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Abstract

Various implications of nonlinearity, nonstationarity and misspecification are con-
sidered from a forecasting perspective. My model allows for small departures from
the martingale difference sequence hypothesis by including an additive nonlinear com-
ponent, formulated as a general, integrable transformation of the predictor, which is
assumed to be I(1). Such a generating mechanism provides for predictability only in
the extremely short run. In the stock market example, this formulation corresponds
to a situation where some relevant information may escape the attention of market
participants only for very short periods of time.

I assume that the true generating mechanism involving the nonlinear dependency
is unknown to the econometrician and he is therefore forced to use some approximat-
ing functions. I show that the usual regression techniques lead to spurious forecasts.
Improvements of the forecast accuracy are possible with properly chosen integrable
approximating functions.

This paper derives the limiting distribution of the forecast MSE. In the case of
square integrable approximants, it depends on the Lo-distance between the nonlinear
component and the approximating function. Optimal forecasts are available for a
given class of approximants. Finally, I present a Monte Carlo simulation study and

an empirical example in support of the theoretical findings.

Keywords: Forecasting, integrated time series, misspecified models, non-

linear transformations, stock returns.

JEL Classification Numbers: C22, C53, G14.



1 Introduction

Nonlinear models are extensively used in econometrics (see, for example, Granger and
Terésvirta (1993) for a description and analysis of various nonlinear models). The
theoretical foundation for estimation of nonlinear, nonstationary models has been
developed fairly recently. Park and Phillips (1999) derived the asymptotic results
for the sums of nonlinear transformations of integrated time series. They considered
three classes of nonlinear functions: integrable, homogeneous and exponential. They
show, for example, that partial sums of integrable functions that have a non-zero
Lebesgue measure converge in distribution to local times of the Brownian motion.
These methods have been applied to various nonlinear econometric models. Chang,
Park, and Phillips (2001) considered nonlinear regression with separably additive
regression functions. Chang and Park (2003) considered nonstationary index mod-
els, which extend switching regressions to the stochastic trends framework. Hu and
Phillips (2004) studied nonstationary discrete choice models. Kasparis (2004) con-
sidered effects of functional form misspecification on estimation, when the true and
the estimated models involve nonlinearity and nonstationarity. He focused on con-
vergence of estimators to some pseudo-true values and detection of functional form
misspecification.

An attractive feature of nonlinear models is flexibility that allows one to model
relationships between nonstationary and seemingly stationary variables. A linear re-
gression requires the dependent variable to have the same order of integration as the
right-hand side of the regression equation. However, it is known that nonlinear trans-
formations can change the memory properties of a process. Thus, contrary to linear
regressions, properly chosen nonlinear functions can link, in a single equation, vari-
ables that appear to have different orders of integrations. Nonlinear functions that can
be used to model relationships between seemingly stationary and persistent variables
include Lebesgue integrable functions and asymptotically homogeneous functions of
degree zero (the distribution-like functions). For example, Chang and Park (2003)
modelled nonstationary switching behavior by adding a distribution type function of

an integrated variable to a noise process.



There are many situations in economics that may require one to relate variables
of different orders of integration. A typical example is the predictive regressions liter-
ature in empirical finance, which studies stock returns predictability. In a predictive
regression, stock returns are regressed on lagged values of various financial and eco-
nomic variables such as the dividend-price ratio, earnings-price ratio or interest rates.
Predictability is usually concluded on the basis of ¢-tests for slope coefficients. Often,
it is implicitly assumed that non-zero in-sample correlations found between regressors
and stock returns can be used for the construction of out-of-sample forecasts. Many
papers report statistically significant slope estimates. (See, for example, Fama (1991)
and Cochrane (1997) for surveys of the literature). Despite the collected empirical
evidence on in-sample relations between stock returns and predictors, the out-of-
sample predictability is a controversial issue. Goyal and Welch (2003, 2004) report
that the performance of out-of-sample forecasts based on linear regression methods
can be rather poor, while Campbell and Thompson (2004) argue that there exists
small but economically meaningful out-of-sample predictive power, once restrictions
on the coefficients and forecasts are imposed. An additional complication arises from
the fact that many potential predictors are best modelled as I(1) variables. While
most researchers agree that stock market returns are not persistent, predictors such
as dividend-price ratio appear to have a stochastic trend component. Naturally, it is
impossible to relate such variables by a linear equation.

The results of this paper imply that significant regression slopes do not necessarily
indicate usefulness of the linear regression as a forecasting equation. My model
allows for small departures from the martingale difference sequence (MDS) hypothesis
by including an additive nonlinear component, formulated as a general, integrable
transformation of the predictor, which is assumed to be I(1). In this model, the
signal coming from the nonlinear component is very weak relative to the noise. This
is implied by the properties of integrable functions and I(1) variables. An integrable
function approaches zero at a fast rate as the absolute value of its argument increases.
At the same time, a unit root process usually takes on very large negative or positive

values. As a result, the signal coming from the predictor (the nonlinear component)



is relatively strong only during rare events when the unit root process visits the
neighborhood of zero. Such a generating mechanism provides for predictability only in
the extremely short run, which in the stock market example corresponds to a situation
where some relevant information may escape the attention of market participants only
for very short periods of time.

It is natural to assume that the true data generating process (DGP) involving the
nonlinear dependency is unknown to the econometrician and he is therefore forced
to use some approximating functions. Furthermore, the class of approximants used
by the econometrician does not necessarily include the true function. I show that
a combination of nonstationarity, nonlinearity and misspecification leads to results
often seen in the predictive regressions literature. Consider for example a linear re-
gression, which is used most often as an approximating function. I show that, in
this case, commonly used diagnostic tools tend to indicate predictive power despite
the fact that estimated regression slopes converge to zero in probability. Moreover, I
show that out-of-sample forecasts constructed from a predictive regression are dom-
inated by the sample average in terms of the mean squared error (MSE). Hence,
spurious forecasts occur: diagnostic tools may indicate usefulness of the model while,
in fact, equivalent or better forecasts may be obtained if one completely ignores the
information contained in the predictor.

The predictability in my model is very limited due to the nature of the generating
process. Nevertheless, I show that out-of-sample forecast accuracy can be improved
by using square integrable approximating functions instead of historic averages or
linear regressions. I derive the limiting distribution of the out-of-sample MSE. In
the case of square integrable approximants, it depends on the Lo-distance between
the nonlinear component and the approximating function. I show that, for a given
class of square integrable approximating functions, one can obtain the best possible
forecasts in the MSE sense.

The paper is organized as follows. In Section 2, I introduce the model and the
preliminary results from the asymptotic theory of nonlinear functions of integrated

processes. In Section 3, I consider the class of forecasts constructed as polynomials in



the predictor. This class contains predictive regressions as a particular case. Section
4 discusses forecasting with integrable approximants. In Section 5, I consider a Wald-
type predictability test based on square integrable transformations. I present some
simulation results in Section 6, and Section 7 provides an empirical example. Section

8 concludes. All proofs are given in the Appendix.

2 Definitions and preliminary results
I consider a nonstationary nonlinear model described by the following equations.

v = p+f(z-1) e, (2.1)
2z = z-1+C(L)ey,

ZOZO.

In the above equations, p* is a constant, {(u¢,e¢) : t = 1,...,n} are random variables,
C (L) is a polynomial in the lag operator and f : R — R is a nonlinear function. Two
classes of nonlinear function will be considered in this paper. The first class consists
of Lebesgue integrable functions that have the Lebesgue measure different from zero.

I denote this class by Z.

2.1. Definition. A function ¢ : R — R is said to belong to the class 7 if

(a) ¢ and @? are Lebesgue integrable,
(b) [ p(a)da 0.
I make the following assumption.
2.2. Assumption (Integrability). f and f2 € T.
The second class consists of zero energy integrable functions (the Lebesgue integral

over the entire real line is equal to zero). Such functions appear later in the paper

(Section 3). This class is denoted by Z.

2.3. Definition. A function ¢ : R — R is said to belong to the class Z if

(a) ¢ and @? are Lebesgue integrable,



(b) [73 p(a)dz =0,

—00

(&) [12 wp(w)] da < oo.

Assumption 2.2 implies that f(x) — 0 as x — £o0. Since {2} is an integrated
process, it takes on very large negative or positive values most of the time. As a result,
{f (z¢—1)} is arbitrarily close to zero except when {z;_;} visits the neighborhood of
zero. The integrated variable z;_1 becomes a useful predictor for y; only on such rare
occasions. Furthermore, sample paths of {f (z;—1) + u¢} appear to be similar to the
sample paths of the noise process {u;}.

Let F; be the o-field generated by the sequence {(us,es) : s <t}. I assume that
the error u; cannot be predicted from its lagged values and the lagged values of the

predictor z;.

2.4. Assumption (MDS). {((u¢,e¢),F:) :t > 1} is a stationary and ergodic mar-

tingale difference sequence.

Equation (2.1) and Assumption 2.4 define a predictive model. Suppose that the
function f were known. In this case, optimal forecasts in the Mean Squared Error

(MSE) sense are given by

AN N

ye (1) =+ f (2-1),

where 1 is the Least Squares (LS) estimator of x. However, the optimal forecasts are
infeasible if f is unknown to the econometrician. Such an assumption is plausible
in the vast majority of situations. In this case, the econometrician is forced to use
some approximating functions instead of f. The class of approximating functions
considered by the econometrician may or may not include the true function f, and
in general he accepts a misspecified forecasting model. I denote the approximating
function by g¢(-,0), where 6 is a vector of constants. The value of 6 is chosen by
the econometrician in order to obtain best forecasts given his choice of g. In this
paper, I consider two alternatives for g (x, ). The first is a polynomial function in z,
which includes predictive regression and constant forecasts (g (z,6) = 0 for all x € R)

as particular cases. Since the true DGP involves a square integrable function, the



second type of approximating functions that I consider consists of square integrable
functions in x.

Suppose that the econometrician observes the data {(y:, z¢—1) : t =1,...,n1}. His
objective is to construct one period ahead forecasts of y; for periods {n; + 1,...,n} us-
ing the actual values of z;_1, which are observed before y; is realized. The forecasting

model is defined as

?/J\t (M? 9) =p+g (thlv 0) ) (22)

where 7; is the predicted value of y;, the function ¢ is chosen by the econometrician,
and p and 0 are scalar and vector constants respectively. I assume that u and 6 are
estimated from observations {(y¢, z—1) : t = 1,...,n1}, which I call a training sample.
!/
Let <ﬁ, §/> be the estimates of (u, 9')/ . The econometrician uses the estimated version
of (2.2) in order to construct forecasts for the observations in the forecasting sample,
which consists of observations ny + 1 through n. I assume that the forecasts are
evaluated with a quadratic loss function:
A n PR 2 n
Qu(0) =mn-n)" > (w-fi-g(21.0)) ~n-n)t 3
t=n1+1 t=n1+1

The first term in the above expression is the MSE of the series of forecasts
{@t <ﬁ,§> ct=mny + 1, ,n} :
The second term is the MSE of the infeasible forecasts
{w+ f(z—1):t=m1+1,..,n}.

The second term does not depend on the choice of a forecasting function or the
values of p and 6, and therefore minimization of @, (i, 0) is achieved only through
minimization of the first component. The second term is included for the derivation
of the asymptotic results. I assume that ny = [nr], where r € (0,1), and [-] denotes
the integer part. This setup mimics the situation where a researcher updates his
forecasts when more observations become available. However, he also extends his
forecasting horizon so that the relative sizes of the training and forecasting samples

remain unchanged.



In addition to the MDS assumption, I make the following assumptions concerning

the innovations process {(u, &) 1t > 1}.

2.5. Assumption. (a) E ((u1,1) (u1,€1) [F—1) =X > 0 a.s. for all ¢.
) sup;>q E (|ut] | Fi— 1) < oo for some h > 2.

(b
(c) {er:t > 1} are iid w1thE|51] < oo for some h > 8.
(d) C(1) # 0 and > 2o k |ex| < oc.

(e) The distribution of ¢; is absolutely continuous with respect to the Lebesgue

measure and |Ee’*1| = o (k~#) for some 3 > 0.

Write

Under Assumptions 2.4 and 2.5 in large samples, the distribution of a process

n 122[m /ZZU

can be approximated by the distribution of a two-dimensional Brownian motion with

the covariance matrix

2
w w
z zZUu
Q= ,
2
Wy O

where w? = C(1)%02 is the long-run variance of the innovations of 2, and w,, is
the long-run covariance of u; and the innovations of z; : w,, = > ;o1 E (epu1) . Note
that the correlations between u; and the lagged values of ¢; are equal to zero due to
Assumption 2.4.

I assume that the parameters in (2.2) are estimated by LS, which leads to expres-
sions of the form ), f (z.—1) . Asymptotically, partial sums of integrable transforma-
tions of I(1) variables are approximated by local times of a Brownian motion. The
local time (L) of the Brownian motion B at x € R is defined as follows:

.1t
L(t) =lim o [ Voeino (B(s) ds.



where 14 is an indicator function of a set A C R. The local time measures the
amount of time that the Brownian motion B spends in the neighborhood of the point
x (see, for example, Chung and Williams (1990) for an introduction to local time).
The following result, due to Park and Phillips (1999) and Jeganathan (2003), is the

foundation of the subsequent discussion.

2.6. Lemma. Let ¢, : R — R be a homogeneous function of degree h > 0, p; € 7
and ¢y € Z. Let w, and w, be two independent standard Brownian motions. Define
0(t) = w;1L,(t,0), where L, is the local time of w,. If Assumptions 2.4 and 2.5 hold,
then for fixed 0 < s < r < 1 the following results hold jointly:

(a) <n_1/2 I[Z[LS} g, n 12 ][Z[LS} ut> —a ([ db(t), [[ du(t)), where (b,u) =
QY2 (w,, wy,) .

(b) M2 on () a7 o (b)) dt

(c) nV/2R2 ) o (1) we —a [ en (b(2)) du(t).

@ 02 r () —a ([ r () ) [T dece)

(@) m VAN o (a) e —a o ([ G @) [T de(t)) [T AW (r), where
W is a Brownian motion independent of (w,,wy,) .

(f) n—1/4 [m} ©o (z—1) —a (X[ de(t )1/2f dV (t), provided that there exist

t=[ns]
(2+b)

constants a and 0 < b < 1 such that |By(t)Ee™!| < a It~ as t — oo, where V' is

a Brownian motion independent of W and (w,,w,), A = (2r) i Bo(0)]? }fgzziz dt,

and @, is the Fourier transform of .

Remark. Using the Cramer-Wold device, the result in this lemma can be extended

to cover functions ¢ : R — RP; see Lemma 9.2 in the Appendix.

3 Forecasting with polynomials

In this section, I consider forecasts constructed as polynomials in lagged values of the

predictor. In this case,

(2¢-1,0 29 zt 15 (3.3)



where p is a positive integer chosen by the econometrician. For p = 1, equation (3.3)
reduces to a simple linear regression considered in the predictive regression literature.
In addition to Assumption 2.2, I assume that the function f in (2.1) satisfies the

following condition.
3.1. Assumption. f(x)xP € Z.
It is assumed that the parameters in the forecasting equation are estimated by

LS using the training sample. Collecting powers of z; in a single vector, I define for

a fixed value r € (0,1):

Zt = (Zt,... ,Zf)/,
[nr]
Zy = Zi—[w]'  Zea (3.4)
s=1
The LS estimator of x and € in (3.3) is given by
~ ] ! o
b = ZiaZia | Y Ziaws
t=1 t=1
[nr] [nr] R
A U W T (e AR (3.5)
t=1 t=1

Suppose that the econometrician draws a conclusion regarding the predictability of

y; from a test based on the usual F-statistic for 6:
[nr]
—~ ~
Fo = O, Y Zi1Ziy | On/s;, where
t=1

[nr]

2 = Y (n— e Zia) (3.6)

t=1

I compare the forecasts constructed according to model (3.3) with a baseline model

that assumes no predictability:

Ye (1o) = Ho- (3.7)
Equation (3.7) is a particular case of a polynomial forecasting function. It depends on

a single parameter p,, which is estimated by the average valueof {y, : t = 1,... , [nr]}:

[nr]

ﬁO,n = {nr]il Zyt‘
t=1



Similarly to equation (3.4), I define

where the Brownian motions b and u are introduced in Lemma 2.6. Let D, =
diag (n,... ,nP). The following theorem describes the asymptotic behavior of the

estimators §n and [i,,, the test statistic F},, and the loss function Q.

3.2. Theorem. Under Assumptions 2.2, 2.4, 2.5 and 3.1:

(a) n'/2D}Y?4, —q U, where

v = ( /0 ' E(S)E(S)'d8>_l /0 " B(s)du(s)

it ([ ) ([ TE(S)B(S)’dS>_1 JRETCE

(b) nM/2 (i, — 1) —a 7t () 5, fl@)da +u(r) = W' [7 B(s)ds)

(©) Fu —a | (J] Bs)B(s)ds) " w/o, ||

(d) For any p > 0, n/2Qu (fiy, 0 ) —a (1= 1) (1) = €(r)) J2, f2(x)da.

(e) For any p > 0, n <Qn (ﬁn,§n> —Qn (ﬁO,n?0)> —q A, where the random

variable A is given by

r

4! ( /_ Z f(;v)da:) v <£(7~) / ' Bls)d(s) + /1 " () /O rB(s)ds)

1
2\11’/ B(s)du(s).

(1-1A = W (/13(3)5(3)'0;3)\1/

Part (a) of the theorem implies that 6, converges in probability to zero. In large
samples, its distribution can be approximated by the distribution of the random
variable defined in (3.8). The first term on the right-hand side of (3.8) is the usual

expression obtained in the limit when one regresses an 1(0) variable on I(1) regressors.

10



This term has a mixed normal distribution when w,, = 0. The second term in
equation (3.8) comes from the nonlinear part of the DGP. It depends both on the
integral of f over the entire real line and on the local time at zero of the limiting
process of z;. The second component gives the mean of the mixed normal distribution
when ug and ¢; are uncorrelated for all s and ¢.

Despite the fact that 0, converges to zero in probability, part (c) of the theorem
implies that a test based on F, tends to reject the hypothesis of no predictability.
(In the current context, the hypothesis of no predictive power is equivalent to § = 0).
For example, consider the case w,, = 0. In this case, F}, has a mixed noncentral xf,

distribution with the noncentrality parameter given by

(a;1 / Z f(:z)d:zc>2 <7"_1€(7") /0 ' B(s)ﬁ’(s)ds>_l/2 /0 " B(s)ds 2

Consequently, the test that rejects the null of no predictability when F,, > ijl_a,

where X§71_a is the (1 — a)) quantile of a central x% distribution, rejects the null of
no predictive power with probability greater than the nominal probability a. Actual
rejection probabilities depend on the ratio of the integral of f to the standard devi-
ation of the noise process u;. Note that the shape of the nonlinear function f has no
effect on the rejection rates, since f appears in the expression for the noncentrality
parameter only through its integral over the entire real line.

Finally, part (d) of the theorem shows that @), has the same limiting distribution
regardless of the value of p. In particular, the baseline model (p = 0) asymptotically
yields the same loss function as a model with p > 0. Moreover, the asymptotic
distribution of the loss function does not depend on the information contained in
the predictor. Therefore, the inclusion of powers of the predictor in a forecasting
equation does not improve the forecast accuracy. Part (e) of the theorem describes
the asymptotic distribution of the difference of the loss functions for the polynomial
and baseline forecasting models. The support of the limiting distribution includes
both positive and negative parts of the real line. Later in the paper, I show, using
Monte Carlo simulations, that this difference tends to be positive in finite samples

and, therefore, that the baseline model dominates polynomials in the MSE sense.

11



4 Forecasting with integrable functions

The previous section illustrates that polynomials can be poor predictors when the
DGP involves nonstationarity and nonlinearities of a certain type. In fact, a simple
average can dominate a polynomial forecasting model in terms of the MSE. The reason
for this lies in the global nature of the LS approximation in the current framework.
Consider minimization of the Ls-distance between f(x) and some approximating
function g (z, 6):

inf / T @) — g (2.0))2 da, (4.9)

00 | o
where © C RP is a compact set. Suppose that g (x,6) is unbounded and diverges
to £oo0 as © — Foo, which is true for polynomials. In this case, a solution to (4.9)
demands a choice of € such that g (x,0) = 0 for all x € R. This illustrates why, in
the previous section, the limit of the loss function @, is proportional to ffooo f?(x)dx
and does not depend on the information contained in the predictor. The situation
changes if one uses square integrable approximating functions instead of polynomials.
If g (z, ) is square integrable, then a non-trivial solution to (4.9) exists, which leads
to improvements in forecast accuracy. This occurs since

—00

whenever there exists 6 € © such that g (z,5> is equal to zero almost everywhere.
In this section, I consider forecasting with square integrable (with respect to z)
functions g (z, 0) in the forecasting equation (2.2). The function g has to be nonlinear
in x due to the integrability assumption; however, it may depend on 6 in a linear or
nonlinear way. I assume that the econometrician restricts 6 to a compact subset of
RP denoted by ©. The dimension of # is chosen by the econometrician together with

the functional form of g. Linear (in ) forecasting functions are of greatest interest:

g(z,0) = Zei@(az), (4.10)

where ¢; € Z for 1 < ¢ < p. An example of a nonlinear function in € is the class of

12



extended rational polynomials (ERP’s):

ap +a1x + ... + apaP

S wr w— ¥ byar

(4.11)

where ¢ € 7 and 6 = (ag,a1...,ap, b1, ...,bp) . Functions of this type were used by
Phillips (1983) for density approximation. I make the following assumption concern-

ing the approximation function g :

4.1. Assumption. (a) g (z,0) is differentiable with respect to 6.
(b) g2 (-,0) € Z for all € ©.
(¢) supgeo |9 (- 0)| € Z.

(d) SUPgeco H%g (79) » SUPgeco H%g (’e)Hz €l

The solution to the problem described in (4.9) depends on the choice of g. In some
cases, such as (4.10) and (4.11), there exists a unique 6 that solves (4.9). However,

in general, multiple solutions may exist. Let ©* be the set of solutions to (4.9):
e* = {9*6@:/ (f(ZL‘)g(ZL‘,e*))Zdl‘:M*}, where

ME = inf/ (F(z) — g (z,0))? da.

0cO

Note that different choices of g and p lead to different M* and ©*. Any value 0* € ©*
can be treated as a pseudo-true value of 8 for a given choice of g.

Similarly to Section 3, I assume that p and 6 are estimated by LS from the training
sample (nonlinear LS if ¢ is nonlinear in #). In the second step, the estimates of p
and 6 are used to compute predicted values of y in the forecasting sample. Let O,
be the set of values of # € © that solve the in-sample LS problem:

[nr]

i — i —g(z-1,0))2.
9I€nér,l,ut:1 (ye — 1 — g (2-1,0))

For each gn € O, the corresponding estimate of y is given by

[nr]

iy, (§n> = [m‘]fl Z <yt —g (Zt—1,§n>> ) (4.12)

t=1

13



I define the distance between 0 and the set A C RP as
d(6,4) = inf Jla - 0] .

The following result describes the behavior of the LS estimators of 6 and p and the

error function @, as the sample size approaches infinity.

4.2. Theorem. Under Assumptions 2.2, 2.4, 2.5 and 4.1:
(a) supy .o d (@“ @*) —p 0.
(b) sup; g |lin (/0\”) — u*‘ —p 0.
() supp, o, 72Qn (7in (Bn) 00 ) —a (1 =7)7" (€(1) = ) M.

Theorem 4.2(a) implies that the LS estimator of 6 is consistent for its pseudo-true
value. Further, it follows from part (b) of the Theorem that 1, (gn) is a consistent
estimator of p*. Next, part (c) of the Theorem shows that in the case of square inte-
grable approximating functions, @, is proportional to the least distance between the
true nonlinear function and its approximant: M* = infgcg [*_(f(z) — g (=, 0))? dz.
Thus, asymptotically one achieves the lowest possible out-of-sample MSE for a given
class of functions g. Finally, comparison of the results of Theorem 3.2(d) and 4.2(c)
implies that integrable functions yield a non-trivial improvement of the forecast ac-
curacy over polynomials and the baseline model.

For certain choices of g, the solution to (4.9) is unique. The approximating func-
tions in (4.10) and (4.11) are two such examples. In this case, stronger statements
than in Theorem 4.2(a)-(b) can be made. Since 6* is unique, 0,,, the LS estimate of

f, is unique with probability approaching 1. I define

S(0) = a5 (f@) g (@0,
1 o2 9
H@0) = 5o (1)~ g(r.0)°.

In addition to Assumption 4.1, I assume:

4.3. Assumption. (a) ©* = {0}, where 6* lies in the interior of ©.

(b) g (z,0) has three derivatives with respect to 6.

14



(c) H (-,0) € T element-by-element for all 6 € O.

(d) supgeo H%HM (-,0)|| € Z for all 1 < i,j < p, where H; ; is the element (i, )
of the p X p-matrix H.

(e) [7° H (s,0%)dx is invertible.

Assumption 4.3(a) implies that S (z,0") is a zero energy function:

/00 S (z,0")dx = 0. (4.13)

I assume that S (z,0%) satisfies all the additional requirements of the Z class. Let
S (+,0) denote the Fourier transform of S (z, ) and S (+,0) denote the complex con-
jugate of §(~,9) .

4.4. Assumption. (a) S (z,0") € Z element-by-element.

(b) [S(t,0%)Eeit=r| < a|t|~*Y for some constants @ and 0 < b < 1, as ¢ — oo.

The theorem below describes the asymptotic distribution of fi,, and En

4.5. Theorem. Under Assumptions 2.2, 2.4, 2.5, 4.1, 4.3 and 4.4
(8) /2 (i = %) —a v (£0) 2, (F (@) = g (@,0%)) do + u(r) ).
(b) n'/4 (@n - 9*) —gq 0(r)"Y2AY2W (r), where W is a standard Brownian mo-

tion independent of £ and u, and A is p X p matrix of constants such that

(/ZH(z,H*)dw)A(/ZH(:E,H*)CZ:U)

R e TN o O

*© 9 o 0 .
+0u/oo ETL (x,0 )Wg (x,0%) dz. (4.14)

According to part (a) of the theorem, fi,, has the usual 1/n'/? rate of conver-
gence to p*. Its limiting distribution is normal conditional on ¢ and centered around
£(r)M*, which depends on the unknown function f. Part (b) of the theorem shows

1/4

that the rate of convergence of §n is 1/n'/*, which is slower than the usual 1/n/2. Its

asymptotic distribution is mixed normal. Further, the covariance matrix depends on
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the unknown function f through the Fourier transform of S. Nevertheless, estimation
of the covariance is possible in some cases. For example, this is true if f(z) = 0 for

all x € R.; such a situation occurs if y; does not depend on 2.

5 Testing predictability

In the previous section, I show that the LS estimator of # converges in probability
to its pseudo-true value 6%, which minimizes the Lo-distance between f(z) and the
approximating function g (x,6). Consider a situation where, for a given choice of
the square integrable function g, z;—1 has no predictive power over y;, and M* =
[2% f?(z)dz. In this case, it follows from the results of Theorem 4.2 that, in large
samples, one should expect the estimator 571 to be close to some 0* € © that satisfies
g (x,0") =0 for all x € R. For example, 0, converges in probability to zero if y; and
21 are unrelated and g is linear in 6.

The purpose of this section is to construct a testing procedure that rejects the null
of no predictability only if the corresponding model possesses out-of-sample predictive
power superior to that of the baseline model. In view of the results presented in
the previous sections, I propose a modification of predictive regressions based on
integrable transformations of the predictor. It is convenient to consider the class of
linear approximants defined by equation (4.10). In this case, the hypothesis of interest
is whether # = 0. The linear forecasting model is computationally simple. However,
its advantages are not limited to computational convenience. For nonlinear (in 6)
approximants, some parameters may be unidentified under the null. For example, in
the case of ERP’s described in equation (4.11), under the null of no predictability
ap = a1 = ... = ap = 0. However, the coefficients in the denominator (b1, ...,b,) are
not identified under the null. Any value of (b1, ...,b,) would give asymptotically the
same result.

I consider a local to zero alternative DGP:
5.1. Assumption. y; = u + n_1/4f (zt—1) + ug.

2

Scaling by n~'/4 instead of usual n=/2 in the alternative DGP follows from
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the convergence results described in Lemma 2.6. I make the following assumption

regarding the basis functions ¢; in (4.10):

5.2. Assumption. ¢, and qf)lz €7 forall 1 <i<p.

Let @ (z) = (¢1(2), s ¢p(zt))/. The LS estimator of 6 is given by

n 1o
/Q\n = ( ((I) (thl) — En) ((I) (thl) — 6@’) Z ((I) (thl) - 6'rL) Yt

t=1 t=1

where ®,, = n~! >y ©¢—1. The Wald test statistic for Hq : 0 = 0 is defined as

[nr]

-~ - - “~ A~
T =0, | S (@ (21-1) — Bn) (P (2-1) — Bn)' | 00/52,. (5.15)
t=1
~2 —1 n -~ / 7y 2 .
where 7, ,, =n"" Y (yt — ly — Y (24-1) 9n> . Suppose that one rejects the null
hypothesis if T;, > Xil_a, where X;%,l—a is the (1 — o) quantile of the X]% distribution.

The following theorem describes the asymptotic size and power of the test.

5.3. Theorem. Under Assumptions 2.2, 2.4, 2.5, 5.1 and 5.2, T}, has an asymptoti-

cally noncentral X% distribution with the noncentrality parameter given by

H<€(1)03 / Z ¢($)¢($)'dx>_l/2 / Z f () B(2)da

2

Under the null hypothesis, f(x) = 0 for all x € R. In this case, the test statis-
tic T,, asymptotically has a XZ distribution regardless of the value of the long-run
covariance w,,,. In large samples, the test detects alternatives approaching the null

at the rate slower than n—1/4

. Furthermore, Theorems 4.2 and 5.3 together imply
that, in contrast to the test based on F},, the test based on T}, does not tend to reject
the null hypothesis of no predictive power, unless the forecasting model has a better

out-of-sample fit than the baseline forecasting equation.
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6 Simulation

The theoretical results of the previous sections suggest that nonlinear processes de-
scribed by equation (2.1) may be confused with MDS’s. In this case, usual linear
regression methods will lead to spurious forecasts, while integrable approximants will
provide a better out-of-sample fit. This section presents a series of Monte Carlo ex-
periments motivated by these findings. First, I would like to illustrate similarities
between a MDS and a process generated according to equation (2.1). In this and the

next section, I use ¢ to denote a standard normal density function.
[Figure 1 about here.]

Figure 1 describes a typical sample path of a process generated according to (2.1)
with f(x) = 10¢(z), independent standard normal errors {u;}, and a random walk
{2z} with standard normal increments independent of {u;}. The random walk was
initialized at zero. The top graph plots the errors {u;} , the graph in the middle shows
the sample path of the nonlinear component {f (z)}, and the graph at the bottom
shows the sum of the two components. The figure shows that the signal generated
by the nonlinear part is strong relative to the noise only during the first 15 periods.
After that, the sum of the nonlinear component and the noise cannot be distinguished
from a MDS.

The results in Section 3 suggest that a test based on F;, will tend to indicate
predictive power, if equation (2.1) is a good approximation of the true DGP. It is
important to see rejection rates in finite samples. I simulate the data according to

the following equations:

vy = af (z—1) + ug,
(ug, Az) ~ iid N(0,1I5),

ZOZO,
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where the constant a allows one to vary the strength of the signal coming from the

nonlinear part. I consider the following alternative functions for f :

filz) = o< x<1},

folz) = (1—052)1{0 <z < 1},

fa(z) = 21 {O << 31/3} ,

f1(x) = 26(x —0.25) — ¢(x — 0.75), and
fs(x) = 2¢(x+2)— ¢z —1).

The above functions have different shapes, however, they all have the same Lebesgue
measure: [ fi(x)de = 1 for all ¢ = 1,2,...,5. Thus, according to the results in
Section 3, all five functions should provide similar rejection rates. This is due to the
fact that the asymptotic distribution of F),, depends on the integral of f and not on
the shape of the function. I construct F}, using the LS estimates of (61, ...,0,)" in the

forecasting model below:
p .
U (1, 0) =+ > 0izi_y.
i=1
[Table 1 about here.]

Table 1 reports the simulated rejection rates for the sample size of 100 ob-
servations. The number of simulations is 1,000, the nominal size is set to 5%,
a € {1,2,4,8}, and p € {1,2,3,4}. As one can see from Table 1, the actual re-
jection rates are higher than the nominal 5%. For example, in the case of a usual
predictive regression (p = 1), the rejection rates are around 20% for a = 2, and they
exceed 50% for most of the models when a = 8. Thus, the econometrician will tend
to conclude that the polynomial forecasting function has predictive power.

Simulations confirm that the shape of f does not have an effect on the rejection
rates. The power appears to be the same for all functions except f5. The difference
between the results corresponding to the first four functions and f5 follows from a
difference in the location of the functions. The limiting behavior of sums of the form

Sy f (z) differs from that of Y ;" | f (2 + v/nc). In the first case, it converges to
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the Brownian local time at zero, while in the second case, it converges to the local
time at c¢. The first four functions are concentrated on (0, 1) interval, while f5 puts
relatively more mass on the values outside (0, 1) interval. The shift in the location of
f5 results in higher rejection rates.

Next, I compare the out-of-sample performance of various forecasting models. I

consider constant, polynomial, integrable linear (in parameters) and ERP forecasting

equations:
ye (1,0) = p, (6.16)
p
Ue(,0) = p+> 0z, (6.17)
i=1
p .
U (10) = pté(n1)d iz, (6.18)
i=1

01+ 0220—1 + ... + Op112Y 4
1+ 0pr0zt-1 4 ... +O2pr12t |

Ue (1, 0) = p+oé(z-1) (6.19)

Since, f1, ..., f4 give similar results, only f1 and f5 are used for the next set of simula-
tions. First, I simulate 200 observations and use observations {1, ..., 100} to estimate
the parameters in (6.16)-(6.19). The parameters are estimated by LS (nonlinear LS
in the case of equation (6.19)). In the second step, I construct one period ahead
forecasts for observations {101, ...,200} using the estimated versions of (6.16)-(6.19).
Finally, using predicted values of 3, I compute the out-of-sample MSE’s for four

forecasting equations.
[Table 2 about here.]

Table 2 reports the proportion of cases in which forecasting functions (6.17)-(6.19)
have smaller MSE’s than that of the historic average (model (6.16)). The number of
simulations is 1,000, a € {1,10}, and p € {1,2,3,4}. Consider the case p = 1. The
numbers corresponding to the polynomial forecasting model show that the historic
average provides a better out-of-sample fit than predictive regression in approximately
63%-70% of the repetitions. Increasing the value of a from 1 to 10 leads only to a
marginal improvement in the performance of the polynomials. Thus, by ignoring

the information contained in the predictor, one can obtain better forecasts despite
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the fact that F;, indicates predictive power. Performance of the integrable forecasting
functions depends on the strength of the signal coming from the nonlinear component.
In the case of a = 1, the historic average provides a better out-of-sample fit in 51%-
56% of the repetitions. However, in the case of a = 10, the integrable forecasting
models perform better than the baseline model in 63%-90% of the repetitions. Thus,
the result of Theorem 4.2(c) holds in finite samples, provided that the signal-to-noise
ratio is large enough.

Table 2 shows that the performance of (6.17)-(6.19) deteriorates as p increases.
This can be explained by the slow rates of convergence in the case of integrable
transformations of I(1) processes. Evidently, larger sample sizes are required when
p > 1 in order to obtain better approximations.

Finally, I evaluate finite sample size and power properties of the test proposed
in Section 5. I consider the DGP’s f; and f5, and values of a € {0,0.5,1,2}. The
test statistic is constructed using the estimates of € in (6.18). I set the number of

observations equal to 100, and the number of simulations to 5,000.
[Table 3 about here.]

Table 3 reports the results for the nominal size 5%. First, consider a = 0, which
corresponds to the case of no predictive power. As one can see from the table, the
actual rejection rates are close to the nominal, especially when p = 1. I conclude that,
under the null, the Xf, distribution provides a reasonable approximation to the actual
distribution of 7}, in finite samples. Next, the results for a > 0 show that the test

has non-trivial power. The test attains 50%-80% rejection rates for a = 2.

7 Empirical Example

The dividend-price ratio (dividend yield) has received much attention in the literature
as a potential predictor for stock returns. In a recent study Lewellen (2005) considered
the regression of stock returns on the natural log of the dividend yield and reported
strong predictive power. Goyal and Welch (2003) approached the same problem

from a different perspective. They focused on out-of-sample fit and arrived at an
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opposite conclusion. This section evaluates the predictive power of the natural log
of the dividend-price ratio (LDP) in view of the theoretical findings of the previous
sections. I consider the same data as Goyal and Welch (2003): monthly observations,

for the period 1946-2000, of value-weighted NYSE stock returns.
[Figure 2 about here.]

Figure 2 plots stock returns and LDP. While the stock returns show fluctuations
around a constant level, the behavior of the LDP resembles a stochastic trend. Next,

I proceed to formal unit root tests.
[Table 4 about here.]

Table 4 shows the results of unit root tests for LDP. I consider two alternative
autoregressive specifications for LDP: with and without a linear deterministic trend.
The first line of the table shows that the estimated autoregressive coefficient is very
close to unity in both cases. Furthermore, Phillips-Perron Z; is unable to reject the
null hypothesis of a unit root for either specification. Finally, the strongest evidence
in support of the I(1) hypothesis for LDP comes from KPSS tests (see Kwiatkowski,
Phillips, Schmidt, and Shin (1992)). The KPSS test assumes stationarity under the
null hypothesis. Rejection of the null suggests that there exists strong evidence in
favor of the nonstationary alternative. As one can see from Table 4, this is the case
with LDP. At 1% significance level, the null hypothesis is rejected for both models,
with or without the deterministic trend. I conclude that a unit root model is a
reasonable approximation for LDP.

Next, I look at in-sample predictability. I consider three alternative testing proce-
dures. The first procedure is based on the usual OLS regression of stock returns on the
lagged value of LDP. The second test is based on the fully modified OLS (FM-OLS)
estimator of the regression slope, which is corrected for endogeneity of errors. While
the OLS based t-test is invalid if errors and the predictor are correlated, the FM-OLS
t-statistic has a mixed normal distribution regardless of correlations between errors
and the regressor (see Phillips and Hansen (1990)). Finally, I consider the statistic
proposed in Section 5, equation (5.15). For that purpose, I use ® (z) = z¢ ().
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[Table 5 about here.]

Table 5 reports the results of the tests. The OLS based t-statistic is large; however,
it is not significant at 5% significance level. The statistic based on FM-OLS estimates
and the test statistic introduced in Section 5 are both significant. Hence, in-sample
evidence indicates possible predictive power of LDP.

Lastly, I compare the out-of-sample performance of the four predictive models
given in equations (6.16)-(6.19). I set p = 1 in (6.17)-(6.19). Equation (6.16) cor-
responds to the assumption that stock returns cannot be predicted from historic
values of LDP, and provides constant forecasts. Equation (6.17) is the usual pre-
dictive regression model. Equation (6.18) corresponds to the integrable forecasting
function linear in the parameters. Finally, equation (6.19) describes the ERP fore-
casting model. For the purpose of this exercise, I select r € (0,1) and divide the
sample into two parts: observations {1, ..., [nr]|} and observations {[nr] +1,...,n}. In
the first step, I use observations {1, ..., [nr]} to estimate the unknown parameters in
(6.16)-(6.19). The parameters are estimated by LS. In the case of equation (6.16), the
historic average is used to estimate p. In the case of ERP, parameters are estimated
by nonlinear LS. I used zeros as starting values for 51, 52 and 53 during numerical
optimization. This choice follows from the fact that §; = 63 = 0 in (6.19) implies that
LDP has no predictive power. In the second step, estimated versions of (6.16)-(6.19)
and the actual values of LDP in the forecasting sample are used to construct one

period ahead forecasts for observations {[nr] 4+ 1,...,n}.
[Table 6 about here.]

Table 6 reports out-of-sample square-root MSE’s. I consider r € {1/4,1/2,3/4}.
It appears that the linear regression is the worst performer, since it is dominated by
the historic average and integrable functions at all forecasting horizons considered.
The MSE’s of integrable functions is comparable to that of the historic mean. In
fact, the ERP forecasting function is the best performer in the given sample.

I offer the following interpretation of the results reported in Table 6. It is reason-

able to assume that LDP contains an autoregressive unit root. Consequently, LDP

23



cannot be a good predictor for stock returns during the periods which exhibit appar-
ent trending behavior. Integrable transformations of LDP improve out-of-sample fit
because they filter out large values of LDP. This allows one to ignore LDP during the
trending periods and extract useful information during the other times. This inter-
pretation is consistent with the idea that stock returns are predictable only on rare
occasions, when the predictor does not show clear patterns immediately observable
by all market participants.

It is important to emphasize that above comparison of the MSE’s does not prove
the out-of-sample predictability. For that purpose, one has to test whether the differ-
ence between the out-of-sample MSE’s of nonlinear models and the historic average
is statistically significant. It is possible to derive the asymptotic distribution of the
difference of MSE’s for the DGP described in Assumption 5.1, which can be used for
developing a testing procedure based on a out-of-sample criterion similar to the tests
proposed by Diebold and Mariano (1995). Such a procedure will allow one to com-
pare MSE’s of various forecasting functions. However, since an econometrician has a
freedom to choose the nonlinear function g and the value of p, there is a danger of the
data snooping bias. The testing procedure has to take into account the search for the
best forecasting model. This problem can be approached along the lines described by
White (2000). Further, note that testing with ERP’s is complicated by the fact that
f3 is not identified when f = 0. Development of such tests is a part of the ongoing

research project.

8 Conclusion

In this paper, I consider the forecasting time series that contain a nonstationary,
nonlinear component. The nonlinear component is modeled as an integrable trans-
formation of the predictor, which is assumed to be a I(1) variable. I assume that the
true form of the nonlinear component is unknown to the econometrician and that
he is forced to use some approximating functions. I show that standard tools such

as t-type tests and linear regressions lead to spurious forecasts. The diagnostic tests
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tend to indicate predictive ability, while the forecasts based on the usual linear re-
gression perform worse in terms of the MSE than constant forecasts, which ignore the
information contained in the predictor. I derive general approximating results which
allow one to improve the forecast accuracy with properly chosen forecasting func-
tions. I show that one can obtain non-trivial improvements in forecast accuracy over
polynomials and historic averages by using square integrable forecasting functions.

The results of this paper are supported by a Monte Carlo study and an empirical
example. In the empirical application, I consider forecasting the NYSE stock re-
turns using dividend-price ratio. I show that some integrable transformations of the
dividend-price ratio provide a better out-of-sample fit than the forecasts constructed
from the typical linear models. The accuracy of the forecasts is improved because
nonlinear transformations filter out irrelevant information.

In conclusion, I would like to emphasize the importance of nonstationarity in the
current context. The paper shows that in the case of a nonstationary predictor z,
the loss function converges to the Ls-distance between the true function f and the
approximating function g (multiplied by the local time process):

)
| t@-g@o)an

—o0
In contrast, in the case of a strictly stationary and ergodic predictor z;, the loss
function converges to the Lo-distance weighted by the density of the predictor:

)
| @ =g @)@y

In the second case, polynomials can provide a good approximation since pdf,(z) — 0
as x — =+oo, while in the nonstationary case, approximation with polynomials is
impossible due to unweighted integration over the entire real line.

This paper studies implications of nonlinearity and nonstationarity in the fore-
casting framework. These results can be extended to nonparametric estimation of

the nonlinear component, which I postpone for further study.
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9 Appendix

The following three lemmas are used in the proofs of the results in this paper. Lemma
9.1 extends some of the results of Lemma 2.6 to the weak convergence of stochastic
processes indexed by the parameters 6 € ©. Lemma 9.2 uses the Cramer-Wold device
to extend some of the results of Lemma 2.6 to random vectors. Finally, Lemma 9.3
considers the case of extremum estimators with multiple optimal points. Below, the

symbol ”=" denotes weak convergence.

9.1. Lemma. Let ¢ : R x © — R be a differentiable function with respect to 6 such
that ¢ (-,0) € 7 for all § € © C RP. Furthermore, assume that supycg H 559 (- H is
in Z. Fix s and r such that 0 < s < r < 1. Then, under Assumptions 2.4 and 2.5

(a) n=1/2 E Hns] @ (2-1,0) = (L(r) — £(s)) [*2 ¢ (x,0) dx, a stochastic process
indexed by 6.

(b) suppee |n Y2 Z,[Z[}ns] ¢ (24—1,0) Ut} —p 0

Proof of Lemma 9.1. I prove part (a) of the lemma. The convergence of finite
dimensional distributions follows from Lemma 2.6(d). Thus, it suffices to show that

n—1/2 E Hns] ¢ (z4—1, 0) is stochastically equicontinuous. The result will follow from
Pollard (1990, Theorem (10.2)). Applying the mean value theorem, one obtains the

expansion

o (7,01) — i (2,0) = (61— o) 20 (3,0.2)).

where 0 (x) lies between 6; and 03 and depends on the value of z. Next, write

[nr]

n=1/2 Z (2-1,01) —n~ Y2 Z (2t—-1,02)

t= [ns t=[ns]

n—1/2 Z

ns]

-1/ Z Sup

VAN

S (e 0z) H 101 — 6]

IA

55 1.0 101 = 6.
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By the assumption, supycg H 6990 H € T. Consequently,

[nr]

n~1/? Z sup

06@

ae‘p 24— 1,0)H = 0p(1). (9.20)

It follows from Lemma 2(a) of Andrews (1992) that n~1/2 E Hns] ¢ (2t—1,0) is stochas-
tically equicontinuous.
Next, I prove part (b). It is sufficient to show convergence for all § € © and

—1/2 N\~

stochastic equicontinuity of n t=ns] P (2¢—1,0)u¢. For a fixed value of 6, we

have that n~1/2 Ztn 19 (2—1,0) uy = 0p(1) by Lemma 2.6(e). Now, write

[nr] [nr]
n1/2 Z (zt-1,01)ur — n —1/2 Z (2t—1,02) ut
t= [ns] t= [TLS}
[nr]
< pl/? Z Sgg 39s0 z-1,0)|| | |01 — 62 - (9.21)

By the assumptions of the Lemma and by Lemma 2.6(e) we have that

[nr]

n—1/2 Z sup

96@

8090 z-1,0 H (Jue| = E (Jue|| Fe-1)) = 0p(1).

Further, by Assumption 2.5(b), there exists K < oo such that sup, E (|us|| Fi—1) < K.

Hence,

[nr]

Kn~1/? Z sup

96@

[nr]

n~1/?2 Z sup

96@

IN

8990 21,0 HE(’UtH]:t—l) 39<P 2 1,9)H

= 0,(1).

The result of part (b) follows from Pollard (1990, Theorem (10.2)) and the continuous

mapping theorem. [J

9.2. Lemma. Let ¢;: R — RP be a function that belongs to Z element-by-element.
Let ¢y : R — RP be a function that belongs to Z element-by-element. Fix s and r
such that 0 < s < r < 1. Then, under Assumptions 2.4 and 2.5

(a) n~1/4 Ln?]qls] ©r (2t—1) uy converges in distribution to

o ((M ) [~ erl)e (m)’das) - [ awo,

—00
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where W is a p-vector standard Brownian motion independent of £ and u.

(b) n~1/4 Zz[fm"[]ns ©g (2t—1) converges in distribution to

(e -t [ 2030 Pt " [ v

—0o0
where @ is the Fourier transform of ¢, @ is its complex conjugate, and V' is another
p-vector standard Brownian motion independent of ¢, u, and W.

Convergence in (a) and (b) is joint.

Proof of Lemma 9.2. (a) Let ¢ be a p-vector of constants. Lemma 2.6(e) implies

that
n—1/4 Z do; (21)
t=[ns]
) 12 pr
—a 0w ({61 = 1) / o @ar) [ auty
%) 1/2  pr

~tod ((60) =) [~ pr@er@as) - [Tawe,

where =? means equal in distribution, and w(r) and W (r) are scalar and p-vector

standard Brownian motion respectively, both independent of ¢ and u. The result
follows from the Cramer-Wold device.
(b) Again, let ¢ be a p-vector of constants. It follows from Lemma 2.6(f) that

[nr]

174 Z d oo (2-1)

=[ns]

o (Cm e - o) [ 1 0] T Bt " [ avto

—00

o] eztsl 1/2 T
4 (e ) — ) [~ 0z O ) [ ave

—00
where v and V are a scalar and a p-vector standard Brownian motions respectively,
both independent of ¢, u, W. The result follows from the Cramer-Wold device. The

joint convergence of (a) and (b) is implied by the joint convergence in Lemma 2.6.0
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9.3. Lemma. Suppose (Qir (), Q2n (0)) = (Q1(0),Q2(0)), some stochastic pro-
cesses indexed by 0 € ©, where © is a compact subset of RP. Define
" = {9* €O:P (Q1 (0%) = (}g&@ﬂ@)) = 1}.

Let O,, be the set of values of 6 that minimize @1, (6) on ©. Then,
(a) supg, co, d(0,,0%) —, 0 as n — oo.
(b) Suppose that Q2,(0) is stochastically equicontinuous on ©. Suppose further

that the following condition is satisfied for all € > 0

03,050

P ( sup Q2 (07) — Q2(63)] > 5) =0. (9.22)
Then, as n — oo

sup sup ’Q?n (en) - Q2n (9*)| —p 0.
0,€0, 0*cO*

Proof of Lemma 9.3. (a) As n — oo,

limP d(0,,0%) >6§) <limP inf a(0) < inf Q,(0)).
e (s 0,072 0) TP (jut | Qu0)< jnf Qu®)

Define

h(Q):l{ inf Q(9)<ian(9)}.

0€©:d(0,0%)>6 T 0*cor

The definition of ©* implies that h (Q1) = 0 with probability one. Next, for all ¢ > 0,
TP inf Q)< inf Qu(0)) = TmP(h(Qu) =
o <0€®:d1(r01,(9*)25Q1 (0) < 9*129* Qn ( )> imP (h(Q1n) > ¢)
< P(h(@Q1) >¢)

= 0. (9.23)

The inequality in (9.23) follows from weak convergence and the continuous mapping
theorem.

(b) As n — oo,
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mﬂ( sup Sup Qo (6n) — Qon (07)] = a)

0n €O, 0*cO*

< lLimP < sup sup |Qan (0n) — Q2 (0%)] >, sup d(0,,0%) < 5)
0n €O, 07 cO* 0n€On

+lim P ( sup d(6,,0%) > 5) : (9.24)
0,€0,

Next, the condition supy g d(0,,0%) < 6 implies that for all §,, € ©,, there exists
0y € ©* such that ||0) — 0,]] < 6. The first summand on the right-hand side of (9.24)
is bounded by

TP sup st [Qan (6,) = Qan (05)] + Qa0 (60) = Qo (9] > ¢

0,€0, 0*cO*

< mP(%p sup  |Qan (0) — Q2, (0°)[ + sup |Q2n(9>{)Q2n(9;)|25)-

0*cO* [|9*—0]| <5 01 ,05€0*
Now, weak convergence, the continuous mapping theorem and (9.22) imply that
o P |Qan (07) — Q2n (63)] = 0.
The second summand on the right-hand side of (9.24) is o(1) due to part (a) of the
lemma. The desired result follows from the stochastic equicontinuity of (), and

Slutsky’s Lemma. [J

Next, I present the proofs of the main results.

Proof of Theorem 3.2. I prove part (a) first. Write §n = Ay, — Ag, + Az, where

-1 nr]

[nr]
A, = Zthqu Zf(ztfl)ztfla
=1

t=1

[nr] ! [nr)

[nr]
Ayp = Z [ (ze-1) ZZt_lli_l [nr] Z Zi—1,
=1 =1 =1

frr] ]
Az = Z thlzsq Z wly -
t=1 t=1

It follows from Lemma 2.6(b) and the Cramer-Wold device that

for] .
'y DYz, 2, DLV —y / B(s)B(s)'ds. (9.25)
t=1 0
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Assumption 3.1 and Lemma 2.6(d) imply that

[nr]
nV2N " (1) Zea = Op(1). (9.26)
t=1
Therefore, it follows from (9.25) and (9.26) that
n*2DY2 Ay, = 0,(1). (9.27)

Next, joint convergence in Lemma 2.6(b),(d) and the continuous mapping theorem

imply that

WD A —a 10 [ syt ( A E(S)E(S)'d8> B | Boas. 02s)

Finally, Lemma 2.6(c) implies that

nY/2DY/2 Ay g ( /0 TB(S)E(S)’Cb)l /0 " B(s)duls). (9.29)

The result in part (a) follows from (9.27)-(9.29) and the joint convergence in Lemma
2.6.

The result in part (b) of the theorem follows immediately from the definition of
I, Lemma 2.6 and part (a) of the theorem.

For part (c) of the theorem, it is sufficient to show that s2 in (3.6) converges in
probability to o2. The result will follow from part (a) and the continuous mapping
theorem. Define the averages f, = [nr] ™" Zz[irll (z-1), and T, = [nr] ™ Zl[firl] Ut
Write

[nr] [nr]

S (== Ziadn) = 30 (7 Gt = Fo) + (=) = ZiiBa) - (930)

i=1 i=1
We have the following results:

2

[nr] [nr] [nr]
S (flae) = F)® = D) — | ]2 f (aa)
i=1 i=1 i=1
= 0, (n1/2), (9.31)
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0,3 Z, 12 10, = Op(1), (9.32)

=
g(f(ztl)ﬂ)zi-l@n = 0p(1), (9.34)
g(“t_ﬂn)zr—lgn = Op(1). (9.35)

Equation (9.31) follows from Assumption 2.2 and Lemma 2.6(d); (9.32) is implied by
part (a) of the Theorem and Lemma 2.6(b); (9.33) is due to Lemma 2.6(e); (9.34)
follows from part (a) of the Theorem, Lemma 2.6(d) and Assumption 3.1; and, finally,
(9.35) follows from 2.6(c) and part (a) of the theorem. Next, (9.30)-(9.35) together

imply that
[nr] 2 [nr] [nr] o,
Z (yt - ﬁn - Z;—len) = ZU? + (f (thl) — fn) + Op (n1/4) .
i=1 i=1 i=1

The result follows from Assumption 2.5 and Slutsky’s lemma.
The proof of part (d) is similar to the derivation of the probability limit of s2 in

(b). Using the same arguments as in (9.30)-(9.35), one can write

1Gn (3B) = 32 (FCarmr)— T+ 0 (1)

i=[nr]+1

= Y fa)

i=[nr]+1

] [ ’ o) n
+n[nr[]2 ] ( f(Ztl)) - [n_lT]Zf(Zt_l) Z f(zt—l)

i=1

+0, (n1/4)

— Y Paa)to, (r4). (9.36)

i=[nr]+1

The result follows from (9.36), Assumption 2.2 and Lemma 2.6(d).
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I prove part () of the theorem now. Define 7, = [nr] ZEZE Y, and write
(= (0r)) (Qn (71 Bn) = @n (Fio.:0) )
n R 2 n
= Z <yt —Yn — Zéflen) - Z (e —Tn)”

i=[nr]+1 i=[nr]+1
= Bin— 2B, — 23371,7

where

n
~ ~
By, = 0, Z Zy 1 Zy 10,

i=[nr]+1
B2n = Z (f (Zt—l) _?n) Zéflb\n;
i=[nr]+1
Bz, = Z (Ut_ﬂn)zg_l/e\'rp
i=[nr|+1
Due to the result in part (a),
1
By, —g U < / E(s)ﬁ(s)’ds) v, (9.37)
[nr] R [nr]
By, = —[nr]_ Z (z¢-1) Z 2y 10n — Z f(ze-1) [nr] IZZt 10
i=1 i=[nr]+1 i=[nr]+1
+ > fz1) Zf6n
i=[nr]+1
[nr] [nr]
= —[nr]_lzf(zt 1 Z Z, 0, — Z I (zt-1) [n7] 12Zt s
i=1 i=[nr]+1 i=[nr]+1
+0, (D*1/2>

o ([ o).
(ar) [ B+ [ auts) /OTB@)ds)'\y, (9.38)

and

1
%ﬁwfﬂmwy (9.39)
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The desired result follows from (9.37)-(9.39). O

Proof of Theorem 4.2. Define g,(0) = [nr] ZEZI] g (zt—1,0) . Concentrating out
p as in (4.12), write the in-sample MSE as

nY2IMSEN0) = nl/? Z (W — T — 9 (2-1,0) +5,,(0))?

[nr]

= _1/22 (2¢-1) (24— 1,9))2+n_1/22(ut*ﬂn)2

t=1
+Rn(9),

where R, (0) = Ri,(6) + 2R2,(0) + 2R3, (0) + 2Ry, (0), and
Rln(e) = ’I’L1/2 (7 - gn(e))2 ’

Ron(0) = (frn —Gul 1/22 (2e-1) (2t-1,0)),

[nr]

R3n(9) = 71/2 Z Zt 1 Zt 1, 9)) (ut - ﬂn) ’

Rin(6) = (T~ 5u(0)) n "2 Z (4t —Thn)
=1

Each of the components of R, (0) is o,(1) uniformly in 6. For Ry, (6), write R1,(0) =
n—1/2 <rf1/2 Zz[t’fll (f (zt-1) — 9 (21, 9)))2 . Then, Assumptions 2.2 and 4.1, Lemma
9.1(a) and continuous mapping theorem imply that supgcg |Rin(0)] = 0p(1). In a
similar way, one can show that Rgy,(0) and R4, (f) converge to zero in probability
uniformly in 6. Finally, supgcg R3n(0) = 0p(1) by Lemma 9.1(b).

Now, it follows from Assumption 4.1 and Lemma 9.1(a)
[nr] 0
n'PMSE,(0) = n™ 2> (g —n)* = £(r) / (f(@) — g (x,0)*de.  (9.40)

t=1 -

Equation (9.40) and Lemma 9.3(a) together imply that
sup d(6,,0%) —, 0, (9.41)
0co,

which completes the proof of part (a) of the Theorem.
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For part (b), write

[nr] [nr]
sup |fi,, <§n> =l < DY D (f (aen) = g (e, 0) [ |Inr] D
0n€O, t=1 t=1

where 0% € ©*, and

Rs, (Q*ﬁn) = [nr]7! % <g (z-1,0%) — g (zt_l,gn)) :
t=1

The first two summands on the right-hand side of (9.42) are 0,(1), as it follows from
Lemma 2.6(a) and (d). Next, due to the Assumptions of the theorem, and by Lemma
9.1(a)

n?Rsy (0%,0) = 7 14(r) / (9(x,0") —g(x,0))dz, (9.43)

—00

where supgeg ’ffooo (9 (z,0%) —g(z,0)) d;v’ < o0 by Assumption 4.1(c). Hence, the
remainder term in (9.42), Rsy (6%,0,), is 0p(1) uniformly in 6,,. The result of part
(b) of the Theorem follows.

For part (c) of the theorem, note that @, (ﬁn <§n) ﬁn) depends on the out-of-
sample M SE. Hence, similarly to part (a), one can show that

n2Qu (i (0),0) = (1 =) () = £0)) [ (F@) =g @.0)?do. (040

Next, fix * € ©*. Define Rg 5, (0, 0") = Qn (1, (00) , 0n) —Qn (1, (6%),60%) . It follows
from equation (9.44), the definition of ©* and Lemma 9.3(b) that

sup n1/2R6,n (@m 9*)‘ —p 0.

0n€O,,0"cO*

Hence,

n2Qu (7 (8) 00) = 0'2Qu (i (6%).6) + 0p(1)
—a (1) (0(1) €)M,

where the last result holds uniformly in 0,.0
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Proof of Theorem 4.5. For part (a) write

[nr [nr]
2 —pt) = a2 Z (z-1) = g (21-1,0%)) + 0 2[nr] 71> "y
t=1

2R, (5*,an) .

Theorem 4.2(a) and (9.43) together imply that n'/2Rs, <9*,§n> = 0p(1). The result
of part (a) follows from 2.6(a) and (d).

For part (b), one can write

%M”%MSE,L <ﬁn7§n) — —1/255(% W) )+n 1/2%80 <Zt 1,0n )

[nr]

— (i — 11") 1/22899 (-1,0n) - (9.45)

It follows from part (a) of the theorem, Lemma 9.1(a) and Theorem 4.2 that the last
summand on the right-hand side of equation (9.45) is Op(n~'/2). Now, using the mean

value expansion of n~1/2 Zz[:fl] S <zt_1,5n> and n~1/2 Zt i 899 (zt 1, [ > uy around

0*, one obtains

nl/4 (@n — 9*>
[n7]
- n_l/QEH <zt,1,§n> + 0p(1)

-1

[nr] [nr]
t=1

In the above expression §n lies between gn and 6% and, therefore, converges in prob-
ability to 0*. Next, under Assumptions 2.2 and 4.3(c)-(d), and by applying Lemma

9.1(a) element-by-element, one obtains

[nr] o
w2 H (21,8,) —a €0) / H (x,0%) da. (9.46)
t=1 —o0

Let W7 and W be two p-vectors standard Brownian motions independent of £, u and
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each other. Under Assumption 4.4, it follows from Lemma 9.2(b) that

[nr]
_1/428 Zt— 17
o . 1+E6itf—:1 1/2

Under Assumption 4.1(d), Lemma 9.2(&) implies that

[n7]

0
—1/4 *
n~Y 2@9(%—179 ) ug

R VI
40 (((r) | agote0) gga .0 d;z:) Wa(r).  (9.48)
Part (b) of the theorem follows from (9.46), (9.47) and (9.48). O

Proof of Theorem 5.3. Under the alternative, the re-scaled slope coefficient n'/ 4§n

is given by

-1
( -1/2 Z Zt 1 ) ((I) (Zt—l) — an)/) X
(n_1/2 Zf (zt-1) (® (2—1) — Pp) + 1 1/4Zut (z-1) — @ )) :
t=1

Similarly to (9.31), the average ®, has no effect on the asymptotics of the above
expression. The Cramer-Wold device, Lemma 2.6(d) and Assumption 5.2 imply that

12 Z‘I’ ) D (2) —a (1) / B(2) () dz, (9.49)
_1/2 Zf Zt— 1 Zt 1 —d ( / f (950)
Next, Assumption 5.2 and Lemma 9.2(b) imply that
n 00 1/2
Y (2-1) —a (035(1) / <I>(:U)<I>(:E)/d:z> w(1), (9.51)
t=1 —o0

where W(r) is a Brownian motion independent of ¢(r). In fact, convergence in (9.49)-

(9.51) is joint. Hence, n'/ 19, converges in distribution to

</_Z @(m)@(m)'dw) - /_Z F(@)®(x)dz

tou <5(1) / h @(x)@(x)’dw) o, (9.52)

—00
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which can be shown similarly to s2 —, 02 in the proof of

. ~2
Finally, 77, ,, —p o2 b

(%]

Theorem 3.2(c). Therefore, it follows from (9.52) that

<z(1)/ () B( dm) 1/2/ f J@2@) 40wy
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Figure 1: Simulated sample path of y; = f (z¢—1) + us.
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Figure 2: NYSE stock returns and dividend-price ratio, 1946-2000.
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p N f2 /3 fa f5
a=1
0.115 0.113 0.112 0.103 0.184
0.126 0.108 0.121 0.121 0.251
0.142 0.136 0.136 0.133 0.315
0.176 0.165 0.157 0.136 0.362
a=2
0.233 0.205 0.247 0.264 0.373
0.295 0.256 0.314 0.299 0.534
0.340 0.303 0.353 0.355 0.650
0.419 0.376 0.433 0.398 0.724
a=+4
0.411 0.355 0.459 0.556 0.538
0.536 0.457 0.603 0.782 0.693
0.594 0.556 0.665 0.878 0.761
0.691 0.629 0.748 0.906 0.789
a=38
0.538 0.464 0.600 0.654 0.724
0.707 0.597 0.795 0.908 0.897
0.758 0.695 0.825 0.967 0.930
0.827 0.761 0.885 0.981 0.957

= W N = W N = -~ w N =

=W N =

Table 1: Simulated rejection rates of F;, test for 0.05 significance level.

integrable integrable
p polynomial linear ERP polynomial linear ERP
fianda=1 fsanda=1
1 0.299 0.481 0.484 0.307 0.438 0.487
2 0.205 0.430 0.445 0.192 0.397 0.405
3 0.107 0.417 0.394 0.106 0.352  0.336
4 0.089 0.414 0.371 0.093 0.346  0.320
fiand a =10 fs and a =10
1 0.342 0.631 0.776 0.366 0.612 0.897
2 0.257 0.654 0.784 0.275 0.723 0.857
3 0.175 0.597 0.780 0.198 0.639 0.846
4 0.154 0.583 0.793 0.203 0.720 0.842

Table 2: Proportion of simulation repetitions where the out-of-sample MSE of the
corresponding model is less than that of the historic average.
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p=1 p=2 p=3 p=4
fi
a=0 0.056 0.065 0.062 0.075
a=0.5 0108 0.100 0.107 0.136
a=1 022 0.205 0.255 0.315
a=2 0.507 0.489 0.583 0.689
f5
a=0 0.056 0.065 0.062 0.075
a=05 0173 0.167 0.147 0.160
a=1 0476 0442 0.463 0.474
a=2 0.851 0.832 0.853 0.823

Table 3: Simulated size and power of T;, test for 0.05 significance level.

intercept intercept and trend

autoregressive coefficient 0.997 0.990
Phillips-Perron test
7y statistic —0.702 —1.808
10% critical value —2.569 —3.132
KPSS test
statistic 2.969 0.500
1% critical value 0.739 0.216

Table 4: Unit root tests for the log of the dividend-price ratio.

regression slope estimate t-statistic

OLS 0.0092 1.92
FM-OLS 0.0065 4.37
Integrable -0.2505 -2.58

Table 5: In-sample performance of the log of the dividend-price ratio.

r 1/4 1/2 3/4
historic average 4.2223 4.4500 4.0765
linear regression 4.2812 4.4744 4.2521
integrable linear 4.2209 4.4393 4.1243
integrable ERP  4.0779 4.0733 4.0687

Table 6: Out-of-Sample Root MSE x102.
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