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Abstract

The paper provides a justification for the proportional representative (PR) elec-

tion system for politically diversified societies. We employ the Shapley value con-

cept to measure the political power of parties in a parliament. We prove that for the

PR system if parties’ sizes are uniformly distributed on the simplex, the expected

ratio of a party size to its political power increases to 1, and the variance converges

to 0, as the number n of parties increases. The rate of convergence is high and it is

of the magnitude of 1
n . Empirical evidence from the Netherlands elections supports

our result.

Introduction

In many democracies parliaments are elected by proportional representative system (hereafter-

PR). The PR system allocates seats in parliament to parties in proportion to their sup-
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porters. But does it represent the bargaining power of the parties? The answer in general

is negative. As an example, let A, B and C be the only three parties represented in a par-

liament with 100 seats. Suppose that A, B and C have 45, 45 and 10 seats, respectively.

A coalition of parties that have a simple majority (more than 50 seats) has the entire

power. Any coalition of at least two parties has a majority and no party has a majority

by itself. In this sense C has the same bargaining power as A or B even though C is

much smaller in size. A similar argument applies to a large number of parties 1. Suppose

there are n = 2m+ 1 parties in the parliament, m is an arbitrary integer. Assume there

are 2m parties with k > 1 seats each, and one party, A, with 1 seat only. A majority

consists of at least mk+1 seats. Any coalition with m+1 or more parties has a majority,

and any coalition of less than m + 1 parties has no majority. Clearly, the smaller party

A has the same bargaining power as any other party.

Many argue that ”voting power” of parties should be closely related to their size.

Nurmi [1981] advocates that the idea of proportional representation rests on the identity

of distribution of parties’ support and the distribution of parties’ power. Nozick [1968,

Note 4] refers to district systems and states that a system of proportional representation

reflects legislators’ power. The example above however demonstrates that the PR system

does not satisfy this property, at least not for every distribution of parties’ size. Yet,

proportionality of a priori voting power to weight sounds a proper principle for a fair

representative parliament. The purpose of this paper is to provide a justification for this

principle. It is shown that on average, when parties’ size is random, and the number of

parties is large the ratio of voting power to weight is close to 1.

The literature offers several tools to measure voting power of a party. The most

well-known tools are the Shapley value (Shapley [1953]) and the Banzhaf index (Banzhaf

[1964, 1968]). Both measures are based on the probability of party to be a pivot. Namely,

the voting power of a party is the probability that it turns a random coalition of parties

from one with no majority into a winning coalition. While for the Banzhaf index all

coalitions have the same probability to form, the Shapley value uses different probability

1The following example is from Lindner and Owen [2007].
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distribution: coalitions of the same size are equally likely to be formed and all sizes have

the same probability.

In this paper we show that irrespective of the quota required for majority, if parties’

size is uniformly distributed (reflecting no prior information about their size), the ex-

pected ratio of a party size to its voting power, measured by the Shapley value, increases

to 1, as the number of parties increases. This result fails to hold for the Banzhaf index.

Furthermore, the rate of convergence is high and the error term is of the magnitude of

1/n where n is the number of parties. The variance of this ratio converges to 0, as the

number of parties increases.

Even though the number of parties in most parliaments is relatively small our result

may still be applicable. A relatively small number of parties in parliaments is often caused

by a ”threshold of participation” (see Rae et al. [1971]). A large number of parties often

participate in the election, but in some cases only small number of them have seats in

the parliament. For instance, the 2009 German federal election resulted with 6 parties in

the parliament out of 29 competing parties. The 2006 Netherlands election resulted with

10 parties out of 23 competing parties. In addition, an electoral threshold induces some

parties not to participate in elections as a distinct party.

Our result is also relevant to voting power of shareholders in a business company with

relatively large number of shareholders. Since typically the number of shareholders is

large our result asserts that profit sharing proportional to the number of shares reflects

on average the voting power of shareholders.

The notion of voting power is well discussed in the literature. As mentioned above we

focus here on the Shapley-Shubik index (Shapley and Shubik [1954]), which relies on the

Shapley value for cooperative games (Shapley [1953]). This notion is uniquely derived by

a set of four axioms and it assigns to every party in a given game a share in the total

”cake”. An axiomatization of the Shapley value for just voting games is given in Dubey

[1975]. Young [1985] provides an alternative axiomatization of the Shapley value for the

class of all n−person games in coalitional form which can also be used to characterize the

3



Shapley value on the class of voting games 2. The Shapley value of a party is considered

to measure its ”real contribution” to the total cake, reflecting on its bargaining power

in the cake division game. In the context of voting games, the Shapley-Shubik index

measures voting power as an expected prize of a party (”the P-power”, using terminology

of Felsenthal and Machover [1998] 3). Our main result can therefore be stated as follows:

if parties’ size are random and has uniform distribution the expected value of the ratio

of the Shapley value of a party to its size increases to 1, when the number of parties

increases. The parliamentary elections in the Netherlands provide an empirical evidence

for our result. For each election in the Netherlands we calculated the average and the

variance of the ratio of the Shapley value of a party to its size. The average is above 0.9,

and the variance is impressively low.

Chang et al. [2006] confirmed our result through Monte-Carlo simulations for any

majority quota, provided that it is not close to 1, as well as for the normalized Banzhaf

index if the majority quota is 0.5 4.

These simulations confirm the Penrose [1952] conjecture stating that asymptotically

the ratio of voting power to size is the same accross parties. Penrose used informal

language to describe the notion of voting power, one that was defined formally later in

Banzhaf [1964]. The conjecture fails to hold for instance for the example above, but found

to be correct for some special cases analytically (see Lindner and Machover [2004]) .

It is worth mentioning a very simple and related result by Shapley [1961]. Namely, for

any number of players and any system of weights if the quota for a majority is random

and has a uniform distribution then the expected Shapley value of every party coincides

with its size.

2Young replaces the controversial additivity axiom by a more intuitive monotonicity axiom. For the

axiomatization of the Banzhaf index and its relationship to the Shapley value see Lehrer [1988]. Another

axiomatization of the Banzhaf index is by Dubey et al. [2005].
3Although Felsenthal and Machover [1998] expressed reservation regarding the Shapley-Shubik index,

in Felsenthal and Machover [2005] they state that ”for a priori P-power, the Shapley-Shubik index still

seems to be the most reasonable candidate for measuring it ”.
4The sum of Banzhaf indices of parties is normalized to 1.
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Finally, in many parliaments around the world at least one party is relatively large.

Nevertheless, this observation does not contradict the assumption that parties’ size are

uniformly distributed. For instance for n = 10, when parties’ sizes are uniformly dis-

tributed on the simplex, the probaility that at least one party is larger than 0.2 is 0.92,

and the probaility that at least one party is larger than 0.3 is 0.4 (see Holst [1980, The-

orem 2.1].

The Model

Let N = {1, 2, . . . , n} be the set of parties. Suppose that X1, . . . , Xn are n random

variables that measure the size of the n parties. That is∑n
i=1Xi = 1,Xi ≥ 0 and i = 1, . . . , n. Let

An = {(x1, . . . , xn)|
n∑
i=1

xn = 1, xi ≥ 0, i = 1, . . . , n}

be the n− 1 dimensional simplex in Rn. We assume that the realization (x1, . . . , xn) has

a uniform distribution on An with respect to the volume of An. Let vn be the volume of

An and let pn = 1
vn

be the (fixed) density function of X = (X1, . . . , Xn) on An.

Let 1
2
≤ q < 1 be a quota and let Vn be the voting game on N defined for every

realization x ∈ An and all S ⊆ N by

Vn(S, x) =

 1 ,
∑

i∈S xi > q

0 ,otherwise.

We say that a subset S of N is a winning coalition if
∑

i∈S xi > q and it is a minimal

winning coalition if it is a winning coalition and for all i ∈ S, S \ {i} is not a winning

coalition (
∑

j∈S\{i} xj ≤ q).

Let x ∈ An and let Θi(x) be the set of all coalitions S, S ⊆ N \ {i}, such that S is

not a winning coalition and S ∪ {i} is a winning coalition. In this case we say that i is a

pivot player to S. That is, Θi(x) is the set of all coalitions S, S ⊆ N \ {i} such that i is

pivot to S.
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To derive the Shapley value of a player consider the n! permutations of the players in

N . For every i ∈ N and every permutation < let P<i be the subset of players in N that

precede i in the order <. For example, suppose that N = {1, 2, 3, 4} and < = {2, 3, 1, 4}.

Then P<1 = {2, 3}.

The number of permutations of N where i is a pivot is

φ(x, i) =
∑

S∈Θi(x)

|S|!(n− |S| − 1)!

Given the set N and the weights x = (x1, . . . , xn) ∈ An, the Shapley value of Vn is

Shi(x) =
φ(x, i)

n!

That is, the Shapley value of a party i is the probability that i is a pivot in a random

order where all orders are equally likely. An equivalent way to derive the Shapley value

of i ∈ N is through the following probability distribution over coalitions S ⊆ N \{i}. All

coalitions of the same size are equally likely to be formed and all sizes 0, 1, . . . , n−1 have

the same probability, 1
n
. That is the probability of S ⊆ N \ {i} is 1

(n−1
|S| )n

= |S|(n−|S|−1)
n!

.

Given (N, x) the Banzhaf index, Bz, of i ∈ N is:

Bzi(x) =
|Θi(x)|
2n−1

That is, every coalition S ⊆ N \ {i} have the same probability to form irrespective of its

size.

Thus the Shapley value and the Banzhaf index of a party i are both probability of i to

be a pivot to a random coalition. The two measures differ in the probability distribution

over coalitions.

Let Exp be the expected value operator and denote

Exp(Shi(X), n) =

∫
An

pnShi(X) dX

and

Exp(
Shi(X)

Xi

, n) =

∫
An

pn
Shi(X)

Xi

dX.
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Similarly,

Exp(
Bzi(X)

Xi

, n) =

∫
An

pn
Bzi(X)

Xi

dX.

The following result is shown analytically.

Theorem For every i ∈ N , and 1
2
≤ q < 1

(1) Exp(Shi(X)
Xi

, n) is increasing in n and

lim
n→∞

Exp(
Shi(X)

Xi

, n) = 1

where pn = 1
V ol(An)

and V ol stands for volume.

(2) Exp(Shi(X)
Xi

, n) = 1 +O( 1
n
)

That is, the expected ratio between the Shapley value and the size of a party increases

to 1 as n increases indefinitely. The rate of convergence is 1
n

and it can be shown that the

error term converges to zero exponentially. Figure 1 illustrates the rate of convergence

for q = 1/2. In this case, Exp(Shi(X)
Xi

, n) ≥ 0.9 for n ≥ 10.5

5Simulations in Chang et al. [2006] give a close result for the Shapley-Shubik index for any quota

except quotas close to 1. Our analytical result holds for any quota lower than 1. The difference can be

explained by the rate of convergence. For quota close to 1 the rate of convergence is relatively small, and

the number of parties needed in this case is larger than is used in the simulations of Chang et al. [2006].
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Figure 1: Exp(Shi(X)
Xi

, n) for q = 0.5

Examples

1. Suppose that n = 2 (two parties only). Then Xi ∼ U [0, 1],i = 1, 2. Clearly

Shi(x) =

 1 , xi > q

0 , xi ≤ q

implying that

Exp(
Shi(X)

Xi

, 2) =

∫ 1

q

1

xi
dxi = − log q.

In particular for q = 1
2
Exp(Shi(X)

Xi
, 2) = log 2 < 1

2. Suppose next that n = 3. The computation of Exp(Shi(X)
Xi

, 3) is more complicated.

We show later on (see (6) below) that for q = 1
2

Exp(
Shi(X)

Xi

, 3) = 2 log 2− 2

3

and log 2 < 2 log 2− 2
3
< 1 6.

6We provide an explicit expression of Exp(Shi(X)
Xi

, n) for all q, 1
2 ≤ q < 1 and all n.
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To prove the Theorem we first state and prove the following proposition.

Let c ∈ (0, 1) and let Cn(c) be the set of all elements in An such that x1 = c.

Cn(c) = {(c, x2, . . . , xn)|
n∑
i=2

xi = 1− c, xi ≥ 0, i = 2, . . . , n}.

Proposition 1 Suppose that the elements of Cn(c) are uniformly distributed. Then for

n ≥ 3

∫
Cn(c)

p
′

nSh1(X) dX =


c(n−2)
(1−c)n , 0 < c < 1− q
1
n

+ (n−2)(1−q)
n(1−c) , 1− q ≤ c ≤ q

1 , q < c ≤ 1,

where p
′
n is the (fixed) density function of X = (X2, . . . , Xn) on Cn(c).

Note, that Proposition 1 is consistent with the well-known ”oceanic games” result

(Shapiro and Shapley [1978]), which states, that if there is a sequence of weighted majority

games with one party of constant size c, c < q < 1 − c (a major party), and the size of

any other (minor) party converges to zero, then the Shapley value of the major party

converges to c
1−c . It was shown in Dubey and Shapley [1979] that the convergence of the

Banzhaf index is different.

The proof of the Proposition relies on the following two well-known lemmas.

Lemma 1 Let Y1, . . . , Yn be i.i.d. with exponential distribution. Then (X1, . . . , Xn)

and ( Y1∑n
j=1 Yj

, . . . , Yn∑n
j=1 Yj

) has the same distribution.

For a proof see, for instance, Feller [1971].

Lemma 2 Let Y1, . . . , Yn be i.i.d. random variables, each has an exponential distribu-

tion. For 1 ≤ k ≤ n, let Σk =
∑k

i=1 Yi. Then Σk

Σn
for 1 ≤ k < n has the Beta distribution

with parameters (k, n− k).

For a proof see Jambunathan [1954, Theorem 3].

Notice that the Beta distribution function is defined by

Prob(
Σk

Σn

< z) =
n−1∑
j=k

(
n− 1

j

)
zj(1− z)n−1−j

The next lemma is a consequence of the above two lemmas.
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Lemma 3 Suppose that X = (X1, . . . , Xm) is uniformly distributed on Am, where

m ≥ 2. Then
m−1∑
k=1

Prob(
k∑
i=1

Xi ≤ z) = (m− 1)z

Proof

From Lemmas 1 and 2,
∑k

i=1 Xi has Beta distribution with parameters (k,m − k).

Hence,
m−1∑
k=1

Prob(
k∑
i=1

Xi ≤ z) =
m−1∑
k=1

m−1∑
j=k

(m− 1)!

j!(m− 1− j)!
zj(1− z)m−1−j

By rearranging terms we have:

m−1∑
k=1

Prob(
k∑
i=1

Xi ≤ z) =
m−1∑
k=1

k
(m− 1)!

k!(m− 1− k)!
zk(1− z)m−1−k =

= (m− 1)z
m−1∑
k=1

(
m− 2

k − 1

)
zk−1(1− z)m−1−k =

= (m− 1)z
m−2∑
k′=0

(
m− 2

k′

)
zk
′
(1− z)m−2−k′ =

= z(m− 1)(z + 1− z)m−2 = z(m− 1)�

Corollary 1 Suppose that X is uniformly distributed on Cm(c), m ≥ 3. Then

m−1∑
k=2

Prob(
k∑
i=2

Xi ≤ z) = (m− 2)
z

1− c

We are ready now to prove Proposition 1.

Proof of Proposition 1

For every permutation < of N party 1 is pivot if q − c <
∑

i∈P<i
xi ≤ q. Denote by

Φ< = {(c, x2, . . . , xn) ∈ Cn(c)|q − c <
∑

i∈P<i
xi ≤ q} the subset of Cn(c), in which party

1 is pivot in <.

Let <k be the set of all orders < of N such that there are exactly k parties that

precede 1 in the order <. Note that Cn(c) is a symmetric subset of Rn and so is Φ< for

every order <. Hence, if < ∈ Rk and <′ ∈ Rk

Prob(X ∈ Φ<|X ∈ Cn(c)) = Prob(X ∈ Φ<′|X ∈ Cn(c)) ≡ Π(c, k)
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Since the orders of N are uniformly distributed, Prob(< ∈ Rk) = 1
n
. Thus∫

Cn(c)

p
′

nSh1(X) dX =
1

n

n−1∑
k=0

Π(c, k) =
1

n

n−1∑
k=1

Π(c, k) (1)

Notice that

Π(c, k) = Prob(q − c <
k+1∑
i=2

Xi ≤ q) (2)

We distinguish two cases.

Case 1 0 < c < 1− q

In this case Π(c, 0) = Π(c, n− 1) = 0 and by (2)

1

n

n−2∑
k=1

Π(c, k) =
1

n

n−2∑
k=1

Prob(q−c <
k+1∑
i=2

Xi ≤ q) =
1

n
[
n−2∑
k=1

Prob(
k+1∑
i=2

Xi ≤ q)−
n−2∑
k=1

Prob(
k+1∑
i=2

Xi ≤ q−c)]

By Corollary 1

1

n

n−2∑
k=1

Π(c, k) =
n− 2

n(1− c)
[q − (q − c)] =

n− 2

n

c

1− c

This together with (1) imply∫
Cn(c)

p
′

nSh1(X) dX =
n− 2

n

c

1− c

as claimed.

Case 2 1− q ≤ c ≤ q

In this case party 1 is a veto player meaning that every winning coalition must include

1. In this case Prob(
∑k+1

i=2 Xi ≤ q) = 1 for every k = 1, . . . , n − 1, and in particular

Π(c, n− 1) = 1. Applying (2) we have

1

n

n−1∑
k=1

Π(c, k) =
1

n
+

1

n

n−2∑
k=1

Π(c, k) =
1

n
+
n− 2

n
− 1

n

n−2∑
k=1

Prob(
k+1∑
i=2

Xi ≤ q − c).

By Corollary 1

1

n

n−1∑
k=1

Π(c, k) =
1

n
+
n− 2

n
− (n− 2)(q − c)

n(1− c)
=

1

n
+

(n− 2)(1− q)
n(1− c)

(3)

By (1) and (3) ∫
Cn(c)

p
′

nSh1(X) dX =
1

n
+

(n− 2)(1− q)
n(1− c)
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Note that if c > q then 1 is dictator and is a pivot in every order <. In this case its

Shapley value is 1. �

We are now ready to prove the theorem.

Proof of the Theorem Without loss of generality we prove the theorem for i = 1.

Let fXi
(xi) be the density distribution function of Xi (derived from the fact that X =

(X1, . . . , Xn) has a uniform distribution on An.

Lemma 4 fXi
(x) = (n− 1)(1− x)n−2

Proof By Lemmas 1 and 2

Xi ∼
Yi∑n
j=1 Yj

∼ β(1, n− 1)

FXi
(x) = Prob(Xi ≤ x) =

n−1∑
j=1

(
n− 1

j

)
xj(1− x)n−1−j =

=
n−1∑
j=0

(
n− 1

j

)
xj(1− x)n−1−j − (1− x)n−1 = 1− (1− x)n−1

Consequently

fXi
(x) = (n− 1)(1− x)n−2

as claimed. �

Next define for every x1,0 ≤ x1 ≤ 1, the set Bn−1(x1) ⊆ Rn−1 by

Bn−1(x1) = {(x1, . . . , xn)|
n∑
j=2

xj = 1− x1}

Also denote by fX−1(x2, . . . , xn|X1 = x1) the conditional density function of (X2, . . . , Xn)

on Bn−1(x1). Then

Exp(
Sh1(X)

X1

, n) =

∫
x∈An

pn
Sh1(x)

x1

dx1, . . . , dxn =

=

∫ 1

0

fX1(x1)[

∫
Bn−1(x1)

fX−1(x2, . . . , xn|x1)
Sh1(x)

x1

dx2, . . . , dxn] dx1 =

By Lemma 4

=

∫ 1

0

(n− 1)(1− x1)n−2[

∫
Bn−1(x1)

fX−1(x2, . . . , xn|x1)
Sh1(x)

x1

dx2, . . . , dxn] dx1 (4)
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Note that Sh1(x) = 1 whenever x1 > q (1 is a dictator in this case). Also, by Proposition

1 if x1 ≤ q then∫
Bn−1(x1)

fX−1(x2, . . . , xn|x1)Sh1(x) dx2, . . . , dxn =

∫
Cn(x1)

p
′

nSh1(x) dx = (5)

=


n−2
n

x1
1−x1 , x1 ≤ 1− q

1
n

+ (n−2)
n(1−x1)

(1− q) , 1− q < x1 ≤ q

By (4) and (5)

Exp(
Sh1(X)

X1

, n) =

∫ 1−q

0

(n− 1)(n− 2)

n
(1− x1)n−3 dx1+

+

∫ q

1−q
[
(n− 1)

n

(1− x1)n−2

x1

+

+
(n− 1)(n− 2)

n

(1− x1)n−3(1− q)
x1

] dx1+

+

∫ 1

q

(n− 1)(1− x1)n−2

x1

dx1 (6)

But∫ 1−q

0

(n− 1)(n− 2)

n
(1− x1)n−3 dx1 = −n− 1

n
(1− x1)n−2

∣∣∣∣1−q
0

=
n− 1

n
− n− 1

n
qn−2 (7)

and

0 ≤
∫ q

1−q
[
(n− 1)

n

(1− x1)n−2

x1

+
(n− 1)(n− 2)

n

(1− x1)n−3(1− q)
x1

] dx1 ≤

≤ n− 1

n(1− q)

∫ q

1−q
[(1− x1)n−2 + (n− 2)(1− x1)n−3(1− q)] dx1 =

=
n− 1

n(1− q)
[−(1− x1)n−1

n− 1
− (1− q)(1− x1)n−2]

∣∣∣∣q
1−q

=

=
qn−1

n(1− q)
+

(n− 1)qn−2

n
− (1− q)n−2

n
− (1− q)n−2(n− 1)

n
(8)

and

0 ≤
∫ 1

q

(n− 1)(1− x1)n−2

x1

dx1 ≤
n− 1

q

∫ 1

q

(1− x1)n−2 dx1 =

= − 1

q
(1− x1)n−1

∣∣∣∣1
q

=
(1− q)n−1

q
(9)

Consequently by (6),(7),(8) and (9)

n− 1

n
(1− qn−2) ≤ Exp(

Sh1(X)

X1

, n) ≤ n− 1

n
+

qn−1

n(1− q)
− (1− q)n−2 +

(1− q)n−1

q

13



Equivalently

− 1

n
− n− 1

n
qn−2 ≤ Exp(

Sh1(X)

X1

, n)− 1 ≤ 1

n
+

qn−1

n(1− q)
− (1− q)n−2 +

(1− q)n−1

q
.

Since 0 < q < 1 for every l > 0

Exp(
Sh1(X)

X1

, n)− 1 = O(
1

n
).

Using (6) it is straightforward to show that Exp(Sh1(X)
X1

, n) increases in n, and the proof

of the theorem is complete.�

Remarks

1. The assumption that An has uniform distribution is essential. As a trivial counter

example, suppose that the distribution on An is such that Prob(q < X1 ≤ 1 − ε) = 1,

0 < ε < 1 − q. In this case Sh1(X) = 1 and X1 < 1 with probability 1. In addition,

by Proposition 1, for q = 0.5 if the size of Party 1 is c with probability 1, and the size

of the other parties are distributed uniformly, then for n sufficiently large Exp(Sh1(X)
X1

, n)

converges to 1
1−c > 1.

2. The variance of the random ratio Shi(X)
Xi

can be calculated numerically using Monte-

Carlo simulation and the approximation method of Owen [1975]. The simulation shows,

that for q = 0.5 the variance of Shi(X)
Xi

is small and converges to 0 when n increases ( see

Figure 2).
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Figure 2: V ar(Shi(X)
Xi

, n), q = 0.5

The next proposition follows from Neyman [1982] and states that if X is uniformly

distributed on An, then the ratio Shi(X)
Xi

converges to 1 in probability, as n increases.

Proposition 2 Let q ≥ 0.5. Suppose X is distributed on An with the uniform distribu-

tion. Then for any ε > 0, there exists n′ s.t. whenever n > n′ Prob(|Sh1(X)
X1
− 1| > ε) < ε.

Note that Proposition 2 does not imply that Exp(Sh1(X)
X1

) converges to 1, as

n→∞, since the random variable Sh1(X)
X1

has no upper bound and for some realizations

converges to infinity.

Proof 7

First, we prove the following lemma.

Lemma 5 limn→∞Exp(
∑n

i=1 |Shi(X) − Xi|) = 0, when X is uniformly distributed on

An.

7This proof was contributed by Abraham Neyman.
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Proof Since
∑n

i=1 Shi(x) =
∑n

i=1 xi = 1,

n∑
i=1

|Shi(x)− xi| ≤ 2 (10)

for any realization X = x ∈ An.

Applying Neyman [1982, Main Theorem] we have that for every ε > 0, there exists δ(ε)

s.t. for every n and for every x ∈ An

max
1≤i≤n

xi ≤ δ(ε)⇒
n∑
i=1

|Shi(x)− xi| <
ε

3
. (11)

Next we compute for every η, 0 < η < 1, the probability that Xi ≤ η. To that end denote

Bi
n(η) = {x ∈ An|η ≤ xi ≤ 1}

An(1− η) = {x ∈ Rn
+|

n∑
i=1

xi = 1− η}

It could be verified that

V ol(Bi
n(η)) = V ol(An(1− η)) = (1− η)n−1V ol(An)

and

Prob(Xi > η) =
V ol(Bi

n(η))

V ol(An)
= (1− η)n−1. (12)

Hence for every i, 1 ≤ i ≤ n,

Prob(Xi > δ(ε)) = (1− δ(ε))n−1.

Since δ(ε) does not depend on n and 0 < δ(ε) < 1, for n sufficiently large

Prob(Xi > δ(ε)) <
ε

3n
.

This implies that

Prob(∃i ∈ N s.t. Xi > δ(ε)) ≤ ε

3
. (13)

Since X has uniform distribution over An

Exp(
n∑
i=1

|Shi(X)−Xi|) =

∫
max1≤i≤n xi≤δ(ε)

n∑
i=1

|Shi(x)− xi| dx · Prob( max
1≤i≤n

Xi ≤ δ(ε))+

+

∫
∃i∈N s.t. xi>δ(ε)

n∑
i=1

|Shi(x)− xi| dx · Prob(∃i ∈ N s.t. Xi > δ(ε)).
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By (10), (11) and (13), for sufficiently large n

Exp(
n∑
i=1

|Shi(X)−Xi|) ≤
ε

3
+

2

3
ε = ε,

as claimed. �

We proceed to prove the Proposition 2. Let ε1 > 0. By Lemma 5, for n sufficiently

large
n∑
i=1

Exp|Shi(X)−Xi| < ε1

Since the distribution of X on An is symmetric

nExp|Sh1(X)−X1| ≤ ε1. (14)

Clearly,

Prob(|Sh1(X)

X1

− 1| > ε) = Prob(|Sh1(X)−X1| > εX1).

For any 1 > c > 0,

Prob(|Sh1(X)−X1| > εX1) = Prob(|Sh1(X)−X1| > εX1 and X1 > c)+ (15)

+ Prob(|Sh1(X)−X1| > εX1 and X1 ≤ c) ≤

≤ Prob(|Sh1(X)−X1| > εc and X1 > c) + Prob(X1 ≤ c)

By the Markov inequality and (14),

Prob(|Sh1(X)−X1| > εc and X1 > c) ≤ Exp(|Sh1(X)−X|)
εc

≤ ε1
cnε

. (16)

By (12)

Prob(X1 ≤ c) = 1− (1− c)n−1. (17)

From (15), (16) and (17) we have

Prob(|Sh1(X)−X1| > εX1) ≤ ε1
cnε

+ 1− (1− c)n−1. (18)

Let c = δ′

n
. From (18),

Prob(|Sh1(X)−X1| > εX1) ≤ ε1
εδ′

+ 1− (1− δ′

n
)n−1
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Since (1− δ′

n
)n−1 → e−δ

′
, as n→∞, there exists n(δ′) s.t. if n > n(δ′), then

(1− δ′

n
)n−1 > e−δ

′ − ε
3
. Hence,

Prob(|Sh1(X)−X1| > εX1) ≤ ε1
εδ′

+ 1− e−δ′ + ε

3
.

Let δ′ be sufficiently small s.t. 1− e−δ′ < ε
3
. Let n > n(δ′). Then

Prob(|Sh1(X)−X1| > εX1) ≤ ε1
εδ′

+
2ε

3
.

Let ε1 be sufficiently small, such that ε1
εδ′
< ε

3
. Then for n sufficiently large

Prob(|Sh1(X)−X1| > εX1) < ε �

Empirical evidence

We analyzed all 26 elections of the Second Chamber (”Tweede Kamer”) of the Nether-

lands’ parliament since 1918 (the first time the PR system was introduced in the Nether-

lands). The data was taken from Mackie and Rose [1991], Van Der Eijk [1989],Lucardie

and Voerman [1995],Irwin [1999],Lucardie [2003],Lucardie and Voerman [2004],Lucardie

[2007] and Lucardie and Voerman [2011]. In these elections we only consider parties that

entered the parliament 8. For each party we calculated the ratio of its Shapley value to

its size (the size is defined as the fraction of popular vote it received) 9.

Since parties in parliamnets change over time we could not use the average over elections

of this ratio for every party. Instead we took for every election the average of this ratio

over the parties for every election. For parliaments of 10 or more parties the average ratio

is close to 1 and the variance is close to 0.

Figure 3 summarizes our findings.

8We also ignored parties classified as ”others” in the data sources we used. In most cases those parties

did not obtain sufficient votes to pass the electoral threshold.
9For parliaments of at least 10 parties we use for the Shapley value the approximation method of

Owen [1975]
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Figure 3: The data analysis for the elections in the Netherlands, 1918-2010

Remark 3 Similar calculations could be made for the Banzhaf index. It can be

shown, that in most cases the expected value of the ratio of the party’s Banzhaf index to

its size is close to be a constant significantly larger than 1, and the variance is relatively

high.
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