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Abstract

The purpose of this study is to estimate structural elements of patients’ demand
functions for healthcare facilities, particularly hospitals and ambulatory surgery cen-
ters (ASCs), towards the goal of answering questions about welfare gains earned from
the introduction of ASCs. Spatial variation across patients and facilities, among other
variables, is used for identification. Using data that contain the universe of outpatient
surgeries in Florida from 1998 through 2004, I estimate by reduced-form quantile re-
gressions of facilities’ actual demand curves as functions of travel-cost between patient
and facility. I show that there is a strong spatial component to demand. Then, devel-
oping a discrete choice model of demand for healthcare facilities, I estimate structural
parameters from patients’ demand functions from multinomial logit and mixed logit
(random coefficient) specifications. Time-to-travel is found to be a significant factor
in patients’ choice of healthcare facility. I construct a cross-time substitution matrix
to explain how patients substitute between facilities when facilities change their lo-
cation. Finally, I measure how patient welfare would change if a subset of facilities
(ASCs) were removed from patients’ choice sets. All of this is done without explicitly
including a price variable, but instead using facility fixed effects that absorb price and
quality, among other unobserved product characteristics.

1 Introduction

The purpose of this study is to estimate structural elements of patients’ demand functions

for healthcare facilities, particularly for hospitals and ambulatory surgery centers (ASCs),

towards the goal of answering questions about the magnitude and existence of welfare gains
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earned from the introduction of ASCs. Hospitals are healthcare facilities that perform both

inpatient and outpatient procedures, while ASCs are healthcare facilities that concentrate

exclusively on outpatient procedures. Spatial variation across patients and facilities, among

other variables, is used as identification.

There are many reasons to study the healthcare facility industry, the least of which is its

size and ubiquity. According to Census statistics, hospitals and ASCs employ 40 percent of

all workers in the healthcare industry, approximately 5.44 million people. In 2003, hospital

earned $536 billion in revenues. Given the significance and relevance of healthcare facilities

to the overall economy, it is especially interesting to consider the nature of demand for and

supply of its products, as well as the competition landscape between industry participants.

Largely for these reasons, the study of competition between hospitals has become a popu-

lar topic in the fields of industrial organization and healthcare research. However few authors

have written about ASCs; the literature on them is still nascent. The studies that do exist on

ASCs are mostly about the supply-side of the market, or are structure-conduct-performance

organized papers, driven by the quest to understand the effects of recent high entry rates

by ASCs into the healthcare facility industry.1 For example, Morrisey and Bian [10] and

Plotzke [15] both show that entry by ASCs is associated with a decline in a hospitals out-

patient surgeries and no significant change in impatient surgeries. Lynk and Longley [8]

use a case study to frame a similar result: that hospital-based outpatient surgical volume

falls when the hospitals’ physicians open an ASC. Plotzke [15] also finds that there is no

significant effect of ASC entry on hospital profit margins for either outpatient or inpatient

departments.

There has been no study of which I am aware that analyzes the demand-side for all

healthcare facilities for outpatient procedures. Gaynor and Vogt [5] do analyze demand for

hospitals (in California) for inpatient surgeries, and use similar techniques as those used

here. Where comparable, my estimates support their findings.

Without understanding demand for healthcare facilities, we cannot understand fully how

facilities compete. Competition analysis is incomplete if it does not specify how consumers

choose between products. This paper provides some insight into how ASCs and hospitals

compete by looking at how patients substitute between them, and at how patients’ welfare

changes when some facilities are removed from patients’ choice set.

To do this, I use a model of a discrete choice demand function by patients for healthcare

facilities. I think about the problem in the following way: After being recommended by their

physician to have surgery, and to use a particular facility, patients make a two-part decision.

First they decide whether to have surgery, in some cases, whether to have inpatient or

1As the hospital literature grew in response to the heavy merger activity of the late 1990s.
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outpatient surgery, and finally at which facility to have the procedure performed. This paper

focuses on the last part of this decision tree: conditional on having to have an outpatient

procedure performed, which facility does the patient choose? In particular, I look at how

facility characteristics including geographic location impact consumers’ choices. Location is

measured with a time-to-travel variable that specifies the distance (in minutes) from each

patient to each and every facility.

In modeling demand, I follow and extend the structural IO and discrete choice literatures

that address issues of unobserved heterogeneity in differentiated products, and that allows

patient characteristics to influence demand. If there is product heterogeneity not controlled

for in the empirical specification, estimates will be biased as they erroneously attribute

variation in choices to observed variables only. Most of the papers in the literature (Berry [1],

Berry, Levinsohn and Pakes [16], Petrin [13], Nevo [12]) deal with unobserved heterogeneity

by using complicated estimation algorithms to find facility fixed effects that can absorb

omitted variables. Their estimation strategies also must be complex enough to compensate

for the fact that they do not actually observe consumer choices, and therefore cannot link

consumer characteristics with product characteristics except through matching moments.

I can control for unobserved heterogeneity because I have micro-data. The micro data

contains demographic variables that describe patient characteristics, which allows me to

explain variation in choice with actual, observed patient indiosyncracies. Moreover, there is

a lot of data; I observe many observations (that is, purchase choices) for each facility, and

therefore in a straightforward manner can include product-level (facility-level) fixed effects

to absorb unobserved variables, like quality, that we know influence patients’ choices. Berry,

Levinsohn and Pakes (Micro) [2], and Gaynor and Vogt[5], also discuss the benefits of having

micro-data.

The dearth of research about healthcare facility demand is largely a constraint imposed

by data availability. Few agencies make available micro-level about consumers’ health care

choices. I use data collected by the Florida Agency for Health Care Administration (AHCA)

that contain the universe of outpatient procedures performed in the state between 1998 and

2004. Over this period, there are over seven million observed facility choices made by patients

needing one of the top-100 procedures.

Using GIS software, I construct the time-to-travel variable by measuring a time-cost

for the distance between each facility and each patient. The time-to-travel variable is a

natural, and rich source of exogenous variation in consumer choices; it gives some measure

of protection against endogeneity bias in the results.

Finally, understanding and estimating the demand curve is important as the results en-

able us to do welfare analyses based on various counterfactuals. The main one I consider
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is: How much would consumers lose if all ASCs in their market were closed? This question

is of particular interest to policy makers because of recent, heavy entry by ASCs into the

healthcare facility industry. Hospitals have decried this phenomenon, arguing that doctors

are ”cherry-picking” the best, least costly patients to send to ASCs, and sending the unprof-

itable patients to hospitals (see Plotzke [14] and Winter [19]). Moreover, hospitals perceive

that ASC entry is coming disproportionately into high-profit procedural areas, thereby also

cherry-picking the best, most profitable product-lines. In receiving less profitable patients

and facing competition in more profitable products, hospitals are claiming that their survival

is in danger as profits are falling into the red.2 In some cases, they are lobbying for stricter

entry laws (Certificate of Need laws) to limit ASC entry. Given that hospitals indisputably

provide indispensable services to local communities (emergency care, for instance), threat to

hospital survival is a serious policy matter. On the other hand, if ASCs are not allowed to

enter, patients stand to lose surplus. This paper weighs in on the policy debate by measuring

this latter quantity.

There is an additional policy matter regarding the potential safety of ASCs relative to

hospitals. Even though outpatient surgery performed in either an ASC or hospital setting

is generally quite safe (Fleisher et al [4]), it is still possible to measure in money terms the

cost of any additional risk by using probabilities of adverse outcomes and estimates for the

value of a statistical life (see Murphy and Topel [11]). By itself, however, such a cost lacks

context. The welfare numbers calculated in this paper provide a benefit against which costs

can be compared.

The next section offers a brief definition of ambulatory surgery and an overview of the

healthcare facility industry. Section 3 describes the data. In section 4, I do a reduced

form spatial analysis, which motivates the demand model and provides some insight into

the geography of healthcare facility markets. Section 5 brings us to the structural model of

demand, section 6 lays out the estimation strategy, and section 7 discusses the results and

identification. Welfare calculations are made in section 8.

2 Overview of Product & Industry

Product

Also known as day surgery or ambulatory surgery, outpatient surgeries are defined as those

procedures not requiring overnight stay in a healthcare facility. This is the sole defining

characteristic of an outpatient surgery: Outpatient procedures may be short or long, may

2Their claims have been disputed by some economists. See Plotzke [15]
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require general or local anesthetic, and may be minimally invasive or require more serious

incision.

There are many different types of outpatient surgeries. The five most common ambulatory

procedures performed in 2006 were endoscopy of the large intestine, endoscopy of the small

intestine, extraction of (cataract) lens, injection of agent into the spinal canal, and insertion of

prosthetic lens. In 1996, the five most common procedures were cataract removal, endoscopy

of large intestine, removal of skin lesion, arthroscopy of knee, and repair of inguinal hernia.

Healthcare Facility Industry

Both hospitals and ASCs compete to perform outpatient procedures. Hospitals also perform

inpatient procedures; ASCs do not. Besides offering only outpatient procedures, ASCs differ

from hospitals in at least four other dimensions. First, they do not have emergency rooms,

but rather accept elective surgeries only. Second, they tend to be privately owned, with

multiple owners. It is typical for physicians who perform surgery in the facility to have an

ownership stake as well. Large healthcare companies, and development and management

companies are other common shareholders in ASCs. Third, ASCs tend to be more spe-

cialized than hospitals, focusing on select body regions, or on categories of procedures, like

pain management, or diagnostic procedures, like colonoscopies. Finally, ASCs are smaller

than hospitals on average, doing fewer total procedures, and having fewer operating rooms

available for use.

The advent of the ASC into the surgery provision arena is quite recent. Since their

inception in the 1970s, entry by ASCs has been rampant. According to data collected by the

Center for Medicare Services, in the decade between 1995-2005, there was 10 percent annual

growth in the number of ASCs in the United States. Evidence of high growth is echoed by

other large-scale surveys: the National Survey of Ambulatory Surgery, done by the National

Center for Health Statistics, show that total ASC market share grew from less than 20

percent to almost 50 percent of all ambulatory surgeries between 1996-2006. Moreover, my

data show that ASCs gained market share relative to hospitals in the majority of major

ambulatory surgeries.

The general revenue model for healthcare facilities – be they hospitals or ASCs – charges

patients, or their insurance companies, fees related to capital and labor costs incurred by

the facility during the surgery. This may include charges for the operating room, recovery

room, diagnostic services, lab services, and anesthesia services, among other incidentals.

Insurance companies pay some fraction of these charges, usually at rate negotiated in periodic

bargaining sessions. Uninsured patients may pay charges in full, or in large part, as they
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are rarely in a strong position to negotiate with facilities. Medicare does not negotiate with

facilities on an individual basis, but rather pays facilities a prospectively set reimbursement

rate. Note that the facility fee, is distinct from the physician’s fee, who bills the patient

separately.

Few trustworthy national statistics about outpatient surgeries are available. According to

the National Survey of Ambulatory Surgery, as of 2006, there are there are more than 4,500

freestanding ASCs performing more than 15 million procedures annually. Visits to hospital-

based ASCs account for another 20 million ambulatory procedures, at approximately another

4,500 short-term, acute care hospitals. Ambulatory surgeries as a fraction of all surgeries

grew from 44 to 56 percent in the decade between 1996 and 2006. However, a study by

the Lewin Group3, states that ambulatory surgery represented only 15 percent of national

healthcare spending in 1999.

3 Data Description

The major data used are the universe of patient level ambulatory surgery events for the years

1998-2004 and come from the Florida Agency for Health Care Administration (AHCA),

which is a state government agency that licenses and regulates health care facilities and

health maintenance organizations. The unit of observation is at the procedure or surgery

level. The data is quarterly. There were 18.8 million ambulatory procedures performed in

Florida healthcare facilities between 1998-2004.

In theory, the data record every interaction between a patient and a health care facility

for an ambulatory surgery incident. Given this level of detail, I can calculate precise market

shares at the quarter, institution, and procedure level for a variety of geographic-market

definitions. This is in comparison to other event-level data sets, such as Medicare data,

which only captures interactions between Medicare patients and the health care system,

instead of between all patients regardless of insurance.

Separately, I obtained facility characteristics from AHCA, such as facility street address,

and capacity in terms of number of beds, and current licensing status, that is, wether the

facility is active, closed, or expired. Unlike the procedure level data set just described,

the facility information set is current at the date of receipt, which was early 2008. If any

information changed between 1998 and 2008, it will not be captured by the facility data

set. This is most problematic for the capacity variable, which may indeed change over time.

However, according to conversations with AHCA employees, ASC capacities at least tend to

stay fixed after entry, even though this is not true for hospitals.

3Study of Outpatient Healthcare Cost Drivers
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Finally, I compute distance and time-to-travel variables between patients and facilities.

The smallest geographic identifier that the data contains for patients is zip code; for facilities,

exact addresses are available.4 Using the geographic software, GIS, I map patient zip codes

and facility addresses and using a database of road-networks, compute the distance from each

zip to each and every facility in the state of Florida, as the patient would have to drive (or

walk) it. Then, using additional data on the Florida road network, I compute the distance

from each zip to each and every facility, measured in minutes of time. The latter calculation

relies on GIS’s built-in network analysis capacity. Given road network data, which contains

road-loactions, road-types, and standard assumptions about road speed limits, GIS solves

for the quickest route between two points.5

4 Spatial Analysis

All else equal, demand for a facility should be higher for patients located near the facility as

compared with patients farther away. While the level of demand will be affected by many

variables (quality, price, competition, demographic and geographic characteristics, etcetera),

the spatial pattern of relatively higher demand for nearby facilities should hold across all

observed firms. The exact shape of the spatial pattern will be driven by the opportunity

cost of time spent traveling, and the inconvenience cost of traveling after undergoing an

outpatient procedure. Because of these demand drivers, the pattern will hold even if facility

location is an endogenous choice by facilities.

Figures 1 and 2 confirm this expectation. On them, I graph percent of facility j’s output

that comes from zip code k (y-axis) against the travel-time between zip code k and facility

j (x-axis). The x-axis units are minutes. The y-axis variable is calculated as:

skjt =
Nkjt

Njt

(1)

where Nkjt equals the number of procedures facility j performs on patients from zip code k

in period t and Njt equals the total number of surgeries performed by facility j during that

same time. Time periods are quarters between 2001-2003.

4It is a potential problem that patient location data is not exact. All of the distance variables that I
create use as their starting point the zip centroid associated with the patient’s zip code and not the patient’s
specific street address. The zip centroid is the latitude and longitude coordinates associated with a given zip
code; it is often a post-office address. The centroid is supposed to be the geographic midpoint of the zip code,
but it may not be the midpoint of the zip code’s population density function. If it serially correlated over
many zips, then estimates of the time-to-travel coefficient will be biased because of spatial autocorrelation.
I assume that the mean error over all zips is zero.

5Many thanks to Todd Schuble for his help in computing these variables.
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These figures are identical except the top one is for ASCs only (sASCkjt ) and the bottom

one for hospitals only (sHospkjt ). The y-axis variable was calculated separately for each facility,

which is why a box-plot is used – the box-plot represents the pdf (over facilities) of facilities’

fractions of total outputs, conditional on location. The view from which we see the pdf is a

bird’s-eye view.

Another interpretation of figures 1 and 2 is as pdfs of producer demand over space.

The curves shown are averages of vertical slices of facilities’ three-dimensional demand bell-

curves hanging in space, with the facility at the center of the bell. The average throws away

location-specific information and reduces the picture to a single dimension: the distance

between patients and facilities. As can be seen, the median facility procures a larger share

of its total output from nearby zip codes relative to zip codes farther away. More important,

a comparison of the two figures indicates that the strength of this relationship differs by

facility type: hospital demand is more spatially concentrated than ASC demand, but has a

longer tail.

This finding is reinforced by a quantile regression in which the (log) fraction of the median

facility’s total output (in period t) from a particular zip code is regressed on the (log) time-

to-travel between zip code and facility, and year dummies. Results are shown in Table 1.

The last column, “All”, corresponds to the figures just described. The other columns show

results of the same regression for specific procedures. Standard errors are bootstrapped.

Identification comes from variation in location of facilities’ patients, which of course gen-

erates variation in time-to-travel. If patient location is correlated with omitted facility

characteristics, like price or quality, then one would worry about bias in the estimates. This

is precisely the appeal of using time-to-travel in the demand function: it is likely to be

independent from any omitted variables.

Looking at the last column, the estimate for the constant term says that the median ASC

gets 26.7 percent of its sales from those zip codes located immediately next door, while the

median hospital gets 22.8 percent from its nearest zips (converting the coefficient from logs).

The estimate for the coefficient on (log) time-to-travel reads that the fraction of sales coming

from zip codes further away tapers off at a rate of 1.26 percent for every one percent increase

in the minutes of travel time for the median hospital, but only at a rate of 1.13 percent for

the median ASC.

Graphically, the coefficients on the constant compare the y-intercepts of the median fa-

cilities (darkened line in the middle of the left-most boxes) in figures 1 and 2, which are not

markedly different, as the regression confirms.6 The coefficients on time-to-travel compare

6The difference in the vertical axis scale in the figures and the scale of the constant in the quantile
regression results from the fact that discrete bins are used the figures, while a continuous time-to-travel
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the slopes of curve for the median facilities, which is steeper for the median hospital relative

to the median ASC, and suggest that demand is more spatially concentrated for hospitals

than for ASCs.

I run the same quantile regression for the 85th percentile facilities (no table). The co-

efficient for the constant of the 85th percentile ASC implies they get 83 percent from zips

nearby, versus 100 percent for the 85th percentile hospital, while the coefficients on the time-

to-travel variable are -1.11 versus -1.32 for ASCs and hospitals respectively. Translating into

picture terms, these estimates tell us the y-intercepts and slopes from figures 1 and 2, but

this time do so for the upper whisker, instead of for the middle of the box.

It is also interesting to contrast across columns of Table 1. Doing so illustrates two points:

First, that the shape of the demand density is different across procedures. This can be seen

by comparing the levels of the (constant) estimates across columns. Demand for colonoscopy,

eye and urology procedures, for instance, is more spatially concentrated than demand for

foot or OB/Gyn procedures; both ASCs and hospitals get a larger fraction of their patients

from nearby zip codes relative to other procedures.

Second, compare the R-squareds across columns. It is apparent that the extant to which

travel-time influences facility purchase decisions (vis-a-vis other variables) also varies across

procedures. For example, the high R-squared in the urology procedure regression compared

to the low statistic in the ENT procedure regression imply that travel-time explains more

variation in the spatial concentration of demand for facilities doing urology procedures than

for facilities do ENT procedures. It cannot be determined from these regressions whether

the variation in R-squareds is because, ceteris paribus, the cost of travel is higher for some

procedures, or because there is less variation in facilities’ other differentiating characteristics

across procedures. If there was little variance in facility quality, or any other dimension of

product heterogeneity, then one would expect demand to be more spatially concentrated, as

time would matter more vis-a-vis other factors.

Given this explanation, the results are consistent with a story that says there is less

observed or unobserved facility heterogeneity among facilities who perform eye (mostly

cataract), colonoscopy and gastroenterology procedures. From an industry perspective, this

result makes sense: These procedures are among the safest, and the scale on which they

are produced is much larger than other types of outpatient procedures, so most facilities are

already likely farther out on any learning curve. Among health procedures, one can think

of cataract surgeries, colonoscopies and gastroenterological endoscopies as being the most

commoditized, therefore it is not surprising that geographic location plays a larger role in

the decision choice.

variable is used in the regression.
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I now formalize a model of demand with a goal of reproducing the spatial stylized facts

of demand just discussed.

5 Demand Model

Consumer demand for healthcare facilities is modeled as a discrete choice. The consumer

is the patient, and her choice set is the set of all facility alternatives in the state. In

reality, consumers’ actual choice sets are likely much smaller, but the flexibility allows for the

data to naturally determine consumer’s market boundaries, instead of imposing a constraint

exogenously.

I specify the discrete choice model to be logit, and the coefficients to be random, in

that the parameters of the utility functions very over consumers based on observed and

unobserved consumer characteristics. In contrast, the standard logit model assumes utility

function parameters to be fixed over all decision makers. A logit specification with random

coefficients is sometimes referred to as a mixed logit model; this is the nomenclature I use

here.

I choose to use the more flexible mixed logit model both to circumvent the well-known

restrictive substitution patterns imposed by the standard logit model (see Train [18]), and

also because the appropriate null hypothesis is that coefficients are random in the population.

Healthcare facility choices depend on the interaction between patient characteristics and

facility characteristics; this is equivalent to saying that tastes vary across patients. For

instance, sicker patients may prefer facilities with emergency rooms — that is, hospitals —

as insurance against a negative outcome, while healthier patients may be more willing to

visit ASCs, which don’t have emergency rooms. In another example, older patients may be

less willing than younger patients to travel far for a given procedure. Making explicit the

interaction between patient and facility characteristics naturally allows coefficients to differ

across consumers. Gaynor and Vogt [5] and Ho [7] use similar approaches.

Formally, suppose there are K markets, k = 1, 2, . . . , K. In market k, there lives Ik con-

sumers. The elements of the choice sets for all consumers are the same: A =
{
j1, j2, . . . , J

}
.

The constancy of choice sets over all consumers reflects the fact that all facilities are potential

choices for all consumers. From each potential alternative in her choice set, the consumer re-

ceives utility Uij and she chooses the facility that maximizes her utility. Consumer i chooses

facility j if and only if Uij > Uil ∀j 6= l, where j and l ∈ A.7

7All variables should be superscripted with an additional three variables: (1) t to denote time, (2) k, to
denote the market (zip code) where the patient lives, and (3) p, to denote the fact that a patient’s choice of
facility is procedure-specific. I abstract from these dimensions here to keep the notation simple, but discuss
them in the Identification Section with respect to the added variation they provide.
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Since there are aspects of consumers’ decision-making processes that the econometrician

does not observe, we write utility for consumer i from facility j as the sum of explained and

random parts.

Uij
(
Xj, Zi, Tij, ξj, υi; θ

)
= Vij

(
Xj, Zi, Tij, ξj, υi; θ

)
+ εij (2)

The explained part, Vij, is a function of observed facility characteristics, Xj, observed patient

characteristics, Zi, unobserved facility characteristics, ξj, unobserved patient characteristics,

υi, and the time-to-travel between the patient and the facility, Tij; V is parameterized by

θ. The random part of utility, εij will be assumed to be distributed type I extreme value,

from which the final logit specification will emerge. Put together, the vectors of observed

and unobserved facility characteristics contain all elements of the facility that influence a

patient’s decision choice.

For simplicity, I specify the explained portion of utility to be linear-in-parameters:

Vij = Tijαi +Xjβi + ξj (3)

where βi is defined as the vector of random coefficients on observed facility characteristics

and αi is the (scalar) random coefficient on the time-to-travel variable. To derive the random

coefficients, I interact patient and facility characteristics in the following way: Let αi and βi

be functions of patient characteristics, so that

αi = α̃ + κZi + υ1
i , and

βi = β̃ + γZi + υ2
i ,

where υ1
i and υ2

i are draws from (two potentially different) iid random variables. Note that

βi is a Cx1 vector of coefficients, where C is the dimension of Xjk. The cth element of βi is:

βic = β̃c + γcZi + υ2
ic

= β̃c +
M∑
m=1

zimγmc + υ2
ic (4)

where M is the dimension of the Mx1 vector Zi, υ
2
ic is the random error term on the cth

characteristic (assumed to be distributed iid across patients), and γmc is a 1xc vector that

is the mth row of the Mxc matrix, γ . Stack the elements, βic∀c, to create βi and plug into
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(3) and then (2) to get:

Uij = Tijαi +Xjβi + ξj + εij

= Tijα̃ +Xjβ̃ + Tij

M∑
m=1

zimκm +Xj

M∑
m=1

zimγm + Tijυ
1
i +Xjυ

2
i + ξj + εij (5)

The parameters to estimate from this model are θ =
[
α̃, β̃, κ, γ,Π

]
, where β̃ is the vector

of mean coefficients on facility characteristics, α̃ is the mean coefficients on time-to-travel,

γ is the c x m matrix of coefficients on patient-facility characteristic interactions, κ is the

vector of coefficients on the interaction between patient characteristics and time-to-travel,

and Π are the moments of F (υ), the distribution of υ. It should now be clear how random

coefficients are equivalent to interactions between patient and facility characteristics. Across

all patients, the average impact of the cth facility characteristic on utility is β̃c, but for any

particular patient i, the actual impact of the cth facility characteristic is specific to that

consumer, and depends on their personal characteristics, Zi, as well as the magnitude of γ,

and the distribution of υ (parametrized by Π) over the population.

To gain insight about the implications of the random coefficients specification, we can

write utility in another way: As the sum of a mean component that does not vary over con-

sumers, and a deviation from that mean that explains variation in utility across consumers.

The mean component includes all the elements of utility that are exclusively facility-specific.

The deviation from this mean depends on patient characteristics, Zi, and the patient draw

from F (υ). Denote mean utility from facility j as:

δj = Xjβ̃ + ξj (6)

and re-write equation (5) as

Uij = δj + Tijα̃ + Tij

M∑
m=1

zimκm +Xj

M∑
m=1

zimγm + Tijυ
1
i +Xjυ

2
i + εij (7)

The convention of using δ to denote mean utility began with Berry [1] and Berry, Levinsohn

and Pakes [16]. Writing utility in this way is useful because it shows that, given δj, it will be a

straightforward exercise to estimate the coefficients that interact with patient characteristics,

that is, γ. I discuss this in more detail in the Estimation Strategy section below.

Note that Tij is not included in δj in equation (6). This is because the time-to-travel is not

facility-specific, but depends on the location of the facility relative to each patient. Because

time-to-travel varies among patients all choosing the same facility, Tijα̃ is not subsumed by
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δj.

For notational convenience, I re-write equation (7) as:

Uij = δj + Tijα̃ +XijΓ +Xijυi + εij (6′)

where Xij = [Xj, Tij], Γ =
[∑M

m=1 zimγm1,
∑M

m=1 zimγm2, . . . ,
∑M

m=1 zimγmc,
∑M

m=1 zimκm
]′

,

and υi = [υ1
i , υ

2
i ]
′.

Choice Probabilities

Without the random term, υ, the probability that consumer i chooses facility j is a simple

function of the model primatives: Pij = Pr(Uij > Uil ∀j 6= l| θ). Introducing υ, however,

adds a layer of complexity; the simple formula now only applies to the conditional choice

probability, P̂ij, which is the probability that consumer i chooses facility j conditional on i’s

random draw from F (υ).

P̂ij
(
Xj, Zi, Tij, ξj;F (υ), θ

)
= Pr

(
Uij > Uil ∀j 6= l| F (υ), θ

)
=

∫
ε

I
(
εil < εij + Vij − Vil | F (υ), θ

)
dF (ε) (8)

Because we do not know patients’ random draws, we need to integrate the conditional choice

probabilities over the distribution of draws, F (υ), to regain the unconditional choice proba-

bilities.

Pij
(
Xj, Zi, Tij, ξj;F (υ), θ

)
=

∫
P̂ijdF (υ) (9)

Assuming that each component of the 1xJ random vector, ε, is distributed independently

and identically extreme value, the conditional choice probability becomes the standard logit

probability. That is, when f(εij) = e−εije−e
−εij

, equation (8) has the closed form:

P̂ij =
exp

(
δj + Tijα̃ +XijΓ +Xijυi

)
1 +

∑J
l=1 exp

(
δl + Tilα̃ +XilΓ +Xilυi

) (10)

and equation (9) becomes:

Pij =

∫
exp

(
δj + Tijα̃ +XijΓ +Xijυi

)
1 +

∑J
l=1 exp

(
δl + Tilα̃ +XilΓ +Xilυi

)dF (υ) (11)

Finally, to get the ex-ante probability, Pj, that any randomly selected patient in the popu-
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lation chooses facility j, we also need to integrate over the density of patient types, F (Z).

Pj =

∫
Z

∫
υ

exp
(
δj + Tijα̃ +XijΓ +Xijυi

)
1 +

∑J
l=1 exp

(
δl + Tilα̃ +XilΓ +Xilυi

)dF (υ)dF̂ (Z) (12)

where F̂ (Z) makes explicit that the distribution of types is taken from the data, and Z is

imbedded in Γ.

Market Shares & Elasticities

The probability in equation (12) can also be interpreted as the market share of product

j: sj(Xj, Zi, Tij, ξj;F (υ), F̂ (Z), θ) = Pj, which can in turn be used to compute demand

elasticities. (Analogously, the probability from equation (10) can be interpreted as the

market share of product j purchased by type i, conditional on their random draw from

F (υ): ŝij.) Economists are traditionally interested in demand elasticities with respect to

price, as price is the most convenient and usually the most logical product characteristic to

use. Theoretically, however, there is nothing stopping us from measuring demand elasticities

with respect to any product characteristic.

This is what I now derive: Demand elasticities with respect to non-price characteristics,

particularly location. There are good reasons to avoid calculating a price-elasticity. First, as

has been mentioned already, there are only bad measures of price in the data set. Second,

trying to tease out price elasticities to describe how patient’s substitute between facilities

based on price seems futile when price is only one, and perhaps not even the most important,

product characteristic that consumers consider. Instead, I try to calculate the magnitude of

substitution when all characteristics are held constant, and only the location changes.

Given heterogeneity among patients, each individual i will have an idiosyncratic sensitivity

to changes in product characteristics, depending on their own type and their random draw

from F (υ). To get the elasticity of demand in the general population, individual elasticities

are averaged using the individual specific probabilities of purchase as weights. This mean

elasticity of demand with respect to change in the location of facility j is:

ηjl =
∂sj
∂Tl

Tl
sj

=

 1
sj

∫ ∫ ∫
Tijβiŝij(1− ŝij)dF (υ)dF̂ (Z)F̂ (T ) if j = l,

1
sj

∫ ∫ ∫
−Tilβiŝij ŝildF (υ)dF̂ (Z)F̂ (T ) otherwise,

(13)

where sij is the market share just computed. This is identical to the elasticity of demand

for any generic product characteristic (such as price, see Nevo [12]), except that Tij is part

of the integrand, and not outside of it. Time-to-travel is not a fixed product characteristic,
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but depends on the patient-facility pair and therefore must be integrated over.

6 Estimation Strategy

Logit with Interactions

If the term with the υi interaction is discarded from indirect utility in equation (7), then

estimation is straightforward. Such an omission could be created by letting the variance of

the distribution of υ degenerate to zero around a zero mean. In that case, I can run a simple

logit regression of the binary (facility j chosen) purchase decision on facility fixed effects

(δj) and on facility characteristics (Xj) interacted with patient characteristics (Zi). The log

likelihood equation is:

lnL(θ) =
I∑
i

J∑
j

ln
(
Pr(i chooses j)

)
=

I∑
i

J∑
j

dijlnP̂ij (14)

where dij is the binary dependent variable that equals one if patient i chose facility j and

P̂ij is as written equation (10) except that the term Xijυi is omitted.

Mixed Logit

If the υi term is not discarded, then a different estimation approach is needed. Simulation

is the traditional way to estimate parameters of a mixed logit model. Simulated maximum

likelihood (SML) and the method of simulation moments (MSM) are two such simulation-

based methods. I use the former for reasons of efficiency; SML tends to be much faster than

MSM.

The algorithm for SML proceeds as follows. Choose initial values for the coefficients

(α̃0, β̃0, γ0), and sample a large number of draws from the assumed density f(υ) for each

observation. Using the initial values and random draws, calculate the conditional choice

probability from equation (10) for each observation, for each draw from f(υ). Approximate

the integral in equation (11) by summing over the υ draws for each observation. Let R be

the total number of draws from f(υ). Then the simulated unconditional choice probability

is:

P̄ij =
1

R

R∑
r=1

P̂ij(α
r, βr, γr, κr) (15)
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Note that P̄ijk is strictly positive, so lnPij is always defined. Therefore we can construct the

simulated log likelihood function, as:

SLL =
I∑
i=1

J∑
j=1

dijlnP̄ij (16)

where dij = 1 if i chose j, and zero otherwise. See Train [18] for more details.

7 Estimation Results & Identification

To reiterate, the objective is to estimate the coefficients θ = [β̃, α̃, γ, κ, π] from (7) by max-

imizing log-likelihoods from equations (14) or (16). Estimating (14) yields the first four

parameters of θ; π is only relevant to the mixed logit model that culminated in equation

(16). I now describe the variables included in the regressions, then show results and discuss

identification.

7.1 Discussion of Variables & Summary Statistics

Variables contained in the data that are included in the observed facility characteristics

vector, Xj are: Capacity, measured in number of beds; scope, measured in the number of

different procedures a facility performs each year; and type, which is a binary variable that

equals one if the facility is an ASC. Variables included in the observed patient characteristics

vector, Zi are age, insurance type, and a dummy variable that equals one if the patient has an

additional procedure performed besides the principal procedure.8 Time-to-travel, Tij, gives

the number of minutes between the centroid of patients’ zip codes and the facility. Quality

is the quintessential example of an unobserved facility characteristic, ξj. Health status is

the primary example of an unobserved patient characteristic, υi. Suffice it to say, if any

unobserved variables are correlated with included variables, then estimated coefficients will

be biased.

Note what is not included in the observed facility characteristic vector: Price. The omis-

sion of price is partly a strategic decision, and partly an imposed constraint of the data set.

Strategically, the relevant issue is how greatly price factors into demand. If price was the

major decision variable, then its omission would almost render useless the demand estima-

tion exercise. I argue that it is not. That said, if a price variable was available, I would

use it. The price that would theoretically pertinent to consumers’ choices is the final price

8A little over half of the records in that data are for patients having multiple (at least two) procedures.
All analysis is done on the primary procedure only.
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patients pay, after co-pays, deductibles and insurance factor in. Unfortunately, the data do

not include such information, but rather only the total charge (list price) for the service,

therefore I am constrained.

Estimation is further constrained computationally, given the way that I constructed the

dataset. What appears in the data are patients’ choices. But to run a logit estimation

specification, I must know patients’ non-choices. Non-choices are the facilities in patients’

choice sets that are not frequented. To generate non-choices, I use the counterfactual notion

that a patients’ choice set includes all facilities in the entire state; I rectangularize the data

set, and create an observation for each facility for each patient. In theory, a patient could live

in Miami, but choose a facility on the opposite side of the state, say in Jacksonville. A rich

counterfactual like this is possible partly because of the time-to-travel variable, which I have

for every potential patient-facility match. Generating counterfactual prices for patients’ no-

choices would be next to impossible, given the tremendous price discrimination in the market

and therefore the tremendous patient-price-specifity. For this additional reason, I choose to

omit price. As will be discussed in the identification section below, the omission should not

bias estimates when fixed effects are included.

In terms of interactions, I allow all patient characteristics to interact with two variables:

the time-to-travel variable and the dummy for facility type (ASC, or hospital). Only the

dummy for whether has additional procedures is permitted to interact with scope. No patient

characteristic is interacted with capacity, making the implicit assumption that capacity is

not a valued characteristic for any other reason then it provides immediate availability. I do

interact time-to-travel with the dummy for facility type, just to connect to the findings of

the reduced form spatial regressions from section 4.

Table 2 shows the basic summary statistics for the included variables. The summary

statistics are broken down by facility type – ASC statistics are listed in column one and

hospital statistics in column two. As expected, ASCs are smaller in scope and capacity

relative to hospitals, and perform fewer procedures on average per period. In terms of

characteristics of patients who frequent each type of facility, ASC patients are older on

average (60.8 years versus 54 years), less likely to have additional procedures performed (66

percent versus 27 percent), and more likely to be Medicare patients (46.8 percent versus

36.8 percent). The striking disparity between ASC and hospital patients’ characteristics

underline the need for a model with interactions between patient and facilities variables.

These summary statistics describe the data when all procedures are aggregated together,

rather than considered separately. However, the composition and number of patients that

each type of facility receives may differ greatly between procedures. To account for these dif-

ferences, all econometric specifications stemming from the theoretical model are run on ten
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different procedural groups, classified primarily by body part. The groups are: breast pro-

cedures, colon procedures, ear, nose & throat procedures, eye procedures, foot procedures,

gastroenterological procedures, hernia procedures, gynecological procedures, orthopedic pro-

cedures, and urological procedures.

I create another table of summary statistics, table 3, identical to the first except that it

compares summary statistics for three of the ten procedural groups only. The rest of the

groups’ summary statistics can be found at (www.uchicago.edu/home/˜eweber). Note the

main differences between the procedural groups: Eye procedural patients (mostly cataracts)

tend to be older, Medicare patients compared with the privately insured and slightly younger

patients who are having colon (mostly colonoscopies) and foot (bunion or hammertoe) pro-

cedures. Patients having foot procedures are very likely to have an additional procedure

done concurrently. The characteristics of the facilities performing these procedures also vary

slightly.

Groups are used to simply the analysis. More than 4,000 unique procedures appear in

the data, and as can be seen in Figure 3, the distribution of the (log) number of each pro-

cedure performed is highly right-skewed – a few procedures account for the bulk of demand.

Groups were also created because competition happens on a procedural level, since that is

corresponding level at which choices are made (see footnote 7, and therefore it is the level

at which estimates are structurally interpretable.

I construct and choose which procedural groups to use in the following way: First, for each

year, I rank each procedural code (also known as common procedural terminology codes, or

CPT codes) based on the raw counts.9 Second, I identify annual top-100 ranked procedures.

There are 126 distinct procedures that fall into the top-100 category between 1998 and 2004.

Of these, I keep only 42 procedures, which are the ones continuously ranked in the top-100 for

all seven years. Finally, I eliminate procedures for which facility-types other than hospitals

and ASCs – like radiation facilities and lithiotropsy centers – have large market shares. The

precise rule is to keep procedures for which hospitals and ASCs together account for more

than 95 percent of the total market, and for which both ASCs and hospitals have strictly

positive market shares.

The 42 retained procedures are listed in table 4, along with their frequencies. As can be

seen there, many of the procedure codes are only nominally different, and can be classified

into approximately ten broad groups, mostly based on body area. Each group contains

between two and six unique procedural codes. These are the groups used for analysis. In

9 Npt

Nt
= Fraction of statewide procedures performed in year-t that are of type-p. Ordering the fractions

over all p procedural codes yields rank. Ranks are computed over the entire year instead of quarterly to
reduce variance in the ranks of rarer procedures and to account for seasonality.
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total, the procedures kept account for about 45 percent (7.4 million) of the total data sample,

echoing the right-skewed distribution from Figure 3.

7.2 Results: Logit with Interactions

Table 5 shows results from the simple logit with interactions between facility and patient

statistics. To avoid cluttering the table, I show the results only for five of the ten proce-

dural groups. However, statements made in following discussion apply to all ten groups,

no exceptions. Results from regressions that do not appear in the table can be found at

(www.uchicago.edu/home/˜eweber).

The time-to-travel variable is significant and negative in all regressions, ranging from -

0.074 to -0.133, which suggests that longer distances between facilities and patients decrease

choice probabilities, as expected. Taking the eye regression as an example, it reads that

increasing the distance between a patient and a facility by one percent decreases the prob-

ability the patient chooses that facility by -0.0003. In addition, the impact that travel time

has on patients varies across procedures, supporting the hypothesis that procedures are dis-

tinct products. The impact of time-to-travel changes with patient age, as indicated by the

negative and significant coefficients on the interaction between those two variables. Finally,

having additional procedures done implies that patients are likely to travel further.

Also as expected, the coefficients on scope are all positive (and significant), varying be-

tween 0.001 and 0.0028; the interaction between scope and the dummy variable for whether

the patient has additional procedures performed is positive, too, further strengthening the

likelihood of choosing a facility that offers more services.

Coefficients on the interaction between insurance dummies and the dummy denoting

whether the facility is an ASC are generally negative, though the magnitude and significance

of these coefficients can vary a lot depending on the procedure being done. Comparing across

procedures, however, it is apparent that choosing an ASC is least likely for patients with

Medicaid (largest negative impact), or those who self-pay, relative to patients with Medicare

or Private insurance (smallest negative impact). As insurance is correlated with both income

and total facility charges, it may be proxying for the final price that consumers pay, which

would explain both the sign and relative magnitudes of the estimates.

Interpreting coefficients on the interaction between travel time and insurance is similarly

difficult. In general, these coefficients are small and positive, though not always significant.

They imply that a patients with insurance are more inelastic with respect to travel time. This

seems logical if the price of the procedure without insurance outweighs the cost of traveling

to a facility that honors the patient’s insurance. Moreover, the interaction coefficients are
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largest for Medicaid and self-insured patients, implying this effect is largest for them. Again,

this makes sense if we believe those customers are most price sensitive.

Finally, comparing across columns, it is interesting to note the pattern of significances

on the interacted coefficients: It is correlated with procedure type. This harkens back to

the discussion in section 4 about R-squareds, where it was hypothesized that the extent to

which travel-time influences facility purchase decisions (vis-a-vis other variables) depends on

the variance of product heterogeneity. The more product heterogeneity apart from facility

location, the less of impact travel-time should have. The significance pattern found in

these regression suggests another possibility: a greater variation in patient characteristics

across procedure groups also reduces the relevance of travel-time relative to other product

characteristics. Again, this adopts particular significance if we believe insurance is correlated

with the final price patients pay, or with income.

Identification

To obtain consistent estimates for either the logit with interactions or the mixed logit models,

it is necessary that εij be independent from the decision variables included in the utility

function in equation (7). This will not happen if there are any omitted variables that are

correlated with included characteristics, which is a concern here: the ξk term was introduced

precisely to represent facility characteristics that are observed by consumers and influence

their decisions, but are unobserved by the econometrician. In estimation, the fixed effect,

δj, was included to alleviate this problem; it captures all omitted facility-specific variables

represented by ξ. Omitted patient characteristics would similarly be a problem if they were

correlated with included variables. In the mixed logit specification, the υ error term accounts

for unobserved patient characteristics.

Assuming all patient characteristics are observed, including facility fixed effects in both

the simple logit with interactions model and the mixed logit model buys simple and consistent

estimation of the c x m matrix γ. Identification comes off variation in consumer types who

choose the same facility. If there is unobserved patient heterogeneity, then estimates of γ

will be biased despite the inclusion of fixed effects.

Fixed effects absorb all unobserved facility characteristics, such as quality and price, as

well as all observed facility characteristics that do not vary over time, such as capacity, and

the dummy for facility type. As a result, β̃ is not identified from this approach for time

invariant facility characteristics, and does not appear in table 5.

This approach is in the spirit of Berry, Levinsohn and Pakes [16], Petrin [13], Nevo [12],

among others. They, however, obtain δ̂j using a method of moments that picks δ̂ to minimize
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the distance between predicted shares, ŝj and actual shares, sj. They embed this routine in

the likelihood iteration – for every parameter estimate that solves the maximum likelihood

problem, they re-estimate δ̂j – a very slow and cumbersome process. Given that I have

micro-data, and a lot of it, I can use the simpler fixed effects approach, effectively adding

a dummy for each facility in my data. More important, I can shun complicated techniques

because I am not trying to recover estimates from β̃, which is a typical goal of papers in the

literature. Here, the variable of interest is time-to-travel, which is identified because there is

exogenous variation in patient location vis-a-vis facilities.

The other important element of identification concerns whose utility function the estimates

indentify. In the model described above, healthcare facilities’ consumers are assumed to be

only patients, even though physicians also have some preference over the facility-patient

match (and presumably some influence over patients’ choices). Therefore, the model omits

some variables that belong to the physician. It does not entirely omit physicians’ decision

variables because some of physicians’ decisions are based on patient characteristics (health,

insurance, etc.) that are included in the data.10 In that way, too, patient demographics proxy

for physician demand. But we cannot interpret coefficients on these variables as coming only

from patient preferences, because they are a mix of patient utilities and physician utilities.

Any variable that is uniquely a decision factor for the patient and does not enter the utility

function of the physician will be identified during estimation. The only variable meeting

this criteria is travel-time. Moreover, the criteria is met only under the assumption that

physicians do not consider patients’ locations when recommending a locale for surgery, but

rather assume the patient-physician match has already aligned the geographic preferences of

the two parties.

To identify physician-specific preferences for ASCs would require incorporating physician-

specific characteristics, such as physician location, or practice-type, into the regression. For

instance, how much physicians prefer ASCs because of higher profits they provide to physi-

cians is currently absorbed in the fixed effects, but could be identified by interacting the

ASC dummy with physician characteristics.

7.3 Substitution Matrix

Using the logit estimates, I create substitution matrices (one for each procedure group) that

describe how patients substitute between facilities, given changes in one facility’s location.

The matrix is constructed from equation (13). A subset of the matrix for foot procedures

is shown in the top panel of table 6. The bottom panel of the table lists the distance

10Insurance is included, and health is proxied for with age.
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between facilities for the same subset. The diagonal of the substitution matrix gives the

own-time elasticity. For instance, if facility eight increases its distance from all consumers

by one percent, then demand for its product would fall 0.0028 percent. The off-diagonal

elements describe cross-time elasticities, which is the degree to which consumers substitute

to other facilities, given a location change of the primary facility. For instance, if facility two

increases its distance from all patients by one percent, then demand for facility six would

increase 0.000013 percent.

Admittedly, this may be a strange thought experiment, as it is hard to think about a

situation where a facility increases its distance from all consumers simultaneously. However,

the matrix is of interest for two reasons: First, it meets the expectation that two facilities

that are closer together in space are indeed closer substitutes. Comparing the upper and

lower panels of table 6, it is possible to eyeball this correlation; the formal statistic for

the correlation between the two matrices is -0.277, and is significant. Second, the matrix

is asymmetric, which tells us that a location change of firm J impacts demand for firm L

differently than a location change of firm L would impact demand for firm J . This makes

sense, as the degree to which firm J is a substitute for firm L depends on the location of

firm L’s patients, and vice-versa. Unless firms J and L have exactly overlapping consumer

bases, their cross-time elasticities will not be identical.

Gaynor and Vogt [5] do this, too, except their matrix is based on price-elasticities instead

of time-elasticites. As a price variable, they use the list-price, or charge, that hospitals cite

payers. List-prices are inflated; they are not the final prices that patients face. If list-prices

are proportional to final-prices across all patients, then their method is valid. Otherwise,

their results will not reflect substitution patterns accurately.

8 Welfare Analysis

Both the reduced form and structural estimates imply that consumers significantly prefer

facilities that are located closer to their homes in the geographic plane. Using this fact

enables me to quantify welfare counterfactuals. I consider: What would happen if ASCs

were removed entirely from one market’s the choice set? As discussed in the introduction,

these welfare calculations are germane to current policy debates about whether business

stealing by ASCs harms hospitals (and by extension their local communities) and therefore

whether there is a case for shutting them down, or limiting entry.

Usually we need price elasticities to construct welfare measures, because they allow us to

convert the util units from indirect utility into dollar units. Having a time elasticity however

is almost as good. After removing ASCs from the choice set, we can let the model tell us
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where consumers choose to go instead. There will be a utility loss from this forced second-

choice pick of facility. Estimating the value of time to different consumers is straightforward.

With that one extra step, we can find the monetary value of the utility loss by translating

it to a time-cost.

Formally, I denote the subset of hospitals by H, and the subset of ASCs by A, and write

the change in consumer surplus for patient i from removing A from the choice set as:

∆E(CSij) =
1

αi

(
Eε[ max

j∈A∩H
(Vij + εij)]− Eε[max

j∈H
(Vij + εij)]

)
(17)

where αi is the coefficient on time-to-travel from the demand equation estimated before.

The term inside the brackets describes the change in utility caused by removing A from

the choice set. Multiplying it by 1
αi

translates the util change into a welfare number, albeit

one measured in minutes. The final steps are to translate minutes into money terms, and

aggregate (17) over all patients.

In that consumers are heterogenous and differentiated by their observable characteristics,

aggregating will require integrating over the distribution of patient characteristics, F̂ (Z),

and, if unobserved patient characteristics are included (as done in the mixed logit model),

over the distribution, F (υ). Estimation is made simpler by the result from Small and Rosen

[17], who show that if ε is distributed type-I extreme value, then

Eε[max
ij

(Vij + εij)] = ln
( J∑

j

eVij
)

+ C (18)

where C is an unknown constant that is irrelevant from a policy perspective. Therefore, (17)

becomes

∆E(CSij) =
1

αi

(
ln
∑

j∈A∩H

eVij − ln
∑
j∈H

eVij
)

(19)

which is what I take to the data.

A similar exercise was done by Petrin [13] for the introduction of minivans, and by

Gentzkow [6] for the introduction of online newspapers as new products.

Results

The results from the welfare calculation are shown in table 8, and give the welfare gain (in

minutes) to patients from having ASCs in their choice sets. The counterfactual is a world

with no ASCs. Patients lose welfare because they must travel further to reach a healthcare

facility, and because ASCs have product characteristics that patients prefer. Looking at the
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first column, for instance, we see that eye patients lose 1,902,372 minutes, or 31,706.2 hours

of surplus. Attributing an average hourly wage of $15.7011, therefore, would imply that total

surplus lost from the elimination of ASCs is $497,787 . This is the amount consumers would

be willing to pay not to close all ASCs.

9 Conclusions

This paper explores the shape and structure of the demand function for healthcare facilities.

I find differences in the spatial concentration of demand around ASCs versus the spatial

concentration of demand around hospitals. Quantile regressions suggest that the median

(upper-percentile) hospital gets more of its business from its immediate surroundings as

compared with the median (upper-percentile) ASCs.

Structural estimates also find that time-to-travel between a facility and a patient is a

significant variable in demand. The degree to which travel-time matters, however, depends on

the type of procedure under consideration, and on demographic characteristics of the patient.

These conclusions are based on a discrete choice multi-nomial logit model of demand with

interactions between facility and patient characteristics. Using the logit results, I estimate

a substitution matrix based on the cross-time elasticity, and find asymmetric substitution

patterns between facilities. Also with the logit results, I calculate the welfare effects of a

hypothesized counterfactual in which all ASCs are removed from the choice sets. Welfare

effects are measured in time-cost units, and converted to money-units using estimates of

patients’ values of time.
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10 Appendix 1: Figures & Tables

Figure 1: Spatial Demand Function, ASCs, All Procedures

Figure 2: Spatial Demand Function, Hospitals, All Procedures
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Table 2: Summary Statistics
ASCs Hospitals

(Number of facilities = 354) (Number of facilities=211)

(Number of obs = 6,507,403) (Number of obs=10,681,119)
Variable Mean Std Dev N Mean Std Dev N

Facility Characteristics
Scopea 165.8 162.6 1,785 561.4 298.5 1,383

Capacity (beds) b 2.8 1.6 354 261.2 212.23 211

Number of primary procs performedc 963.6 671 6,753 1956.6 1778.2 5,459
Patient Characteristics

Age 60.8 18.7 6,507,403 54.0 21.4 10,681,119

Add’l Procs N=1,760,703 (%=27.1) N=7,112,152 (%=66.6)

Medicare N=3,044,606 (%=46.8) N=3,934,321(%=36.8)

Medicaid N=149,725 (%=2.3) N=802,243 (%=7.4)

Private N=2,738,130 (%=42.1) N=4,887,229 (%=45.8)

Government N=270,512 (%=4.2) N=450,871 (%=4.2)

Self N= 179,235 (%=2.8) N=376,234 (%=3.5)

a: Calculated for each facility, for each year.

b: Collected from AHCA. Only one observation per facility, dated from 2008.

c: Gives the number of procedures a facility performs. Calculated for each facility, for each quarter.

Figure 3: Distribution of CPT Codes
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Table 3: Summary Statistics: Colon, Eye and Foot Procedures
Colon

ASCs Hospitals
(Number of fac =200) (Number of fac=204)

(Number of obs = 1,432,267) (Number of obs=1,310,628)
Variable Mean Std Dev N Mean Std Dev N

Facility Characteristics
Scopea 200.6 173.0 973 572.5 294.3 1,341

Capacity (beds) b 3.2 1.84 200 268.6 211.9 204

Number of observations per facilityc 399.5 370.0 3,595 250.2 245.3 5,238
Patient Characteristics

Age 62.6 13.6 1,432,267 61.5 14.5 1,310,628

Add’l Procs N=316,702(%=22.0) N=637,493(%=48.6)

Medicare N=616,347(%=42.9) N=554,526(%= 42.3)

Private N=757,833(%=52.8) N=666,669(%=50.9)

Eye
ASCs Hospitals

(Number of fac =203) (Number of fac=158)
(Number of obs = 1,561,130) (Number of obs=282,279)

Variable Mean Std Dev N Mean Std Dev N
Facility Characteristics

Scopea 208.1 170.0 1,039 635.9 301.9 884

Capacity (beds) b 3.3 1.6 203 284.7 203.2 158

Number of observations per facilityc 399.9 462.4 3,924 88.1 122.7 3,204
Patient Characteristics

Age 73.5 9.3 1,561,130 72.2 10.5 282,279

Add’l Procs N=133,419(%=8.5) N=93,765(%=33.2)

Medicare N=1,187,465(%=76.1) N=206,688(%=73.2)

Private N=288,312(%=18.5) N=54,235(%=19.2)

Foot
ASCs Hospitals

(Number of fac = 173 ) (Number of fac=201)
(Number of obs = 46,291) (Number of obs=31,326)

Variable Mean Std Dev N Mean Std Dev N
Facility Characteristics

Scopea 299.5 140.2 841 608.3 281.2 1,206

Capacity (beds) b 3.7 1.7 173 271.4 212.0 201

Number of observations per facilityc 15.7 16.2 2,956 7.9 12.9 3,942
Patient Characteristics

Age 55.3 16.3 46,291 53.6 16.4 31,326

Add’l Procs N=29,657 (%=64.1) N=24,631 (%=78.6)

Medicare N=14,432 (%=31.2) N=8,689(%=27.7)

Private N=28,181 (%=60.9) N=20,598 (%=65.8)

a: Calculated for each facility, for each year.

b: Collected from AHCA. Only one observation per facility, dated from 2008.

c: Gives the number of procedures a facility performs. Calculated for each facility, for each quarter.
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Table 4: Current Procedural Terminal (CPT) Codes Used in Analysis
Rank Grouping Description CPT CODE Number

1 EYE Extracapsular cataract removal with insertion of intraocular lens pros-
thesis (one stage procedure), manual or mechanical technique (eg, irri-
gation and aspiration or phacoemulsification)

66984 1,328,448

2 COLON Colonoscopy, flexible, proximal to splenic flexure; diagnostic, with or
without collection of specimen(s) by brushing or washing, with or with-
out colon decompression (separate procedure)

45378 1,184,276

3 GASTRO Upper gastrointestinal endoscopy including esophagus, stomach, and
either the duodenum and/or jejunum as appropriate; with biopsy, single
or multiple

43239 959,438

4 COLON Colonoscopy, flexible, proximal to splenic flexure; with removal of tu-
mor(s), polyp(s), or other lesion(s) by snare technique

45385 474,950

5 COLON Colonoscopy, flexible, proximal to splenic flexure; with biopsy, single or
multiple

45380 435,543

6 EYE Discission of secondary membranous cataract (opacified posterior lens
capsule and/or anterior hyaloid); laser surgery (eg, YAG laser) (one or
more stages)

66821 427,783

7 COLON Colonoscopy, flexible, proximal to splenic flexure; with removal of tu-
mor(s), polyp(s), or other lesion(s) by hot biopsy forceps or bipolar
cautery

45384 380,230

8 DIABETES Debridement; skin, and subcutaneous tissue 11042 230,952
9 GASTRO Upper gastrointestinal endoscopy including esophagus, stomach, and

either the duodenum and/or jejunum as appropriate; diagnostic, with
or without collection of specimen(s) by brushing or washing (separate
procedure)

43235 197,705

10 ORTHO Arthroscopy, knee, surgical; with meniscectomy (medial OR lateral, in-
cluding any meniscal shaving)

29881 167,619

11 HERNIA Repair initial inguinal hernia, age 5 years or older; reducible 49505 135,549
12 Tympanostomy (requiring insertion of ventilating tube), general anes-

thesia
69436 135,474

13 BREAST Excision of cyst, fibroadenoma, or other benign or malignant tumor,
aberrant breast tissue, duct lesion, nipple or areolar lesion (except
19300), open, male or female, one or more lesions

19120 127,135

14 ORTHO Neuroplasty and/or transposition; median nerve at carpal tunnel 64721 110,415
15 UROL Cystourethroscopy (separate procedure) 52000 103,007
16 BREAST Excision of breast lesion identified by preoperative placement of radio-

logical marker, open; single lesion
19125 79,284

17 ENT Tonsillectomy and adenoidectomy; younger than age 12 42820 73,700
18 COLON Sigmoidoscopy, flexible; diagnostic, with or without collection of speci-

men(s) by brushing or washing (separate procedure)
45330 73,400

19 Biopsy of liver, needle; percutaneous 47000 69,273
20 COLON Colonoscopy, flexible, proximal to splenic flexure; with ablation of tu-

mor(s), polyp(s), or other lesion(s) not amenable to removal by hot
biopsy forceps, bipolar cautery or snare technique

45383 65,905

21 ORTHO Arthroscopy, knee, surgical; with meniscectomy (medial AND lateral,
including any meniscal shaving)

29880 63,988

22 Debridement; skin, partial thickness 11040 59,794
23 GASTRO Upper gastrointestinal endoscopy including esophagus, stomach, and

either the duodenum and/or jejunum as appropriate; with insertion of
guide wire followed by dilation of esophagus over guide wire

43248 59,604

24 UROL Cystourethroscopy, with ureteral catheterization, with or without irri-
gation, instillation, or ureteropyelography, exclusive of radiologic ser-
vice;

52005 59,561

25 Debridement; skin, full thickness 11041 57,713
26 UROL Biopsy, prostate; needle or punch, single or multiple, any approach 55700 57,482
27 GYN Dilation and curettage, diagnostic and/or therapeutic (nonobstetrical) 58120 54,480
28 ORTHO Arthroscopy, shoulder, surgical; decompression of subacromial space

with partial acromioplasty, with or without coracoacromial release
29826 50,241

29 Removal of implant; deep (eg, buried wire, pin, screw, metal band, nail,
rod or plate)

20680 49,611

30 GYN Treatment of missed abortion, completed surgically; first trimester 59820 47,488
31 Introduction of needle or intracatheter, vein 36000 46,005
32 Septoplasty or submucous resection, with or without cartilage scoring,

contouring or replacement with graft
30520 45,096

33 ORTHO Arthroscopy, knee, surgical; debridement/shaving of articular cartilage
(chondroplasty)

29877 44,079

34 UROL Circumcision, surgical excision other than clamp, device, or dorsal slit;
older than 28 days of age

54161 38,969

35 FOOT Correction, hallux valgus (bunion), with or without sesamoidectomy;
with metatarsal osteotomy (eg, Mitchell, Chevron, or concentric type
procedures)

28296 38,116

36 ENT Tonsillectomy, primary or secondary; age 12 or over 42826 37,343
37 FOOT Correction, hammertoe (eg, interphalangeal fusion, partial or total pha-

langectomy)
28285 36,099

38 ORTHO Tendon sheath incision (eg, for trigger finger) 26055 35,699
39 Debridement; skin, subcutaneous tissue, and muscle 11043 35,319
40 UROL Cystourethroscopy, with insertion of indwelling ureteral stent (eg, Gib-

bons or double-J type)
52332 34,588

41 UROL Cystourethroscopy, with calibration and/or dilation of urethral stric-
ture or stenosis, with or without meatotomy, with or without injection
procedure for cystography, male or female

52281 33,361

42 HERNIA Repair umbilical hernia, age 5 years or older; reducible 49585 29,529
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Table 5: Logit with Interactions Regression: Dependent Var (0/1) = Choice of facility k
Colon Eye Foot Orthopedic Urology
Coeff. Coeff. Coeff. Coeff. Coeff.

Indep. Var. (Std. Error) (Std. Error) (Std. Error) (Std. Error) (Std. Error)

(Log) Time-to-Travel (α̃) -1.824** -1.666** -2.105** -2.061** -1.806**
(0.013) (0.129) (0.098) (0.107) (0.227)

Scope (β̃1) 0.001** 0.002** 0.003** 0.003** 0.003**
(0.0005) (0.0005) (0.0004) (0.0004) (0.001)

Time-to-travel X Dummy, ASC (β̃3) 0.068 0.116 0.017* 0.010 -0.301*
(0.088) (0.049) (0.086) (0.077) (0.140)

Interactions: Scope
Dummy, Add’l Procs (γ11) 0.0005** 0.001** 0.0003 0.0005** 0.0002

(0.0002) (0.0002) (0.0002) (0.0001) (0.0003)
Interactions: Dummy, ASC

Medicare (γ12) 0.024 -0.621 -1.346** -1.547** 0.039
(0.397) (0.397) (0.346) (0.308) (0.744)

Medicaid (γ22) -0.441 -0.737 -1.940** -1.948** -0.933
(0.447) (0.476) (0.419) (0.387) (0.700)

Private (γ32) 0.194 -0.499 -1.417** -1.323** -0.241
(0.404) (0.411) (0.327) (0.304) (0.711)

Government (γ42) -0.077 -1.016 -1.390** -1.429** -0.683
(0.449) (0.615) (0.411) (0.328) (0.740)

Self (γ52) -.609 -0.343 -1.564** -1.497** -0.783
(0.476) (0.471) (0.388) (0.392) (0.834)

Dummy, Add’l Procs(γ62) -1.080** -1.144** -0.636** -0.946** -2.032**
(0.126) (0.285) (0.153) (0.109) (0.287)

Age (γ72) 0.012** 0.011** 0.005* 0.007** 0.010
(0.003) (0.003) (0.002) (0.002) (0.007)

Interactions: (log) Time-to-Travel
Medicare (κ1) -0.068 0.224* 0.288** 0.327** 0.021

(0.114) (0.090) (0.066) (0.086) (0.214)
Medicaid (κ2) 0.170 0.225* 0.355** 0.401** 0.056

(0.112) (0.096) (0.081) (0.085) (0.196)
Private (κ3) -0.036 0.177 0.294** 0.288** 0.009

(0.117) (0.093) (0.065) (0.087) (0.211)
Government (κ4) 0.126 0.302* 0.282** 0.330** 0.072

(0.120) (0.0131) (0.072) (0.088) (0.204)
Self (κ5) 0.157 0.182 0.305** 0.335** 0.084

(0.119) (0.102) (0.092) (0.099) (0.226)
Dummy, Add’l Procs (κ6) 0.091** 0.133** 0.104** 0.066** 0.214**

(0.032) (0.050) (0.036) (0.023) (0.055)
Age (κ7) -0.002** -0.004** -0.001** -0.001** 0.002

(0.0005) (0.0007) (0.0003) (0.0004) (0.001)
N 2,913,509 2,870,619 2,852,797 2,888,488 2,756,813

Note: Standard errors clustered at facility level
Note: Facility and time fixed effects included in all specificiations.
**, Significant at 1%
*, Significant at 5%
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Table 6: Corresponding Subsets of Substitution & Distance Between Facilities Matrices: Foot Surgery

Substitution Matrix (Cross-Time Elasticities)
Facility 1 2 3 4 5 6 7 8

1 -0.2803 0.0001 0 0 0 0 0.0001 0
2 0 -0.2634 0 0 0 0.0001 0.0046 0
3 0 0 -0.2449 0 0 0 0 0
4 0 0 0 -0.1603 0.0001 0 0 0
5 0 0 0 0 -0.1502 0 0 0
6 0 0.0013 0 0 0 -0.2875 0.0012 0
7 0 0.0023 0 0 0 0.0001 -0.3266 0
8 0 0 0 0 0 0 0 -0.3115

Distance Between Facilities Matrix (Minutes)
Facility 1 2 3 4 5 6 7 8

1 0 106 125 533 610 158 81 217
2 106 0 228 578 655 57 25 304
3 125 228 0 420 497 198 203 104
4 533 578 420 0 142 525 590 330
5 610 655 497 142 0 602 667 415
6 158 57 198 525 602 0 76 251
7 81 25 203 590 667 76 0 292
8 217 304 104 330 415 251 292 0

Table 7: Summary: Substitution Matrix
Group Colon Eye Foot Ortho Urol
Correlation -0.254 -0.139 -0.246 -0.293 -0.267
(btw. distance and cross-elasticity)
Avg. Own-Elasticity
ASCs -0.025 -0.0283 -0.0271 -0.0193 -0.0223
hospitals -0.645 -0.821 -0.919 -0.679 -0.176
Avg. Cross-Elasticity (conditional on facilities 25-30 minutes apart)
Between hospitals 0.000189 0.0000199 0.000122 0.000345 0.0105
Between ASCs 0.0000123 0.0000188 0.0000184 0.0000228 0.000282
Between ASC & hospital 0.0000104 0.0000126 0.0000185 0.0000198 0.0105

Table 8: Welfare Calculation (by procedural group)

Colon Eye Foot Orthopedic Urological
Welfare (in minutes) 689,755.6 1,902,847.3 699,722.5 550,054.4 384,195.6
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