John Wager's group at Oregon State University developed the world’s first 

transparent transistor in 2003 (See http://oregonstate.edu/ua/ncs/archives/2003/mar/osu-

engineers-create-worlds-first-transparent-transistor). John Wager and his team developed 

the world’s first simple integrated circuit that will also be transparent in 2005 (See 

http://engineering.oregonstate.edu/news/ar/2005/transparentelec.html). These in turn 

formed the "basis" for innovations in diverse fields such as solar cell technology, displays 

manufacturing and others.  

Robert N. Hall, working at General Electric filed his patent for a semiconductor 

laser on October 24, 1962, (See "Remembering the Laser Diode" (2012)). This invention 

was again the source of several innovations along a wide spectrum of areas such as, fiber-

optic cables, DVD's, scanning devices and others. 

A different pattern of innovative activity is observed in the creation of flash 

memory drives. There several innovations combined to produce a viable solution for 

conveniently storing and accessing large amounts of data. It started with the inventions of 

the flash memory chips and the USB. Fujio Masuoka leading a team of engineers invented 

the flash memory chip, filing a patent for EEPROM (electrically erasable, programmable 

read-only memory) in 1981. In 1994 Ajay V. Bhatt, Bala Sudarshan Cadambi, Jeff Morriss, 

Shaun Knoll and Shelagh Callahan created the first USB (universal serial bus) port. This 

brought about the first flash memory drives known as memory sticks (by Sony in October 

1998) and disk on key (by M-Systems in 1999). 

The above two patterns can also be discerned in other areas. Consider for example 

the medical research community. The Human Genome Project entailing a host of new 

technologies and approaches to map and identify specific genes, led to innovations in 

diverse areas. In biotechnology, sequencing of the DNA helped in devising new treatments 

and medications. In the energy industry, it improved the use of fossil-based resources. In 

environmental protection, studying the genomes of several bacteria led to better methods 

of environmental rejuvenation and waste disposal. 

  The efforts to find a viable cure for AIDS exhibited the opposite pattern where 

innovations addressing different facets of the disease led to partial solutions for different 
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stages of it and different symptoms experienced by the patients. These efforts culminated 

in the AIDS cocktail. It combined several drugs, each addressing a specific concern such 

as, revitalizing immunologic functions, suppressing viral load and improving quality of 

life. It is of interest to note that this research was accompanied by a call to expand patent 

pools. Médecins Sans Frontières called for strengthening Medicines Patent Pools to make 

it easier for new medications to arrive at the market place.  

Such examples are prevalent in most areas of sequential innovation and indeed, are 

often associated with the formation of patent pools. Sequential innovation occurs when 

current innovation(s) depends on the successful realization of a previous innovation(s). 

Patent pools form when several patentees agree to jointly determine the price of licenses, 

granting the right to use their patents. 

In this paper we analyze sequential innovation and patent pools within the two 

innovation structures that characterized the previous examples. We describe them as a 

"regular pyramid" and an "inverse pyramid" structures. In a regular pyramid the number 

of firms in each period expands, with each current period successful innovation giving rise 

to several subsequent possible innovations in the next period. In an inverse pyramid the 

number of firms in each period shrinks with only one firm in the final stage. The firms 

active at each stage solve more and more problems focusing the “research question” and 

leading to a smaller set of relevant innovations in the next period.  

            In both structures we consider first the question whether or not a patent pool will 

form4 (that is whether a patent pool arrangement is stable) and its impact on the innovative 

activity followed by studying the effect of patent protection on innovative activity. We also 

examine, in the case of a regular pyramid, the welfare implications of the various protection 

measures and compare them to the benchmark of a central planner wishing to maximize 

social welfare.  

Our main findings regarding pool formation and patent protection are the following:  

• As in previous studies we show that the creation of a pool increases the 

probability of innovation and the innovators' profits in each period. 

                                                           
4 We consider the case where at most a single pool might form. 
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• In the regular pyramid structure, a pool can be form endogenously using a 

"natural" protocol. However, this protocol fails to lead to the formation of a 

pool in the inverse pyramid structure, and we provide a novel and more 

elaborate protocol supporting, in equilibrium, the creation of the largest 

possible pool.   

• In the regular pyramid structure patent protection increases the probabilities to 

innovate as the pyramid expands, while in the inverse pyramid structure patent 

protection leads to reduced innovation probabilities for any pyramid size.  

• Finally, comparing the outcomes generated in the regular pyramid structure to 

the "first-best" scenario achieved by a central designer. We see that the absence 

of patent protection leads to under investment in R&D and introducing patent 

protection is more effective when a pool forms. Yet, both with and without a 

pool, there are circumstances under which patent protection will lead to a 

further welfare decrease.  

Policy implications thus differ for the two pyramid structures. In a regular pyramid, 

policy makers can rely on a "natural" offer and reject protocol to support the creation of a 

pool. In an inverse pyramid structure, they need to intervene by increasing the bargaining 

power of later rather than earlier innovators leading to a more elaborate offer and reject 

protocol. In an inverse pyramid the introduction of patent protection reduces the likelihood 

of innovation, whereas, in a regular pyramid, it might lead to higher innovation 

probabilities when the pyramid is not too narrow.     

The paper proceeds as follows: Section 2 discusses the related literature on 

sequential innovation, patent pools and patent protection. Section 3 introduces and analyzes 

the regular pyramid structure. Section 4 analyzes the inverse pyramid structure. Section 5 

concludes and raises directions for further research.  

2. Related Literature 

Patent protection for sequential innovations has been extensively discussed in 

previous literature. In a two-period model of sequential innovation, Green and Scotchmer 
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(1995) and Scotchmer (1991) examined the effect of patent policy on the sharing of profits 

among the first and second-generation innovators and the implications regarding patent 

length and breadth. Scotchmer (1996) analyzed how patent protection offered to second-

generation innovators affected the division of profits between them and the first innovator. 

It was shown that denying such protection increased the profit of the first innovator and 

might be optimal.  

Boldrin and Levine (2005) found that the intellectual property rights monopoly 

created by patent protection is exasperated in the presence of sequential innovation. The 

accumulation of patentees with claims upon the profits of future innovations reduced the 

incentives to innovate. Bessen and Maskin (2009) showed that in an infinite period model 

of sequential innovation the introduction of patents reduces welfare. This was in contrast 

to their finding in a static one-period model. Llanes and Trento (2012) obtained the same 

result even when accounting for the ex-ante incentive to innovate which is positively 

affected by the expectations of future revenues in the form of license fees or royalties in 

the presence of patent protection.  They showed that the formation of a patent pool 

alleviates the problem. Hopenhayn et al. (2006) analyzed a rich model of sequential 

innovation with private information and designed an optimal patent menu.     

The analysis of patent pools started with one-period innovations. Shapiro (2001) 

and Tirole (2015) analyzed the effect of patent pools in the presence of patent thickets. 

Patent pools were shown to be socially desirable in the case of perfectly complementary 

patents. On the other hand, when patents are perfect substitutes they are socially 

detrimental as they prevent competition and lead to higher license fees. Lerner and Tirole 

(2004) extended these results to the full spectrum from perfect substitutability to perfect 

complementary of patents. Furthermore, it was shown that if there is compulsory 

independent licensing, only welfare enhancing pools will emerge in equilibrium. Boutin 

(2016) pointed out that when there are more than two patent holders, there might be other 

equilibria giving rise to welfare reducing pools. She constructed a modified mechanism 

imposing caps on revenue generated through independent licensing to rule out such 

equilibria. Brenner (2009) showed welfare reducing pools can emerge when it is possible 

to form partial pools (Lerner and Tirole (2004) considered only complete pools consisting 
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of all available patents). He proceeded to suggest a pool formation protocol which leads to 

the formation of welfare improving pools only.  

Quint (2014) draws a distinction between essential and nonessential patents. 

Considering a set of final products, a patent is called essential if it is necessary to use it in 

the manufacturing of any of the products. Previous literature considered the case where all 

patents are inessential, as was the case in Lerner and Tirole (2004), or all are essential as 

in Llanes and Trento (2012). Quint (2014) derived a payoff structure for any partition of 

the patents into pools and showed that even under compulsory independent licensing 

requirements welfare decreasing pools may form. 

Aoki and Nagaoka (2004) followed a different line of research focusing on the 

incentive to form a pool. They highlighted the free-rider problem that occurs when an 

innovator outside the pool licenses its innovation to firms that also rely on the pool patents. 

The bargaining power of such an innovator often makes it impossible for a pool to form.    

Llanes and Trento (2012) considered a linear structure of innovations and examined 

the incentives to innovate and welfare under three distinct regimes, patent protection, no 

patents and patent pools. They also constructed a reward-payment mechanism, leading to 

an optimal outcome, where an innovator is first rewarded for a successful innovation and 

is taxed later on when subsequent innovations are realized. 

An interesting perspective regarding several of the above findings is provided by 

Heller (1998) and Heller and Eisenberg (1998). These works analyzed the “tragedy of the 

anticommons”. In contrast to the “tragedy of the commons” where many agents have the 

right to freely use a certain resource, the “anticommons” case describes a scenario where 

many agents have the right to deny access to a certain resource. The “tragedy of the 

anticommons” leads to suboptimal utilization of the resource. In the innovation literature 

this tragedy surfaces as several patent owners have the right to prevent further innovations 

relying on one of their patents.  

Baron and Pohlman (2013) analyzed the composition of firms cooperating via 

standard arrangements (bearing several similarities to pool arrangements). Their findings 

indicate that firms are more likely to form alliances with those conducting research on 

substitute technologies or patents than with those pursuing complementary research. This 

might be due to savings created by avoiding duplicate research but might lead to welfare 
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reductions as predicted by standard theory. Galasso and Schankerman (2015), examined 

the problems posed by patent protection in a sequential innovation setting. They looked at 

the effect of court decisions revoking patent rights, and found that removing patent 

protection has a larger effect on subsequent innovative activity in the cases where the patent 

blocks several subsequent innovations. 

3. The Regular Pyramid Model 

We now procced to describe the innovative environment we analyze5. We consider 

a 3-period pyramidal structure of innovations. There is a single firm in period 1, called firm 

1,  there are s firms in period 2 called firm 2,…,s+1, and n·s firms in period 3, where firms 

i1,..,in denote the n period 3 firms relying on the innovation of firm i with i=2,…,s+1. Each 

of the firms has to decide whether or not to undertake R&D. Furthermore, engaging in 

R&D activity in period t=2, 3 is possible only if the t-1 period (parent) firm has innovated. 

In each period every firm, if the preceding firm was successful, decides whether or not to 

invest in R&D. The first period firm (there is no one preceding it) takes into account both 

current revenues due to the innovation (realized in period 1) as well as future revenues in 

periods 2 and 3 due to the possible payments that subsequent firms relying on her 

innovation must pay it. The period 2 firms take into account current costs (payment to the 

parent firm) and revenues (realized in period 2) and future revenues due to payments made 

by period 3 firms. The period 3 firms again take into account current costs and current 

revenues. All firms wish to maximize their expected profit.  

The innovative environment is introduced more formally as follows: 

The direct cost of undertaking R&D, denoted by ε, is known and common to all firms. The 

revenue due to the innovation itself is uniformly distributed over [0,1], and its realization, 

denoted by v, is privately observed by the innovating firm6. We let p(1,ij) denote the 

payment made by firm ij in period 3 to the period 1 firm, and p(i, ij) be the payment made 

by firm ij to firm i of period 2 (its parent) where i=1,…,n and j=1,…,s. Future payment 

periods are discounted by β. πk(1) denotes the future revenues of a firm 1 from period k 

                                                           
5 This innovation technology is similar to the one used in Llanes and Trento (2012). 
6 This value is appropriated by the innovating firm even when there is no patent protection.  
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(k=2,3) onwards, π3(i) denotes the future revenues of firm i in period 2 from period 3 with 

i=2,…,s+1. Each firm decided to innovate, if it can, whenever the realization of the 

innovation value is greater than or equal to the cost of innovation incorporating both license 

fees and the direct cost. The innovation threshold implied by the cost determines 

probability to innovate respectively denoted by, q1, q2(i) and q3(ij) , the probability that the 

period 1 firm, firm i in period 2 and firm ij in period 3 undertake R&D. 

The strategic decisions of the firms depend on the scope of protection offered to 

innovators. We analyze and compare four possible scenarios: patents, patent pools, no 

patents and finally having a central planner organize the innovative activity.  

 

3.1 Patents 

Patent protection allows the firms to charge license fees for any subsequent use of 

their innovations. These license fees are their sole source of income in the periods 

following the period where innovation occurred. License fees are set simultaneously in the 

beginning of each period leading to the following extensive form game, which we refer to 

as the License Setting Game (LSG).  At each period k, previous period firms that have 

innovated decide on the license fees and period k firms decide, having observed their 

innovation value, whether or not to innovate. We assume firms wish to maximize their 

discounted expected profits and examine the resulting subgame perfect equilibrium 

(SGPE) outcome. 

Starting at period 3, let m≤s denote the number of firms that undertook R&D in 

period 2. Hence, there are m+1 firms that have to decide upon the license fees that m·n 

period 3 firms will pay for the right to use their innovations. A period 3 firm, after having 

observed the license fees as well as its innovation value decides whether or not to undertake 

R&D. The firms in each period are symmetric and the resulting equilibrium strategies and 

outcome are symmetric as well. To simplify the notation we, whenever possible, omit the 

firm index, keeping only the period index. Thus, we replace p(1,ij) by p13 , p(i, ij) by p23, 

π3(i) by π23 , π3(1) by π13 and q3(ij ) by q3 ∀� = 1,… ,�, � = 1,… , 	 . We also replace p(1,i) 

by p12 ,  π2(1) by π12 and q2(i ) by q2 ∀� = 2,… , � + 1 . 
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The following proposition describes the equilibrium strategies and outcome of the 

LSG in the innovative environment we analyze. 

Proposition 1. 

a. In period 3 the subgame perfect equilibrium strategies and outcome of the LSG 

are given by: �� = �� = ����  yielding: �� = ���� 		 , ��� = ���	(1 − �)�	  , ��� = ��	(1 − �)�  

b. In period 2 the subgame perfect equilibrium strategies7 and outcome of the 

LSG are given by: 

i. 	�� = ����   , �� = ��� �9 + 2	�(1 − �)�(1 − �) and ��� = ��� �(9 +2�	(1 − �))�(1 − �)�  for 		 < �(�"�)�#(���)$, (the interior solution8). 

ii. 	�� = %#(���)$� − � , �� = 1 and ��� = �� �(2	�(1 − �)� − 9�) for 

 	 ≥ �(�"�)�#(���)$ (the corner solution) 

c. In period 1 the innovation threshold of undertaking R&D yields the following 

probabilities: 

i. q1=��		{ ��� (324 + ���9 + 2	�(1 − �)��(1 − �)+ (1 − �), 1} for the 

interior solution. 

ii. �� = ��		{�� (9 + ��(2	�(−1 + �)� − 9�) − 9�),1} for the corner 

solution 

The proof is in Appendix A.1. 

So far we have ignored the incentives for and consequences of coordination 

among the various innovators. Cooperation leading to such coordination is often done 

within patent pools which we address in the next section.   

                                                           
7A firm’s strategy consists of setting an innovation threshold and license fees to be charged. Since the innovation 

threshold uniquely determines the probability to innovate and vice versa, we specify in the strategy description 

the probability to innovate rather than explicitly state the threshold.   
8 In an interior (corner) solution 0<q2<1 (q2=1). 
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3.2 Patent Pools 

A common coordination device both in theory and in practice is a patent pool 

arrangement. Pools have emerged in several industries, some examples are the sewing 

machine industry in the 19th century, aircraft industry in the 20th century and MPEG video 

and DVD standards in the late 1990s. We consider a patent pool as defined in Lerner and 

Tirole (2004). The firms comprising the pool jointly decide the license fee for freely using 

any patent in the pool. In contrast to Lerner and Tirole (2004), we explicitly consider the 

dynamic creation of the pool and its stability. The equilibrium analysis carried out in the 

previous section is now augmented by the pool formation process with the new strategic 

decision of whether or not to join and how to share the pool’s profits.  

As in Lerner and Tirole (2004) we distinguish between two scenarios. The first is 

the standard case where firms in the pool cannot sell individual licenses. The second is, the 

independent licenses scenario, where each firm in the pool can charge and collect an 

independent license fee from any firm that wishes to use its innovation, this in addition to 

receiving its part in the revenues generated by the pool.      

3.2.1 The Standard Case 

The possible formation of a pool takes place at the end of period 2. Note that the 

pyramid structure implies forming a pool consisting just of period 2 firms cannot increase 

the aggregate profits of the pool members. Hence, the period 1 firm must be a member in 

any patent pool that forms. We make the simplifying assumption that the period 1 firm has 

all the bargaining power9.  

We assume the formation protocol is the following: The period 1 firm, sequentially 

approaches period 2 patentees (those who chose to undertake R&D), offering them the 

option to join the pool. The option consists of an invitation to join the pool together with a 

promise to receive a part of the pool’s profits. The patentee approached can accept or reject. 

If it accepts, it joins the pool, if it rejects, it stays out of the pool. This process ends when 

                                                           
9 This assumption simplifies the computations but is inconsequential with respect to the conclusions regarding the 

formation of the pool. 
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all the patentees have been approached and yields a partition of the patentees into two sets, 

those who are in the pool (together with the period 1 firm) and those who are not. The game 

that unfolds with respect to setting license fees is similar to the one analyzed in the previous 

section with the pool acting as a single player.  

Period 3 firms face the same decision problem as in the previous section. At the 

start of period 3 the patentees (period 2 firms who chose to innovate) decide whether or 

not to enter a pool and license fees are determined in a LSG between the pool and the  firms 

outside the pool. At period 2, each firm after observing its innovation value, decides 

whether or not to undertake R&D. The period 1 firm decides whether or not to undertake 

R&D and sets the license fees charged to period 2 firms in case it chooses to innovate.  

Determining a full solution leading to the equilibrium values of probabilities to 

innovate and firms' profits in each period is computationally cumbersome. However, to 

examine the pool formation and its stability, it suffices to obtain the equilibrium outcomes 

in period 3, which we now proceed to determine.  

The formation of the pool takes place in the beginning of period 3. We let z denote 

the number of firms in the pool. Again we simplify the notation and omit the firm index 

since the solution will be symmetric. Let Qz3, qz3 respectively denote the probability of 

undertaking R&D for a firm relying on a period 2 innovation that belongs, does not belong, 

to the pool when there are z firms in the pool. Pz3, pz3 respectively denote the license fee 

paid by a period 3 firm using a patent in, not in, the pool. Πz3, πz3 are defined as pool 

revenue and the revenue of a patentee that does not belong to the pool, respectively. 

We again assume firms wish to maximize their expected profits and analyze the 

resulting SGPE outcome. 

Claim 1: 

i. The revenues of a pool containing z firms and a firm outside the pool are -.� =/%(��/�.)$(���)$(���/�.)$ , and 	�.� = /$%(���)$(���/�.)$ respectively.  
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ii. The payoff functions of a pool containing z firms and a firm outside the pool are  0.� =(/".��)(���)��"�/".  and .� = /(���)��"�/". respectively. 

iii. The probabilities that a period 3 firm with both "parents" in the pool and a period 3 

firm with only one "parent" in the pool will undertake R&D are given by: 1.� =�/(���)��"�/". and	�.� 	= /(���)��"�/". respectively. 

 

The proof is in Appendix A.2 

Proposition 2:  

In any SGPE, a pool consisting of period 1 firm and all period 2 firms, which innovated, 

is formed. 

Proof: 

 Differentiating the payoff functions derived in Claim 1, we see that as the number of 

firms in the pool increases the profit of the pool increases and the profit of a firm outside 

the pool decreases. The increase in the pool’s revenues is due to the “double 

marginalization” phenomena10. 

In light of the pool formation protocol where the period 1 firm has all the bargaining 

power it must be that in any SGPE: 

(i) The period 1 firm offers a firm outside the pool the profits it would obtain, were 

it to reject the offer. 

(ii) A firm outside the pool accepts any offer great than or equal to the profit it 

obtains when it decides not to join the pool. 

                                                           
10 The prices charged by competing firms producing complementary goods exceed the prices 

charged for these goods when the firms merge to form a single monopoly. 
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In light of that the offer made to a period 2 firm when there are z patents in the pool is 

given by πz3. To see whether it pays the period 1 firm to make this offer we evaluate the 

expression 

Π3"�,� − Π3� − π3� = m�n(3m� − z(4 − 3z) − 2m(4 − 5z))(1 − ϵ)�(1 − 3m − z)�(3m + z)�  

This expression is positive for 1≤z≤m+1. Hence, in any SGPE equilibrium, the largest pool 

possible is formed at the beginning of period 3. Also note that the pool is stable, the fact 

πz3 decreases in z implies no firm in the pool can gain by deciding to exit the pool. Also, 

the assumption we made regarding the pool formation protocol whereby a firm that rejected 

an offer to join, does not receive any further offers is without loss of generality. Since, no 

firm can gain by rejecting an offer anticipating to get a better one at a later stage. ▄ 

Since the patent pool that forms consists of all the patents in period 1 and 2 we can 

now simplify the notation and use:  

Π� = Π:"�,� ; P� = P:"�,� ; Q� = Q:"�,� 

It is also easy to see that the creation of a pool in the beginning of period 3 increases 

both the probability that a period 3 firm will engage in R&D and its profits in such a case. 

In summary, we have shown that in the regular pyramid model a patent pool forms 

endogenously in period 3. In the next Section we study the independent licenses case which 

raises several new issues and also allows for a full analytic solution, yielding equilibrium 

levels of innovation probabilities and profits for all periods.  

3.2.2 The Independent Licenses Scenario 

The analysis so far has been carried out under the assumption that the use of a patent 

in the pool is possible only when buying access to the whole pool. We now consider the 

case where firm 1 after forming the pool may offer independent licenses for any patent 

belonging to the pool11. Note that due to the “double marginalization” the period 1 firm 

                                                           
11 The independent licensing feature appeared in Lerner and Tirole (2004) where its purpose was to screen out 

welfare reducing pools.  
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and period 2 firms in the pool will not sell individual licenses to period 3 firms relying on 

their innovations. As before the formation of the pool takes place in the beginning of period 

3 and z denotes the number of firms in the pool. Q3�= , q3�?  respectively denote the probability 

of undertaking R&D for a firm relying on period 2 innovation that belongs, does not 

belong, to the pool when there are z firms in the pool. P3�= , π3�?  are similarly defined as in 

the previous section. Π3�= , now denotes the revenue of the period 1 firm from selling access 

to the pool as well as independent licenses to firms outside the pool. Furthermore, p3��=  , p3��=  

denote the independent license fees charged by the period 1 firm and a period 2 firm not 

belonging to the pool when there are z firms in the pool.  

We now proceed to analyze the equilibrium in the game starting at the beginning 

of period 3 with z-1 period 2 firms in the pool and m-z+1 outside the pool (again looking 

for a symmetric equilibrium). The period 1 firm has to choose two license fees, p3��= , an 

independent license fee for period 3 firms that do not rely on period 2 patents belonging to 

the pool and P3�=  , a pool license. Each of the period 2 firms not in the pool has to choose p3��=  , a license for its patent.   

Claim 2:  

1. The revenues of a pool containing z firms and a firm outside the pool are -.�= =
1

36
	(4� + 5A − 5)(1 − �)�and 	�.�? = ��	(1 − �)� = ���	respectively	

2. The payoff functions of the pool and the firm are given by  0.�= = ����  and .��= = .��= =
���� . 

3. The probabilities that a period 3 firm with both "parents" in the pool and a period 3 

firm with only one "parent" in the pool will undertake R&D are given by: Q3�= = ����  

and	q3�? 	= ����  respectively. 

The proof is in Appendix A.3 
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Proposition 3: 

In any SGPE, a pool consisting of all period 1 and 2 firms, who innovated, is 

formed. 

Proof: 

The revenues derived in Claim 2 show that the pool’s profit is increasing in the 

number of firms in the pool.  

Similar to before it must be that in any SGPE: 

(i) The period 1 firm offers the firm outside the pool the profits it would obtain, 

were it to reject the offer. 

(ii) The firm outside the pool accepts any offer great than or equal to the profit 

it obtains when it decides not to join the pool. 

In light of that the offer made to a period 2 firm when there are z patents in the pool 

is given by π3,�B= . Since Π3"�,�C −Π3�= − π3�? = ��Dn(1 − ϵ)� > 0, this must be the offer made 

by firm 1 in any SGPE.  

Hence, in any SGPE, the largest pool possible forms at the beginning of period 3. 

Also note that since π3�?  is constant, the pool is stable, that is, no firm in the pool can gain 

by deciding to exit the pool. ▄ 

Hence, in equilibrium the pool formed consists of all period 1 and 2 patents. Every 

period 2 patent receives the same payment for joining the pool, equal to its profits in the 

case where there is no pool. Thus, the possibility to issue independent licenses increased 

the bargaining power of period 2 firms, even though no independent licensing occurs in 

equilibrium. Also, note that pool payoff and probability of innovation are the same as in 

Proposition 3. The only thing that changes is the profit sharing within the members of the 

pool in favor of the period 2 firms.  

Note that the profit of firm 1 declines once it cannot commit not to offer 

independent licenses. This may seem surprising at first since it seems that even when 
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having to offer licenses it could set the independent license equal to the pool license. 

However, this choice is not part of a Nash equilibrium of the LSG in period 3. The Nash 

equilibrium outcome of this game indeed yields lower profits. Furthermore, note that the 

profit of a period 2 firm outside the pool is larger than in the case of no independent 

licensing. This is partially due to the fact that when joining the pool, a period 2 firm gives 

up the right of issuing independent licenses. Finally, in contrast to the previous case we 

stress that the profit of a firm 2 outside the pool is independent of the pool size.  

The next step is to analyze the firms’ behavior in periods 1 and 2. We show the 

probability that a period i firm innovates, denoted by Qi, increases following the formation 

of the pool 

Proposition 4: 

A pool increases weakly the probability to innovate at each of the three periods 

for each firm. (�G ≤ 1G 	IJK	L	M	�) 
The proof is in Appendix A.4 

Since the probability of innovation increases in profits we also obtain that the formation of 

a pool increases firm profits as well. 

3.3 No Patents 

Without patent protection, the probability that a firm innovates given that its 

“parent” innovation occurred, is constant and equals 1-ε, since in the absence of protection 

there are no license fees to pay or receive. However, the probability of innovation in a 

given period must also incorporate the probability that all innovations leading up to this 

period have been realized. Hence the probability of any period i innovation occurring, with 

no patent protection is (1-ε)i.  

The effect of patent protection on the innovation probabilities as a whole is not 

obvious. License fees that need to be paid reduce the innovation probability for the later 

generation firms while increasing the probability for earlier generation firms. However, 
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comparing the probabilities for innovation in periods 2 and 3 across the two regimes of 

protection or no protection we see that protection is more justified as n and s increase. 

Proposition 5 

Introduction of patent protection increases (decreases) the probability of 

innovation in period 3 relative to the no patent regime when s and n are large (small) and ϵ is close enough to 1 (0). 

The proof is in Appendix A.5 

3.4 Social welfare  

Aggregate social welfare is determined by the innovation thresholds set by the 

various firms, since the license fees paid to early innovators cancel out. Denoting by vO the 

innovation threshold’s value in period i, aggregate social welfare, denoted by W, is given 

by:  

W(v�, v�, v�) =Q (t − ϵ + β · sV (u − ϵ + β · nX (v − ϵ) dv�
Z[ ) du�

Z$ ) dt
�

Z\
 

The last integral is the welfare gain in period 3 with threshold v3. The second to last integral 

is the welfare gain in period 2, taking into account the discounted period 3 welfare gains, 

with threshold v2 and so on. Substituting the thresholds obtained we can provide a welfare 

ranking of the pool and no pool cases. The ranking is unequivocal in the interior case and 

yields the following proposition: 

Proposition 6: 

The introduction of a patent pool improves welfare relative to the no pool case for 

the interior solution. 

The proof is in Appendix A.6 

The cases where some innovation probabilities are 1, are more cumbersome 

computationally and at times require the addition of some constraints on the parameters 

and are detailed in the appendix following the proof of the proposition. 
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 However, note that the introduction of patents and/or patent pools can either 

increase or decrease social welfare compared to the no patents regime. This is clearly 

shown by the following figure which is drawn for ϵ � 0.7 and β � 0.95. n and s are 

measured along the horizontal axis and W is given by the vertical axis. The red graph 

represents the pool scenario, the blue graph the patent without a pool scenario and the green 

graph represents the no patent scenario. 12  

We now examine the decisions a central planner would take in order to maximize 

social welfare. The central planner decides to innovate as long as the social benefit exceeds 

the social cost. The social benefit equals the value of the innovation itself plus the value of 

future innovations made possible by it. Note, as before, that since the central planner is 

interested in maximizing total welfare she does not take into account the license fees 

transferred between different innovators. Thus, the social cost is the direct R&D cost given 

by the realization of ϵ. 

The social planner determines the innovation thresholds, denoted by vi, for each 

period i. That is each firm is instructed to innovate if the realization of its innovation value 

exceeds the threshold.  

To determine the socially optimal innovation thresholds for interior solutions in 

each period we start from period 3. In period 3, the final period, the central planner 

                                                           
12 It can also be shown that as ϵ decreases the set of (n,s) pairs for which patents are welfare increasing, expands. 
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maximizes social welfare by innovating when the R&D cost is lower than the commercial 

value. Thus we obtain v�_ � ϵ. Hence, in period 2 the social value of innovation will be: 

v + βn ∙ a (t − ϵ) dt�b . Therefore, we obtain v�_ � ϵ − βn ∙ (��b)$�  . Finally, in period 1, the 

social value of innovation is given by: v + βs ∙ a ct − ϵ + βn ∙ (��b)$� d dt�b�ef∙(\gh)$$ . 

Therefore, we get: 

v�i = ϵ − ej
� ∙ c1 − ϵ + βn ∙ (��b)$� d� = ϵ − �

� sβ(2 + nβ(1 − ϵ))�(1 − ϵ)�.  

We note that the thresholds set by a central planner are not higher than the 

thresholds set by the firms when patents are not available. Since the firms take into 

account only the value of the invention itself rather than the aggregate social value. 

 

4. The Inverse Pyramid Model 

We again consider a 3-period pyramidal structure of innovation with the same per-

firm innovation technology. However, the pyramid is “inverted”. There is a single firm in 

period 3, it has s parent firms in period 2, and each one of those s firms has n parent firms 

in period 1. Each firm relies on the innovations of its parent firms and can engage in R&D 

activity only if all its parent firms have successfully innovated. All firms maximize their 

expected profit and each firm takes into account both current and future revenues when 

reaching its innovation and licensing decisions. In this setting we just analyze the behavior 

of the firms in period 3. A full equilibrium analysis is computationally complex as the 

profits of each firm depend on the innovation activities of both, firms in the same period 

and subsequent periods.  

We analyze the strategic decisions of all firms in the beginning of period 3. We 

show that a patent pool, when considered independently of the pool formation process is 

not stable. This is not surprising as we deal here with essential patents as in Aoki and 

Nagaoka (2004), Llanes and Trento (2012) and Quint (2014). However we use the inverse 

pyramid structure to suggest a pool formation process that augmented by the LSG may lead 

to the formation of a patent pool consisting of all ns firms.  
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At period 3 each of the s firms in period 2 decides upon pk
23 where k=1,…s, and 

each of the ns firms from period 1 decides upon pk
13 where k=1,…,ns. Innovation in period 

3 is possible only if all the s potential firms of period 2 have innovated. All the (n+1)s firms 

from periods 1 and 2 face the same decision problem. As before in equilibrium they all set 

the same license fee and denoting it by p3, the probability of innovation in the third period 

by q3 and profit of each firm (from periods 1 and 2) in period 3 by π� we obtain: p� �
��b

�"j"jf  , q� � ��b
�"j"jf. π� � (��b)$

(�"j"jf)$ 

We now show that patent pools in this environment are not stable. This is due to 

the fact that each firm exiting the pool is just as “powerful” as the rest of the pool, since all 

patents are essential for creating new innovations. Each firm leaving the pool is “free 

riding” on the pool, since the pool’s existence increases the probability of innovation in the 

third period which increases its expected profits.  

To show that a pool in the beginning of period 3 is unstable we first consider the 

profits of a pool formed by all the innovators. These profits are given by:	Π� � Q� ∙ P� 

When Q� is the probability to innovate after a pool has been established, and P� is the pool's 

license fee. As before  Q� � 1 − ϵ − P� and thus we obtain P� � Q� � ��b
�   and Π� �

1

4
(1 − ϵ)�	note that in the inverse pyramid structure double marginalization actually turns 

into multi marginalization. Hence, as before, the pool increases the probabilities to 

innovate, decreases the license fees and increases the firms' profit in each period.   

To analyze the decision to leave the pool we now examine the profits of a pool after 

z-1 firms have left it. These profits are the result of an equilibrium in a z players game. One 

player is the pool and the other z-1 players are all the firms that quit the pool. Let p3�B  and 

π3�B  denote the license fees and profits of the quitting firms, and P3�O ,	Π3�O  denote the pool's 

license fee and profit, respectively. 

Thus we get P3�O � p3�B � ��b
�"3 , and Π3�O � π3�B � (1�b)$

(�"3)$.  
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Proposition 7: 

A pool is never part of a LSG equilibrium if the numbers of "parent" innovators 

satisfy s +sn≥3.  

The proof is in Appendix A.7 

We now address the pool creation issue by suggesting a more elaborate pool 

formation process. It relies in part on the inverse pyramid structure, granting each firm the 

right to exclude some of its parent firms and ends in one of two possible outcomes. One 

outcome is the formation of a pool in the beginning of period 3 consisting of all period 1 

and 2 firms, the other has all period 1 and 2 firms acting as “singletons” in the beginning 

of period 3 and interacting in a license setting game with (n+1)s firms. 

We provide first an informal description of the formation process. Note that in order 

for a pool to form it must be the case that all s period 2 firms have successfully innovated. 

The process consists of three rounds of play. In the first round the period 2 firms play a 

simultaneous game where they indicate whether or not they wish to join a pool. This round 

is followed by a simultaneous offering game and finally a license setting game in the third 

round. In the offering game all the firms that agreed to join the pool in the first round play 

a simultaneous offering game with their parent firms. This offering game itself proceeds 

sequentially. The period 2 firm sequentially offers its parents a payment (possibly different 

for different parents) if they agree to join the pool. If all the parent firms of the period 2 

firm agreed to join the pool, then the period 2 firm and its parents are members of the pool.  

The first time a refusal to join the pool is encountered, the offering game terminates. A 

period 2 firm which encountered a refusal can then decide whether it stays in the pool with 

all the “consenting” parents or whether it leaves the pool in which case this firm and all its 

parents are not in the pool13. Finally, in the third round, the pool generated in the two rounds 

and the singletons outside it engage in a LSG for the third period firm.  

                                                           
13 The fact that the first rejection terminates the offering stage, increases the bargaining power of a period 2 firm. 

The increased bargaining power makes it profitable for a period 2 firm to form a pool since it reduces the payment 

necessary to induce period 1 firms to join the pool. It also leads to a tractable set of subgame perfect equilibrium 

outcomes. 
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More formally the formation process is given by the following extensive form game: 

Round 1 

Each period 2 firm j, where jεS={1,…,s}, simultaneously announces xjε{Y,N}. The 

firms are then partitioned into two sets, I={jεS | xj=Y} and O={jεS | xj=N} and the process 

moves to round 2. 

Round 2 

The active firms in this round are the ones in I, the firms in O wait for the beginning 

of round 3 where they will play as singletons in the LSG. Each of the firms in I, 

simultaneously, plays in the following offering game, described below for a firm iεI, with 

its parent firms: 

The Offering Game  

Firm i, following the natural order with i1 first and in last, offers xis to parent firm 

is. The parent firms sequentially accept or reject the offer. If all offers have been accepted, 

firm i pays the offers and the n+1 firms (firm i and its parent firms) move to round 3 where 

they play as a singleton player, setting a license fee for the bundle consisting of all n+1 

innovations.  

The offering game terminates when a rejection occurs. Let ij* denote the first parent 

firm to reject an offer. Firm i then chooses whether to stay in I together with all its 

consenting parents or whether to exit the pool and move to round 3 where firm i and all its 

parents play as n+1 singletons. 

All these offering games are carried out simultaneously and round 2 ends with a 

partition of all (n+1)s firms into one pool and several singletons based on the outcomes 

realized in the various offering games of round 2. 

   Round 3 

Let K+1 denote the number of subsets of firms forming the partition. That is, one 

pool and K singletons. These K+1 subsets play the licensing game described as follows. 

Each subset sets a license fee paid by the period 3 firm for using patents belonging to the 
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firms in it. The payoff of the pool player in the Nash Equilibrium of this game is equally 

shared among the period 2 firms that belong to it.  

The payoffs of any of the (n+1)s firms from round 1-3 are the sum of payoffs from 

rounds 2 and 3. 

We will show there exist a range of n and s values for which the subgame perfect 

equilibria of this game lead to one of two possible outcomes. The pool outcome, where all 

firms create a single patent pool or a singleton outcome where all firms stay as singletons. 

For values outside this range a single patent pool cannot be part of a SGPE equilibrium 

while the singleton outcome remains an equilibrium. We show by numerical examples that 

it is also possible for a partial pool to form in equilibrium. We recall that the profit of each 

player (singleton or the pool) in a LSG game with L players is given by 
(��b)$
(k"�)$ . This leads 

to the following claim: 

Claim 3: For any (	, �) ∈ m where T={(n,s)|	(%"�)$�% < � < (%"�)$
 (%"�)}, in any SGPE the 

number of singletons entering Round 3 is either 0 or (n+1)∙s. 

The proof is in Appendix A.8 

Claim 4: The pool outcome, where all firms create a single patent pool, is a SGPE if 

(	, �) ∈ m .  

The proof is in Appendix A.9 

Claim 5: The “singleton” outcome where all firms stay as singletons is a SGPE outcome. 

The proof is in Appendix A.10 

Remarks: 

1. When following a departure of a pool member, the pool moves first in the Stage 3 LSG 

and the departing firms move second we obtain a different and larger range of (n,s) pairs 

for which Claim 3 holds. 
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2. For (n,s) pairs outside the range described in Claim 3, while full cooperation does not occur 

in equilibrium, partial pools may still form in equilibrium as shown by a numerical example 

in Appendix A.8. 

3. Note that the range of (n,s) pairs in Claim 3 allows for the formation of arbitrarily large 

pools, whereas in previous findings (Aoki and Nagaoka (2005, 2004)), the pool outcome 

occurred only for a small number of firms.  

4.1 No Patents 

Without the possibility for patent protection, as in Section 3.3, the probability of 

any period i innovation occurring is (1-ε)i.  

The effect of patent protection on the innovation probabilities is again not trivial to 

assess. However, in the case where pools are not allowed to form, the introduction of patent 

protection reduces the probability of the third period innovation. The license fees that the 

third period firm has to pay all the second period innovators greatly diminish its incentive 

to innovate. This result is formally stated in the following proposition.    

Proposition 8: 

In the “no-pool” equilibrium, introduction of patent protection always decreases 

the probability of the third period innovation relative to the no-patent regime.  

The proof is in Appendix A.11 

5. Conclusion 

We studied sequential innovations and the endogenous formation of patent pools in 

two pyramidal structures. In the regular pyramid structure we provided a complete analysis 

of the patent, patent pools and no patens scenarios. We have shown that the introduction 

of patents and patent pools has ambiguous effects on the innovation probabilities and social 

welfare but is more justified the larger is the pyramid. In the patent pool scenario we 

constructed a simple protocol leading in SGPE to the formation of a stable pool of all the 

firms that have successfully innovated.    
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In the inverse pyramid structure we have shown that a patent pool is not stable and 

cannot be part of a SGPE following the simple protocol suggested for the regular pyramid 

case. However, we provided a more elaborate protocol taking into account the pyramid 

specific structure. In this protocol, each firm negotiates with its parent firms. If the offers 

it makes are rejected, it may exclude some or all of its parents form the pool. The SGPE 

induced by this protocol lead to two possible outcomes, either a pool joined by all the firms 

that have innovated or a singleton outcome where no pool is formed. We also show that in 

the absence of pools, patents are not justified in the inverse pyramid structure, since they 

reduce the probability to innovate the final innovation.  

The inverse pyramid structure used in this paper can be applied to a standard 

production setting where a final marketable product is based on several essential 

components, which are produced by independent monopolies. In this case, a "pool" is 

formed by having these monopolies merge and decide jointly on the pricing of all the 

components. Our conclusions regarding the formation of a pool and its welfare implication 

carry through to such environments.   

In this paper we assumed innovations are symmetric. That is, each innovation relies 

on the same number of "parent" firms and paves the way for the same number of follow-

up innovations. Relaxing this assumption leads to more complex calculations but does not 

affect our main conclusions regarding pool formation.  

Our findings augment those reported in several previous studies along the 

dimensions of the justification for patents, desirability of pools and pool stability. Boldrin 

and Levine (2005) and later Bessen and Maskin (2009) showed that patents slow down the 

innovative activity. Our regular pyramid model produces the same conclusion when the 

pyramid is narrow enough (Bessen and Maskin (2009) considered a "linear" pyramid with 

one innovation at each period). The same can be said about our inverse pyramid. We do 

find patents are justified when allowing for wider pyramids.  

Shapiro (2003), Gilbert (2004), Lerner and Tirole (2004) and Llanes and Trento 

(2012) concluded pools are desirable when patents are close to being perfect complements. 

We reach the same conclusion in our richer structure which explicitly models the formation 
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of pools, taking into account the incentives to join or leave a pool. Furthermore we take 

into account the influence of the pool on innovative activity in the periods preceding it.  

Finally, we contribute to the study of pool formation. Llanes and Trento (2012) and 

Quint (2014) noted that the incentives to exit a pool increase, rendering it unstable when 

large enough. Aoki and Nagaoka (2004) provide a stable formation process when there are 

4 firms. We showed pools are always stable in a regular pyramid structure whereas in an 

inverse pyramid structure stability was obtained only when using an elaborate formation 

protocol. This non-stability might explain why a patent pool is not formed, and the need 

(as in the AIDS example) for the intervention of government or non-profit organizations to 

facilitate their creation. Our formation protocol shows that granting later innovators a 

superior bargaining position might be a possible solution to the pool creation issue.  

More work needs to be done on the effect of time dependent rewards to innovations 

and on extending the model to more periods. Such an extension would also enable us to 

study the optimal length of a patent as in Llanes and Trento (2012). The stability of pools 

is also closely related to the large literature on coalition formation and it remains to be seen 

whether several formation protocols raised in that context can be applied in innovative 

environments.  

APPENDIX – Proofs 

A.1 Proof of Proposition 1  

a. The problem faced by periods 1 and 2 firms that have undertaken R&D is what license 

fees p13 and p23 should be set for the period 3 firm. A period 3 firm will undertake R&D 

and thus pay the license fee only when its current revenue exceeds R&D cost and 

license revenues. Thus the probability that a period 3 firm will undertake R&D as a 

function of the licenses set is: q� � 1 − ϵ − p�� − p�� and we obtain the following 

payoff functions for the period 1 and 2 firms: 

π�� =n cn ∙ mi d ∙ q�O ∙ (1 − q�):∙f�O ∙ i ∙ p��:∗f
Oqr   
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π�� = n cnid ∙ q�O ∙ (1 − q�)f�O ∙ i ∙ p��f
Oqr   

These reduce, substituting for q3, to: 

π�� = mnp��(1 − ϵ − p�� − p��)  
π�� = np��(1 − ϵ − p�� − p��)  

So, the Nash Equilibrium of this m+1 firms’ LSG is given by:  p�� = p�� = ��b� . 

Substituting we obtain:	q� = ��b� , π�� = ��mn(1 − ϵ)� ,π�� = �� n(1 − ϵ)� 

b. The probability that a period 2 firm will undertake R&D as a function of the license 

set is: q� = 1 − ϵ − p�� + βπ��. The expected revenue of the period 1 firm from the 

licenses paid by period 2 firms is derived by taking the expectation over m≤s (m 

being the number of firms who decide to innovate in period 2). Thus, we obtain the 

following payoff function for the period 1 firm from period 2 onwards: 

π�� �stc smdq�:(1 − q�)j�:(mp�� + βπ��)uj
:qr

 

When		 < �(�"�)�#(���)$  the solution is interior, the period 1 firm sets p�� = ��b�  to 

maximize its profits. Substituting we obtain: π�� = ��� s(9 + 2βn(1 − ϵ))�(1 − �)� and q� = ��� (9 + 2	�(1 − �))(1 − �), 
When		 ≥ �(�"�)�#(���)$  we are at a corner solution, where �� = %#(���)$� − � is the 

largest license fee for which q2=114, and the period 1 firm profit is given by: �� �(2	�(1 − �)� − 9�). Note that the number of potential firms in period 3 does not 

                                                           

14	p�� ≥ ��b
�  at a corner solution, since reducing the license fee does not increase the probability of innovation in 

the second period as it is already at its maximum value of 1. 
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affect q2 since the license fee charged by the period 1 firm extracts the surplus a period 2 

firm expects to get from its followers. 

c. Finally, at period 1, the probability of undertaking R&D is: q� � 1 − ϵ + β		π��	. 
Substituting the revenues from b, we obtain the probability to innovate in period 1 for 

both interior and corner solutions.  

A.2 Proof of Claim 1  

Note that period 3 firms whose parent firm does not belong to the pool, have to purchase 

both, a license for its parent firm and a license for the pool (since the period 1 firm belongs 

to the pool). Thus, the probabilities that a period 3 firm not in the pool and a period 3 firm 

in the pool will undertake R&D as a function of the license fees set are given by: q3� 	=1 − ϵ − p3� − P3� and Q3� = 1 − ϵ − P3�. The payoff function of a firm not belonging to 

the pool and the pool’s payoff function are respectively given by: 

π3� =n �fx�q3�x(1 − q3�)f�xk ∙ p3�f
xqr = np3�(1 − P3� − p3� − ϵ)   

and 

Π3� = zs �f(3��)x �Q3�x(1 − Q3�)f(3��)�x ∙ k +n �f(:�3"�)x �q3�x(1 −f(:�3"�)
xqr

f(3��)
xqr

q3�)f(:�3"�)�x ∙ k{P3� = nP3�((z − 1) ∙ p3� +m(1 − ϵ − P3� − p3�) 
The first term represents the average number of firms which decide to innovate in 

period 3, those which rely on patents in the pool as well as those that do not (recall that 

they have to pay for the use of the period 1 patent).  

The Nash equilibrium outcome of this LSG with 1+(m-(z-1))=m-z+2 players is given by: 

P3� = (m+ z − 1)(1 − ϵ)−1 + 3m+ z  
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p3� = m(1 − ϵ)−1 + 3m + z 
Substituting these values into the payoff functions of the pool containing z firms and a firm 

outside the pool we obtain: 

Π3� = mn(1 − m− z)�(1 − ϵ)�(1 − 3m − z)�  

π3� = m�n(1 − ϵ)�(1 − 3m − z)� 

A.3 Proof of Claim 2  

The payoff function of the period 1 firm is given by:  

Π3�= =n cn(z − 1)k dQ3�= x ∙ (1 − Q3�= )f(3��)�x ∙ kP3�=f(3��)
xqr +n cn(m − z + 1)k dq3�? x ∙ (1 − q3�? )f(:�3"�)�x ∙ kp3��=f(:�3"�)

xqr  

Whereas, the payoff function of each of the m-z+1 period 2 firms not in the pool is given 

by: 

π3�? =n cnkd q3�? x ∙ (1 − q3�? )f�x ∙ kp3��=f
xqr  

Where, Q3�= = 1 − ϵ − P3�=  and q3�? = 1 − ϵ − p3��= − p3��=  

The unique Nash Equilibrium of this LSG is given by: P3�= = ��b�  and p3��= = p3��= = ��b� . 

Substituting these values into the payoff functions we obtain that the profits of the pool 

containing z firms, when the period 1 firm offers independent licenses, and the profit of a 

firm outside the pool are respectively given by: 

Π3�= = 1

36
n(4m + 5z − 5)(1 − ϵ)� 
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π3�? = 19n(1 − ϵ)� = π�� 

A.4 Proof of Proposition 4  

As before the probability that a period 2 firm will innovate is given by: 

 Q� = 1− ϵ − P�� + βπ�� The expected revenue of the period 1 firm is again 

derived by taking the expectation over m≤s (m being the number of firms who decide to 

innovate in period 2). We let Π�� be the profit of the firm in the first period and P�� the 

license fees that firms from period 2 pay to the period 1 firm. Therefore,  Π�� �
n � j:�Q�:(1 − Q�)j�:(mP�� + β(Π� −mπ��))j

:qr  

When		 ≤  (�"�)#(���)$ the solution is interior, the period 1 firm sets	P�� =�|� �36 − nβ(1 − ϵ)�(1 − ϵ)Substituting we obtain Π�� = �D s(4 + nβ(1 − ϵ))�(1 −
ϵ)�	and Q� = 1

8
(4 + nβ(1 − ϵ))(1 − ϵ). 

When		 >  (�"�)#(���)$ we are at a corner solution, where 0�� = �� (	�(1 − �)� − 9�), 
is the largest license fee for which q2=1, and the period 1 firm's profit is given by: 	� �(	�(−1 + �)� − 4�)  

Finally at period 1, the probability of undertaking R&D is: 

1� = 1 − ϵ + β		Π��	 and therefore  1� = min	{1 + �D ��(−4 + 	�(−1 + �))�(−1 +�)� − �, 1} in the interior solution, and 1� = min	{1 + � ��(	�(−1 + �)� − 4�) − �, 1} 
in the corner solution. 

Comparing these values to those derived in the no-pool case we see that as in 

previous studies the creation of a pool weakly increases the probability of innovation and 

the innovator’s profits in each period15.  

                                                           
15 For the case where Q2=q2 =1 we need to add the condition that β<0.8. 
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A.5 Proof of Proposition 5  

Note that the probability to innovate in period 3 with patent protection exceeds the 

probability to innovate without patent protection if and only if q� ∙ q� ∙ q� > (1 − ϵ)� if 

there is no pool, and if and only if  Q� ∙ Q� ∙ Q� > (1 − ϵ)� when a pool forms. First we 

can see that when n=s=1 these inequalities are not satisfied. However, when n and s 

increase, the probabilities to innovate in period 1 and 2 approach 1 whether or not there is 

a pool. Since Q3=(1-	ϵ)/2 and q3=(1-	ϵ)/3, for ϵ large enough patent protection increases 

the probability to innovate in period 3. The opposite is true for small enough n,s,	ϵ .  

A.6 Proof of Proposition 6  

It can be easily shown, by straight forward substitution, that  

W(1 − Q�, 1 − Q�, 1 − Q�) −W(1 − q�, 1 − q�, 1 − q�) = 

	��� ~248832 + � t69984� + 	 (64368 + �� c53784 + 	��13722 + 1163	�(1 −
�)�(1 − �)d (1 − �)+u (1 − �)� (1 − �)� > 0  

when all innovation probabilities are less than 1.  

We now proceed to analyze all the "corner" cases where some of the probabilities 

are 1. Note that since Qi≥qi there are 8 cases that need to be checked 

Case 1: All innovation probabilities in periods 1 and 2 with or without a pool equal 1, the 

claim is verified by substitution. Since �(0,0, 1�) −�(0,0, ��) = �|� 	���(1 −�)(17� − 5) > 0   

We now note that W is decreasing in its third argument, the innovation threshold in 

the third period, when it is above  , the central planner's threshold, since 
����[ = 	�(1 −v�)(1 − v�)��(� − v�). Hence the welfare in the pool case is larger than the welfare in a 
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hypothetical scenario where the pool's innovation threshold in the third period is replaced 

by the no-pool threshold of the third period keeping everything else constant.  The proof 

in all the following cases consists of showing that the welfare realized in the hypothetical 

scenario exceeds the welfare in the no-pool case. 

Case 2: Q2,q2<1,Q1=q1=1: 

 �(0,1 − Q�, 1 − Q�) − �(0,1 − q�, 1 − q�) > �(0,1 − Q�, 1 − q�) − �(0,1 −q�, 1 − q�) = %�#$�|�"��%#(���)�(���)[�r�D� > 0 

Case 3: Q1=Q2=q1=1,q2<1 

�(0,0,1 − Q�) − �(0,1 − q�, 1 − q�) > �(0,0,1 − q�) − �(0,1 − q�, 1 − q�)= 	− 1648 ��(16	���(−1 + �) + 81(1 + �)(−1 + 3�)− 18	�(−1 + �)�(3 + 7�)) 
Tedious	 calculations	 show	 this	 expression	 is	 non-negative	 for	 all	 values	 of	 n,s	 for	which	Q2=1	and	q2<1.	
Case	4:	Q2=q2=1,	Q1,q1<1.		
In	this	case	the	following	inequalities	must	hold:	

	�(−1 + �)� > 4(1 + �)	
	���(−1 + �)� < 4(� + ���)	
2	�(−1 + �)� > 9(1 + �)	

	��(1 + �)(−1 + �)� < 9(� + ���)	
Again,	through	several	manipulations	it	can	be	shown	these	 inequalities	cannot	be	satisfied	by	any	admissible	set	of	parameters.		
Case	5:	Q2=	Q1=q2=1,	q1<1	
In	this	case	the	following	inequalities	must	hold:	
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2	�(−1 + �)� > 9(1 + �)				
		���(−1 + �)� > 4(� + ���)			

		��(1 + �)(−1 + �)� < 9(� + ���)	
2	�(−1 + �)� > 9(1 + �)	

Similar	 to	 before	 it	 can	 be	 shown	 these	 inequalities	 cannot	 be	 satisfied	 by	 any	admissible	set	of	parameters.		
Case	6	:	Q2=	Q1	=1,	q2	,q1<1		

2	�(−1 + �)� < 9(1 + �)	
	���(−1 + �)� > 4(� + ���)	

���9 − 2	�(−1 + �)��(−1 + �)� < 324�	
	�(−1 + �)� > 4(1 + �)		

These	inequalities	are	inconsistent	for	�	close	to	1	and	s>1.	
		 Case	7:	Q2=1,	q2	,q1,	Q1<1.	

	���(−1 + �)� < 4(� + ���),2	�(−1 + �)� < 9(1 + �), ��(9 − 2	�(−1 +�))�(−1 + �)� < 324�, 	�(−1 + �)� > 4(1 + �)		
These	inequalities	are	inconsistent	for	�	close	to	1.	

Case	8:	Q1=1,	q2	,q1,	Q2<1.	
�(0,1 − Q�, 1 − Q�) − �(1 − q�, 1 − q�, 1 − q�) > �(0,1 − Q�, 1 − q�) −�(1 − q�, 1 − q�, 1 − q�) = �� + �#(� "%#(��"�))(��r�"��%#(��"�))(��"�)$���� −

(�| �D�� �#(��"�%#(��"�))(��|"�%#(��"�))(��"�)"�$#$(��"%#(��"�))(��"�%#(��"�))[(��"�)$)(��"�)$� ��� −�		
Which	is	positive	when	�	is	close	to	1.	
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A.7 Proof of Proposition 7 

Assume there exist a pool containing z firms in an equilibrium of the LSG. Let h 

be the number of players in this LSG (the pool and all the other firms acting as singletons).  

Hence, the gain from unilaterally leaving the pool is given by 
(1�b)$(�"�)$. Hence the equilibrium 

payoff for each pool's member must be at least 
(1�b)$(�"�)$. However, the pool's profit is 

(1�b)$(�"�)$ 
and for ≥ 2, �1�b�$.(�"�)$ < (1�b)$(�"�)$ . Hence the pool does not generate enough profits to keep its 

members from deserting it and no pool will form in equilibrium. 

A.8 Proof of Claim 3  

Assume by way of contradiction there is a SGPE where the number of singletons 

is θ= θ1+ θ2, where θi is the number of period i firms that are not in the pool with nθ2≤ 

θ1≤ns, 0≤ θ2<s and 0 < θ < (n+1)s-1. Then there must be at least one period 2 firm which 

we denote by α that enters stage 3 in a pool together with γ≥0 parent firms. To determine 

the offer Firm α made to each of its parents in this candidate for equilibrium we note that 

if Firm α's threat to leave and then exclude all its parents is credible the offers must be: 

(��b)$
(θ"�"(�"�)"�)$  if θ< (n+1)s- γ -1 and 

(��b)$
(θ"(�"�)"�)$ if θ= (n+1)s- γ -116 (these are the payoffs 

in the LSG once the threat is carried out). To show that the threat is credible note that the 

payoff to firm α from staying in the pool is: 
(��b)$

(j��$)(θ"�"�)$ − �(��b)$
(θ"�"(�"�)"�)$ if θ<(n+1)s- γ 

-1 and 
(��b)$
(θ"�)$ − �(��b)$

(θ"(�"�)"�)$ if θ= (n+1)s- γ -1. If Firm α were to leave the pool it would 

obtain  
(��b)$

(θ"�"(�"�)"�)$ if θ< (n+1)s- γ -1 and
(��b)$

(θ"(�"�)"�)$ if θ= (n+1)s- γ -1. 

Since for (	, �) ∈ m (i) 
(��b)$

�θ"�"(�"�)"��$>	 (��b)$
(j��$)(θ"�"�)$ − �(��b)$

(θ"�"(�"�)"�)$ and 

 (ii) 
(��b)$

(θ"(�"�)"�)$ >	 (��b)$(θ"�)$ − �(��b)$
�θ"(�"�)"��$	, we obtain that Firm α 's threat to leave 

and exclude its parents is credible. Since inequalities (i) and (ii) hold for any � ≤ 	 firm 

                                                           
16 Note that in this case γ ≥ 1. 
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α's payoff outside the pool is higher, implying a partial pool cannot be part of an 

equilibrium17. The firm can increase its payoff by making unacceptable offers to its parents 

and leaving the pool, once rejected. 

A.9 Proof of Claim 4 

           The SGPE which leads to the creation of the pool with (n+1)s members can be 

described as follows: Each period 2 firm joins the pool in round 1. Each period 1 firm 

rejects any offer below 
(��b)$
(f"�)$ and accepts any other offer. Each period 2 firm offers each 

parent firm 
(��b)$
(f"�)$ in round 2 and leaves the pool prior to round 3 if it encounters a rejection. 

Finally each firm as well as the pool (if formed) play the unique Nash Equilibrium in the 

LSG in period 3. 

This is a SGPE since no period 1 can gain by increasing its acceptance threshold. 

If it were to raise it, the period 2 firm offering it will (as we have shown in claim 3) leave 

the pool and the period 1 firm will remain with same payoff it was offered, in the new 

outcome. Lowering its threshold will have no effect on the equilibrium. A period 2 firm’s 

decision to leave the pool when encountering a rejection is a best response as shown in 

claim 1. Furthermore, a period 2 firm cannot gain by making larger offers. It remains to 

show that a period 2 firm cannot gain by lowering one of its offers. To show that note that 

its payoff in the “candidate” SGPE is:  
(��b)$
 � − f(��b)$

(f"�)$ . The payoff of such a firm, if it 

chooses to leave the pool (either directly in round 1 or by making unacceptable offers in 

round 2) is: 
(��b)$
(f"�)$ . Since (	, �) ∈ m we obtain  

(��b)$
(f"�)$ < 

(��b)$
 � − f(��b)$

(f"�)$ , which shows a 

period 2 firm cannot gain by leaving the pool and hence cannot increase its payoff by 

reducing its offer. 

In the following paragraph, we present an example regarding the second remark 

showing that for  (	, �) ∉ m a partial pool may form in equilibrium. Let n=20 and s=2. For 

                                                           
17 Inequality (i) , when  θ� � 0, holds only when � ≤ 	 − 1. However in the case where Firm α as well as all its 

parents are in the pool, there must be another period 2 firm with one or more parents outside the pool. This firm 

can now be used to show we are not in an equilibrium.  
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simplicity, we denote by 1,2 the period 2 firms and by 1i,2i (i=1,…,20) the period 1 parent 

firms of both respectively. We now describe three possible strategies for period 1 firms in 

the offering game. Strategy A is to accept any offer greater than or equal to 
(��b)$(�"�"��)$ and 

reject any smaller offer. Strategy B is to be accept any offer greater than or equal to (��b)$(�"�"��"�)$ and reject any smaller offer. Strategy C is to accept any offer greater than or 

equal to 
(��b)$(�"�"�)$ and reject any smaller offer. Assume firms 1i (i=1,…,20) follow strategy 

B, firms 2i (i=1,…,19) follow strategy A and firm 220 follows strategy C. Furthermore, 

firms 1 and 2 offer each of their "parent" firms 
(��b)$(�"�"��"�)$ and 

(��b)$(�"�"��)$ respectively if 

they agree to join the pool. It can be easily verified these strategies form a SGPE 

equilibrium where a partial pool consisting of 41 firms is formed.   

A.10 Proof of Claim 5 

            A SGPE yielding it is given by all period 2 firms refusing to join a pool in round 1. 

To see this is part of a SGPE profile strategies note that if a period 2 firms decides to join 

a pool in round 1, it will, by claim 3, make unacceptable offers to its parent firms and reach 

round 3 as a singleton (together with all its “singleton” parents) and thus will not increase 

its payoff. Hence, opting out of a pool in round 1 is part of a SGPE equilibrium.   

A.11 Proof of Proposition 8 

The probabilities to innovate in each period with patent protection are given by: 

q� = 1 − ϵ + β ∙ q�f�� ∙ q� ∙ p�� + β� ∙ q�jf�� ∙ q�j ∙ q� ∙ p�� 

q� = 1 − ϵ − n ∙ p�� + β ∙ q�f(j��) ∙ q�j�� ∙ q� ∙ p�� 

q� = 1 − ϵ − sp�� − nsp�� 

From previous results we get: p�� = p�� = q� = ��bj(f"�)"� . Therefore, we can obtain two 

upper bounds for the innovation probabilities in period 1 and 2 given by q�¡¡¡, q�¡¡¡ where: 

  q�¡¡¡ = 1 − ϵ + p�� + βq� ∙ p��,				q�¡¡¡¡ = 1 − ϵ − np�� + βq� ∙ p��. Now note that  
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nsq�¡¡¡ + sq�¡¡¡ = s(n + 1)q��¡¡¡¡  where 		q��¡¡¡¡ = 1 − ϵ + βq� ∙ p��. Hence, q��¡¡¡¡j(f"�) ≥ q�¡¡¡jf ∙q�¡¡¡j. The difference between the probabilities for realization of the innovation in period  3 

without and with patent is: 

(1 − ϵ)j(f"�)"� − q�jfq�jq� > (1 − ϵ)j(f"�)"� − q�¡¡¡jf ∙ q�¡¡¡j ∙ q� > 

(1 − ϵ)j(f"�)"� − q��¡¡¡¡¡j(f"�) ∙ q� = ¢(1 − ϵ)j(f"�) − t��b" £(\gh)$�\¤¥(¦¤\)�$u¥(¦¤\)�"j(f"�) §(1 − ϵ)   

The R.H.S can by written as ¢1 − t�" £(\gh)�\¤¥(¦¤\)�$u¥(¦¤\)�"j(f"�) §(1 − ϵ)j(f"�)(1 − ϵ) which is positive 

whenever 1 − t�" \�\¤¥(¦¤\)�$u¥(¦¤\)�"j(f"�)  is positive. Letting s(n+1) be x, we can see that the previous 

term is indeed positive for any x>3. 
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