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Abstract

This paper explains the emergence of liquidity traps in the aftermath of
large-scale financial crises, as happened in the US 1930s, Japan 1990s and
recently in the US and Europe. The paper introduces a new balance sheet
channel that links equity capital to the risk-free interest rate. When equity
capital falls, bankruptcy risks rise. Firms become more vulnerable to external
shocks, which makes financial disasters more likely to happen. As a result,
demand for safe assets increases, and the risk-free interest rate declines. When
equity capital falls too much, the risk-free interest rate drops to its lower
bound, creating a liquidity trap. Simulations show that the interest rate may
stay at the lower bound for a long time, which is consistent with past and
present experience.
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1 Introduction

The liquidity trap appeared in the 20th century twice, in Japan during the 1990s

and in the US Great Depression in the 1930s. Both economies suffered from large-

scale financial crises that were followed by an extended period of economic slump.

The short-term interest rate dropped close to zero and stayed there for a long time.

Yet it had no impact on investments and production and could not end the recession.

Interest rates should have been much lower than zero, which was impossible due to

the zero lower bound. Similar conditions have been developing in the US and Europe

since 2008 as interest rates have fallen sharply to zero suggesting the revival of the

liquidity trap. Interestingly, this third episode also followed a large financial crisis.

The emergence of liquidity traps in the aftermath of financial crises suggests that

financial reasons lie at the root of the problem. The present paper offers a theory

that relates liquidity traps to financial factors. It establishes a link between equity

capital and the risk-free interest rate. Equity capital serves as a shock buffer ensuring

that debt contracts such as bonds and deposits could be paid in bad times. When

equity capital falls, bankruptcy risk rises. Firms become more vulnerable to external

shocks, which makes financial disasters more likely to happen. As a result, demand

for safe assets increases, and the risk-free interest rate declines. When equity capital

falls too much, the risk-free interest rate drops to its lower bound and the economy

slides into a liquidity trap.

In spite of the empirical coincidence of liquidity traps and financial crises, the

literature has focused on non-financial explanations for the trap. Keynes (1936) men-

tioned the excess investment in physical capital taking place in the US and Great
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Britain following World War I, reducing the return on physical capital ”more rapidly

than the rate of interest can fall” (p. 219). Referring to the case of Japan, Krugman

(1998) attributed the large interest rate decline to weak demand for investments,

as agents anticipated low future growth due to Japan’s aging population. Jeanne

and Svensson (2007) provided a model that formalized Krugman’s view, in which

the liquidity trap was caused by an anticipated productivity fall. Eggertsson (2006,

2008), Eggertsson and Woodford (2003) and Auerbach and Obstfeld (2005) modeled

the liquidity trap differently by introducing an exogenous shock to agents’ intertem-

poral utility function. In their model, a rise in the time discount factor reduced the

real interest rate to zero, generating the conditions of a liquidity trap. A different

approach is taken by Benhabib, Schmitt-Grohé and Uribe (2002). They argue that

the liquidity trap can result from a monetary policy applying a Taylor rule.

The purpose of this paper is to demonstrate the role of financial factors in creating

the liquidity trap, by linking the interest rate decline to the fall in equity capital.

Indeed, the previous liquidity traps in the US and Japan have been associated with

a significant contraction in equity capital, particularly within the banking sector.

Hoshi and Kashyap (2010) estimate that the book value of Japan’s bank capital

(after adjusting for deferred tax assets and under-reserving) fell 68% between 1996

and 2003. Excluding capital injections by the government, the book ratio of capital-

to-assets dropped from 3.3% in 1996 to a negligible level of 0.2% in 2003. The

non-bank sector has also suffered from declining equity capital, as evident by the

steep rise in bad loans and write-offs (Hoshi 2001, Fukao 2003). Eventually, the

chronic shortage of capital has led to a wave of bank failures (Imai 2009, Hoshi and
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Ito 2004). Massive failures of banks and commercial business occurred also during the

Great Depression, indicating that firms equity capital had been falling significantly

(Bernanke 1983). Calomiris and Wilson (2004) show that the market capital-to-asset

ratio of New York banks declined from 27% to 12% between 1929 and 1933, and the

probability of bank default increased.

More recently, banks have lost some $2.2 trillion on securities and loans due

to the sub-prime crisis (International Monetary Fund 2010a). Despite extensive

government support and some improvement in capital markets, the market value

of bank equity capital in 2009 was still half its pre-crisis level (Bank of England

2009). Moreover, non-performing loans have been rising significantly (International

Monetary Fund 2010b), reflecting equity depletion of the non-bank sector as well.

Hence, the liquidity trap conditions prevailing since 2008 have been associated again

with lower equity capital and higher bankruptcy risk.

To relate the interest rate to firms’ equity capital, the paper builds on the rare

disaster literature developed by Rietz (1988) and Barro (2006). These papers show

that rare economic disasters can have a significant impact on the interest rate, even

though the probability of such events is very low. The same principle is applied here.

Low equity capital raises bankruptcy risk and therefore increases the probability of

a massive wave of defaults. This event can be particularly harmful when it involves

the collapse of the banking sector, as was the case during the Great Depression. Such

disastrous events are usually very rare, but when equity capital falls they become

more probable, thereby inducing a lower risk-free interest rate. The novel feature of

the model is that the disaster probability is endogenous and changes according to
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firms’ equity capital (which is also determined endogenously). By contrast, in Rietz

(1988) and Barro (2006) the disaster probability is exogenous and fixed so the risk-

free rate is constant. Later studies have explored the effect of time-varying disaster

risk, but the disaster probability was still determined exogenously (e.g. see Gabaix

2008).

In this paper, disasters are defined as a wholesale default of the banking sector.

Banks are modelled as corporate entities (firms) that borrow funds from consumers

and invest them in risky assets. If the value of the bank’s assets falls below its debt,

the bank defaults. Since all banks are identical, they all default at the same time,

triggering a financial disaster. However, it is not the disaster itself that drives the

main results, but rather the probability that it would occur. This probability is

determined by banks’ capital structure, namely, the ratio of equity capital to debt.

Therefore, to model the probability of a financial disaster we have to construct a setup

where capital structure is determined in equilibrium and linked to the probability of

default.

It is well known that capital structure is indeterminate in the absence of some

sort of friction (Modigliani and Miller 1958). The macro literature, pioneered by

Bernanke and Gertler (1989), Kiyotaki and Moore (1997) and Holmstrom and Tirole

(1997), adopted asymmetric information problems to construct models where firms’

capital structure produces macroeconomic effects. This approach is well suited for

small firms, where the owners of the firm are also the managers. In these cases

there is a large information asymmetry between the shareholders (managers) and

the creditors, who are outsiders to the firm. However, when it comes to financial
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institutions, the scope of information asymmetry between investors is very limited.

In most cases, the shareholders of the bank and the debt holders observe the same

information about the bank. Only the bank managers, who usually own a tiny

fraction of the bank capital, have an information advantage. Hence, information

differences cannot explain the ratio of debt to equity capital chosen by the bank.

A natural way to model the capital structure of financial institutions is by ap-

plying risk sharing arguments. Allen and Gale (1988, 1994) have shown that in an

incomplete market with heterogeneous agents, firms can raise their market value by

selling securities with different risk profiles, e.g. equity and debt. If agents vary in

their risk preferences but cannot trade risk freely because markets are incomplete,

the issuance of heterogeneous securities improves their risk sharing. When applied

to banks, this means that more risk averse agents would hold bonds and bank de-

posits, while less risk averse agents would hold equity shares of the bank. Namely,

the shareholders and the bondholders of the bank share risk by holding different

claims against the bank assets. Allen and Gale’s (1988) model does not require any

information asymmetry between shareholders and bondholders. In this respect, it is

an attractive way to model banks’ capital structure, as both types of investors are

mostly outsiders to the bank. Interestingly, the macroeconomic literature has not

explored this path yet. Hence, the present paper makes a contribution by studying

macroeconomic effects of banks’ balance sheets, using the risk-sharing approach to

optimal capital structure.

The paper proposes a new balance sheet channel that has not been studied be-

fore. The usual balance sheet channel operates through informational frictions that
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create a linkage between firms’ balance sheets and the external finance premium

(Bernanke and Gertler 1989, Kiyotaki and Moore 1997, Holmstrom and Tirole 1997).

In contrast, the present paper works through the impact of firms’ balance sheets on

aggregate bankruptcy risk and hence on the probability of financial disasters. Previ-

ous studies usually abstract from bankruptcy risk by constructing models where the

equilibrium probability of default is zero, e.g. see Kiyotaki and Moore (1997), He

and Krishnamurthy (2009), Gertler and Karadi (2010) and Jermann and Quadrini

(2010). In Bernanke, Gertler and Gilchrist (1999) firms may default, but savers are

able to eliminate this risk and earn a perfectly safe return on their savings. Hence,

their model does not contain a precautionary saving motive, which is essential in

order to get asset price effects of aggregate risk. The present paper combines ele-

ments from the balance-sheet-channel literature with the asset-pricing-rare-disaster

literature, in order to generate asset price effects of aggregate bankruptcy risk.

The model provides two main results. First, it shows that liquidity traps are likely

to appear when bank capital drops significantly and the probability of bank default

rises. This is a novel result in the liquidity trap literature, which has focused mainly

on non-financial explanations for the trap. Second, the model suggests that the

recovery from a liquidity trap may take a long time, during which banks accumulate

new equity capital. The economy exits the trap when banks are well capitalized and

the probability of default is sufficiently low. The long duration of the liquidity trap

is consistent with past episodes which lasted more than a decade, and the current

episode which is already few years long. This cannot be explained by standard

business cycle models, in which the interest rate is determined solely by consumption
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dynamics through an Euler equation. In these models the interest rate tends to rise

once the economy starts to recover after an initial negative shock. Hence, the interest

rate hits the lower bound only for a short period, as in Gertler and Karadi (2010).

The introduction of a disaster effect produces a different result. The interest rate

may stay at the lower bound for a long time, as long as the banking sector continues

to be poorly capitalized and highly vulnerable to negative shocks.

The paper proceeds as follows: Section 2 describes the model and section 3 de-

rives the conditions for a general equilibrium. Section 4 elaborates on the choice of

parameter values used to simulate the model. Then, section 5 presents the model

results, and in particular the effect of equity capital on the risk-free interest rate.

Section 6 imposes a lower bound on the risk-free interest rate and demonstrates how

a large contraction in bank capital can create a liquidity trap. Section 7 concludes.

2 The Model

The basic setup is an overlapping generation model with heterogeneous agents.

Agents consume in the first period of life and leave a bequest to their offspring in the

second period. Their utility function is defined over consumption and bequest. This

type of bequest motive is sometimes called ”warm glow preferences” because agents

derive direct utility from bequests. Acemoglu (2009) provides a detailed discussion

on these models and their application in the literature. The main advantage of this

setup is its tractability, as agents optimize over two periods only. This is particularly

useful in models with heterogeneous agents and a corporate finance problem, e.g.

8



Bernanke and Gertler (1989), Holmstrom and Tirole (1997). The two-period setup

simplifies the dynamic dimension of the model and allows to focus the attention on

the corporate finance issues, which provide the main insights of the model. The

introduction of a bequest motive enriches the dynamic structure of the model and

enables to address dynamic issues in a relatively simple framework.

Subsection 2.1 presents the optimization problem of the agents, which is fairly

standard. Agents have different risk preferences. Some agents are risk neutral and

others are risk averse. Markets are incomplete so the only assets available are equity

and bonds issued by firms, which must be held in non-negative amounts (no short

sales). The supply of equity and bonds is modelled in subsection 2.2, which presents

the corporate finance problem of the firm. Finally, subsection 2.3 introduces the defi-

nition of a financial disaster and derives the distribution of asset returns. Equilibrium

is solved in section 3.

2.1 Agents

There are two types of agents denoted A and B. The quantity of each type is

normalized to 1. Both types live for two periods, consume in the first period and

bequeath their wealth to newly born agents of the same type in the second period.

The only difference between the two types is their utility from bequest. Type A

agents have a linear utility from bequest while type B have an isoelastic (CRRA)

utility. Hence, type A are indifferent to portfolio risk but type B are not. The

heterogeneity in risk aversion will produce heterogeneity in financial assets, namely,

equity and bonds. In equilibrium, the risk-averse agents (type B) will hold bonds
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while the risk-neutral (type A) will hold equity1.

Young agents of type A born in period t maximize the following utility function:

UA
t = cAt + βEtW

A
t+1, 0 < β < 1 (1)

subject to the budget constraints:

cAt =WA
t − bAt+1 − eAt+1 −mA

t+1, (2)

WA
t+1 = bAt+1R

b
t+1 + eAt+1R

e
t+1 +mA

t+1. (3)

Superscript A stands for type A agents, cAt denotes consumption in period t of a

single consumption good, WA
t is wealth inherited from an old type A agent, and

WA
t+1 denotes bequest in t+ 1. The variable bAt+1 denotes bonds acquired in period t

which pay the (state dependent) gross return Rb
t+1 in t + 1. Similarly, eAt+1 denotes

the value of equity shares acquired in period t paying a return Re
t+1 in t + 1.

In addition to equity and bonds, agents can also save in storage. Storage is

denoted by m because its role in this model resembles money in monetary models.

It imposes a lower bound on the risk-free interest rate as storage is a perfectly safe

asset with zero net return. In what follows, I will study two different cases. The

first case assumes that saving in storage is not allowed so the risk-free interest rate

is unbounded. The second case introduces a lower bound on the risk-free rate by

allowing agents to save in storage. Comparing the two cases will enable to study the

1The same type of heterogeneity in risk-aversion can be found in Allen and Gale (1988),
Bernanke, Gertler and Gilchrist (1999) and Gale and Özgür (2005).
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effects of the lower bound.

I assume that agents cannot borrow or make short sales of securities, so the

holdings of bonds and stocks must be non-negative. This assumption provides a

role for corporate finance, because the Modigliani-Miller Theorem (Modigliani and

Miller 1958) does not hold under this condition in the presence of bankruptcy risk

(Hellwig 1981). Moreover, the assumption of no short sales ensures that firms behave

competitively, as discussed in Allen and Gale (1991)2. The no-short-sales assumption

implies also that bequests are non-negative because the returns on equity and bonds

are non-negative (see below).

The optimization problem of type A agents yields the following first order condi-

tions:

1 + φ = βEtR
b
t+1 ≥ if bAt+1 = 0, (4)

1 + φ = βEtR
e
t+1 ≥ if eAt+1 = 0, (5)

1 + φ = β ≥ if mA
t+1 = 0, (6)

where φ denotes the Lagrange multiplier associated with the constraint cAt ≥ 0. It

is clear from (6) that type A agents never hold storage (mA
t+1 = 0) since β < 1 and

φ ≥ 0.

2Allen and Gale (1991) show that when short sales are allowed, a small firm can have a large
impact on equilibrium. By issuing a new security that does not exist in the market and cannot be
spanned by other securities, the firm can change the consumption possibilities of the agents. Even
if the amount of the issued security is negligible, the possibility to short sell it by all agents implies
that it can have a non-negligible effect on agents’ portfolios.
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The FOC imply that type A agents save by holding the asset with the highest

expected return, but only if this asset provides an expected gross return of at least

β−1. If the expected gross return is higher than β−1 they save all their wealth, and if

it equals β−1 they may consume some of their wealth. Finally, if the expected gross

return is lower than β−1, type A agents consume all their wealth leaving no bequest.

Turning now to agents of type B, these agents have the following utility function:

UB
t = cBt + δEt

(

WB
t+1

)1−θ

1− θ
, θ > 1. (7)

Their utility function differs from type A agents in the utility from bequest which

has a constant relative risk aversion (CRRA)3. Hence, type B agents are risk-averse

with respect to their future wealth.

Type B agents maximize (7) subject to the same budget constraints (2) and (3)

(where superscript B substitutes A). The first order conditions of this problem are

given by:

1 + ψ = δEt

Rb
t+1

(WB
t+1)

θ
≥ if bBt+1 = 0, (8)

1 + ψ = δEt

Re
t+1

(WB
t+1)

θ
≥ if eBt+1 = 0, (9)

1 + ψ = δEt

1

(WB
t+1)

θ
≥ if mB

t+1 = 0, (10)

where ψ is the Lagrange multiplier of the constraint cBt ≥ 0. These FOC yield the

3It is possible to assume that agents differ also in their utility from consumption, which yields
very similar results. The advantage of the current setting is that it generates a stationary wealth
distribution, which is harder to obtain when heterogeneity among agents is too large.
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following saving rule for type B agents:

WB
t − cBt = min

(

{

δEt(Π
B
t+1)

1−θ
}

1

θ , WB
t

)

, (11)

where ΠB
t+1 ≡

WB
t+1

WB
t
−cB

t

denotes the total return on agents B savings4. Hence, when the

inherited wealth of type B agents is less than
{

δEt(Π
B
t+1)

1−θ
}

1

θ , type B agents save

all their wealth. When their wealth exceeds that level, they consume the surplus.

2.2 Firms

The corporate sector is composed of firms that exist for two periods in an overlap-

ping generation pattern5. At a later stage of the paper I interpret firms as financial

institutions (banks), but at this point they are modelled more generally, as represen-

tatives of the entire corporate sector (including banks). In the first period of their

lifetime firms buy assets and issue equity and bonds. The assets yield a stochastic

return realized in period t+1, which is identical for all firms. Hence, risk is aggregate

as it cannot be diversified away. When asset returns are realized, bondholders and

shareholders are paid off. Firms might default on their debts if the realized value of

their assets is lower than the promised debt. Since all firms are identical, bankruptcy

means a collapse of the entire corporate sector, which is defined below as a financial

disaster. In this sense, interpreting firms as banks is consistent with the model as-

sumptions, because a failure of the entire banking system is likely to create a serious

4To get (11), multiply (8), (9) and (10) by bBt+1, e
B
t+1 and mB

t+1, respectively, and sum them

together to have
(

WB
t − cBt

)

(1 + ψ) = δEt
(

WB
t+1

)1−θ
. When cBt is positive ψ = 0 so WB

t − cBt =
{

δEt(Π
B
t+1)

1−θ
}

1
θ , which yields (11).

5This assumption is made for exposition clarity. It has no effect on the results.
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financial disaster.

The composition of equity and bonds determines the probability that the firm

will default. Therefore, the main issue is how firms choose their optimal capital

structure. The construction of the optimization problem of the firm follows Allen

and Gale (1988). In their model, agents have heterogeneous risk preferences but

markets are incomplete, so risk cannot be traded freely. Firms can increase their

market value by issuing securities that vary in their payment structure, e.g. equity

and bonds. This improves agents’ risk sharing, because agents can share risk by

holding assets with a different risk profile. Namely, agents that are more risk averse

would hold safer assets.

To model the firm’s problem, suppose that each firm is established by an en-

trepreneur. The entrepreneur buys the firm assets and sells claims against these

assets in the form of equity and bonds. Hence, the decision about the capital struc-

ture of the firm is made by the entrepreneur. It is shown below that the identity

of the entrepreneur has no effect on the firm optimal decision. Similarly, selling the

firm to other agents would not change its optimal decision (see below). Once the

entrepreneur sells all the securities of the firm to new investors his role in the firm

terminates.

For simplicity, assume that any agent can become an entrepreneur and establish

a new firm. This assumption will not change the optimization problem of the agents,

because in equilibrium the gain of the entrepreneur is zero, as shown below. For the

clarity of exposition, variables that are controlled by the entrepreneur are denoted

by subscript i, and the other variables are denoted by a time subscript. The terms
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”firm” and ”entrepreneur” are used interchangeably because the firm is fully owned

by the entrepreneur when it decides on its optimal capital structure.

Let ai be the assets acquired by firm (entrepreneur) i. These assets yield a

stochastic return of Ra
t+1 paid in the next period (t+1). Note that asset returns are

identical for all firms so they are independent of i. The market value of the firm’s

assets in period t + 1 is given by aiR
a
t+1.

The firm issues claims against its assets in the form of equity and bonds. The

total face value of the issued bonds is denoted Xi. Namely, the firm promises to

pay its bondholders in period t + 1 a fixed sum of Xi consumption goods. Hence,

Xi is the promised payout to all bondholders. If aiR
a
t+1 < Xi the value of the firm

assets is less than the value of its debt so the firm defaults. In this case, bondholders

receive the entire assets of the firm. In short, bondholders are paid min
(

Xi, aiR
a
t+1

)

.

Shareholders get the remaining assets of the firm, after bondholders are paid. Hence,

shareholders are paid max
(

aiR
a
t+1 −Xi, 0

)

. Let Y j (ai, Xi) denote the total payoff

to the holders of security j of firm i, given the firm’s assets (ai) and debt (Xi). The

index j ∈ {e, b} can be an equity or a bond. Then, the payoffs to the bondholders

and the shareholders are defined by the following functions, respectively:

Y b (ai, Xi) = min
(

Xi, aiR
a
t+1

)

, (12)

Y e (ai, Xi) = max
(

aiR
a
t+1 −Xi, 0

)

.

The entrepreneur is interested in maximizing his gain from buying the firm assets
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and selling the firm securities. Let V e (ai, Xi) and V b (ai, Xi) denote the market

value of equity and bonds (respectively) issued by firm i. These market values would

depend on the capital structure of the firm, represented by the variables ai and Xi.

The target of the entrepreneur is to maximize his net gain (or net market value) by

solving the following problem:

max
ai,Xi

V e (ai, Xi) + V b (ai, Xi)− ai. (13)

The expression V e + V b is the market value at which the securities of the firm are

sold, and ai is the cost of buying the assets of the firm. Hence, (13) maximizes the

entrepreneur’s gain from buying assets and selling securities.

The question is how to construct the functions V e (ai, Xi) and V
b (ai, Xi). These

functions provide the market value of equity and bonds for each choice of ai and Xi.

One possibility is to look at similar securities that circulate in the market and learn

their prices. But what if the firm wants to set ai and Xi at levels that do not exist

in the market? How would the firm gauge the effect of its new capital structure on

the market value of its securities? In a complete market the answer is simple. The

value of any security is similar for all agents, because marginal rates of substitution

between future and current consumption are equalized across all agents for each

state. In this case, the pricing rule of one agent (say, the entrepreneur) represents

the pricing of the entire market. However, when markets are incomplete this is not

the case anymore. Agents may have different valuations for the same security, so it

is necessary to construct the pricing function of the market. This pricing function

is sometimes called conjecture or perception (see references in Bisin, Gottardi and

16



Ruta 2009), because the firm cannot observe the market value for all possible choices

of ai and Xi, so it has to conjecture it.

Allen and Gale (1988) use a price conjecture originally proposed by Makowski

(1983). According to this conjecture, the market value of a new security is determined

by the highest price that any agent is willing to pay for buying a small amount of

it. The finance literature has proposed other conjectures, which are discussed in

detail by Bisin, Gottardi and Ruta (2009). The virtue of Makowski’s conjecture

is that it maintains the assumption that the firm behaves competitively. Namely,

the firm takes market prices of all types of securities as given (Makowski 1983). In

addition, if the firm is established by several entrepreneurs, they will all unanimously

agree with the objective function (13), because they will all have the same price

conjectures. Moreover, subsequent shareholders will also unanimously agree with

the same objective function6. These properties ensure that the optimal choice of the

firm is independent of the identity of its shareholders. Hence, trading the shares of

this firm will not change its capital structure.

To present Makowski’s price conjecture in the context of the present model, con-

sider security j issued by firm i, where j ∈ {e, b} is an equity share or a bond. As

before, Y j (ai, Xi) denotes the total payoffs to the holders of security j in period t+1.

Let V j,A be the value of security j, at which type A agents are indifferent between

buying and not buying a small amount of it. Namely, at that specific value type A

agents would choose to buy exactly zero amount of the security. The correspond-

ing first order condition of type A agents with respect to security j must hold with

6References for these results are in Makowski (1983) and Bisin, Gottardi and Ruta (2009).
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equality, because they are indifferent between buying and not buying the security.

Hence, V j,A should satisfy the following first order condition of a type A agent:

1 + φ = βEt

Y j (ai, Xi)

V j,A
.

The expression under the expectation term on the RHS is the return on security j

in t+1, provided that its value in period t is V j,A. Namely, this is the ratio between

the payoff in t + 1 to the holders of the security (Y j) and the cost of buying the

security in period t when its market value is priced by type A agents (V j,A). Hence,

this first order condition is similar to (4)-(5). We can now solve for V j,A and get:

V j,A (ai, Xi) =
β

1 + φ
EtY

j (ai, Xi) ∀j ∈ {e, b} . (14)

To understand (14), note that in equilibrium type A agents hold only assets with

an expected return of (1 + φ) /β. Hence, they are indifferent between buying and

not buying any asset that provides the same expected return. This implies that they

will price any asset at a value that guarantees an expected return of (1 + φ) /β. This

value is given by (14).

In a similar way we can derive the value of security j at which type B agents are

indifferent between buying and not buying a small amount of it. Denote this value

function by V j,B (ai, Xi). This function is derived from the first order conditions of

type B agents (8)-(9):
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V j,B (ai, Xi) =
δ

1 + ψ
Et

Y j (ai, Xi)

(WB
t+1)

θ
∀j ∈ {e, b} . (15)

Since all information is public, the firm knows the prices that agents A and B

are willing to pay for a small amount of security j. Namely, the firm knows V j,A and

V j,B. Therefore, the firm expects to sell its securities for the maximum of the two

bids. Thus, the market value of any security j conjectured by the firm would be:

V j (ai, Xi) = max{V j,A (ai, Xi) , V
j,B (ai, Xi)} ∀j ∈ {e, b} . (16)

For example, if type A agents are willing to pay more than type B for a small amount

of equity shares of firm i, the market value of the shares would be determined by the

bid of type A agents, which is V e,A. On the other hand, the bonds of the firm might

be valued more by type B agents, so their market value would be V b,B.

The pricing formula (16) is identical to the way prices are set in a competitive

market for goods. The equilibrium price is always the highest price for which a

marginal amount of the good can be sold. Specifically, this is the maximum across

all agents of the value at which they are indifferent between buying and not buying

a small amount of the good. This is how (16) was constructed. Note that (16) is

a general pricing function of all securities, whether they circulate in equilibrium or

not. When a certain security does not circulate in equilibrium, its market value is

determined exactly the same way, except that the market clears at zero supply for
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that specific security. For further discussion see Allen and Gale (1988). The firm

takes the conjectured security prices as given, and picks ai and Xi that maximize its

objective function (13).

The complete optimization problem of the firm is defined by (13)-(16). Note

that the objective function (13) exhibits constant returns to scale, because the payoff

function Y j (ai, Xi) is CRS for equity and bonds, see (12). The CRS property implies

that entrepreneurs gain zero profits. Namely, in equilibrium the market value of the

securities of the firm is equal to the market value of the firm assets:

ai = V e (ai, Xi) + V b (ai, Xi) .

Since this is an equilibrium result, it is identical for all firms. Hence, we can write

the same equation for the entire corporate sector, where at+1 is the total amount of

assets acquired by all firms in period t, and et+1 and bt+1 denote the market value

of all equity and bonds issued in period t (subscripts refer to the period that payoffs

are made):

at+1 = et+1 + bt+1. (17)

Note that et+1 and bt+1 are also the total savings of the two types of agents in

equity shares and bonds. Hence, agents’ savings in equity and bonds are equal in

equilibrium to firms’ assets.

Another useful result is the equilibrium returns on equity and bonds. The returns

20



are defined by the ratio of period t+ 1 payoff to period t market value. The payoffs

to equity holders and bond holders are denoted Y e and Y b and defined in (12).

Dividing them by the equilibrium market values et+1 and bt+1, respectively, provides

the following returns:

Re
t+1 =

max
(

Ra
t+1 − xt+1, 0

)

1− λt+1

, (18)

Rb
t+1 =

min
(

xt+1, R
a
t+1

)

λt+1

,

where xt+1 ≡
Xt+1

at+1

and λt+1 ≡
bt+1

at+1

.

The variables xt+1 and λt+1 are two closely related measures of firm leverage.

Variable xt+1 denotes the ratio between the payoff that the firm promises to make to

its bondholders and the firm assets. Variable λt+1 is slightly different. It is the ratio

between the amount borrowed (bt+1) and the firm assets. Note that the promised

interest rate on the bonds is equal to xt+1/λt+1. In the rest of the paper I will refer

to λt+1 as the firm leverage.

2.3 Asset returns and financial disasters

Uncertainty is introduced into the model by assuming that returns on the firm

assets (Ra
t+1) are random. The risk of asset returns is modelled as an aggregate risk.

Namely, all firms earn the same return on their assets. Aggregate risks come in

21



many forms, such as productivity shocks, demand shocks, asset price fluctuations,

inflation shocks and so on. The source of the risk is less important for the purposes

of this paper. The main focus is on its impact on the probability of default. Hence,

to keep the analysis simple I assume that asset returns fluctuate randomly without

modelling the specific source of fluctuation7.

The distribution of Ra
t+1 is modelled as follows. Let ut+1 ∼ LN(g, σ2) be a log-

normally distributed variable. This is the only exogenous shock in the model. It

provides the return on assets when firms are solvent. Using the notation xt+1 ≡

Xt+1/at+1, firms are solvent whenever Ra
t+1 ≥ xt+1. Hence, Ra

t+1 = ut+1 when

ut+1 ≥ xt+1. By contrast, when ut+1 < xt+1 firms cannot be solvent. In this case

firms default. We call this state a financial disaster. Financial disasters reduce asset

returns by a fixed parameter d. Hence, in financial disasters asset returns fall to

ut+1 (1− d).

The assumption of a disaster effect d follows the rare-disaster literature of Barro

(2006) and Rietz (1988). In the present model, disasters are states where firms

default. Since all firms are identical they all default at the same time. When this (rare

event) occurs asset returns fall sharply. The reasons for this fall are various. First,

when all firms default production is severely damaged as firms enter bankruptcy

proceedings. Second, credit costs may rise significantly due to the failure of the

banking system, impairing production and profits. Third, financial institutions may

be forced to fire sell their assets, generating a severe asset price meltdown. For

these reasons, asset returns are expected to fall during a financial disaster. The total

7A possible interpretation of this framework is an AK model, where firms invest in physical
capital (K) that provides a random return independent of K.
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disaster effect is captured by parameter d.

The distribution of Ra
t+1 can be summarized as follows:

Ra
t+1 =











ut+1 ut+1 ≥ xt+1 (normal times)

(1− d)ut+1 ut+1 < xt+1 (financial disasters)
(19)

where ut+1 ∼ LN(g, σ2) and d is a fixed parameter.

The realization of ut+1 determines if firms are solvent or not. When ut+1 ≥ xt+1

firms are solvent and when ut+1 < xt+1 firms default. Hence, the probability of a

financial disaster is given by F (xt+1), where F denotes the CDF of ut+1. Having the

distribution of Ra
t+1, we can describe the exact distributions of Rb

t+1 and Re
t+1 using

(18)-(19). These distributions are presented in Table 1.

The distribution of Ra
t+1 is taken by the firm as given. Hence, at the firm level

the disaster probability is exogenous. However, at the aggregate level the disaster

probability is endogenous as it depends on firms’ capital structure (xt+1). If firms

choose a safer structure, namely a lower xt+1, disasters are less likely to occur.

However, a small firm has no effect on the disaster probability. Even if a firm picks a

completely safe capital structure with no debt at all, a financial disaster would still

occur if all other firms default8.

8For that matter, a financial disaster should be more precisely defined as a default of almost all
firms, but since firms are atomistically small the difference is negligible.
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3 General Equilibrium

Equilibrium is attained when agents’ consumption and asset allocation are opti-

mal given the distributions of bond and stock returns, and the capital structure of

the firm is optimal given security prices defined by (14)-(16). The general equilib-

rium is solved in the first two subsections of this chapter. Subsection 3.1 solves the

equilibrium portfolio choices of the two agents and shows that type A agents save in

equity shares only and type B agents save in bonds and storage only. This result is

used in subsection 3.2 to solve the remaining equilibrium variables and present the

full system of equilibrium conditions. The last subsection derives the equilibrium

risk-free interest rate, which will be important for the liquidity trap analysis in the

following sections.

3.1 Agents’ portfolio choices

Proposition 1 describes the optimal portfolios of agents A and B prevailing in

equilibrium. The rest of this section provides the proof.

Proposition 1 A general equilibrium is attained when: (a) type A agents do not

hold bonds; (b) type B agents do not hold equity; and (c):

Et

Re
t+1

(WB
t+1)

θ
= Et

Rb
t+1

(WB
t+1)

θ
. (20)

To prove Proposition 1, it is sufficient to show that when the conditions of the

proposition hold, the first order conditions of the two types of agents are satisfied

and firms obtain their optimal capital structure.
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Condition (20) implies that type B agents are indifferent (at the margin) between

equity and bonds, see (8)-(9). Hence, not holding equity is optimal for them. This

proves that the FOC of type B agents hold.

Let W̄B
t+1 denote the bequest value of type B agents when firms are solvent,

namely, when Re
t+1 > 0. Note that W̄B

t+1 is fixed, because type B agents save only in

bonds and storage. Hence, when firms are solvent bonds are fully paid so the bequest

of type B agents is at its maximum value. Therefore, we can rewrite (20) as follows:

EtR
e
t+1

(

W̄B
t+1

)θ
= Et

Rb
t+1

(

WB
t+1

)θ
.

Since W̄B
t+1 ≥WB

t+1 we get:

EtR
e
t+1 ≥ EtR

b
t+1. (21)

Hence, not holding bonds is optimal for type A agents because the expected return

on bonds is (weakly) lower than the expected return on equity. This completes the

proof that the FOC of the two types of agents hold under Proposition 1.

I turn now to show that under the conditions of Proposition 1, the capital struc-

ture of the firm is also optimal. To do so, we have to show that the firm cannot raise

its market value by picking a different capital structure. Due to constant returns

to scale, the main control variable of the firm is the ratio of debt to total assets,

denoted xi ≡ Xi/ai. Hence, the capital structure of the firm can be represented by

xi.
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For exposition clarity, consider a firm with an asset value of 1. The firm will

be denoted by i, so its asset value is ai = 1. To save notation, I will henceforth

denote dependence on capital structure by the single variable xi, instead of the two

previously used variables (ai, Xi). As before, subscript i denotes variables that are

controlled by firm i and subscript t (or t + 1) denotes equilibrium values which are

taken as given by the firm. For instance, the debt to asset ratio of firm i is denoted xi,

whereas the equilibrium debt to asset ratio is denoted xt+1. To prove the optimality

of the firm capital structure, I will show that the firm cannot raise its net market

value by choosing xi 6= xt+1.

First, consider the market value of the other firms in the market. These firms

have the equilibrium capital structure xt+1. The equity shares of these firm are priced

at the same value by the two types of agents, namely:

V e,A (xt+1) = V e,B (xt+1) .

This follows directly from Proposition 1, which states that type A agents save in

equity shares and type B agents are indifferent between buying and not buying

shares.

Using (14) and (15) for V e,A (xt+1) and V
e,B (xt+1) we get:

β

1 + φ
EtY

e (xt+1) =
δ

1 + ψ
Et

Y e (xt+1)

(WB
t+1)

θ
, (22)

where Y e (xt+1) denotes the payoff to the firm shareholders as a function of the firm

capital structure defined by (12). Recall that when Y e > 0 the firm is solvent and
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bondholders are fully paid. We denoted the bequest of type B agents in these states

by the fixed value W̄B
t+1. We can substitute this value in the RHS of (22), because

WB
t+1 = W̄B

t+1 whenever Y e is non-zero. This yields the following equilibrium result:

β

1 + φ
=

δ

(W̄B
t+1)

θ (1 + ψ)
. (23)

Now, consider any security j issued by firm i with capital structure xi. Agents A

and B would price this security at V j,A (xi) and V
j,B (xi), respectively. These values

are defined by (14) and (15). It can be shown that9:

V j,B (xi) ≥ V j,A (xi) ∀j ∈ {e, b} . (24)

Namely, type B agents price any security at a value that is at least as high as the

pricing of type A agents.

To get the intuition of this result, note that the RHS of (23) provides the (equilib-

rium) marginal rate of substitution (MRS) between current consumption and future

wealth of type B agents in states where firms are solvent. In these states, the wealth

of type B agents is W̄B
t+1 so their MRS is constant. The MRS of type A agents is

always constant and appears on the LHS of (23). Hence, the two types of agents have

the same (constant) MRS across all solvent states. This implies that securities that

pay only in solvent states are priced similarly by the two types of agents. However,

9The proof is as follows: Since WB
t+1 ≤ W̄B

t+1, (15) implies that V j,B ≥ δ

(W̄B

t+1)
θ
(1+ψ)

EtY
j .

Substitute (23) and use (14) to get (24).
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in financial disasters firms default and the MRS of type B agents is larger because

their wealth is lower. Hence, any security that pays in disaster states would have

a higher value for type B agents than for type A agents. Therefore, type B agents

price any security at a (weakly) higher value than type A agents, because it can

provide hedging against disaster states (if it pays in disaster states).

Substituting (24) in (16) shows that the market value of any security is determined

by the pricing function of type B agents. Hence, a small firm that issues equity and

bonds would always expect to get the highest price by selling its securities to type

B agents. Therefore, the total market value of the firm securities conjectured by the

firm is given by the pricing of type B agents:

V e,B + V b,B =
δ

1 + ψ
Et

Ra
t+1

(WB
t+1)

θ
. (25)

This result implies that the market value conjectured by the firm is independent

of its capital structure. Namely, the firm cannot raise its market value by choosing

xi 6= xt+1, so xt+1 is optimal for the firm. It is important to note that this is not

a corollary of the Modigliani-Miller Theorem. It holds only under the conditions

of Proposition 1, which state that type A agents do not hold bonds and type B

agents do not hold equity. If agents allocate their savings differently, (25) would no

longer hold, as shown in the technical appendix. The appendix further shows that

Proposition 1 is the only equilibrium solution for agents’ portfolio choices.

28



3.2 The complete system of equilibrium conditions

We can now summarize the system of equilibrium conditions and discuss how to

solve the variables of the system. The starting point is Proposition 1, which states

that type A agents do not hold bonds and type B do not hold equity shares, namely

et+1 = eAt+1 and bt+1 = bBt+1. We also know from (6) that type A never hold storage

so mA
t+1 = 0. These results provide the following equilibrium conditions:

WA
t − cAt = (1− λt+1)at+1, (26)

WB
t − cBt =

λt+1at+1

1− µt+1

, (27)

WB
t − cBt = min

(

{

δEt(Π
B
t+1)

1−θ
}

1

θ ,WB
t

)

. (28)

The variable λt+1 was introduced earlier. It denotes the ratio of bonds to assets,

i.e. λt+1 ≡ bt+1/at+1. This variable will be used below to analyse the dynamics

of the model. It will be named the firm leverage, hence the notation λ. The new

variable µt+1 ≡ mt+1/
(

WB
t − cBt

)

denotes the share of storage in the savings of type

B agents. The total return on the savings of type B agents is denoted ΠB
t+1 =

(1− µt+1)R
b
t+1 + µt+1.

Condition (26) states that type A agents hold all their savings in equity shares.

Note that the value of equity shares issued in period t is et+1 = (1− λt+1) at+1.

Condition (27) states that type B agents hold a share 1 − µt+1 of their savings in

bonds (the value of bonds is bt+1 = λt+1at+1). The total savings of type B agents

are given by (28) which replicates (11).
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In addition, we have three more equilibrium conditions:

Et

Re
t+1

(ΠB
t+1)

θ
= Et

Rb
t+1

(ΠB
t+1)

θ
, (29)

Et

Rb
t+1

(ΠB
t+1)

θ
≥ Et

1

(ΠB
t+1)

θ
= when µt+1 > 0, (30)

EtR
e
t+1 ≥

1

β
= when cAt > 0. (31)

Condition (29) follows from (20), after multiplying both sides of (20) by
(

WB
t − cBt

)θ
.

Condition (30) follows from (8) and (10), where (8) holds with equality because type

B agents hold bonds. Finally, condition (31) replicates (5). The distributions of

Re
t+1, R

b
t+1 and Ra

t+1 are described in Table 1.

It is convenient to describe the system with the new variable µ, which denotes

the share of storage in agent B savings, instead of the level of storage m. Thus, the

state variables of the system are at, λt, µt and xt, which are determined one period

in advance. Together with the realization of ut we can solve the six variables of the

system: cAt , c
B
t , at+1, λt+1, µt+1 and xt+1 through the six conditions (26) to (31). To

do so, we first have to calculate Re
t and R

b
t through (18). Then we can calculate the

wealth inherited by the two types of agents by adding the returns on their parents’

portfolios, which yields:
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WA
t = (1− λt)atR

e
t

WB
t =

λtat
1− µt

{

(1− µt)R
b
t + µt

}

.

In the next step, we express the expectation terms that appear in the system in

terms of λt+1, xt+1 and µt+1. Then we get a system of six conditions with exactly

six variables to solve.

The appendix shows that a solution exists for the set of parameter values that are

used to simulate the model (discussed in section 4). When storage is ruled out (the

no-storage case) the solution is unique. When storage is allowed (the full model),

there can be at most three equilibria, but only one of them is economically plausible.

This equilibrium is studied in the analysis below. The other two equilibria requires

that type A agents consume all (or almost all) their wealth in one period. This could

be optimal due to the assumption that utility from consumption is linear. Any upper

bound on the utility from consumption or declining marginal utility would rule out

these two special equilibria. For further discussion see the technical appendix.

3.3 The risk-free interest rate

The risk-free interest rate is the return on a perfectly safe asset. This rate will

be used in the next section to define a liquidity trap as a state where the risk-free

rate is at its lower bound. Normally, the quantity of safe assets in equilibrium is zero

because bonds usually bear some positive probability of default. The only exception
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is a liquidity trap equilibrium where agents hold storage (as storage is perfectly safe).

Nevertheless, safe assets always have a price in equilibrium, even if their quantity is

zero. Result (24) implies that the market value of any security is determined by the

pricing function of type B agents. Hence, we can derive the risk-free rate through

(15).

Consider a perfectly safe asset that pays one consumption good in period t + 1

in all states. Denote the market value of this risk-free asset by V f
t and the return on

this asset by Rf
t+1, where R

f
t+1 = 1/V f

t . As explained, the market value of this asset

is derived from (15). Using the first order condition (8) which holds with equality,

it can be shown that Rf
t+1 is equal to:

Rf
t+1 =

Et

Rb
t+1

(WB
t+1)

θ

Et

1

(WB
t+1)

θ

. (32)

Conditions (8) (with equality), (10) and (32) yield the following Lower Bound

constraint:

Rf
t+1 ≥ 1. (33)

This constraint is equivalent to (30) so it is already part of the equilibrium conditions

summarized in the previous subsection. As we shall see, the Lower Bound will be

binding in a liquidity trap situation, in which agents prefer to hold positive stocks

of storage.
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4 The Choice of Parameter Values

Before getting into the model results, I describe in this section the choice of

parameter values used to simulate the model. The main parameters to be discussed

are g, σ and d, which affect the distribution of asset returns (Ra
t+1). These returns

are paid in t + 1 for assets acquired in period t. The time period is interpreted as

one year, so the distribution of Ra
t+1 refers to annual asset returns. In addition to

the distribution of Ra
t+1, I explain the choice of θ which is the relative risk-aversion

coefficient of type B agents. The parameters β and δ are less important for the

results and discussed briefly in section 6.

The variable that corresponds to Ra
t+1 is the aggregate return on firm assets, as

the model assumes away idiosyncratic risks. Since aggregate returns on all firms

are rarely available, I apply the model to banking firms. Banks serve as a good

approximation of the firms in the model for three reasons. First, banks hold highly

diversified portfolios and are thus substantially exposed to aggregate shocks. Sec-

ond, the banking sector is usually the largest issuer of debt contracts (variable bt+1

in the model), mainly in the form of bank deposits10. Hence, the main risk of default

embedded in households’ bond portfolio is the default of the banking sector. Finally,

the empirical literature provides ample evidence on the adverse effects of bank fail-

ures, e.g. see Bernanke (1983) and Dell’Ariccia, Detragiache and Rajan (2008). This

evidence supports the assumption of a disaster effect in the event of a systemic bank

default.

10Beck, Demirgüç-Kunt and Levine (1999) show that the asset size of the banking sector is
around 55% of GDP in high-income countries, whereas the size of the private bond market is only
20%. In low income countries the differences between the two sectors are even larger.
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I start by evaluating the parameters g and σ which denote the mean and standard

deviation of log u. The random variable u is the return on bank assets (Ra) in normal

times, as shown in (19). Table 2 presents annual bank returns in 30 OECD countries

during the period 1980-2003. The data is aggregated at the country level, so these

statistics reflect aggregate variations. The table presents the return on bank assets

and the return on bank equity, corresponding to Ra and Re. A note of caution is in

order. The variable Ra that appears in the model is different from the accounting

term Return on Assets (ROA), which is a common measure of bank profitability.

The accounting ROA measures bank profits to total assets. Its model counterpart is

the term Ra−x. Hence, the difference between the accounting ROA and the variable

Ra is interest payments (as a ratio of total assets), represented in the model by x.

Therefore, the Ra figures presented in table 2 were generated by adding interest

payments (as a ratio of total assets) to the accounting ROA (before taxes)11. The

result was adjusted to year end CPI inflation and transformed to log of the gross

return.

The mean and standard deviation of logRa in the OECD sample are 0.015 and

0.053, respectively (table 2). A large portion of the variation in Ra is due to infla-

tion shocks, because bank assets are mostly nominal. However, banks hedge against

inflation shocks by issuing liabilities that are also nominal. Hence, the standard de-

viation of Ra in the full sample overstates the actual risks that banks are exposed

to, because banks hedge against some of these risks (the inflation shocks). Further-

11More precisely, the accounting ROA equals (Ra − 1)−λ
(

R̄− 1
)

, where R̄ is the gross interest

rate promised by the bank, namely R̄ ≡ x/λ. The term λ
(

R̄ − 1
)

equals interest payments as
a ratio of total bank assets. Hence, Ra can be reconstructed by adding interest payments to the
accounting ROA.
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more, the sample includes some bank crisis periods, which are modelled separately

by the parameter d (though not all the bank crises in the sample fully comply with

the definition of a ”financial disaster”). To cope with these problems (mainly the

inflation shock bias), I exclude from the sample periods of large inflation shocks12

and bank crises. Then, the mean and standard deviation of logRa change to 0.026

and 0.029, which are taken as proxies of g and σ, respectively.

The third parameter to be evaluated is d, which is the additional loss on firm

assets accrued in times of financial disaster. In the context of banking firms, a fi-

nancial disaster is defined as a complete failure of the banking sector. The closest

example of such a rare event is the massive wave of US bank failures during the

Great Depression. Out of the 25 thousand banks operating in 1929, about 9 thou-

sand banks suspended operation during the years 1930-1933. Depositors of those

suspended banks lost approximately 20% of their money (Board of Governors of the

Federal Reserve System 1943). Moreover, the liquidation of insolvent banks took

around 4 to 5 years (Treasury Department, Comptroller of the Currency 1940), so

depositors’ money was practically frozen for a long period of time. I take these fig-

ures as indicating the expected loss to bank depositors during financial disasters and

calibrate parameter d at 0.2. This means that debt holders (depositors) lose at least

20% of their wealth in the event of a financial disaster.

Finally, the parameter θ denotes the relative risk-aversion coefficient of agent B

utility from bequest. The asset pricing literature usually calibrates this coefficient in

the range of 2 to 5 (Barro 2006). In this literature the relative risk-aversion coefficient

12Large inflation shocks are defined as changes in annual CPI inflation that are larger than 3
percentage points
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refers to consumption (and not wealth) in an infinitely-lived agent model. However,

the Bellman representation of these models is similar to the present model, where the

risk aversion coefficient relates to future wealth. It should be noted that the asset

pricing literature attach the relative risk aversion coefficient to the entire population

(the representative agent), while in the present paper it refers only to part of the

population (the bondholders). Nevertheless, the application of the model to OECD

banks implies that type B agents (the bondholders) hold almost the entire aggregate

wealth, because equity capital is only 6% of total bank assets (table 2). Hence, I

approximate θ by drawing from the the asset pricing literature. The parameter is

calibrated at θ = 3, as in Barro (2006).

5 Results Under No Storage

The results of the model are presented under two alternative assumptions. In this

section I assume that agents are not allowed to invest in storage so µ (or equivalently

m) is always zero. In this case there is no lower bound on the risk-free interest rate

so the liquidity trap does not arise. The next section imposes the lower bound

by removing the no-storage assumption. This change generates the conditions of a

liquidity trap, which occurs when equity capital is too low. Comparing the results

of the two sections demonstrates the economic consequences of the lower bound.
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5.1 Firm leverage and asset prices

The leverage of the firm is defined by the ratio of bonds to total assets. It is

denoted by λ, where λ = b/a. Figure 1 depicts the effect of λ on three variables: the

expected return on equity, the bond interest rate and the risk-free interest rate. The

figure is derived through (29), which provides the asset pricing condition prevailing

in equilibrium. Under the no-storage assumption (µ = 0), this condition provides

a unique solution to x for each λ (see technical details in the appendix). Having x

we can calculate the expected return on equity (ERe) and the risk-free interest rate

(Rf). We can also calculate the interest rate on bonds which is denoted R̄. It is

defined by the ratio of the promised payoff to current market value of bonds, namely

R̄ ≡ X/b = x/λ.

The main result shown in Figure 1 is the negative impact of leverage (λ) on

the risk-free interest rate (Rf ). This is the first novel result of the model. It links

the interest rate to firms’ capital structure. Thus, when equity capital falls and

leverage rises, the risk-free interest rate declines. Note that in standard business

cycle models, the risk-free interest rate is determined by an Euler equation, in which

financial factors play no role. The present model suggests that financial factors may

also be relevant and can change the dynamics of the interest rate. This point is

discussed further in section 6.

To understand the source of the leverage effect on the risk-free rate, Table 3

provides further details on the other variables of the model for different leverage

rates. The variable of interest which drives the results of the model is the probability

of a financial disaster. Financial disasters occur in this model when all firms default.
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This happens when u < x, so the disaster probability is simply Pr (u < x). To

calculate the disaster probability, I first solve x for each λ and then use the log-

normal distribution of u to derive Pr (u < x). Consider for instance a leverage of

0.94, which corresponds to an equity-asset ratio of 6 percent observed in OECD

banks. The disaster probability in this case is 1.6 percent. When leverage rises to

0.95, the disaster probability rises to 3.8 percent, and the risk-free interest rate falls

from 1.9 to 1.0 percent.

The disaster probability affects the risk-free interest rate in two ways. First,

there is a general effect on the mean return of the underlying asset, namely ERa.

When disasters become more probable ERa falls due to the disaster effect d on the

distribution of Ra 13. Table 3 shows that ERa drops 0.4 percentage points when

the disaster probability rises from 1.6 to 3.8 percent. The effect on ERa spreads

out to other assets through equilibrium conditions, and thus affects also the risk-free

interest rate.

The second effect comes from the convexity of the marginal utility of bequest of

type B agents. Due to this convexity, the utility loss of type B agents in states of low

bequest is not offset by states of high bequest. Hence, these agents have a natural

demand for safe assets, which can hedge against states of financial disasters where

bequests are low. A rise in the disaster probability raises the demand for safe assets

as a hedge against disaster events, reducing the risk-free interest rate. In the above

example, the risk-free rate falls 0.9 percentage points when leverage rises from 0.94

to 0.95. Part of this fall is due to the 0.4 percentage point decline in ERa and the

13To see this, note that the distribution of Ra in (19) implies that E logRa = g+ P · log(1− d),
where P is the disaster probability.
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rest is due to the rise in the demand for safe assets.

Table 4 shows how different parameter values affect these results. The upper panel

presents the effect of σ, which is the standard deviation of log u. Higher σ implies

higher volatility of asset returns. Overall, it produces a larger disaster probability

(denoted P in the table) and a lower risk-free rate (Rf). This is because higher return

volatility implies a higher probability of default (holding other variables constant).

Note that type A agents are better off, because the expected return on equity is now

higher. This reflects the fact that higher risk (i.e. larger σ) increases type B agents’

demand for insurance against this risk. Since type A agents provide the insurance,

they are better off.

The middle panel in Table 4 presents the impact of different values of d (the

disaster effect). A rise in d also raises the volatility of asset returns (for a given

λ). Hence, type A agents are again better off because the demand for insurance is

higher. Thus, the expected return on equity should rise. To get this result, R̄ must

fall because ERe is decreasing with R̄ (holding λ constant). The default probability

is equal to Pr (u < x) where x = λR̄. Hence, a lower interest rate R̄ implies a lower

default probability (given λ). The same effect applies when the degree of risk-aversion

is rising (see the lower panel of Table 4), which also raises the demand for insurance.

In both cases, the higher demand for insurance implies a lower risk-free interest rate

and a lower default probability (because interest rates are lower).
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5.2 Dynamics

I turn now to analyse the dynamics of the model under the no-storage assumption

(µ = 0). The dynamics is governed by the saving rules of the two types of agents.

Type A agents save in equity capital and type B save in bonds. The accumulation

of wealth of the two types of agents will determine the assets of the firm as well as

the leverage (i.e. the ratio of bonds to total assets). Hence, the model dynamics

will be presented through the evolution of two variables: assets (a) and leverage (λ),

depicted by the vertical and horizontal axes in Figure 2.

Equilibrium condition (31) requires that ERe ≥ β−1. Otherwise, type A agents

consume all their wealth so there is no equity capital at all. Since ERe is rising with

λ (see Figure 1), there is a specific leverage rate for which ERe = β−1. Denote this

rate by λS. It is depicted in Figure 2 by the vertical solid line at λS. The model can

be in equilibrium only in the range λ ≥ λS in which ERe ≥ β−1.

The second line in Figure 2 (denoted BB) is derived from the following condition:

{

δE
(

Rb
)1−θ

}
1

θ

= λa. (34)

This condition holds when WB
t ≥

{

δEt(Π
B
t+1)

1−θ
}

1

θ , see (27) and (28). In this

case, type B agents inherit more wealth than they wish to save, so they save
{

δEt(Π
B
t+1)

1−θ
}

1

θ and consume the rest. The LHS of (34) denotes the total amount

of savings of type B agents in this case14 (i.e. when inheritance is high). The RHS of

14Note that under the no-storage assumption type B agents save only in bonds, so the total
return on their savings is ΠBt+1 = Rbt1 which is used in (34).
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(34) provides the total amount of bonds issued by firms which is equal in equilibrium

to the savings of type B agents. It can be shown that the LHS of (34) is a function

of λ. Thus, condition (34) represents a line on the (λ, a) plane. It is depicted in

Figure 2 by the BB line.

To understand the BB line, consider a certain leverage rate λ. For this leverage

rate we have a certain distribution of bond returns (Rb). Hence, we can calculate

the maximum amount of savings that type B agents wish to save, which is provided

by the LHS of (34). If the initial wealth of type B agents is sufficiently high to allow

them to save that amount, we get an equilibrium point on the BB line. If their initial

wealth is too low they save less than the expression on the LHS of (34). Hence, firm

assets are lower and we get a point below the BB line. An equilibrium point above

the BB line is not possible, because it implies that type B agents do not save the

optimal amount defined in (28). Hence, the equilibrium point must be in the area

below or on the BB line in the range λ ≥ λS.

The general tendency of the model is to converge to point S. When the model is

in the area below the BB line and to the right of λS, both agents save all their wealth

so a is likely to rise (unless the realization of ut is very low, see below). Normally,

the return on equity would be higher than the interest rate on bonds (Re
t > R̄t) so

shareholders get a higher return on their wealth than bondholders. Hence, equity

capital would rise faster than bonds, and the model would move north-west towards

S. Once the model reaches point S it stays there as long as ut is sufficiently large so

that Re
t , R

b
t > 1. This implies that both types of agents have sufficient wealth to save

the same amounts they have inherited, which means that the model stays at point
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S.

Suppose the model is at point S. In period 0 the economy is hit by a negative

shock, namely, a low realization of ut (asset return). If ut is sufficiently low, firms

incur a loss that reduces the wealth of their shareholders. This happens when Re
t < 1,

i.e. when ut < 1 + xt − λt. When Re
t < 1, equity capital falls because the wealth

of type A agents (the shareholders) shrinks. A new equilibrium is obtained with

lower equity capital and higher leverage. Hence, the model deviates from point S to

another point Q, which may be below the BB line or exactly on this line, as is the

case in Figure 2.

As a result of the rise in firm leverage, the disaster probability also rises and

the risk-free interest rate falls (as shown in Figure 1). Following the initial shock,

shareholders start to re-accumulate their wealth so equity capital is starting to rise

and the model is moving to the left. As equity capital is rising, disaster probability

is falling and the risk-free interest rate is rising back to its initial level. Eventually,

the model returns back to point S.

6 The Lower Bound and the Liquidity Trap

I now remove the no-storage restriction to allow agents to save in storage (µ ≥ 0).

The availability of storage imposes a lower bound on the risk-free interest rate. When

the risk-free interest rate is above the lower bound, agents do not hold storage so

µt = 0 in equilibrium. Hence, the results of the previous section prevail. Conversely,

when the risk-free interest rate declines below the lower bound, agents shift some of
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their wealth to storage so µt > 0. In this case, the results of the previous section

change, because the assumption of zero storage is no longer consistent with equilib-

rium conditions. Hence, the first step is to draw the line between equilibria with

µt = 0 and those with µt > 0. This is done by finding the leverage rate (denoted

λLB) at which Rf = 1 and µ = 0. Figure 1 depicts the risk-free interest rate for

varying levels of λ under the assumption of no-storage (µ = 0). Hence, λLB is simply

the intersection of the Rf line with the horizontal dotted line at 1. It is marked also

in Figure 2 by the vertical dotted line at λLB.

The LB line divides the space in Figure 2 into two areas. In the left area the

risk-free interest rate is above the lower bound, hence the lower bound is not binding

and µ = 0. The interesting area is to the right of the LB line. In this range, the

risk-free interest rate would be below the lower bound if agents could not invest in

storage. But since now agents are able to hold storage, they shift some of their

wealth from risky investments to storage (”hoarding cash”), yielding µ > 0. In what

follows I study the effect of the lower bound on the model dynamics and compare

the results to the case of no lower bound.

Suppose that the economy is at point S, at which EtR
e
t+1 = β−1. Now, consider a

large negative shock to ut yielding R
e
t < 1, and assume that in the absence of a lower

bound the model would move to point Q. Clearly, point Q is not an equilibrium when

storage is allowed, since it lies to the right of the LB line. In this range, the risk-free

interest rate is below the lower bound if µ = 0. Hence, at point Q bondholders

strictly prefer storage over bonds, as bonds are perceived to be too risky. Therefore,

bondholders reduce their bond holdings and shift some of their wealth to storage
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(yielding µ > 0). As a result, firm assets and firm leverage decline. Equilibrium is

attained at point L denoting a liquidity trap solution.

The comparison between points Q and L demonstrates the economic contraction

associated with the liquidity trap. Point Q presents the model response to the

shock in the absence of a lower bound on the risk-free interest rate, whereas point

L describes the Lower Bound effect. If we interpret the variable at as a portfolio

of real projects, then point L reflects a contraction in the stock of real projects.

Similarly, we can interpret at as the stock of bank loans, so that point L involves

a credit crunch. In any case, at point L agents prefer to hoard cash (storage) over

making productive (albeit risky) investments, so the stock of productive investments

declines, as evident by the transition from point Q to L.

Figure 3 provides a detailed description of the model response to an initial shock

of one standard deviation to log u. Namely, in period 0 the net return on assets

(Ra
0 − 1) is equal to −0.3% and for the other periods the net return is 2.6%. The

model starts at point S at which EtR
e
t+1 = β−1. The parameter β is calibrated

at 1.036−1, which ensures that at point S the leverage (λS) is 0.94 (the mean in

the OECD bank sample). The parameter δ has no effect except for scaling agents’

wealth, so it is normalized to 1.

The first graph on the upper-left of Figure 3 presents bank assets (at) as a ratio of

their initial level (a0). When storage is allowed (the solid line), bank assets respond

to the initial shock by contracting 21 percent. This contraction is demonstrated by

the transition from S to L in Figure 2. By comparison, when storage is not allowed

bank assets fall only 3 percent (the dashed line in the upper-left of Figure 3 and the
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transition from S to Q in Figure 2). The reason for this difference is the steep rise in

storage depicted in the upper-right graph of Figure 3. The share of storage in type

B savings (variable µt) rises from zero to 17 percent, thereby reducing the supply of

funds available to banks.

Following the initial shock and the rise in storage holdings, storage starts to

decline gradually for the next 10 periods until it returns back to zero. Hence, the

liquidity trap in this simulation lasts 10 years, during which the risk-free interest rate

is at its lower bound (see the lower-left graph of Figure 3). The slow recovery from the

liquidity trap stems from the low rate of growth of type A wealth (the shareholders).

These agents lose 46 percent of their wealth in the first period (Re
0 = 0.54), and then

gain an average of 2.9 percent each period for the next 10 periods.

The actual length of the liquidity trap depends on how the economy performs

following the initial shocks. If negative shocks keep coming in, the trap would take

longer. On the other hand, positive shocks would shorten the trap. For instance,

if we temporarily raise bank income in period 1 by 10% (relative to the previous

simulation), the duration of the liquidity trap decreases from 10 to 7 years. Since

leverage is very high, positive shocks to bank income have a large effect on the return

on equity. Thus, shareholders are able to recover their wealth much faster. But this,

of course, works also in the opposite direction.

Another factor that can affect the duration of the trap is the volatility of asset

returns. Volatility of asset returns plays an important role in the model because it

determines the disaster probability, i.e. Pr (u < x). Table 4 presents the disaster

probability and the risk-free interest rate for different volatility levels and leverage
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rates. Volatility is measured by σ which is the standard deviation of log u. In

general, larger volatility raises the disaster probability and lowers the risk-free interest

rate. Hence, we can imagine that a negative shock to the economy that creates

a severe recession would also change the expected volatility of asset returns. For

instance, government bonds may become riskier as fears of a sovereign default rise

during a prolonged recession. Since banks usually hold large amounts of government

bonds, higher risk of government default implies a larger σ. In this case, the disaster

probability increases and that would lengthen the liquidity trap.

It is interesting to compare these results with Gertler and Karadi (2010). Gertler

and Karadi (2010) study a DSGE model with a leverage constraint on bank as-

sets, derived from a moral hazard problem. Their simulations with a lower bound

constraint produce a contraction in bank equity capital of around 50%, similar in

magnitude to the simulation presented here in Figure 3. The interesting difference

regards the duration of the liquidity trap, namely, for how long the lower bound

is binding. In their simulations, the interest rate hits the lower bound for several

quarters only, compared to a period of several years in the present simulation. One

of the reasons for this difference is the disaster effect, which is absent from Gertler

and Karadi (2010). In standard business cycle models, as the one studied by Gertler

and Karadi (2010), the risk-free interest rate is governed by consumption dynamics

(adjusted for habit formation). Hence, once the economy starts to stabilize following

the initial shock, the interest rate tends to rise. By contrast, in the present model

the risk-free interest rate is strongly affected by the probability of bank default. If

bank leverage is high, bankruptcy risk is also high and the interest rate remains at
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the lower bound, even if the economy is slowly recovering.

The long duration of the liquidity trap is consistent with current and past traps.

The current episode, which started with the collapse of Lehman Brothers in 2008, is

already several years long. In Japan, the interest rate has been practically zero since

October 1995 (Eggertsson and Woodford 2003) to these days. Similarly, the three

month yield on US Treasury Bills has been less than 0.5% from May 1932 to June

1947 (Board of Governors of the Federal Reserve System 1943, 1976). These long

periods of zero interest rate can be explained, at least partially, by the story told in

this paper15.

7 Conclusions

This paper provides a theory that relates the liquidity trap to banks’ capital

structure. The paper shows that a fall in banks’ equity capital can reduce the risk-

free interest rate to the lower bound, creating a liquidity trap. This is a novel

result, as previous studies have provided mainly non-financial explanations for the

trap. It is also consistent with empirical facts showing that liquidity traps have been

associated with a significant contraction in equity capital and a rise in bankruptcy

risk, in particular within the banking sector.

The model suggests that a recovery from a liquidity trap may take a long time,

which is also consistent with past and present episodes of liquidity traps. This

cannot be explained by standard business cycle models, in which the interest rate

15During the 1940s, the interest rate has probably been affected also by the risks associated with
WWII, see Barro (2006).
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is determined solely by consumption dynamics through an Euler equation. The

introduction of a disaster effect working through banks’ balance sheets produces a

different result. The interest rate stays at the lower bound as long as the banking

sector continues to be poorly capitalized and highly vulnerable to negative shocks.

An important element of the model is the assumption that households and firms

take the disaster probability as given. Namely, they do not consider the impact

of their financial decisions on the likelihood of financial disasters. However, their

aggregate decisions do affect the disaster probability because they determine firm

leverage and hence aggregate bankruptcy risk. Higher leverage exposes firms to

higher probability of default, which raises the likelihood of having a financial disaster.

In other words, financial decisions taken at the household and firm level have an

externality effect, through their impact on the probability of financial disasters. This

result justifies government intervention to reduce bankruptcy risks, especially during

financial crises where these risks rise steeply.

One way to reduce bankruptcy risks is through government injection of equity

capital into the corporate sector. Nevertheless, if the shortage in equity capital is

too large, the required amount of public support might put the government itself at

risk. Thus, instead of having a risky corporate sector, we might get a risky public

sector, so the disaster probability would still be high. An alternative way is to use

tax incentives to encourage firms to issue more equity capital and households to buy

this capital. Assessing the effects of these policy measures is beyond the scope of

the paper. However, the model proposed in this paper may be useful to study these

issues, which I leave for future research.
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Table 1: The return distribution of assets, bonds and stocks in equilibrium

State Asset returns Bond returns Stock returns
(ut+1) (Ra

t+1) (Rb
t+1) (Re

t+1)

Normal: ut+1 ≥ xt+1 ut+1

xt+1

λt+1

ut+1 − xt+1

1− λt+1

Disaster: ut+1 < xt+1 (1− d)ut+1

(1− d)ut+1

λt+1

0

Table 2: Bank Financial Statistics in OECD Countries (1980-2003)∗

Return on Return on Equity to Assets3

Bank Assets1 (logRa) Bank Equity2 (logRe) (1− λ)

N mean s.d. mean s.d. mean
All years 549 0.015 0.053 0.070 0.171 0.060

Non-crisis years 517 0.019 0.043 0.081 0.134 0.060
Bank crisis years 32 −0.044 0.126 −0.113 0.427 0.055

Excl. inflation shocks4 434 0.025 0.030 0.082 0.150 0.059
Non-crisis years 414 0.026 0.029 0.091 0.128 0.059
Bank crisis years 20 0.014 0.057 −0.092 0.348 0.053

* Source: OECD, Bank Profitability: Financial Statements of Banks (2004 edition).
Data is annual at the country level. Countries included: US (1980-2003), UK (1985-2003), Austria (1988-
2003), Belgium (1982-2003), Denmark (1980-2003), France (1989-2003), Germany (1980-2003), Italy (1985-
2003), Luxembourg (1980-2003), Netherlands (1993-2003), Norway (1980-2003), Sweden (1980-2003), Switzer-
land (1980-2003), Canada (1983-2003), Japan (1980-2003), Finland (1980-2003), Greece (1980-2003), Iceland
(1982-2003), Ireland (1996-2003), Portugal (1980-2003), Spain (1980-2003), Turkey (1986-2003), Australia
(1987-2003), New Zealand (1991-2003), Mexico (1989-2003), Korea (1991-2001), Czech Republic (1994-2003),
Slovak Republic (1998-2003), Hungary (1995-2003), Poland (1994-2003).
Bank crisis years are taken from Dell’Ariccia, Detragiache and Rajan (2008).

1 The return on bank assets in this table is different from the accounting measure of ROA (see explanation in
the main text). It is calculated by annual profits before interest expenses and taxes over (previous year end)
total assets. The result is adjusted for (year end) CPI inflation and transformed to log of gross return.

2 The return on bank equity is calculated by annual profits before taxes over (previous year end) equity capital.
The result is adjusted for (year end) CPI inflation and transformed to log of gross return.

3 Equity capital to total assets, year end.
4 This sub-sample excludes years where the inflation rate has increased or decreased by more than 3 percentage
points compared to the previous year.

53



Table 3: Dependency of the main variables on firm leverage under no-storage (µ = 0)

Leverage Asset Return Equity Return Bond Return Risk Free Rate Disaster
λ ERa ERe ERb Rf Probability

0.92 1.026 1.028 1.026 1.026 0.002
0.93 1.026 1.030 1.025 1.024 0.006
0.94 1.024 1.036 1.023 1.019 0.016
0.95 1.020 1.049 1.018 1.010 0.038
0.96 1.012 1.074 1.009 0.995 0.077
0.97 0.998 1.117 0.995 0.970 0.146
0.98 0.975 1.194 0.971 0.935 0.261
0.99 0.933 1.340 0.929 0.888 0.466

The table presents equilibrium values of the model variables for different leverage rates, under the
no-storage assumption (µ = 0). The parameter values are g = .026, σ = .029, d = .2 and θ = 3,
see section 4 for details.
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Table 4: Dependency of disaster probability (P ), expected equity return (ERe), bond
interest rate (R̄) and risk-free rate (Rf) on parameter values.

λ P ERe R̄ Rf P ERe R̄ Rf

σ = 0.019 σ = 0.029
0.93 0.000 1.027 1.027 1.027 0.031 1.046 1.026 1.013
0.94 0.001 1.027 1.027 1.026 0.055 1.061 1.026 1.003
0.95 0.004 1.029 1.026 1.025 0.092 1.084 1.026 0.988
0.96 0.016 1.036 1.026 1.020 0.147 1.121 1.026 0.968
0.97 0.053 1.058 1.026 1.005 0.227 1.176 1.028 0.942

d = 0.1 d = 0.3
0.93 0.006 1.028 1.027 1.026 0.006 1.033 1.026 1.021
0.94 0.017 1.031 1.027 1.024 0.016 1.043 1.026 1.011
0.95 0.039 1.037 1.027 1.020 0.035 1.065 1.025 0.994
0.96 0.083 1.050 1.027 1.014 0.071 1.104 1.025 0.965
0.97 0.158 1.072 1.028 1.003 0.131 1.172 1.024 0.924

θ = 2 θ = 4
0.93 0.006 1.028 1.027 1.025 0.006 1.033 1.026 1.023
0.94 0.017 1.031 1.027 1.021 0.016 1.043 1.026 1.018
0.95 0.039 1.037 1.027 1.013 0.036 1.063 1.025 1.007
0.96 0.083 1.050 1.027 1.000 0.072 1.100 1.025 0.989
0.97 0.159 1.072 1.028 0.977 0.133 1.166 1.024 0.963

The table presents the effect of parameter values on the disaster probability, the expected return
on equity, the bond interest rate and the risk-free rate, under the no-storage assumption (µ = 0).
Parameter values in each panel are equal to the benchmark values in Table 3 except for a single
parameter stated at the top of the panel.
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Figure 1: The dependency of asset returns on firm leverage under no-storage (µ = 0)

The figure shows how asset returns are affected by firm leverage, under the no-storage assumption
(µ = 0). The figure presents the expected return on equity (ERe), the interest rate on bonds (R̄)
and the risk-free rate (Rf ) as functions of firm leverage (λ). The parameter values are g = .026,
σ = .029, d = .2 and θ = 3, see section 4 for details.
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Figure 2: The dynamics of firm assets and leverage

The figure presents the model dynamics on the (λ, a) plane, starting at point S. Point Q presents
the model response to one s.d. fall in log u under no-storage (no lower bound). Point L describes
the model response when there is a lower bound on the risk-free rate. The parameter values are
g = .026, σ = .029, d = .2 and θ = 3, see section 4 for details. The parameter β is calibrated
at 1.036−1 to ensure that λS = .94, namely, the model starts from the OECD leverage rate, see
section 6.
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Figure 3: Impulse response functions with and without a lower bound (LB) on the
risk-free interest rate

The figure depicts the dynamic response of the model variables to one standard deviation fall in
log u. Parameter values are as in Figure 2. The variables at and et are presented as ratios of their
initial levels. The other variables are presented at their natural units. Solid lines present the model
response when storage is allowed, so the risk-free interest rate has a lower bound (LB). Dashed
lines present the model response when storage is not allowed, so the risk-free interest rate is not
bounded (no LB). The periods are presented on the horizontal axis.

58


