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Abstract

The problem of approachability in repeated games with vector payoffs was intro-
duced by Blackwell in the 1950s, along with geometric conditions and corresponding
approachability strategies that rely on computing a sequence of direction vectors in
the payoff space. For convex target sets, these vectors are obtained as projections
from the current average payoff vector to the set. A recent paper by Abernethy,
Batlett and Hazan (2011) proposed a class of approachability algorithms that rely
on Online Linear Programming for obtaining alternative sequences of direction
vectors. This is first implemented for target sets that are convex cones, and then
generalized to any convex set by embedding it in a higher-dimensional convex cone.
In this paper we present a more direct formulation that relies on general Online
Convex Optimization (OCO) algorithms, along with basic properties of the support
function of convex sets. This leads to a general class of approachability algorithms,
depending on the choice of the OCO algorithm and the used norms. Blackwell’s
original algorithm and its convergence are recovered when Follow The Leader (or
a regularized version thereof) is used for the OCO algorithm.

Keywords: approachability, online convex optimization, repeated games with
vector payoffs

1. Introduction

Blackwell’s approachability theory and the regret-based framework of online learning
both address a repeated decision problem in the presence of an arbitrary (namely,
unpredictable) adversary. Approachability, as introduced by Blackwell (1956), con-
siders a fundamental feasibility issue for repeated matrix games with vector-valued
payoffs. Referring to one player as the agent and to the other as Nature, a set S in
the payoft space is approachable by the agent if it can ensure that the average payoff
vector converges (with probability 1) to S, irrespectively of Nature’s strategy. Black-
well’s seminal paper provided geometric conditions for approachability, which are
both necessary and sufficient for convex target sets S, and a corresponding approach-
ability strategy for the agent. Approachability has found important applications in
the theory of learning in games (Aumann and Maschler, 1995; Fudenberg and Levine,
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1998; Peyton Young, 2004), and in particular in relation with no-regret strategies
in repeated games as further elaborated below. A recent textbook exposition of ap-
proachability and some of it applications can be found in Maschler et al. (2013), and
a comprehensive survey is provided by Perchet (2014).

Concurrently to Blackwell’s paper, Hannan (1957) introduced the concept of no-
regret strategies in the context of repeated matrix games. The regret of the agent
is the shortfall of the cumulative payoff that was actually obtained relative to the
one that would have been obtained with the best (fixed) action in hindsight, given
Nature’s observed action sequence. A no-regret strategy, or algorithm, ensures that
the regret grows sub-linearly in time. The no-regret criterion has been widely adopted
in the machine learning literature as a standard measure for the performance of online
learning algorithms, and its scope has been greatly extended accordingly. Of specific
relevance here is the Online Convex Optimization (OCO) framework, where Nature’s
discrete action is replaced by the choice of a convex function at each stage, and the
agent’s decision is a point in a convex set. The influential text of Cesa-Bianchi and
Lugosi (2006) offers a broad overview of regret in online learning. Extensive surveys
of OCO algorithms are provided by Shalev-Shwartz (2011); Hazan (2012, April 2016).

It is well known that no-regret strategies for repeated games can be obtained as
particular instances of the approachability problem. A specific scheme was already
given by Blackwell (1954), and an alternative formulation that leads to more explicit
strategies was proposed by Hart and Mas-Colell (2001). The present paper considers
the opposite direction, namely how no-regret algorithms for OCO can be used as
a basic for an approachability strategy. Specifically, the OCO algorithm is used to
generate a sequence of vectors that replace the projection-based direction vectors in
Blackwell’s algorithm. This results in a general class of approachability algorithms,
that includes Blackwell’s algorithm (and some generalizations thereof by Hart and
Mas-Colell (2001)) as special cases.

The idea of using an online-algorithm to provide the sequence of direction vectors
originated in the work of Abernethy et al. (2011), who showed how any no-regret
algorithm for the online linear optimization problem can be used as a basis for an
approachability algorithm. The scheme suggested in Abernethy et al. (2011) first
considers target sets S that are convex cones. The generalization to any convex set
is carried out by embedding the original target set as a convex cone in a higher
dimensional payoff space. Here, we propose a more direct scheme that avoids the
above-mentioned embedding. This construction relies on the support function of the
target set, which is related to Blackwell’s approachability conditions on the one hand,
and on the other provides a variational expression for the point-to-set distance. Con-
sequently, the full range of OCO algorithms can be used to provide a suitable sequence
of direction vectors.

As we shall see, Blackwell’s original algorithm is recovered from our scheme when
the standard Follow the Leader (FTL) algorithm is used for the OCO part. Recovering
the (known) convergence of this algorithm directly from the OCO viewpoint is a bit



more intricate. First, when the target set has a smooth boundary, we show that
FTL converges at a “fast” (logarithmic) rate, hence leading to a correspondingly
fast convergence of the average reward to the target set. To address the general
case, we further show that Blackwell’s algorithm is still exactly recovered when an
appropriately regularized version of FTL is used, from which the standard O(7~/?)
convergence rate may be deduced.

The basic results of approachability theory have been extended in numerous di-
rections. These include additional theoretical results, such as the characterization of
non-convex approachable sets; extended models, such as stochastic (Markov) games
and games with partial monitoring; and additional approachability algorithms for the
basic model. For concreteness we will expand only on the latter (below, in Subsection
2.1), and refer the reader to the above-mentioned overviews for further information.

The paper proceeds as follows. In Section 2 we recall the relevant background
on Blackwell’s approachability and Online Convex Optimization. Section 3 presents
the proposed scheme, in the form of a meta-algorithm that relies on a generic OCO
algorithm, discusses the relation to the scheme of Abernethy et al. (2011), and demon-
strates a specific algorithm that is obtained by using Generalized Gradient Descent
for the OCO algorithm. In Section 4 we describe the relations with Blackwell’s orig-
inal algorithm and its convergence. Section 5 outlines the extension of the proposed
framework to general (rather than Euclidean) norms, followed by some concluding
remarks.

Notation: The standard (dot) inner product in R? is denoted by (-,-), || - || is
the Euclidean norm, d(z, S) = infseg ||z — s||2 denotes the corresponding point-to-set
distance, By = {w € R? : ||w|ly < 1} denotes the Euclidean unit ball, A(I) is the
set of probability distributions over a finite set I, diam(S) = sup, g [|s — 8’| is the
diameter of the set S, and [[R — S|l2 = supycg ses /s — §'[|2 denotes the maximal
distance between points in sets R and S.

2. Model and Background

We start with brief reviews of Blackwell’s approachability theory and Online Convex
Programming, focusing on those aspects that are most relevant to this paper.

2.1 Approachability

Consider a repeated game with vector-valued rewards that is played by two players,
the agent and Nature. Let [ and J denote the finite action sets of these players,
respectively, with corresponding mixed actions x = (x(1),...,2z(|I])) € A(I) and
y = (y(1),...,y(|J]) € A(J). Let r : I x J — R? d > 1, be the vector-valued
reward function of the single-stage game, which is extended to mixed action as usual
through the bilinear function

r(z,y) =Y 2 (@)y(i)r(i.j).
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Similarly, we denote r(x,j) = >, z(i)r(4, j). The specific meaning of (-, -) should be
clear by its argument.

The game is repeated in stages t = 1,2, ..., where at stage t actions i; and j; are
chosen by the players, and the reward vector r(i, j;) is obtained. A pure strategy for
the agent is a mapping from each possible history (i1, ji, ..., %-1,j:—1) to an action i;,
and a mixed strategy is a probability distribution over the pure strategies. Nature’s
strategies are similarly defined. Any pair of strategies for the agent and Nature thus
induce a probability measure on the game sequence (i, j)2°;.

Let

1 T
rp = ?;T(iu]’t)

denote the T-stage average reward vector. We may now recall Blackwell’s definition
of an approachable set.

Definition 1 (Approachability) A set S C R? is approachable if there exists a
strategy for the agent such that 7y converges to S with probability 1, at a uniform rate
over Nature’s strategies. That is, for any € > 0 and 6 > 0 there exists T > 1 such
that

Prob {sup d(r, S) > e} <4, (1)

t>T

for any strategy of Nature. A strateqy of the agent that satisfies this property is an
approachability strategy for S.

Remarks:

1. Tt is evident that approachability of a set and its closure are equivalent, hence
we shall henceforth consider only closed target sets S.

2. In some treatments of approachability, convergence of the expected distance
E(d(r:,S)) and its rates are of central interest; see Perchet (2014). We shall
consider these rates as well in the following.

3. In some models of interest, the decision variable of the agent may actually be
the continuous variable x (in place of i), so that the actual reward is r(z, 7).
All definitions and results below easily extend to this case, as long as x remains
in a compact and convex set, and r(z, j) is linear in z over that set.

For convex sets, approachability is fully characterized by the following result,
which also provides an explicit strategy for the agent.

Theorem 2 (Blackwell, 1956) A closed convex set S C R? is approachable if and
only if either one of the following equivalent conditions holds:



(i) For each unit vector u € R?, there exists a mized action v = xg(u) € A(I) such
that

(u,r(x,j)) <suplu,s), foralljeJ. (2)
seS

(ii) For each y € A(J) there exists x € A(I) such that r(x,y) € S.

If S is approachable, then the following strategy is an approachability strategy for S:
For z ¢ S, let ug(z) denote the unit vector that points to z from Projg(z), the closest
point to z in S. Fort > 2, if ry_1 & S, choose i; according to the mized action
xy = xg(ug(Fi_1)); otherwise, choose iy arbitrarily.

Blackwell’s approachability strategy relies on the sequence of direction vectors
u; = ug(74—1), obtained through Euclidean projections unto the set S. A number of
extensions and alternative algorithms for the basic game model have been proposed
since. Most related to the present paper is the use of more general direction vectors.
In Hart and Mas-Colell (2001), the direction vectors are obtained as the gradient of
a suitable potential function; Blackwell’s algorithm is recovered when the potential
is taken as the Euclidean distance to the target set, while the use of other norms
provides a range of useful variants. We will relate these variants to the present work
in Section 5. As mentioned in the introduction, Abernethy et al. (2011) introduced
the use of no-regret algorithms to generate the sequence of direction vectors.

A different class of approachability algorithms relies on Blackwell’s dual condition
in Theorem 2(ii), thereby avoiding the computation of direction vectors as projec-
tions (or related operations) to the target set S. Based on that condition, one can
define a response map that assigns to each mixed action y of Nature a mixed action
x of the agent such that the reward vector r(z,y) belongs to S. An approachability
algorithm that applies the response map to a calibrated forecast of the opponents ac-
tions was proposed in Perchet (2009), and further analyzed in Bernstein et al. (2014).
A computationally feasible response-based scheme that avoids the hard computation
of calibrated forecasts is provided by Bernstein and Shimkin (2015). This paper also
demonstrates the utility of the response-based approach for a class of generalized
no-regret problems, where the set S is geometrically complicated, hence computing
a projection is hard, but the response function is readily available. The response-
based viewpoint is pursued further in the work of Mannor et al. (2014), which aims
to approach the best-in-hindsight target set in an unknown game.

2.2 Online Convex Optimization (OCO)

OCO extends the framework of no-regret learning to function minimization. Let W
be a convex and compact set in R%, and let F be a set of convex functions f : W — R.
Consider a sequential decision problem, where at each stage ¢t > 1 the agent chooses
a point wy; € W, and then observes a function f; € F. An Algorithm for the agent
is a rule for choosing wy, t > 1, based on the history { fx, wg tr<i—1. The regret of an



algorithm A is defined as

Regret,(A) = sup {Z fi(wy) BEV%Z ft(w)} , (3)

where the supremum is taken over all possible functions f; € F. An effective algorithm
should guarantee a small regret, and in particular one that grows sub-linearly in 7.

The OCO problem was introduced in this generality in Zinkevich (2003), along
with the following Online Gradient Descent algorithm:

W1 = Projy (wy — mege),  ge € Ofi(wy). (4)

Here 0 f;(w;) is the subdifferential of f; at wy, (1;) is a diminishing gain sequence, and
Projy;; denotes the Euclidean projection onto the convex set W. To state a regret
bound for this algorithm, let diam(W) denote the diameter of W, and suppose that
all subgradients of the functions f; are uniformly bounded in norm by a constant G.

Proposition 3 (Zinkevich, 2003) For the Online Gradient Descent algorithm in
(4) with gain sequence 1, = %, n > 0, the regret is upper bounded as follows:

Regret,(OGD) < (dlamT(W)z + 2nG2) VT. (5)

Several classes of OCO algorithms are now known, as surveyed in Cesa-Bianchi
and Lugosi (2006); Shalev-Shwartz (2011); Hazan (2012). Of particular relevance here
is the Regularized Follow the Leader (RFTL) algorithm, specified by

Wyy1 = argmin {Z fr(w) + By(w )} ; (6)

weW

where R;(w), t > 1 is a sequence of regularization functions. With R, = 0, the algo-
rithm reduces to the basic Follow the Leader (FTL) algorithm, which does not gener-
ally lead to sublinear regret, unless additional requirements such as strong convexity
are imposed on the functions f; (we will revisit the convergence of FTL in Section
4). For RFTL, we will require the following standard convergence result. Recall that
a function R(w) over a convex set W is called p-strongly convez if R(w) — &|lwl]3 is
convex there.

Proposition 4 Suppose that each function f; is Lischitz-continuous over W, with
Lipschitz coefficient Ly. Let Ry(w) = pyR(w), where 0 < p; < pyi1, and the function
R : W — [0, Ryax] is is 1-strongly convex and Lipschitz continuous with coefficient
Li. Then

T
L — pr-1)L
Regret,(RFTL) < 2L; Z s+ (pe—pi1)Lr

+ prRmax - 7
Pt + pPr-1 - )

The proof of this bound is outlined in the Appendix.



3. OCO-Based Approachability

In this section we present the proposed OCO-based approachability algorithm. We
start by introducing the support function and its relevant properties, and express
Blackwell’s separation condition in terms of this function. We then present the pro-
posed algorithm, in the form of a meta-algorithm that incorporates a generic OCO
algorithm. As a concrete example, we consider the specific algorithm obtained when
Online Gradient Descent is used for the OCO part.

3.1 The Support Function

Let set S C R? be a closed and convex set. The support function hg : R? — RU {oo}
of S is defined as
hs(w) £ sup(w, s), w € R%
seS
It is evident that hg is a convex function (as a pointwise supremum of linear func-
tions), and is positive homogeneous: hg(aw) = ahg(w) for a > 0. Furthermore, the
Euclidean distance from a point z € R? to S can be expressed as
d(z,5) = max {(w, z) — hs(w)}, (8)
wE B>y
where Bs is the closed Euclidean unit ball (see, e.g., Boyd and Vandenberghe (2004,
Section 8.1.3); see also Lemma 16 below). It follows that

0 : z€S
argmax {(w, z) — hg(w)} = 9
e ((w,)  hs(w)) = {05 )
with ug(z) as defined in Theorem 2, namely the unit vector pointing from Projg¢(z)
to z.
Blackwell’s separation condition in (2) can now be written in terms of the support
function as follows:

(w,7(z, 1)) < sup{w, 5} = hs(w).
s€S

We can now rephrase the primal condition in Theorem 2 in the following form.

Corollary 5 A closed and convex set S is approachable if and only if for every vector
w € By there exists a mized action x € A(I) so that

(w,r(z,7)) — hsg(w) <0, Vje. (10)

We note that equation (10) defines a linear inequality for x, so that a mixed action
x € A(I) that satisfies (10) for a given direction w can be computed using linear
programming. More concretely, existence of a mixed action x that satisfies (10) can
be equivalently stated as

A
l(w-7r) = mi 1)) <h
val(w - 1) xrerzg) r?g}((w,r(z,])) < hg(w),

7



where val(w - r) is the minimax value of the matrix game with a scalar payoff that
is obtained by projecting the reward vectors (i, j) onto w. Consequently, the mixed
action x that satisfies (10) can be taken as a minimax strategy for the agent in this
game.

3.2 The General Algorithm

The proposed algorithm (see Algorithm 1 below) builds on the following idea. First,
we apply an OCO algorithm to generate a sequence of direction vectors w; € Bs, so
that

Z ((wy, ) — hg(wy)) > T max {{w, 7r) — hg(w)} — a(T), (11)

weB:
=1 ?

where 7, = r(xy, ji) is considered (within the OCO algorithm) an arbitrary vector that
is revealed after wy is specified, and a(7T") is of order o(T"). The mixed action x; € A([),
in turn, is chosen (after wy is revealed) to satisfy (10), so that (we, 7(x, ji)) —hs(w:) <
0, hence

WA
(we,re) = hg(we) < (wi, ) — (Wi, (@, ji)) = o
Using this inequality in (11), and observing the distance formula (8), yields

a(T)
T

d(ir,S) < 5L + A(T) = 0,

where A(T) = 7 ST, 01, a stochastic term that converges to 0, as discussed below.
To secure (11), observe that the function f(w;r) = —(w,r) + hg(w) is convex in
w for each vector r. Therefore, an OCO algorithm can be applied to the sequence
of convex functions fi(w) = —(w,r;) + hg(w), where r, = r(xy,j;) is considered
an arbitrary vector which is revealed only after w, is specified. Applying an OCO

algorithm A with Regret;(A) < a(T") to this setup, we obtain a sequence (w;) such
that

T T
> filw) < min 3 fi(w) +alT),
t=1 t=1

where

This can be seen to imply (11).
The discussion above leads to the following generic approachability algorithm.
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Algorithm 1 (OCO-based Approachability Meta-Algorithm)

e Given: A closed, convex and approachable set S; a procedure (e.g., a linear
program) to compute x € A(I), for a given vector w, so that (10) is satis-
fied; an OCO algorithm A for the functions fi(w) = —(w,r:) + hs(w), with
Regret (A) < a(T).

e Repeat fort =1,2,...:
1. Obtain wy from the OCO algorithm applied to the convex functions fi(w) =
—(w,rg) + hi(w), k <t —1, so that inequality (11) is satisfied.

2. Choose x; according to (10), so that (wy,r(xy, 7)) — hs(w) < 0 holds for
all j € J.

3. Observe Nature’s action j;, and set ry = r(xy, ji).

To state our convergence result for this algorithm, we first consider the term A;
that arises due to the difference between r, = r(i, j;) and r(zy,j;). The analysis
follows by standard convergence results for martingale difference sequences.

Lemma 6 Let
1
AT - T t=1 5157 51& = <wtar(it7jt) - T(xt’jt)> ’

Then E(Ar) = 0, and Ar — 0 w.p. 1, at a uniform rate independent of Nature’s
strategy. Specifically,

60
P{|Ar| > €} < a7 (12)

where py = max,eymax; yey ||r(i,7) — (@, j)||2 -
Proof Let Hy = (iy, ji, wi)1<k<t- Observe that w; and j; are chosen based only
on H; 1, hence do not depend on i;, and similarly 7; is randomly and independently

chosen according to x;. It follows that E(d;|H;—1) = 0, which implies that E(Ar) = 0.
Furthermore, (9;) is a Martingale difference sequence, uniformly bounded by

o : . PN
10e] < Nlwellzlir(ie, i) = 7 (e, ge)ll2 < maxmax[[r (i, j) = (&, 5)ll2 = po,
(where w; € By was used in the second inequality). Convergence of A; now follows by

standard results for martingale difference sequences; the specific rate bound in (12)
follows from Proposition 4.1 and Equation (4.7) in Shimkin and Shwartz (1993), upon

noting that X, 2 Sy Ok satisfies F(X2|H,) = X2 +0+ E(02.,|H,) < X2 +p2. W

Convergence of Algorithm 1 may now be summarised as follows.
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Theorem 7 Under Algorithm 1, for any T > 1 and any strategy of the opponent, it
holds w.p. 1 that
a(T
aer.s) < “0
where Ar is defined in Lemma 6 and is a zero-mean random variable that converges
to zero at a uniform rate, as specified there. In particular,

. a(T)
E(d(rT,S)) < T

Proof As observed above, application of the OCO algorithm implies (11). Recalling
(8), we obtain

d(7r, S) = max {{w, 7r) — hg(w)}

weE B
1 & a(T)
< T ;«wt, 7:) — hs(w)) + T
1 T 1 4
Z W, T xta]t hS(wt)) Ty — I'tajt)>
T = TS

But since (wy, r(x, ji)) — hs(w:) < 0 by choice of z; in the algorithm, and using the
definition of Ay, we obtain that d(rr,S) < @ + Ap, as claimed. The rest now
follows by the properties of A;, stated in Lemma 6. [ |

To recap, any OCO algorithm that guarantees (11) with @ — 0, induces an
approachability strategy with rate of convergence bounded by the sum of two terms:
the first is Q , related to the regret bound of the OCO algorithm, and the second is a
zero-mean stochastlc term of order 7~'/2 (at most), which arises due to the difference
between the actual rewards r;, = (i, j;) and their means r(zy, j;).

We conclude this subsection with a few remarks. The first two concern instances
where the stochastic term Ap is nullified.

Remark 8 (Pure Actions) Suppose that the inequality max;(wy, r(x, j))—hs(w;) <
0 in step 2 of the Algorithm can always be satisfied by pure actions (so that x; assigns
probability 1 to to a single action, i;). Then choosing such x;’s clearly implies that
r(xy, Jr) = (3¢, ji), hence the term Ay in Theorem 7 becomes identically zero.

Remark 9 (Smooth Rewards) In some problems, the rewards of interest may ac-
tually be the smoothed rewards r(xy, ji) or r(xy,yi), rather than r(ig, j;). Focusing on
the first case for concreteness, let us redefine ry as r(xy, j;), and assume that this re-
ward vector can be computed or observed by the agent following each stage t. Applying
Algorithm 1 with these modified rewards now leads to the same bound as in Theorem
7, but with Ap = 0.

10



Remark 10 (Convex Cones) The approachability algorithm of Abernethy et al.
(2011) starts with target sets S that are restricted to be convex cones. For S a closed
convex cone, the support function is given by

0 c S5°
hS(w):{oo : Z%SO

where S° is the polar cone of S. The required inequality in (11) thus reduces to

T
;<wt, re) > nglsgr}w{30<w’ rr) —a(T).

The sequence (wy) can be obtained in this case by applying an online linear opti-
mization algorithm restricted to wy; € By N S°. This is the algorithm proposed by
Abernethy et al. (2011). The extension to general convex sets is handled there by lift-
ing the problem to a (d+1)-dimensional space, with payoff vector r'(z,y) = (k,r(z,y))
and target set S" = cone({r} x S), where k = maxses ||$||2, for which it holds that
d(u, S) <2d(w,5").

3.3 An OGD-based Approachability Algorithm

As a concrete example, let us apply the Online Gradient Descent algorithm specified
in (4) to our problem. With W = By and fi(w) = —((w, ;) — hg(w)), we obtain in
step 1 of Algorithm 1,

wir1 = Projg, {we + me(re — )}, ye € Ohg(wy).

Observe that Projg, (v) = v/ max{1, [[v||2}, and (e.g., by Corollary 8.25 in Rockafellar
and Wets (1997))

Ohg(w) = argmax(s, w) .
ses

To evaluate the convergence rate in (5), observe that diam(By) = 2, and, since y; € S,
lgelle = [lre — well2 < [[R — S||2, where R = {r(z,y) }sca()yea(s) is the reward set.
Assuming for the moment that the goal set S is bounded, we obtain

b(n) , 4
Ed(rr,S)) < ==, with b(n) = - +2n||R - S2.
(d(rr,5)) ¥is (n) ; all I3
For = v/2/||R — S||2, we thus obtain b(n) = 4v/2||R — 3.

If S is not bounded, it can always be intersected with R (without affecting its
approachability), yielding ||R — S| < diam(R). This amounts to modifying the
choice of y; in the algorithm to

Yy € Ohsnr(w;) = argmax(y, w) .
yeESNR
Alternatively, one may restrict attention (by projection) to vectors w; in the set
{w € By : hg(w) < oo}, similarly to the case of convex cones mentioned in Remark
10 above; we will not go here into further details.
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4. Blackwell’s Algorithm and (R)FTL

We next examine the relation between Blackwell’s approachability algorithm and the
proposed OCO-based scheme. We first show that Blackwell’s algorithm coincides with
OCO-based approachability when FTL is used as the OCO algorithm. We use this
equivalence to establish fast (logarithmic) convergence rates for Blackwell’s algorithm
when the target set S has a smooth boundary. Interestingly, this equivalence does
not provide a convergence result for general convex sets. To complete the picture,
we show that Blackwell’s algorithm can more generally be obtained via a reqularized
version of FTL, which leads to an alternative proof of convergence of the algorithm
in the general case.

4.1 Blackwell’s algorithm as FTL

Recall Blackwell’s algorithm as specified in Theorem 2, namely z;,; is chosen as a
mixed action that satisfies (2) for u = ug(7;) (with x4, chosen arbitrarily if 7 € S,
which is equivalent to setting v = 0 in that case).

Similarly, in Algorithm 1, z,,; is chosen as a mixed action that satisfies (2) for
u = wey1. Using FTL (i.e., Equation (6) with R; = 0) for the OCO part gives

t
Wi = argminz fr(w), with fr(w) = —(w, ) + hs(w) .
we B> k=1
Equivalence of the two algorithms now follows directly from the following observation.
Lemma 11 With fi.(w) as above,

argmiank(w) — { gs(ft) Ty & S
k=1

wE By ft € S

Proof Observe that 3" _, fi(w) = —t({w,7;) — hg(w)), so that

argmin Z fr(w) = argmax{{(w, 1) — hg(w)}.

wE B

The required equality now follows from (9). |

To establish convergence of Blackwell’s algorithm via this equivalence, one needs
to show that FTL guarantees the regret bound in (11) for an arbitrary reward se-
quence (r;) C R, with a sublinear rate sequence a(T"). It is well know, however, that
(unregularized) FTL does not guarantee sublinear regret, without some additional as-
sumptions on the function f;. A simple counter-example, reformulated to the present
case, is devised as follows: Let S = {0} C R, so that hg(w) = 0, and suppose that

12



rp = —1and r, = 2(—1)*" for ¢t > 1. Since w; = sign(7;_1) and sign(r;) = —sign(r_1),
we obtain that f;(w;) = —rw, = 1, leading to a linearly-increasing regret.

The failure of FTL in this example is clearly due to the fast changes in the predic-
tors wy. We now add some smoothness assumptions on the set S that can mitigate
such abrupt changes.

Assumption 1 Let S be a compact and convex set. Suppose that the boundary 0S
of S is smooth with curvature bounded by ko, namely:

17i(s1) — 7i(s2)|l2 < Kolls1 — s2lla for all sy, s9 € OS, (13)
where 1i(s) is the unique unit outer normal to S at s € S.

For example, for a closed Euclidean ball of radius p, (13) is satisfied with equality for
ko = p~ . The assumed smoothness property may in fact be formulated in terms of
an interior sphere condition: For any point in s € S there exists a ball B(p) C S with
radius p = kg such that s € B(p).

Proposition 12 Let Assumption 1 hold. Consider Blackwell’s algorithm as specified
in Theorem 2, and denote wy = ug(Ti—1) (with wy arbitrary). Then, for any time

T > 1 such that T ¢ S, (11) holds with
a(T) = Co(1+1InT), (14)
where Cy = diam(R) ||R — S||2 ko, and In(-) is the natural logarithm. Consequently,

1+InT

B(d(rr, ) < Co—

r=1. (15)

Proof Observe first that the regret bound in (14) implies (15). Indeed, for 7p & S,
d(rr,S) < a(T)/T follows as in Theorem 7, while if 7 € S then d(77,S) = 0 and
(15) holds trivially.

We proceed to establish the logarithmic regret bound in (14). Let fi(w) =
—(w, 1) + hg(w), W = By, and denote

T T
Regret,(fi1.r) = th wy) Ei&l/th Z fe(we) — fr(wrya)) (16)
t=1

t=1

A standard induction argument (e.g., Lemma 2.1 in Shalev-Shwartz (2011)) verifies

that
T

Z(ft(wt Z ft wt — fi wt+1)) (17)

t=1
holds for any v € W, and in particular for u = wy,. It remains to upper-bound the
differences in the last sum.

13



Consider first the case where 7, ¢ S for all 1 < ¢t < T. We first show that
|wy —wyy1||2 is small, which implies the same for | f;(w;) — fi(ws1)|. By its definition,

Wiy = ug(7y), the unit vector pointing to 7, from ¢ = Projg(7;), which clearly
coincides with the outer unit normal 7(c;) to S at ¢;. It follows that

lwe — wipala = [[7i(ci—1) = 7i(ce) |2 < kollei—1 — ell2 < KollFem1 — T4ll2,

where the first inequality follows by Assumption 1, and the second due to the shrinking
property of the projection. Substituting 7, = 7;_1 + %(rt — 7y_1) obtains

K _ Ko .
[wr — wiga |2 < 70||7’t — T2 < Todlam(R)~ (18)

Next, observe that for any pair of unit vectors w; and w-,

Ji(wr) = fir(ws) = —(wy — wa, ry) + hg(wi) — hg(ws)

= —(wy — wa,y) + Igl&x(wl, s) — rilezagc(wg, s)

IN

—(wy — wa, 1) + (w1, 51) — (Wa, 1)

= <w1 — Wy, S1 — 7°t> < ||w1 - w2||2||R - 5”2:

where s; € S attains the first maximum. Since the same bound holds for f;(wsy) —
fi(wy), it holds also for the absolute value. In particular,

|fe(we) = frlwern)] < Jlwe = wipa]lo[R = Sz, (19)
and together with (18) we obtain

K C
i) = f(we)] < = diam(R) |R = Sz = >

Substituting in (17) and summing over ¢~! yields the regret bound
Regret,(fi.r) < Co(14+InT). (20)

We next extend this bound to case where 7, € S for some t. In that case w; 1 = 0,
and w; — w41 may not be small. However, since f;(0) = 0, such terms will not affect
the sum in (17). Recall that we need to establish (14) for 7" such that 7o ¢ S. In
that case, any time ¢ for which 7, € S is follows by some time m < T with 7,, € S.
Let 1 < k < m < T be indices such that 7,...7,_1 € S, but 7,1 € S (or k = 1)
and 7, ¢ S. Then wgyq,...,w, =0, and

Z (fe(we) = fe(werr)) = fr(wr) = fn(wmsr) -
t=k

14



Proceeding as above, we obtain similarly to (18),

3

_ _ . K
[wk = Witz < Fol[Th—1 = Fnl2 < diam(R) 70

t

I
=

and the regret bound in (20) may be obtained as above. |

The last result establishes a fast convergence rate (of order log 7'/T") for Blackwell’s
approachability algorithm, under the assumed smoothness of the target set. We note
that conditions for fast approachability (of order T!) were derived in Perchet and
Mannor (2013), but are of different nature than the above.

Logarithmic convergence rates were derived for OCO algorithms in Hazan et al.
(2007), under strong convexity conditions on the function f;. This is apparently
related to the present result, especially given the equivalence between strong convexity
of a function and strong smoothness of its Legendre-Fenchel transform (cf. Shalev-
Shwartz (2011), Lemma 2.19). However, we observe that the support function is hg
is not strongly convex, so that the logarithmic regret bound in (20) does not seem to
follow from existing results. Rather, a basic property which underlies both cases is
insensitivity of the maximum point to small perturbations in f;, which here leads to
the inequality (18).

4.2 Blackwell’s algorithm as RFTL

The smoothness requirement in Assumption 1 does not hold for important classes
of target sets, such as polyhedra and cones. As observed above, in absence of such
additional smoothness properties the interpretation of Blackwell’s algorithm through
an FTL scheme does not entail its convergence, as the regret of FTL (and the corre-
sponding bound a(7") in (11)) might increase linearly in general.

To accommodate general (non-smooth) sets, we show next that Blackwell’s al-
gorithm can be identified more generally with a regularized version of FTL. This
algorithm does guarantee an O(v/T) regret in (11), and consequently leads to the
standard O(T~1/?) rate of convergence of Blackwell’s approachability algorithm.

Let us apply the RFTL algorithm in equation (6) as the OCO part in Algorithm
1, with a quadratic regularization function R,(w) = &||wl[3. This gives

w1 = argmin {Z fulw) + %nwn%} L few) = —(w,me) + hs(w)
k=1

wE B2
The following equality is the key to the required equivalence. It relies essentially on

the positive-homogeneity property of the support function hg, and consequently of
the funcctions f; above.
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Lemma 13 For p, > 0, and w1 as defined above,

Wy = { gtus(rt) Z ig ; (21)

where ; = min{1, éd(ft,S)} > 0.

Proof Recall that 37 _, fu(w) = —t((w,7;) — hs(w)), so that

we B2 weEBa 2t

t
arguin {Z fi(w) + %nwné} — argmax { (w, 7)) = hs(w) = 2[wl3} .
k=1

To compute the right-hand side, we first maximize over {w : ||w||2 = £}, and then
optimize over 3 € [0, 1]. Denote z = 7, and n = p;/t. Similarly to Lemma 11,

argmax {(w, z) — hg(w) — gHng} = argmax{(w, z)—hg(w)} = { Pus(z) : z¢S

l[w]l2=8 llw|l2=8 0 . z€S8
Now, for z &€ S,
n 21 1 22
max {(w, 2) — hs(w) = 2|wl3} = Bd(z,9) - 25,
lw|l2=8 2 2
Maximizing the latter over 0 < g < 1 gives * = min{1, d(;—s)} Substituting back z
and 7 gives (21). |

This immediately leads to the required conclusion.

Proposition 14 Algorithm 1 with quadratically reqularized FTL is equivalent to Black-
well’s algorithm.

Proof Observe that the vector w;i; in Equation (21) is equal to ug(7;) from Black-
well’s algorithm in Theorem 2, up to a positive scaling by ;. This scaling does not
affect the choice of x4y, according to (10), as the support function hg(w) is positive
homogeneous. [ |

Compared to non-regularzied FTL (or Blackwell’s algorithm), we see the direction
vectors in Equation (21) are scaled by a positive constant. Essentially, the effect of
this scaling is to reduce the magnitude of w;,; when 7, is close to S. While such
scaling does not affect the choice of action z;, it does lead to sublinear-regret for
the OLO algorithm, and consequently convergence of the approachability algorithm.
This is summarized as follows.
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Proposition 15 Let S be a convex and compact set. Consider the RFTL algorithm
specified in equation (21), with p, = p\/t, p > 0. The regret of this algorithm is
bounded by

1>

Regret,(RFTL) < p NG 5 In(T) +4L; ao(T)

where Ly = |R — S||2. Consequently, if this RFTL algorithm is used in step 1 of
Algorithm 1 to compute w;, we obtain

CL()(T
T

E(d(Fp, S)) < —0(T2), T>1. (22)

Proof The regret bound follows from the one in Proposition 4, evaluated for f;(w) =
—(ry,w) + hs(w), W = Bs, R(w) = 3|lw|3, and p; = pv/t. Recalling that df;(w) =
—ry +argmax,.g(w, s), the Lipschitz constant of f; is upper bounded by ||R — S|z 2
L¢. Furthermore, Riyax = % and Lr = 1. Therefore,

Ly +p(vVt = vt 1) PIT

Regret,(RFTL) < 2L =
egret( Z SV +2

(23)

To upper bound the sum, we note that

T

1
Z(\/z+ /—t—l):tzl(\/g

t=1

—Vi—1) =T,

and

T \/tT T
;(W+F) 2 VT *; =T

1 (71 1
<24 = —dt =2 In(7).
= +4/tlt + 3 In(T)

Substituting in (23) gives the stated regret bound. The second part now follows di-
rectly from Theorem 7. [ |

With p = 2L, we obtain in (22) the convergence rate

- 2[|R — S|2 1
E(d(rr,9)) < Nit +O(\/T

We emphasize that the algorithm discussed in this section is equivalent to Black-
well’s algorithm, hence its convergence is known. The proof of convergence here

).
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is certainly not the simplest, nor does it lead to the best constants in the conver-
gence rate. Indeed, Blackwell’s proof (which recursively bounds the square distance
d(7r, 9)?) leads to the bound \/E(d(rr, S)?) < % Rather, our main purpose
was to provide an alternative view and analysis of Blackwell’s algorithm, which rely
on a standard OCO algorithm. That said, the logarithmic convergence rate of the
expected distance that was obtained under the smoothness Assumption 1 appears to
be new.

5. Extensions with General Norms

As was mentioned in Subsection 2.1, a class of approachability algorithms that gen-
eralizes Blackwell’s strategy was introduced by Hart and Mas-Colell (2001). The
direction vectors (u;) in Blackwell’s algorithm, that are defined through Euclidean
projection, are replaced in that paper by the gradient of a smooth potential func-
tion; Blackwell’s algorithm is recovered when the potential is taken as the Euclidean
distance to the target set. Other instances of interest are obtained by defining the
potential through the p-norm distance; this, in turn, was used as a basis for a general
class of no-regret algorithms in repeated games.

In this section we provide an extension of the OCO-based approachability algo-
rithm from Section 3, which relies on a general norm rather than the Euclidean one
to obtain the direction vectors (w;). The proposed algorithms coincide with those of
Hart and Mas-Colell (2001) when the RFTL algorithm is used for the OCO part.

Let || - || denote some norm on RY. The dual norm, denoted || - ||, is defined as

~

[zl = max (w,z
weR:||w||<1

For example, if the primal norm is the p-norm |z, = (30, mf)% with p € (0,1), the
dual norm is the ¢g-norm, with ¢ € (0, 1) that satisfies % + % =1.

The following relations between the support function hg and the point-to-set dis-
tance d, will be required. The first is needed to show convergence of the algorithm,
and the second for the interpretation of the FTL-based variant.

Lemma 16 Let S be a closed convex set with support function hg, and let d.(z,S) =
minges ||z — s||« denote the point-to-set distance with respect to the dual norm. Then,
for any z € R,

d*(Z, S) = ”Iil'?‘gxl{(w’ Z) - hS<w)} ) (24)
and
0d.(z,5) = a\r\%ﬁ?{“w’ z) — hs(w)}, (25)

where 0d,(z,S) is the subgradient of d.(-,S) at z.
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Proof We first note that the maximum in (24) is attained since hg is a lower semi-
continuous function, and {||w|| < 1} is a compact set. To establish (24) we invoke
the minimax theorem. By definition of hg,

max ((w, z2) — hg(w)) = max inf(w,z —s) .

o (02 = hstw)) = s foflw, 2 = 5)
Observe that {||w|| < 1} is a convex and compact set, S is convex by definition, and

(w, z — s) is linear both in v and in s. We may thus apply Sion’s minimax theorem
to obtain that the last expression equals

;gguswlﬁglww s) = nf |z — sl = du(2,5),
where the definition of the dual norm was used in the last step, and (24) is obtained.
Proceeding to (25), we observe (24) implies that d,(-, S) is the Legendre-Fenchel
transform of an appropriately modified function hg, namely d,(z, S) = max,cga{(w, 2)—
hs(w)} where hg(w) = hg(w) if ||w| < 1 and hg(w) = oo for ||w|| > 1. Evidently
hg is a convex and lower semi-continuous function, which follows since both S and
{JJw|| < 1} are closed and convex sets. The equality in (25) now follows directly by
Proposition 11.3 in Rockafellar and Wets (1997). |

The algorithm: We can now repeat the blueprints of Subsection 3.2 to obtain an
approachability algorithm for a convex target set S, which here relies on any norm
| - ||. First, we apply an OCO algorithm to the functions f;(w) = —(w, ) + hg(w)
over the convex compact set {w € R?: |Jw|| < 1} to obtain, analogously to equation
(11), a sequence of vectors (w;) such that

Z ((wy, ) — hg(wy)) > T max {{(w,77) — hg(w)} —a(T). (26)

— [[w][<1
t=1

Next, each w, is used as the direction vector for stage ¢, and the mixed action z; is
chosen so that (wy,r:) — hs(wy) < 0 holds for any action of Nature. Observing (24),
we obtain that
a(T)
T
Follow the Leader: Consider the specific case that where FTL is used for the OCO
algorithm. That is,

— 0.

d*<FT7 S) S

Wiy € argminz fr(w) = argmax{(w, 7)) — hg(w)} . (27)

o<1 5= lwll<1

By (25), this is equivalent to wyy1 € 0d. (7, .S). In particular, if d.(z,S) is differen-
tiable at z = 7, then w41 = Vd.(ry,S). We therefore recover the approachability
algorithm of Hart and Mas-Colell (2001) for the potential function P(z) = d.(z,5).
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Convergence of the approachability algorithm of Hart and Mas-Colell (2001) re-
quires the potential function P(z) to be continuously differentiable. As observed
there, for P(z) = d.(z,5) this holds if either the norm || - ||« is smooth (e.g., the
g-norm for 1 < ¢ < 00), or the boundary of S is smooth.

In our framework, convergence analysis of the FTL-based OCO algorithm can be
carried out similarly to that of Section 4. In particular, similarly to the procedure
of Subsection 4.2, if the norm || - || is smooth we can guarantee convergence of the
OCO algorithm without affecting the induced approachability algorithm by adding
an appropriate regularization term in (27), namely setting

Wyy1 € argmin {Z Ji(w) — %H’WHQ} :

f[wl[<1

By analogy to Lemma 13, the added regularization does not modify the direction of w;,
but only its magnitude, hence the choice of actions z; is the induced approachability
algorithm remains the same. Convergence rates can be obtained along the lines of
Section 4, and will not be considered in detail here.
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Appendix A.

Proof of Proposition 4: We follow the outline of the proof of Lemma 2.10
in Shalev-Shwartz (2011), modified to accommodate a non-constant regularization
sequence p;. The starting point is the inequality, proved by induction,

T

Z(ft(wt Z fi(we) = fi(wig)) + peR(u) (28)

t=1
which holds for any v € W. Therefore,

T

D (filwy) = fi(w) < L llwe = wesll2 + peR(u) . (29)

t=1 t=1

Denote Fy(w) = 30—} fu(w) + pr_1 R(w). Then F, is p,_i-strongly convex, and w,
is its minimizer by deﬁmtlon Hence, it holds generally that

Pi—1

Fy(u) > Fi(wy) + —— 5

[ = well;,
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and in particular,

Pt—1
2

Froaw) 2 Fra(we) + 5w = wea 3. (31)

Fi(wiy1) > Fy(wy) + w1 — wilf3, (30)

Summing and cancelling terms, we obtain

i) = fulwess) + (e = pres) (Rlwn) = Blung) = 2P = w3

But the left-hand side is upper-bounded by (L + (pr — pr—1)Lr)||wis1 — wy||2, which
implies that

L+ (pr — pi_1)L
A e
Pt + Pr—1
Substituting in (29) gives the bound stated in the Proposition. [
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