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Abstract

It is possible to partially order cities according to the informativeness of neigh-

borhoods about their ethnic groups. It is also possible to partially order cities

with two ethnic groups according to the Lorenz criterion. We show that a segre-

gation order satisfies four well-established segregation principles if and only if it is

consistent with the informativeness criterion. We then use this result to show that

for the two-group case, the Lorenz and the informativeness criteria are equivalent.
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1 Introduction

Sociologists and economists have long been interested in how to adequately measure

segregation. While early studies restricted attention to segregation between two groups,

i.e., blacks and whites, or men and women, later ones developed measures for multigroup

cases.1 One of the difficulties of measuring segregation is that it is not clear what

segregation actually means. Massey and Denton [13] identified five dimensions, namely

evenness, exposure, concentration, centralization and clustering, each of which captures

some particular aspect of the concept. The one which is of interest to us is that of

evenness. Evenness refers to the similarity among distributions of members of different

groups across locations. The more similar these distributions are, the less is the degree

of segregation. Although the number of segregation indices is very large, it is safe to

say that most of the literature, both theoretical and empirical, focuses on the evenness

dimension.2

For the two-group case, the literature on segregation borrowed the device of the

Lorenz curve and built what is known as segregation curves. Recall that for each fraction

p, the Lorenz curve depicts the proportion of total income that is owned by the poorest

proportion p of the population. A segregation curve is essentially a Lorenz curve where

one group, say blacks, is treated as population, and the other group, say whites, is

treated as income. Segregation curves appear in the literature as early as in Duncan

and Duncan [5].

Segregation curves are used to partially order cities, and we refer to the resulting

ranking as the Lorenz partial order. Specifically, given two cities, their corresponding

segregation curves may or may not cross. If they do not cross then the city whose

1See Reardon and Firebaugh [14] for an enumeration and analysis of various multigroup segregation

measures. For the two-group case, Massey and Denton [13] provide a comprehensive survey.

2For papers that model segregation differently, see Echenique and Fryer [6] and Ballester and

Vorsatz[2].
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segregation curve lies below that of the other one is deemed, according to the Lorenz

criterion, the more segregated one. It was not until the mid eighties that the Lorenz

partial order began to be justified on first principles as a valid criterion for segrega-

tion measurement. The first contribution in that direction was James and Taeuber [10]

who developed a set of principles against which segregation indices could be compared.

These principles, which they called organizational equivalence, transfers, and compo-

sition invariance became widely accepted and well-established axioms for segregation

measures. Indeed, together with anonymity, they are considered to be properties that

any measure that aims at capturing the evenness dimension of segregation must satisfy.

Later, Hutchens [9] showed that, restricted to cities where the members of one group

is evenly distributed across locations, any segregation measure that complies with the

above principles conforms with the Lorenz criterion.

This paper addresses the question of whether an appropriate extension of the Lorenz

criterion can be found for the multigroup case. By appropriate extension we mean one

that epitomizes unanimous agreement among all the segregation measures that satisfy

an appropriate generalization of the above four principles. We will show that we can

answer this question in the affirmative. To do so, we draw on the literature on the value of

information and order the cities according to the informativeness of their neighborhoods

about the ethnicity of a randomly selected resident. Specifically, given a city, the location

of a randomly selected individual is a signal that provides information about the ethnic

group he belongs to. In that sense, the collection of distributions of the various ethnic

groups across locations can be seen as an experiment in the sense of Blackwell [3, 4],

one in which locations play the role of signals and ethnic groups play the role of states

of nature. We can then borrow Blackwell’s partial order on experiments and apply it to

partially order cities. More concretely, a city whose locations are more informative than

another city’s locations will be considered more segregated than the latter.

It turns out that this partial order is the one we are looking for. That is, it satis-

fies the appropriate extension of the principles of anonymity, organizational equivalence,
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transfers and composition invariance to the multigroup case, and furthermore, any seg-

regation measure or even partial order that satisfies these principles must agree with it.

As a corollary we obtain that, when restricted to cities with only two groups, the partial

order derived from the segregation curves coincides with the partial order derived from

the informativeness of the city’s neighborhoods. In that sense, not only is the latter

partial order applicable to the multigroup case, but it is also a generalization of the

standard order based on segregation curves.

The fact that any partial order that satisfies the above mentioned axioms must be

consistent with the partial order derived from the segregation curves was stated without

proof by James and Taeuber [10]. As mentioned earlier, a proof of this result for the

case where all locations contain the same number of members of one group (e.g., all

occupations contain the same number of women), was proved by Hutchens [9]. Frankel

and Volij [7] noted that any order that satisfies three of the four axioms and weak

form of the fourth one must be consistent with the partial order associated with the

informativeness of the cities’ experiments restricted to the class of cities with the same

ethnic distribution.3 We prove this result for the case of all cities, independently of their

ethnic distribution.

The paper is organized as follows. After introducing the basic notation in Section 2,

Section 3 presents four minimal properties that measures of the evenness dimension of

segregation should satisfy. Section 4 defines Blackwell’s partial order and shows that

any segregation order that satisfies the above four properties must be consistent with

it. Section 5 shows that, restricted to the two-group case, the Blackwell and the Lorenz

orders coincide. Section 6 concludes.

3See also Grant, Kajii and Polak [8], and Andreoli and Zoli [1] for related results.
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2 Notation

The basic model of segregation measurement consists of a list of locations containing

different numbers of members of various groups. Papers that focus on residential racial

segregation refer to the locations as neighborhoods, and to the groups as ethnic groups.

Papers dealing with occupational gender segregation usually use occupations as locations

and classify the groups by gender. For our purposes we will use the language of racial

residential segregation, and refer to the list of neighborhoods as cities.

Let G be a finite set of ethnic groups. This set will remain fixed for the whole analysis

and in Section 5 it will be further restricted to contain only two groups. A neighborhood

n is characterized by its racial composition. For each ethnic group g, T g
n denotes the

number of residents of n that belong to g. The racial composition of n is then the vector

(T g
n)g∈G. A city is a finite collection of nonempty neighborhoods such that for each ethnic

group g, at least one neighborhood has a positive number of residents of that group.

Formally, a city is a system 〈N, ((T g
n)g∈G)n∈N〉 such that N is the set of neighborhoods,

for each ethnic group g ∈ G,
∑

n∈N T
g
n > 0, and for each n ∈ N ,

∑
g∈G T

g
n > 0.

Given a city X = 〈N, ((T g
n)g∈G)n∈N〉, we denote by T g(X) the total number of

residents of group g: T g(X) =
∑

n∈N T
g
n . When it is clear to which city we are

referring, we will simply write T g. We will denote by tgn the proportion of individuals

of ethnic group g that reside in neighborhood n. Formally, tgn = T g
n/T

g. Similarly,

pgn = T g
n/

∑
g∈G T

g
n is the proportion of residents of n that belong to ethnic group g. The

ethnic distribution of a neighborhood n is given by (pgn)g∈G = (T g
n)g∈G/

∑
g∈G T

g
n , and the

ethnic distribution of a city X is given by (T g)g∈G/
∑

g∈G T
g.

For any positive integer k, Ik denotes the k × k identity matrix. We will sometimes

apply certain operations on matrices by postmultiplying them by special Markov ma-

trices.4 A splitting matrix is one that is obtained from an identity matrix by splitting

4Recall that a Markov matrix is a non-negative matrix with each row summing to one. Recall also

that a permutation matrix is one that is obtained by permuting the columns of an identity matrix.
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some of its columns into several columns. Permuting the columns of a splitting matrix

also results in a splitting matrix. A merging matrix is one that is obtained from a per-

mutation matrix by replacing some of its columns by their sum. Note that a product

of merging matrices is also a merging matrix. Also note that when a matrix is post-

multiplied by a splitting matrix, some of its columns are split into several proportional

columns, and that when a matrix is postmultiplied by a merging matrix, some of its

columns are replaced by their sum.

3 Properties of segregation orders

Let C be the set of all cities. A segregation order is a partial order on C. For any X and

Y ∈ C, X < Y means that X is as least as segregated as Y according to <.5 Clearly, not

all partial orders on C are reasonable segregation orders. In this section we introduce

several properties that are generally agreed to be required from good segregation orders.

The first one, anonymity, requires that segregation does not depend on the labeling of

the ethnic groups. In order to formalize this property, we need a preliminary definition.

We say that two cities, X = 〈NX , ((T
g
n)g∈G)n∈NX

〉 and Y =
〈
NY , ((T

′g
n′ )g∈G)n′∈NY

〉
,

are equivalent if there is a one-to-one mapping ϕ : NX → NY such that for all n ∈ NX ,

(T g
n)g∈G = (T ′g

ϕ(n))g∈G.

Equivalent cities differ only in the names of their neighborhoods. The anonymity

axiom requires that equivalent cities are equally segregated:

Anonymity (ANON) A segregation order < satisfies anonymity if for any two equiv-

alent cities X and Y we have X ∼ Y .

The next property is what James and Taeuber [10] call the principle of organiza-

tional equivalence. It holds that the segregation of a city is unaffected if one of its

5Given <, the associated relations � and ∼ are defined as usual: X � Y ⇔ X < Y and not Y < X,

and X ∼ Y ⇔ X < Y and Y < X.
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neighborhoods is divided into two neighborhoods with the same ethnic distribution,

or equivalently if two such neighborhoods are combined into one. Table 1 illustrates

such a division. Organizational equivalence requires that before and after the change

segregation be the same.

X Y

A B A1 A2 B

Blacks 30 50 20 10 50

Whites 120 50 80 40 50

Table 1: Splitting a neighborhood and keeping its ethnic distribution.

Organizational Equivalence (OE) Let X ∈ C be a city and let (T g
n)g∈G be one of

its neighborhoods. Let Y be the city that results from dividing (T g
n)g∈G into two

neighborhoods, (T g
n1
)g∈G and (T g

n2
)g∈G, with the same ethnic distribution. Namely,

(T g
n1
)g∈G = (αT g

n)g∈G and (T g
n2
)g∈G = ((1 − α)T g

n)g∈G for some α ∈ (0, 1). A

segregation order < satisfies organizational equivalence if for any such cities we

have Y ∼ X.

Organizational equivalence is a very weak requirement and it is in fact satisfied by

all segregation indices that we are aware of.

Another well-established requirement is what James and Taeuber [10] call the prin-

ciple of transfers. It is the analog of the Pigou-Dalton transfers principle of income

inequality. It applies only to cities with two ethnic groups and it states that segrega-

tion increases whenever members of one group move from a neighborhood in which this

group constitutes a relatively lower proportion of its residents to another neighborhood

where it constitutes a relatively higher proportion. There is no controversy regarding

the desirability of the transfer principle. However, it has no obvious generalization to

the multigroup case. Frankel and Volij [7] proposed the following one, which they call
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the neighborhood division property. It requires that the segregation of a city increase if

one of its neighborhoods is divided into two neighborhoods with different ethnic distri-

butions. Table 2 illustrates such a division.

X Y

A B A1 A2 B

Blacks 30 50 20 10 50

Whites 120 50 60 60 50

Table 2: Splitting a neighborhood and changing its ethnic distribution.

Neighborhood Division Property (NDP) Let X ∈ C be a city and let (T g
n)g∈G

be a neighborhood of X. Let Y be the city that results from dividing (T g
n)g∈G

into two neighborhoods, (T g
n
1
)g∈G and (T g

n
2
)g∈G, with different ethnic distributions.

Namely, (T g
n
1
)g∈G 6= (αT g

n)g∈G for any α ∈ [0, 1]. A segregation order < satisfies

the neighborhood division property if for any such cities we have Y � X.

It turns out that when restricted to the two group case, any segregation order that

satisfies organizational equivalence satisfies the transfer principle if and only if it satisfies

the neighborhood division property. (See Lasso de la Vega and Volij [12, Claim 1]).

In other words, for the two-group case and under the assumption of organizational

equivalence, the transfer principle and the neighborhood division property are equivalent.

Furthermore, all multigroup extensions of indices that comply with the principle of

transfers that we are aware of also comply with the neighborhood division property.

The last principle proposed by James and Taeuber [10] is known as composition

invariance. It holds that segregation is unaffected by proportional changes in the number

of residents of a given group. This property is not as uncontroversial as the previous ones,

but is widely accepted as a reasonable requirement for indices that aim at capturing the
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evenness dimension of segregation.6 In fact, it was mentioned as a necessary requirement

from a satisfactory measure of segregation as early as in 1947 (see Jahn, Schmidt, and

Schrag [11, p. 294]).

Composition Invariance (CI) Let X = 〈N, ((T g
n)g∈G)n∈N〉 be a city and let Y =

〈N, ((αgT
g
n)g∈G)n∈N〉 be the city that is obtained fromX by multiplying the number

of agents of a group g, for g ∈ G, by the same nonzero factor αg > 0 in all

neighborhoods. A segregation order < satisfies composition invariance if for any

such cities we have Y ∼ X.

Table 3 depicts two cities. One is obtained from the other by multiplying the number

of members of one ethnic group by three. Composition invariance states that the two

cities are equally segregated.

X Y

A B A B

Blacks 30 50 90 150

Whites 80 50 80 50

Table 3: Multiplying the number of blacks by three.

Composition invariance requires that only the relative distributions of members of

the various ethnic groups across neighborhoods affect segregation. In particular, the

city’s ethnic distribution does not affect segregation.

6Massey and Denton (1988) define evenness as the “differential distribution of two social groups

among areal units in a city” and James and Taeuber (1985) see segregation as the “differential distribu-

tion of students to schools by race regardless of the overall racial proportions in the system concerned.
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4 The Blackwell partial order

In this section we investigate the implications of the four basic properties introduced in

Section 3. In particular, we want to identify whether any two cities are unanimously

ranked by all segregation orders that satisfy the four axioms. In other words, we are

interested in the following partial order.

Definition 1 Let X, Y ∈ C be two cities. We say that X segregation-dominates Y if

X < Y for every segregation order < that satisfies anonymity, organizational equiva-

lence, the neighborhood division property and composition invariance.

Segregation-dominance is the coarsest partial order on C that satisfies the above four

axioms. If two cities are not related by segregation-dominance then it is possible to find

two segregation orders that rank them differently.

We will identify now the segregation-dominance relation more explicitly. It turns out

that this relation is one that is derived from the informativeness of the cities’ neighbor-

hoods about the ethnicity of a randomly chosen resident. Specifically, we will show that

city X segregation-dominates city Y if, and only if, the neighborhoods of the former

are more informative about the ethnicity of its residents than the neighborhoods of the

latter, where informativeness is measured according to Blackwell’s [4] criterion.

Before we introduce the “more informative than” relation we need some definitions

taken from the theory of the value of information.

Given a set of states of nature Ω = {1, . . . , I}, an experiment provides information

about the realized state. Specifically, when the realized state is i, the experiment issues

a signal with a distribution that depends on i. An experiment on Ω can be described

by a Markov matrix (mij), whose I rows represent the possible states of nature, and

whose columns represent the possible signals, the entry mij being the probability that

the signal j is sent when the realized state is i. Conversely, every Markov matrix with

I rows can be interpreted as an experiment on Ω.
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Blackwell [4] partially ordered experiments according to their informativeness and

showed that the resulting order has a convenient description. LetX = 〈N, ((T g
n)g∈G)n∈N〉

be a city. Also let φ : {1, 2, . . . , |N |} → N be an ordering of the neighborhoods. The

experiment matrix of X with respect to φ is the |G| × |N | matrix

M(X,φ) = (mij)

where mij = tiφ(j) is the proportion of individuals of group i that reside in neighborhood

φ(j). Note that M(X,φ) is a Markov matrix. It represents an experiment in the sense

of Blackwell. Its generic entry mij is the probability that a randomly chosen individual

belongs to ethnic group i given that he resides in neighborhood φ(j). As an illustration,

the experiment matrix of city X described in Table 3 above (and also that of city Y ),

with respect to the alphabetic ordering of the neighborhoods, is given by


 3/8 5/8

8/13 5/13


 .

Let M be the set of Markov matrices with |G| rows. These matrices can be partially

ordered according to their informativeness (Blackwell [4]). Specifically, given two ma-

trices A|G|×|NA|, B|G|×|NB | ∈ M, we say that A is at least as informative as B if there is

an |NA| × |NB| Markov matrix Π such that B = A · Π.

Note that if A is at least as informative as B, it will remain so even after we permute

each of the matrices’ columns in any arbitrary way. Indeed, let PB be a |NB| × |NB|

permutation matrix and let PA be a |NA| × |NA| permutation matrix. If B = A ·Π then

B · PB = A · PA · P T
A · Π · PB

Since P T
A ·Π · PB is a Markov matrix, we conclude that if A is at least as informative as

B then A · PA is at least as informative as B · PB.

We will make use of Blackwell’s informativeness order on experiments to define a

segregation order on cities. The idea is to consider a city as an experiment where
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neighborhoods play the role of signals and ethnic groups the role of states of nature,

and say that city X is more segregated than city Y if the neighborhoods of X are more

informative about the ethnic group of its residents than the neighborhoods of Y .

Definition 2 Let X = 〈NX , ((T
g
n)g∈G)n∈NX

〉 and Y =
〈
NY , ((T

′g
n′ )g∈G)n′∈NY

〉
be two

cities. We say that X is at least as segregated as Y according to Blackwell’s criterion,

denoted X <I Y , if M(X,φ) is at least as informative as M(Y, ψ) for some orderings

φ : {1, 2, . . . , |NX |} → NX and ψ : {1, 2, . . . , |NY |} → NY of the neighborhoods of X

and Y , respectively.

Note that segregation according to Blackwell’s criterion is well-defined since the

informativeness relation on M is invariant to permutations of columns. Since for most

of the analysis the particular ordering of neighborhoods φ that is chosen is not important

as long as it remains fixed, in what follows we will keep φ tacit and write, with some

abuse of notation, M(X) instead of M(X,φ). Also note that in order to determine

whether or not two cities are ranked according to the Blackwell criterion, one only needs

to solve a system of linear equations.

As the next result states, the Blackwell segregation order just defined satisfies the

axioms introduced in the previous section.

Proposition 1 The Blackwell segregation order <I satisfies anonymity, organizational

equivalence, the neighborhood division property, and composition invariance.

Proof. Blackwell’s order satisfies anonymity since equivalent cities have the same

experiment matrices, up to permutation of columns.

In order to show that it satisfies organizational equivalence, letX = 〈N, ((T g
n)g∈G)n∈N〉

be a city and consider the city Y that is obtained from X by splitting a particular neigh-

borhood (T g
n)g∈G into two neighborhoods, n1 and n2, with the same ethnic distribution,
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namely, (T g
n1
)g∈G = (αT g

n)g∈G and (T g
n2
)g∈G = ((1− α)T g

n)g∈G for some α ∈ (0, 1). Then,

their experiment matrices satisfy

M(Y ) =M(X) · I(n, α) (1)

where I(n, α) is the splitting matrix that is obtained from the identity matrix I|N | by

splitting the column that corresponds to neighborhood n into two columns according to

the proportions α and (1− α). Furthermore,

M(X) =M(Y ) · I(n1, n2) (2)

where I(n1, n2) is the merging matrix that is obtained from the identity matrix I|N |+1

by merging the two columns that correspond to n1 and n2 into one. Equations (1) and

(2) imply that M(X) and M(Y ) are equally informative, and therefore Y ∼I X, which

is what we wanted to show.

To show that Blackwell’s order satisfies the neighborhood division property, let X =

〈N, ((T g
n)g∈G)n∈N〉 be a city and consider the city Y that is obtained from X by splitting

a particular neighborhood (T g
n)g∈G into two neighborhoods, n1 and n2, but now with

different ethnic distributions. Then

M(X) =M(Y ) · I(n1, n2)

where, as before, I(n1, n2) is the merging matrix that is obtained from the identity matrix

I|N |+1 by merging the two columns that correspond to n1 and n2 into one. Therefore,

Y <I X.

On the other hand, as the following lemma states, there is no |N |×(|N |+ 1) Markov

matrix Π such that M(Y ) =M(X) · Π. Hence, Y �I X.

Lemma 1 Let A be an n×m Markov matrix and let B be an n×(m+1) Markov matrix

that is obtained from A by splitting one of A’s columns into two, but not proportionally.

Then, there is no Markov matrix Π such that B = A · Π.
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Proof. See appendix.

Finally, to see that Blackwell’s order satisfies composition invariance, consider the

city X = 〈N, ((T g
n)g∈G)n∈N〉 and the city Y = 〈N, ((αgT

g
n)g∈G)n∈N〉 that is obtained

from X by multiplying the number of group g individuals by αg > 0, for g ∈ G. Since

both cities have the same proportions tgn , we have that M(X) = M(Y ), and therefore

Y ∼I X.

Our next result states that all segregation orders that satisfy anonymity, organiza-

tional equivalence, the neighborhood division property and composition invariance are

consistent with Blackwell’s order. Namely, whenever Blackwell’s order ranks two cities,

any segregation order that satisfies the above four axioms must rank them in the same

way. And conversely, any segregation order that is consistent with Blackwell’s order

must satisfy the four axioms.

Theorem 1 Let < be a segregation order on C. It satisfies anonymity, organizational

equivalence, the neighborhood division property and composition invariance if and only

if for all two cities X, Y ∈ C,

Y �I X ⇒ Y � X (3)

Y ∼I X ⇒ Y ∼ X (4)

Proof. Let < be a segregation order that satisfies (3) and (4). We will show that it

satisfies the four axioms.

ANON: Let X and Y be two equivalent cities. Then, by Proposition 1, X ∼I Y . By

(4), X ∼ Y .

CI: Let X = 〈N, ((T g
n)g∈G)n∈N〉 be a city and let Y = 〈N, ((αgT

g
n)g∈G)n∈N〉 be the city

that is obtained by multiplying the number of agents of a group g by the same nonzero

factor αg > 0, for g ∈ G in all neighborhoods. Then, by Proposition 1, Y ∼I X. By (4),

Y ∼ X.
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OE: Let X ∈ C be a city and let (T g
n)g∈G be a neighborhood of X. Let Y be the city

that results from dividing (T g
n)g∈G into two neighborhoods, (T g

n1
)g∈G and (T g

n2
)g∈G, with

the same ethnic distribution. Then, by Proposition 1, Y ∼I X. By (4), Y ∼ X.

NDP: Let X ∈ C be a city and let (T g
n)g∈G be a neighborhood of X. Let Y be the city

that results from dividing (T g
n)g∈G into two neighborhoods, (T g

n1
)g∈G and (T g

n2
)g∈G, with

different ethnic distributions. Then, by Proposition 1, Y �I X. By (3), Y � X.

We now show that any partial order that satisfies the four axioms must be consistent

with Blackwell’s criterion. Let < be a segregation order that satisfies ANON, CI, OE

and NDP. Also, let X = 〈NX , ((T
g
n)g∈G)n∈NY

〉 and Y =
〈
NY , ((T

′g
n′ )g∈G)n′∈NY

〉
be two

cities such that Y <I X. We need to show that (3) and (4) hold. Since Y <I X, there

is a Markov matrix Π =
(
(πij)

|NY |
i=1

)|NX |

j=1
such that

M(X) =M(Y ) · Π.

But Π can be written as a product of two matrices

Π = β · γ

where

β =




π11 · · · π1|NX | 0 · · · 0 · · · 0 · · · 0

0 · · · 0 π21 · · · π2|NX | · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · 0 · · · π|NY |1 · · · π|NY ||NX |




and

γ =




I|NX |

I|NX |

...

I|NX |




Therefore,

M(X) =M(Y ) · β · γ (5)
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Note thatM(Y ) ·β is the matrix that is obtained fromM(Y ) by splitting its ith column,

i = 1, . . . |NY |, into |NX | columns, in the proportions πij, j = 1, . . . |NX |. Also note that

M(Y ) · β · γ is obtained from M(Y ) · β by merging together the columns i + k|NX | for

k = 0, . . . , |NY | − 1, for i = 1, . . . , |NX |. Therefore, (5) says that M(X) is obtained

from M(Y ) by successively splitting its columns proportionally and then merging some

columns, which may or may not be proportional to each other. Alternatively, matrix

M(Y ) is obtained from M(X) by splitting its columns, not necessarily in a proportional

way, and then merging some proportional columns. Consequently, by OE and NDP,

Y < X.

An analogous argument shows that if X <I Y we must also have X < Y . Consequently,

if Y ∼I X then Y ∼ X, which is implication (4).

In order to show implication (3) assume that Y �I X. We already know that matrix

M(Y ) is obtained from M(X) by splitting its columns, not necessarily in a proportional

way, and then merging some proportional columns. We now argue that Y �I X implies

that at least one of the columns is split not proportionally. Indeed, if all the columns of

M(X) were split proportionally, we would have

M(Y ) =M(X) · β′ · γ′

for some splitting matrix β′ and merging matrix γ′. Since, as a product of Markov ma-

trices, β′ · γ′ is a Markov matrix, this would imply that X <I Y , contradicting Y �I X.

Therefore, Y is obtained from X by splitting some neighborhoods into smaller neighbor-

hoods with different ethnic distributions, and then merging some neighborhoods with

the same ethnic distributions. By NDP and OE, Y � X, which shows the implication

in (3).

As a corollary we obtain that Blackwell’s order is the appropriate criterion to de-

cide whether one city is unambiguously more segregated that another as long as one

subscribes to the principles of anonymity, organizational equivalence, the neighborhood

division property and composition invariance.
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Corollary 1 The segregation-dominance relation and the Blackwell order are one and

the same.

Proof. Assume thatX segregation dominates Y . Then, X < Y for every segregation

order < that satisfies ANON, OE, NDP and CI. In particular, since <I satisfies these

axioms, X <I Y . Assume now that X <I Y and let < be any segregation order that

satisfies ANON, OE, NDP and CI. By Theorem 1, X < Y as well. Consequently, X

segregation dominates Y .

5 Two groups: The Lorenz partial order

There is another partial order defined on the class of cities with only two groups. It is

known as the Lorenz partial order and is based on what is known as segregation curves.

See, for instance, Duncan and Duncan [5], James and Taeuber [10, 17] and Hutchens [9].

Let G be a set of two ethnic groups and denote by C2 the set of cities with these two

groups. For ease of exposition, we refer to the two ethnic groups as blacks and whites.

Let X = 〈N, (Bn,Wn)n∈N〉 ∈ C2 be a city where for each neighborhood n ∈ N , Bn and

Wn are the numbers of blacks and whites, respectively, that reside in n. For each n ∈ N ,

denote by pn the proportion of whites in neighborhood n. That is, pn = Wn/(Bn+Wn).

Also, bn and wn denote the proportion of the city’s blacks and whites, respectively that

reside in neighborhood n. Formally, bn = Bn/
∑

n′∈N Bn′ and wn = Wn/
∑

n′∈N Wn′ .

We will now construct the segregation curve associated with the city X. Segregation

curves will allow us to define a partial order on the set of two-group cities. Segregation

curves, analogously to experiment matrices, are objects that do not depend on the cities’

ethnic distribution. That is, city X = 〈N, (Bn,Wn)n∈N〉 and city X̂ = 〈N, (bn, wn)n∈N〉,

which is obtained from X by normalizing the groups’ populations so that each group is

of size one, will have the same segregation curve. In order to construct the segregation

curve, let φ : {1, 2, . . . , |N |} → N be an ordering of the neighborhoods such that i ≤

j ⇒ pφ(i) ≤ pφ(j). Namely, φ orders neighborhoods in a non-decreasing way according to
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their proportion whites. Note that

pn ≤ pm ⇔ wn/(bn + wn) ≤ wm/(bm + wm). (6)

That is, ordering the neighborhoods in N in non-decreasing order of the proportion of

whites in X or in its normalized version X̂ results in the same order. Let β0 = ω0 =

0, and for i = 1, 2, . . . , |N |, and let βi = βi−1 + bφ(i) and ωi = ωi−1 + wφ(i). That

is, βi is the proportion of blacks that reside in the i neighborhoods with the lowest

proportions of whites. Similarly, ωi is the proportion of whites that reside in these same

neighborhoods. The segregation curve of X is the graph that is obtained by plotting

the points (βi, ωi)
|N |
i=0 and connecting the dots. Formally, it is the union of the line

segments seg[(βi−1, ωi−1), (βi, ωi)], i = 1, 2, . . . , |N |, where for any two points x, y ∈ R
2,

seg[x, y] = {αx+ (1− α) y : α ∈ [0, 1]}. Note that the line segment that connects the

points
(
βi−1, ωi−1

)
and (βi, ωi) has a slope of wφ(i)/bφ(i). Therefore, given (6), this slope

is non-decreasing in i. Furthermore, the segregation curve is invariant to the choice of

ordering φ as long as it satisfies i ≤ j ⇒ pφ(i) ≤ pφ(j). Figure 1 illustrates a Lorenz cure

of a three-neighborhood city.

b

b

b

b

β1 β2

ω1

ω2

b2

w2

Figure 1: A Lorenz Curve.
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We now use the segregation curves to define a segregation order.

Definition 3 Let X and Y be two cities. We say that Y is at least as segregated as X

according to the Lorenz criterion, denoted Y <L X, if the Lorenz curve of Y is nowhere

above the Lorenz curve of X.

The Lorenz criterion is generally accepted as an unambiguous benchmark for segrega-

tion comparisons. On the other hand, Theorem 1 shows that, as long as one subscribes

to the principles of anonymity, organizational equivalence, the neighborhood division

property and composition invariance, Blackwell’s is the appropriate criterion to deter-

mine whether one city is unambiguously more segregated that another. Our next result

shows that these two criteria, in fact, coincide.

Theorem 2 The Blackwell and the Lorenz orders on C2 are the same.

Proof. It can be checked that the Lorenz order <L satisfies ANON, CI, OE and

NDP. Therefore, by Theorem 1, Y <I X =⇒ Y <L X.

In order to show the converse implication, let X = 〈N, (Bn,Wn)n∈N〉 and Y =

〈N ′, (B′
n′ ,W ′

n′)n′∈N ′〉 be two cities in C2. Since both <I and <L satisfy CI, we can assume

without loss of generality that
∑

n∈N Bn =
∑

n′∈N ′ B′
n′ =

∑
n∈N Wn =

∑
n′∈N ′ W ′

n′ = 1.

Since both <I and <L satisfy ANON we can also assume that N = {1, . . . , I} and

N ′ = {1, . . . , I ′} and that the neighborhoods are ordered in a non-decreasing order of

proportion of whites. Therefore, we can denote X by (bn, wn)
I

n=1 and Y by (b′n′ , w′
n′)

I′

n′=1

with w1/(b1 + w1) ≤ · · · ≤ wI/(bI + wI) and w
′
1/(b

′
1 + w′

1) ≤ · · · ≤ w′
I′/(b

′
I′ + w′

I′). We

split the analysis into three cases.

Case 1: For each n ∈ N and n′ ∈ N ′, bn > 0 and b′n′ > 0.

Let us build the following random variables: For each n ∈ N the random variable x

takes the value wn/bn with probability bn. For each n
′ ∈ N ′ the random variable y takes

the value w′
n′/b′n′ with probability b′n′ . Note that E[x] = E[y] = 1.
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Denote by Fx the cumulative distribution function of x and by Fy the cumulative

distribution function of y. Also denote their generalized inverses by F−1
x and F−1

y ,

respectively.7

By Theorem 3.A.5 of Shaked and Shanthikumar [15],

∫ p

0

F−1
x (t)dt ≥

∫ p

0

F−1
y (t)dt for all p ∈ [0, 1]

⇐⇒
∑

n∈N

bnψ(wn/bn) ≤
∑

n′∈N ′

b′nψ(w
′
n/b

′
n) for all convex functions ψ : R → R. (7)

By Sherman’s [16] theorem, (7) holds if and only if there is a I ′ × I Markov matrix

Π = {πn′n} such that

bn (wn/bn) =
∑

n′∈N ′

πn′nb
′
n′ (w′

n′/b′n′)

∑

n′∈N ′

πn′nb
′
n′ = bn

Or, in matrix notation,

M(X) =M(Y ) · Π

Consequently,
∫ p

0
F−1
x (t)dt ≥

∫ p

0
F−1
y (t)dt for all p ∈ [0, 1] if and only if Y <I X. Since

the graphs of
∫ p

0
F−1
x (t)dt and

∫ p

0
F−1
y (t)dt are none other than the segregation curves of

X and Y respectively, we obtain the desired result, i.e., Y <L X ⇔ Y <I X.

Case 2: For each n ∈ N , bn > 0, and there is n′ ∈ N ′ with b′n′ = 0. Since both <I

and <L satisfy OE, we can assume without loss of generality that in Y , there is only

one neighborhood with no blacks. Furthermore, by OE we can assume without loss of

generality that |N ′| = |N | + 1. That is, I ′ = I + 1. Lastly, since both <I and <L

satisfy OE, we can assume without loss of generality that bn = b′n for all n ∈ {1, 2, . . . I}.

Therefore, we can denote X by (bn, wn)
I

n=1 and Y by (bn, w
′
n)

I+1
n=1 (where bI+1 = 0 and

w′
I+1 > 0). In this case, X <L Y is impossible. Assume, therefore, that Y �L X.

7The generalized inverse of a distribution function F : R+ → [0, 1] is defined as F−1 : [0, 1] → R+

such that F−1(p) = infs {s > 0 : F (s) > p}.

20



For each t = 1, . . ., let εt =
1
t
bI

w′

I+1

w′

I
+w′

I+1

, and let Yt = (btn, w
′
n)

I+1
n=1 be the city that is

obtained from Y by relocating εt blacks from neighborhood I to neighborhood I + 1.

That is, btn = bn for n = 1, . . . I−1, (btI , w
′
I) = (bI − εt, w

′
I) and

(
btI+1, w

′
I+1

)
=

(
εt, w

′
I+1

)
.

See Figure 2. Note that since εt ≤ bI
w′

I+1

w′

I
+w′

I+1

, the proportion of whites in neighborhood

X

YYt

0.2 0.4 0.6 0.8 1.0
Blacks

0.2

0.4

0.6

0.8

1.0
Whites

Figure 2: The segregation curves of X, Y and Yt

I is less than or equal to the proportion of whites in neighborhood I + 1. As a result,

Yt’s neighborhoods are ordered in a non-decreasing order of the proportion of whites.

Furthermore, it can be seen that Yt <L X. By construction, Yt has no neighborhoods

with 0 blacks. By Case 1, Yt <I X. That is, there is a I ′ × I Markov matrix Πt such

that

M(X) =M(Yt) · Πt

Since the set of I ′ × I Markov matrices is compact, there is a subsequence {Πt`} that

converges to a Markov matrix Π. Since, M(Yt) →M(Y ), we obtain that

M(X) =M(Y ) · Π

which means that Y <I X.

Case 3: There is n ∈ N , and n′ ∈ N ′ such that bn = b′n′ = 0.

Since both <I and <L satisfy OE, we can also assume without loss of generality that

|N | = |N ′| = I. By OE, we can assume without loss of generality that both in X and in

21



Y , there is only one neighborhood with no blacks. Lastly, since both <I and <L satisfy

OE, we can assume without loss of generality that bn = b′n for all n ∈ {1, 2, . . . I}.

Assume that Y <L X. For each t = 1, . . ., let εt = 1
t
bI

wI

wI−1+wI
, and let Xt =

(btn, wn)
I

n=1 be the city that is obtained fromX by relocating εt blacks from neighborhood

I−1 to neighborhood I. That is, btn = bn for n = 1, . . . I−2, (btI , wI) = (bI−1 − εt, wI−1)

and (btI , wI) = (εt, wI). See Figure 3. Note that since εt ≤ bI
wI

wI−1+wI
the proportion

X Y

Xt

0.2 0.4 0.6 0.8 1.0
Blacks

0.2

0.4

0.6

0.8

1.0
Whites

Figure 3: The segregation curves of X, Y and Xt

of whites in neighborhood I − 1 is less than or equal to the proportion of whites in

neighborhood I. As a result, Xt’s neighborhoods are ordered in a non-decreasing order of

the proportion of whites. Furthermore, by construction, Y <L Xt. Also by construction,

Xt has no neighborhoods with 0 blacks. By Case 2, Y <I Xt. That is, there is a I ′ × I

Markov matrix Πt such that

M(Xt) =M(Y ) · Πt

Since the set of I ′ × I Markov matrices is compact, there is a subsequence {Πt`} that

converges to a Markov matrix Π. Since, M(Xt) →M(X), we obtain that

M(X) =M(Y ) · Π

which means that Y <I X.
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6 Concluding remarks

Measures aimed at capturing the evenness dimension of segregation view it as the dif-

ferential distribution of residents across neighborhoods by ethnicity, regardless of the

overall ethnic distribution. It can be argued that anonymity, organizational equivalence,

neighborhood division property and composition invariance are the minimal require-

ments that any such measure of evenness should satisfy. This paper showed that any

order that satisfies these axioms must be consistent with Blackwell’s informativeness

criterion. That is, all orders that satisfy the above four principles will agree on the

ranking of any two cities that are ranked by the Blackwell criterion.

In the case of two ethnic groups, Lorenz’s is a well-established criterion for the

ranking of cities in terms of their segregation. Since the Lorenz order satisfies anonymity,

organizational equivalence, neighborhood division property and composition invariance,

it is consistent with the informativeness criterion. More interestingly, we show that

Blackwell’ order is also consistent with the Lorenz criterion. As a result, The Blackwell

and Lorenz orders, restricted to the two-group case, are the same. Moreover, from a

computational point of view the implementation of this criterion in the multigroup case

is as simple as solving a system of linear equations.

7 Appendix

Proof of Lemma 1: Let A be an n×m Markov matrix and let B be an n× (m + 1)

Markov matrix that is obtained from A by splitting one of A’s columns into two. Assume

that A’s kth column is the one that is split. Alternatively, A is obtained from B by

replacing B’s kth and (k + 1)th columns by their sum. Consequently,

A = B · Sk (8)
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where

Sk =




Ik−1 0 0

0 1 0

0 1 0

0 0 Im−k



.

Let us now assume that there is an m× (m+ 1) Markov matrix Π such that

B = A · Π. (9)

We will show that B is necessarily obtained from A by splitting A’s kth column propor-

tionally.

Let Π′ be the matrtix that is obtained from Π by replacing Π’s kth and (k + 1)th

columns by their sum. That is,

Π′ = Π · Sk. (10)

Note that Π′ is a square m×m Markov matrix. Moreover, by (10), (9) and (8),

A · Π′ = A (11)

which means that each row of A is an invariant distribution of the matrix Π′.

Since Π′ is a square Markov matrix, there exists r ≥ 1 and a permutation matrix P

such that P T · Π′ · P can be written in the following (almost block diagonal) form:




R′
1 0

R′
2 0 0

R′
3 0

0
. . .

...

R′
r 0

S ′
r+1,1 S ′

r+1,2 S ′
r+1,3 · · · S ′

r+1,r Q′




where for all j = 1, ..., r, R′
j are square (mj ×mj) irreducible Markov matrices and Q′

is an
(
n−

∑r

j=1mj

)
×

(
n−

∑r

j=1mj

)
reducible matrix. We can assume without loss
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of generality that P is the identity matrix and thus that Π′ has the above form.8

Since R′
j, for j = 1, ..., r, is an irreducible Markov matrix, it has unique invariant

distribution qj = (qj1, . . . , q
j
mj
), i.e., qj is the unique probability vector q that satisfies

q = qB′
j. Furthermore, any invariant distribution of Π′ can be written as

(α1q
1, α2q

2, . . . , αrq
r, 0, . . . , 0︸ ︷︷ ︸

n−
∑r

j=1
mj

)

for some α1, . . . αr ≥ 0 and
∑r

j=1 αj = 1 (see, for instance, Lucas and Stokey 1989 (The-

orem 11.1, pages 326-330)). Therefore, since each row of A is an invariant distribution

of Π′, it can be written as

A =




α11q
1 α12q

2 · · · α1rq
r 0 · · · 0

...
...

...
...

...

αn1q
1 αn2q

2 · · · αnrq
r 0 · · · 0


 , (12)

where for each i = 1, . . . , n and j = 1, . . . , r, αij ≥ 0 and
∑r

j=1 αij = 1. If B was

obtained from A by splitting column k in a disproportional way, it ought to be the case

that this column is one that has at least one positive entry.

Assume that column k corresponds to the hth block of Π′. Therefore we can write

R′
h =

(
R′

h1
, v′∗k, R

′
h2

)

where v′∗k = (v′1k, . . . , v
′
mhk

)T is the column of block B′
h that corresponds to the kth

column of Π′. Since Π is obtained from Π′ by splitting the kth column into two, Π can

8Otherwise, the whole analysis can be done using and A ·P instead of A, Sk ·P instead of Sk, P
T ·Π

instead of Π and PT ·Π′ · P instead of Π′.
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be written as

Π =




R′
1 0 0 0 · · · 0 0

0
. . . 0 0 · · ·

...
...

R′
h1

v∗k v∗k+1 R′
h2

0 0

· · · · · · 0 0
. . . 0 0

0 · · · 0 0 0 R′
r 0

S ′
r+1,1 · · · S ′

r+1,h1
s∗k s∗k+1 S ′

r+1,h2
· · · S ′

r+1,r Q′




(13)

where v∗k and v∗k+1 are column vectors such that v∗k + v∗k+1 = v′∗k. Consequently, since

B = A·Π, using (12) and (13) we obtain that B’s kth column is
(
α1hq

hv∗k, ..., αnhq
hv∗k

)T

and, B’s (k+1)th column is
(
α1hq

hv∗k+1, ..., αnhq
hv∗k+1

)T
, which are proportional to each

other (the proportion is qhv∗k/q
hv∗k+1).
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