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S

Weighted proportions arise naturally in particle size measurement where one is inter-
ested in estimating the proportion of the total volume or surface corresponding to specific
particle diameters. The particles are assumed to be spherical, and observations consist of
the particle diameters. We consider the weighted proportion as a nonparametric functional
of the diameter distribution, and investigate how well this functional can be estimated. It
is shown that the commonly used estimator is asymptotically efficient, but it is very
sensitive to sample fluctuations. We propose a modified estimator which is also asymptoti-
cally efficient and has better small-sample properties. Numerical experiments with real
datasets demonstrate the improved practical behaviour of the proposed estimators.

Some key words: Asymptotic efficiency; Nonparametric functional; Particle size distribution; Robustness;
Shrinkage.

1. I

Let X1 , . . . , Xn
be independent identically distributed positive random variables with

common distribution function F. Let M denote the set of all probability distributions
defined on measurable subsets of the positive real line R

+
. In this paper we deal with

estimating the functional T (F) :M�[0, 1] given by

T (F )=qP2
0

w(x) dF(x)r−1 P
D

w(x) dF(x), (1)

where D is a fixed subset of R
+

, and w is a positive monotone increasing unbounded
function on R

+
. We call T (F) the weighted proportion, since it measures a relative mass

assigned to D by the probability distribution F.
Estimating the functional T (F) is motivated by a real life problem that arises in particle

size measurement. Suppose that a population of particles of a spherical shape is dispersed
through a medium. The population is sampled, and diameters of the particles are recorded.
Our goal is to estimate the proportion of the total volume or surface corresponding to
specific particle diameters. This is a standard problem of conversion from number to
volume or surface in the particle size measurement (Allen, 1990, p. 145). If x is the particle
diameter and w(x)=x3 then T (F) is the fraction by volume of particles with diameters in
D. In practice the raw observations are collected in the form of number distributions and
are summarised by histograms. Then the standard estimation method is to weight the
estimated bin probabilities by the corresponding cubed or squared diameters (Allen, 1990,
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p. 145). For our model this method amounts to substituting the empirical probability
distribution F

n
(x)=n−1Wn

i=1
I(X

i
∏x) instead of F into (1). It turns out, however, that

this simple and obvious estimator does not perform well in many practical situations. The
main drawback is that the weighted proportions are very sensitive to small deviations
from the underlying distribution F. As a result, using the estimator T (F

n
) for T (F) leads

to poor repeatability of experiments, a feature which caused problems in applications and
motivated this paper.

A parametric approach to model particle size distributions was proposed by Barndorff-
Nielsen (1977). It is shown there that the parametric family of continuous distributions
such that the logarithm of the density is a hyperbola is an appropriate family for modelling
particle size distributions. In the framework of this approach, T (F) can be estimated using
standard parametric techniques; see also Fieller, Flenley & Olbricht (1992). Estimation
of the functional T (F) was considered by Nicholson (1970) and Watson (1971) in the
context of the Wicksell problem in stereology; for review see e.g. Ripley (1981, Ch. 9).
Both Nicholson (1970) and Watson (1971) assumed that the observations consist of inter-
sections of a planar or linear probe with the particles. In this case the probability distri-
bution F relates to the distribution of observations through a certain integral equation.
Watson (1971) argues that some standard and natural estimators have poor statistical
properties for this problem, and warn against their use. It will be shown here that, even
with direct observations from F, the standard estimator T (F

n
) will be inaccurate for finite

samples because of its high sensitivity to sample fluctuations.
In this paper we estimate the weighted proportions in nonparametric fashion and study

their properties. First, we investigate the properties of both the functional T (F ) and the
related standard estimator T (F

n
). A lower bound on the estimation accuracy is established,

and it is proved that T (F
n
) is an asymptotically efficient estimator of T (F). It is shown,

however, that T (F) is very sensitive to small deviations from the underlying distribution
F. It is important to emphasise that this sensitivity is an intrinsic property of the functional
T (F) itself, rather than a sampling property of the estimation method. In other words, the
functional T (F) is non-robust; by robustness here we mean stability of the quantity T (F)
to be estimated uniformly under small changes in the underlying distribution. In practice
this non-robustness results in the poor repeatability of the experiments. If F∞

n
and F◊

n
are

empirical distributions based on two samples of size n from the same material, then, even
though F∞

n
is close to F◊

n
, T (F∞

n
) can be very different from T (F◊

n
). Thus, small fluctuations

in the data lead to large variability in the estimate. To overcome this problem, we propose
a modified estimator which is based on more stable functionals. Construction of our
estimator uses the idea of downweighting the standard estimator T (F

n
) according to the

relative accuracy of the estimator F
n

for F. Intuitively, since small changes in F
n

can lead
to high variability in the corresponding estimator T (F

n
), one should take into account the

accuracy of F
n

when estimating F. We propose to shrink T (F
n
) towards zero relatively to

the estimated accuracy of F
n
. Such a strategy introduces a family of more stable nonpara-

metric shrinkage functionals. We prove that the proposed estimator has the same asymp-
totic normal distribution as T (F

n
). We present evidence that the variance of the estimates

is reduced for small samples. In addition, the mean squared error can be reduced, especially
when the values of T (F) are small.

The outlined approach is in the spirit of ‘efficiency-robust’ nonparametric estimation,
where it is desired to achieve asymptotic efficiency and to improve small-sample properties.
This approach was advocated by many authors, e.g. by Johns (1974) for nonparametric
estimation of location; see also a review paper by Hogg (1974) and references therein. It
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is recognised widely that the small-sample properties of the estimator obtained by substi-
tuting the empirical distribution can be poor. For example, Fernholz (1997) argues that
using the smoothed empirical distribution instead of F

n
may improve the small-sample

properties of the estimators, if the functional has a discontinuous influence function. The
relationship between sensitivity of nonparametric functionals and some standard concepts
in robustness theory is discussed by Tibshirani & Wasserman (1988).

The rest of the paper is organised as follows. In § 2 we study the properties of the
standard estimator T (F

n
). In § 3 we introduce our nonparametric shrinkage estimator and

investigate its properties. In § 4 we consider some numerical examples to illustrate the
behaviour of the proposed estimator. Section 5 contains a discussion, and proofs are given
in the Appendix.

2. T  

2·1. Asymptotic results

The standard estimator T
n
=T (F

n
) is obtained by substituting the empirical probability

distribution F
n

into (1):

T
n
=T (F

n
)=qP2

0
w(x) dF

n
(x)r−1 P

D

w(x) dF
n
(x)=q ∑n

i=1
w(X

i
)r−1 ∑

i:X
i
µD

w(X
i
).

Recall that, throughout the paper, X1 , . . . , Xn
are independent positive random variables

with common distribution F, and w(.) is a positive monotone increasing unbounded func-
tion on R

+
.

Let F
w

denote the set of all probability distributions F on R
+

such that

P2
0

{w(x)}2 dF(x)<2. (2)

T 1. T he estimator T
n

is consistent at F : T
n
�T (F) in probability and almost

surely as n�2. Furthermore, if FµF
w
, then nD{T

n
−T (F)} is asymptotically normal with

mean 0 and variance

s2
F
=AP2

0
w dFB−2 q(1−2T ) P

D

w2 dF+T 2 P2
0

w2 dFr . (3)

For the proof see the Appendix.
Theorem 1 is concerned with a fixed underlying distribution FµF

w
. It is desirable to

have the above asymptotic properties hold as uniformly in F
w

as possible. It is clear that
this can be achieved only on smaller subsets of F

w
. For given positive real numbers c>0

and c, define the following class of distributions:

F
w
(c, c)=qFµM : F(c)=0, P2

0
{w(x)}3 dF(x)∏c<2r . (4)

Note that the condition F(c)=0 precludes distributions which put a positive mass in a
small neighbourhood of zero.

T 2. T he distribution of nD (T
n
−T ) under F converges to the normal distribution

with mean 0 and variance s2
F

uniformly over F
w
(c, c).

For the proof see the Appendix.
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In Theorem A1 in the Appendix we establish a lower bound on the estimation accuracy.
Theorem 2 along with Theorem A1 implies that T

n
=T (F

n
) is asymptotically efficient

uniformly over F
w
(c, c). Thus, the standard estimator possesses the best possible large-

sample properties and cannot be improved from the viewpoint of efficiency. However, T
n

does not perform well for finite samples, being highly sensitive to sample fluctuations.
This is caused by non-robustness of the related functional T (F ).

2·2. Non-robustness of T (F )

Since we refer to robustness as stability of the quantity to be estimated uniformly under
small changes in the underlying distribution, robustness is an intrinsic property of the
functional itself, rather than a sampling property of the estimation method. It turns out
that the functional T (F) is not robust according to the above criterion. This will be
illustrated by calculating the commonly used measures of quantitative robustness; for the
corresponding definitions, see e.g. Huber (1981, Ch. 1) and He & Simpson (1993).

To investigate the sensitivity of T (F), we consider the Huber contamination discrepancy

d(G, F )¬ inf {e : G(A)� (1−e)F(A) for all measurable sets A}.

We measure how much T (F) changes when d(G, F )∏e by the contamination bias

b
T
(e; F )¬ sup

G:d(G, F)∏e
|T (G)−T (F) |.

By definition, b
T
(e; F )∏1 for all e>0. In what follows we assume that D contains an

infinite interval [a, 2 ) for some a. This assumption does not restrict generality; otherwise
the same bounds on the contamination bias hold with T (F ) replaced by 1−T (F). It is
evident that even very small mass at infinity yields T (G)=1, and it implies that the lower
bound on the contamination bias is

b
T
(e; F )�1−T (F )

for all e>0. In addition, if T (F)∏1
2
, then the lower bound is tight: b

T
(e; F )=1−T (F ),

for all e>0. Thus, any changes in the distribution, no matter how small, can influence
drastically the quantity to be estimated, especially when T (F) is close to zero. Qualitative
robustness of T (F) refers to the continuity of the contamination bias at e=0. In our case
b
T
(0+; F )�1−T (F), so that T (F ) is not qualitatively robust with respect to the Huber

contamination discrepancy. Since b
T
(e; F ) is not differentiable at zero, the contamination

sensitivity equals infinity, i.e.

c*
T
¬lim sup

e30
{b
T
(e; F )/e}=2;

and the breakdown point equals zero:

e*
T
¬ inf qe : b

T
(e; F )=sup

b

b
T
(b; F )r=0.

This shows that the functional T (F) becomes completely uninformative even under very
small changes in F. It is straightforward to show that the influence function of the func-
tional T (F) is equal to

 (x, F, T )=AP2
0

w dFB−1 w(x){I
D
(x)−T (F )}. (5)
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Thus, the influence function is both unbounded and discontinuous. Unboundedness of
 (x, F, T ) leads to infinite gross-error sensitivity:

c(GE)
T
¬sup

x
|(x, F, T ) |=2.

The estimator T
n
=T (F

n
) inherits the non-robust behaviour of the functional T (F ).

Unboundedness of  (x, F, T ) implies that large observations affect T (F
n
) greatly.

Discontinuity of  (x, F, T ) implies that, if F
n

puts mass on to the discontinuity points,
then even small changes in many observations, resulting for example from rounding or
grouping, may produce a larger change in T (F

n
) (Huber, 1981, p. 9). In practice this leads

to high variability of T (F
n
) and poor repeatability in experimentation. In § 3 we propose

a modified estimator TB
n

which is based on more stable functionals. In addition, TB
n

shares
the asymptotically efficient properties of T

n
=T (F

n
) uniformly over the class F

w
(c, c).

3. T  

3·1. Introduction

Small-sample fluctuations have undue influence on T (F ). If D contains an infinite
interval [a, 2), then T (F ) is particularly non-robust when the value of T (F) is small,
corresponding to the case where F assigns a small mass to the set D. Note that, if D does
not contain an infinite interval, then the same effect holds; here F assigns a small mass to
the set complementary to D. Therefore, observations with small probability of occurrence
can have undue influence on the standard estimator T

n
=T (F

n
). It is important to note

that, in the region where such observations appear, F
n

typically has large standard devi-
ation in comparison to the value to be estimated. Therefore, it seems reasonable to shrink
the standard estimator T

n
towards zero according to the estimated relative accuracy of

F
n
. This idea is similar to the approach to robustness discussed by Lindsay (1994, p. 1082),

where the degree to which an observation is unreliable depends on both its probability
of occurrence and the sample size.

3·2. Motivating example

Assume that the observations X1 , . . . , Xn
are grouped into N bins B

k
=[x

k
, x

k+1
], for

k=1, . . . , N. This situation corresponds to the multinomial distribution with parameters
(n; f1 , . . . , fN). The standard estimators f@

k
for the unknown f

k
are

f@
k
=

1

n
∑
n

i=1
I(X

i
µB

k
) (k=1, . . . , N).

We are interested in estimating the weighted proportions

t
k
=

f
k
w
k

WN
j=1

f
j
w
j

(k=1, . . . , N), (6)

where the weights w
k

can be chosen as w
k
={(x

k
+x

k+1
)/2}3 or w

k
=(x

k
x
k+1

)3/2. In fact,
(6) is a discrete version of the functional T (F ); we are estimating N functionals correspond-
ing to D=B

k
, for k=1, . . . , N. The standard estimator takes the form

t@
k
=

f@
k
w
k

WN
j=1

f@
j
w
j

(k=1, . . . , N). (7)
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Let c= (c1 , . . . , c
N
) and c

i
µ[0, 1], for i=1, . . . , N. We take (c1 f@1 , . . . , c

N
f@
N
) as an esti-

mator for t=(t1 , . . . , tN). The risk of the estimator under quadratic loss is

R(c, f, t)=E ∑
N

i=1
(c
i
f@
i
−t

i
)2= ∑

N

i=1
[c2
i
{ f 2

i
+n−1 f

i
(1− f

i
)}−2c

i
f
i
t
i
+t2

i
].

Minimising the naive estimator R(c, f@, t@ ) of the risk over c, we obtain the shrinkage esti-
mator

tA
k
=t@

k
f@ 2
k

f@ 2
k
+n−1 f@

k
(1− f@

k
)

(k=1, . . . , N). (8)

If f@
k

is an accurate estimator of f
k
, then the shrinkage factor is close to one, and tA

k
is

similar to t@
k
. On the other hand, if the variance of f@

k
is large in comparison with f 2

k
, then

the shrinkage factor is small, and t@
k
is shrunk towards zero. It is clear that tA

k
is first-order

asymptotically equivalent to t@
k
, but, as we will show, it is less sensitive to sample fluctu-

ations. In § 3·3 we will use a similar idea to define a shrinkage estimator for the general
nonparametric setting.

3·3. Construction of shrinkage estimator

Let {Q(F, n)} be a sequence of functionals from M to [0, 1], and consider the shrinkage
functionals

TB =TB (F, n)={1−Q(F, n)}T (F).

Define the shrinkage estimator TB
n
for T (F) as

TB
n
=TB (F

n
, n)=T

n
(1−Q

n
), Q

n
¬Q(F

n
, n).

We have

nD{TB
n
−T (F)}=nD{T

n
−T (F)}−nDT

n
Q
n
.

If the functionals Q(F, n) are chosen in such a way that nDT
n
Q
n

converges to zero in
probability as n�2 uniformly over F

w
(c, c), then both TB

n
and T

n
are asymptotically

efficient in the sense of Theorem 2. However, we will show that the robustness properties
will be improved for a particular choice of Q(F, n), defined by

Q
k
(F, n)=

kn−1 ∆
D
dF(1−∆

D
dF)

(∆
D

dF)2+kn−1 ∆
D

dF(1−∆
D

dF)
, (9)

where k�0 is a number to be chosen. The corresponding estimator TB
n

is given by

TB
n
=TB (F

n
, n)=T

n

(∆
D

dF
n
)2

(∆
D

dF
n
)2+kn−1 ∆

D
dF

n
(1−∆

D
dF

n
)
. (10)

Note that n ∆
D

dF
n
is a binomial random variable with parameters n and ∆

D
dF, so that

E
F AP

D

dF
nB= P

D

dF, var
F AP

D

dF
nB=n−1 P

D

dF A1− P
D

dFB .
Consequently, if k=1, then the weight Q

k
(F
n
, n) is the estimator of the relative accuracy

of ∆
D

dF
n
, that is the ratio between the variance of ∆

D
dF

n
and the expectation of

(∆
D

dF
n
)2. The estimator (10) is similar to the shrinkage estimator (8).
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3·4. Asymptotic eYciency

The following theorem shows that the shrinkage estimator TB
n
is asymptotically efficient

uniformly over F
w
(c, c), and possesses the same asymptotic properties as T

n
.

T 3. For every fixed k�0, the distribution of nD (TB
n
−T ) under F converges to

the normal distribution with mean 0 and variance s2
F

uniformly over F
w
(c, c).

For the proof see the Appendix.

3·5. Robustness properties

As before, we assume that D contains an infinite interval [a, 2 ) for some a. For brevity,
write a0=∆D

dF, and suppose that T (F)<1
2
. Recall that the contamination bias b

T
(e; F )

of T (F) is equal to 1−T (F) for all e>0. Let b
TB
(e; F ) denote the contamination bias of

TB (F, n) with respect to the Huber contamination discrepancy. To establish an upper bound
on b

TB
(e; F ) we note that

|TB (G, n)−TB (F, n) |=|{1−Q
k
(F, n)}{T (G)−T (F )}+T (G){Q

k
(F, n)−Q

k
(G, n)}|

∏{1−Q
k
(F, n)}|T (G)−T (F)|+T (G) |Q

k
(F, n)−Q

k
(G, n) |.

Let a=∆
D

dG. Then

Q
k
(G, n)−Q

k
(F, n)=

(a0−a)kn−1
{a0+(1−a0)kn−1}{a+ (1−a)kn−1}

.

Since d(G, F )∏e, we have that a=(1−e)a0+em for some mµ[0, 1], and

Q
k
(G, n)−Q

k
(F, n)=

e(a0−m)kn−1
A0{A0−e(a0−m)(1−kn−1)}

,

where A0=a0+kn−1 (1−a0 ). Note that the denominator is positive for all mµ[0, 1];
also we assume that kn−1<1. Therefore

max
mµ[0,1]

|Q
k
(G, n)−Q

k
(F, n) |∏

kn−1e(1−a0 )
A0{A0−ea0 (1−kn−1)}

,

and we have the following upper bound for the contamination bias:

b
TB
(e; F )∏

a0
a0+kn−1(1−a0)

b
T
(e; F )+

kn−1e(1−a0)
A0{A0−ea0(1−kn−1 )}

. (11)

Note that b
TB
(e; F ) depends on the underlying distribution F. In particular, if a0=0,

that is F assigns zero probability to D, then b
TB
(e; F )∏enk−1, whereas b

T
(e; F )=1, for all

e>0. In addition, for this case b
TB
(0+; F )=0, and hence TB (F, n) is qualitatively robust

at all F satisfying a0=a0 (F )=0. Since b
TB
(e; F ) is a monotone increasing positive function

of e, we infer that

c*
TB
=lim sup

e30
{b
TB
(e; F )/e}∏nk−1,

i.e. for a given sample size TB (F, n) has finite contamination sensitivity. If a0N0, then the
modified functional TB (F, n) loses the qualitative robustness property. The upper bound
(11) shows, however, that contamination bias of the modified functional TB (F ) still may
be smaller than that of the functional T (F ) in a neighbourhood of zero. In particular, the
following proposition is an immediate consequence of (11).
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P 1. L et a0 be small enough so that T (F)<1
2
. T hen for every k and n there

exists a constant e*=e*(a0 , k, n)µ(0, 1] such that for all e∏e* one has b
TB
(e; F )<b

T
(e; F ).

In particular, e*(0, k, n)=1.

The influence function of the modified functional TB (F, n) can be found by straightfor-
ward but tedious differentiation:

(x, F, TB )={1−Q
k
(F, n)} (x, F; T )+

kn−1a2
0
T (F)I

D
(x)

{a2
0
+kn−1a0(1−a0)}2

, (12)

where (x, F, T ) is given in (5). As might be expected,  (x, F, TB ) is asymptotically
equivalent to  (x, F, T ) but (12) suggests that for small samples the variance of TB

n
may

be smaller than that of T
n
.

3·6. Choice of k

The parameter k controls the sensitivity of the estimator TB (F
n
) to sample fluctuations.

As k becomes smaller, TB (F
n
) approaches T (F

n
) and the sensitivity of TB (F

n
) increases. This

effect can be explained from the viewpoint of the bias/variance trade-off. For every fixed
n, TB

n
estimates TB (F, n) instead of T (F ). This incurs additional bias, given by

B
n
(k)=TB (F, n)−T (F )=T (F )Q

k
(F, n).

Since Q
k
(F, n) becomes large as k increases, the bias B

n
(k) also increases. On the other

hand, using differential approximation and neglecting the second-order terms we can write

TB (F
n
, n)−TB (F, n)j {1−Q

k
(F, n)} P2

0
w
F

d(F
n
−F),

where w
F
(x)= (x, F, T ) is the influence function of the functional T (F). Since

s2
F
=E

F
[w
F
(X

i
)−E

F
{w

F
(X

i
)}]2,

where s2
F

is given by (3), we can write

V
n
(k)=E

F
{TB (F

n
, n)−TB (F, n)}2j

s2
F
n

{1−Q
k
(F, n)}2.

Therefore, V
n
(k) decreases as k increases.

We will base the choice of k on minimising the mean squared error

(k)={B
n
(k)}2+V

n
(k)j{T (F)Q

k
(F, n)}2+

s2
F
n

{1−Q
k
(F, n)}2. (13)

Minimising (k) with respect to Q
k
(F, n) we obtain

Q*
k
(F, n)=

n−1s2
F

{T (F)}2+n−1s2
F
,

and taking (9) into account we find the optimal value k*=as2
F
(1−a)−1{T (F)}−2.

However, this choice is not practicable because it depends on unknown quantities T (F),
s2
F

and a=∆
D

dF. We suggest the following plug-in approximation based on (3):

k
+
=

s@ 2
F
∆
D

dF
n

T 2
n
(1−∆

D
dF

n
)
, (14)
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where

s@2
F
=

(1−2T
n
) ∆
D
w2 dF

n
+T 2

n
∆2
0

w2 dF
n

(∆2
0

w dF
n
)2

, (15)

and T
n
=T (F

n
) as before. It can be proved that the estimator based on k=k

+
is asymptoti-

cally efficient in the sense of Theorem 3.
The problem of choosing k is similar to the problem of choosing the biasing parameter

in ridge regression. The literature on this subject is vast, see for example Hoerl & Kennard
(1970), Draper & Van Nostrand (1979), Golub, Heath & Wahba (1979) and references
therein, and many of the ideas there can be implemented for choosing k. We are currently
investigating this issue, but here we restrict ourselves to the choice (14).

4. N 

4·1. Simulated example

Assume that the underlying distribution is exponential, that is F(x)=1−e−x. We wish
to estimate

T=T (F )=
∆2
a

x3 exp (−x) dx

∆2
0

x3 exp(−x) dx
=

1

6
(a3+3a2+6a+6) exp(−a).

Both the standard and shrinkage estimates are computed for different values of a using
1000 simulated samples of 100 observations each. For the shrinkage estimator we choose
k=k

+
, given by (14). The results are reported in Table 1. For each a Table 1 displays

T (F), the bias squared, the variance and the mean squared error.

Table 1. Performance of the standard and shrinkage estimates for
the exponential example of § 4·1, assessed from 1000 simulations

of 100 observations each

Standard Shrinkage
a T (F ) Bias2 Variance  Bias2 Variance 

3·00 0·642 0·003 0·030 0·033 0·015 0·021 0·036
3·25 0·591 0·004 0·036 0·040 0·015 0·025 0·040

3·50 0·537 0·004 0·042 0·046 0·015 0·029 0·044
3·75 0·484 0·004 0·047 0·051 0·014 0·033 0·047
4·00 0·433 0·005 0·051 0·056 0·013 0·036 0·049

4·25 0·386 0·005 0·051 0·056 0·013 0·036 0·049
4·50 0·342 0·005 0·051 0·056 0·011 0·036 0·047
4·75 0·302 0·004 0·051 0·055 0·011 0·035 0·046

5·00 0·265 0·004 0·050 0·054 0·010 0·034 0·044

, mean squared error.

As expected, the standard estimator is biased and slightly underestimates T (F). By
construction, the bias of the shrinkage estimator is larger than that of the standard one.
The variance of the shrinkage estimator is smaller than that of the standard estimator.
As T (F ) decreases, mean squared error of the shrinkage estimator becomes smaller than
that for the standard estimator. This can be explained by the fact that, since F assigns a
small mass to D, F

n
is not an accurate estimator of F, and small-sample fluctuations lead

to high variability in the standard estimator.
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4·2. Real data examples

Example 1. The context is that of particle size measurement. Raw measurements on
particles size are collected in the form of a distribution of counts. Figure 1 presents the
results obtained for probes of graphite and some other test material. Figures 1(a), (b)
display the histograms of diameters constructed from 7500 particles of the test material
and graphite respectively. The histograms are based on equal bins, and the bin width is
determined by the resolution of a sampling equipment.

Our setting is the same as in the example in § 3, and we are estimating the functionals
t
k
corresponding to every bin D=B

k
, for k=1, . . . , N. The standard estimate is given by

(7), and the shrinkage estimate is a slight modification of (8):

tA
k
=

t@
k
f@ 2
k

f@ 2
k
+kn−1 f@

k
(1− f@

k
)

(k=1, . . . , N). (16)

Figures 1(c)–(d) show the estimates t@1 , . . . , t
@
N

of the particle volume distribution corre-
sponding to the count histograms given in Figs 1(a),(b).

For selecting k in (16) we use the approximation as in (13) to obtain

(k)j ∑
N

i=1
qn−1s2

i
l2
i

(l
i
+k)2

+
k2t2

i
(l
i
+k)2r= ∑N

i=1
S
i
(k), (17)

where l
i
=nf

i
/(1− f

i
) and s2

i
stands for the limit variance in estimating t

i
, comparable to

s2
F
. The choice of k, based on minimisation of (17), is again not practicable because it

depends on the unknown parameters t
i
, s2

i
and f

i
. Note, however, that (17) is similar to

the expressions for the mean squared error in generalised ridge regression (Hoerl &
Kennard, 1970). Therefore, it seems that algorithms for selecting the biasing parameter in
ridge regression can be adopted here. We choose to follow the procedure discussed
in Montgomery & Peck (1992, p. 348). Let k

i
(i=1, . . . , N) minimise S

i
(k), that is

k
i
=s2

i
f
i
t−2
i

(1− f
i
)−2. We use the same approximation to k

i
as in (14) and (15), which in

this case takes the form

k+
i
=

(1−2t@
i
)w2
i
f@
i
+t@2

i
(WN

j=1
w2
j
f@
j
)

(WN
j=1

w
j
f@
j
)2

f@
i

t@2
i
(1− f@

i
)
.

Finally we set k=k
+

as the harmonic mean of the k+
i

:

k
+
=

N

WN
i=1

(1/k+
i

)
. (18)

Figures 1(e),(f ) show the shrinkage estimates of the volume distribution for particles of
the test material and graphite respectively. For the test material the algorithm chooses
k
+
=6·13, while for graphite k

+
=4·877. It is important to note that the data contain few

large particles with diameters larger than 40 mm. These data are not visible in the counts
histograms in Figs 1(a),(b), but they greatly influence the standard estimates of the volume
distribution, see Figs 1(c),(d). As discussed before, the counts histograms are not accurate
in this region, so that the shrinkage estimates in Figs 1(e),(f ) are quite different from the
standard ones there. The shrinkage estimates also differ slightly from the standard ones
in the range where many particles occurred.

Example 2. Finally we present an example to demonstrate that the shrinkage estimator
improves the repeatability of the experiments. From a fixed probe of a material 10 different
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Fig. 1: Example 1. Histograms for a test material, and graphite: (a), (b) counts histograms;
(c), (d) standard estimates of the volume distribution; (e), (f ) shrinkage estimates of the volume

distribution.

samples consisting of 7500 particles of graphite were taken. For each sample we computed
the standard and shrinkage estimates of the volume distributions, and present them in
the form of cumulative volume distributions. We took k=k

+
as in (18). In this example

k
+

varied over the 10 samples from 4·234 to 5·619. Figure 2(a),(b) shows the standard
and shrinkage estimates, respectively, of the cumulative volume distributions for the 10
independent samples. Clearly, the shrinkage estimates demonstrate better repeatability.
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(a) Standard
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(b) Shrinkage
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Fig. 2: Example 2. Estimates of cumulative volume distributions for 10 independent samples of
graphite particles

5. D

Tibshirani & Wasserman (1988) called a parameter or functional T (F ) :M�H sensitive
with respect to a discrepancy measure d on M if, for all FµM, e>0 and hµH, there
exists a distribution G such that d(F, G)∏e and h=T (G). In other words, the sensitive
functional can take any value from the parametric set H under any, no matter how small,
change in distribution F. It immediately follows that every sensitive functional has zero
breakdown point. The converse is not true. Tibshirani & Wasserman (1988) claim that a
functional which is not sensitive in the above sense and has zero breakdown has to be
somewhat artificial. It is interesting to note that the functional

T (F)=AP2
0

w dFB−1 P
D

w dF

is not sensitive with respect to the Huber discrepancy in the sense of the above definition,
but it has zero breakdown point. Indeed, in this case H=[0, 1], and for e<∆

D
dF there

is no distribution G such that d(F, G)∏e and T (G)=0.
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A

Proofs

Proof of T heorem 1. The proof follows from standard results for M-estimators, since T
n
=T (F

n
)

is the M-estimator defined by the equation

∑
n

i=1
y(X

i
, t)=0,

where y(x, t)=w(x){I
D
(x)−t}, I

D
(x)=1 is xµD, and I

D
(x)=0 otherwise. Let

l
F
(t)=E

F
y(x, t)= P

D

w dF−t P 2
0

w dF.
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Then T (F) is the unique solution to the equation l
F
(t)=0. The first statement of the theorem

follows immediately from Corollary 2.2 in Huber (1981, p. 48). Note that y(x, t) is monotone
decreasing in t. Then asymptotic normality is an immediate consequence of Corollary 2.5 in Huber
(1981, p. 50): nD{T

n
−T (F )} is asymptotically normal with mean 0 and variance

[l∞
F
{T (F )}]−2E

F
[y{x, T (F )}]2=s2

F
. %

Proof of T heorem 2. We use the von Mises differential approach to derive the asymptotic distri-
bution (Serfling, 1980, Ch. 6). Note that the functional T (F ) is differentiable in the von Mises sense,
so that we can write

T (F
n
)−T (F )= P2

0
w
F

d(F
n
−F)+

1

2

d2T {F+t(F
n
−F)}

dt2 K
t=t

*
¬g

n
(F )+f

n
(T , t* ), (A1)

where t*µ[0, 1] and w
F
( . ) is the influence function, which in our case is given by

w
F
(x)= AP2

0
w dFB−1 w(x){I

D
(x)−T (F )}.

The first term g
n
(F ) in the right-hand side of (A1) is expressed as a sum of independent identically

distributed random variables,

g
n
(F )= P 2

0
w
F

d(F
n
−F)=

1

n
∑
n

i=1
{w

F
(X

i
)−E

F
w
F
(X

i
)}¬

1

n
∑
n

i=1
j
i
(F ).

Note that

E
F
{j
i
(F )}=0, E

F
{j
i
(F )}2=E

F
{w

F
(X

i
)}2−{E

F
w
F
(X

i
)}2=s2

F
<2,

provided that ∆2
0

w2 dF<2. Recall that s2
F

is defined in (3). Note also that E
F
|j
i
(F ) |3 is bounded

uniformly over F
w
(c, c). Therefore, by the Berry–Esseen theorem, convergence of the distribution

of nDs−1
F

g
n
(F ) to N (0, 1) is also uniform in FµF

w
(c, c). Thus, to complete the proof of the theorem

it suffices to show that

sup
FµF

w
(c,c)

E
FqnD sup

t
*
µ[0,1]

|f
n
(F, t* ) |r�0, (A2)

as n�2. By straightforward differentiation we have

f
n
(F, t* )=−

A(F
n
, F ) ∆2

0
w d(F

n
−F)

{∆2
0

w dF+t* ∆
2
0

w d(F
n
−F)}3

,

where

A(F
n
, F )= P

D

w d(F
n
−F) P2

0
w dF− P 2

0
w d(F

n
−F) P

D

w dF.

Now we note that

sup
t
*
µ[0,1]

|f
n
(F, t* ) |= K A(F

n
, F ) ∆2

0
w d(F

n
−F)

{min (∆2
0

w dF, ∆2
0

w dF
n
)}3 K . (A3)

Since there exists c>0 such that F(c)=0, the denominator is bounded away from zero uniformly
in FµF

w
(c, c), and we can write

sup
t
*
µ[0,1]

|f
n
(F, t*) |∏{w(c)}−3 KA(F

n
, F ) P2

0
w d(F

n
−F)K .
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Now we bound the expectation of the numerator in the right-hand side of (A3). We have

E
F qP2

0
w d(F

n
−F)r2= 1

n qP 2
0

w2 dF−AP2
0

w dFB2r .
Similarly,

E
F
|A(F

n
, F ) |2∏2 AP 2

0
w dFB2 E

F qP
D

w d(F
n
−F)r2+2 AP

D

w dFB2 E
F qP2

0
w d(F

n
−F)r2

∏
4(∆2

0
w dF)2 ∆2

0
w2 dF

n
.

Thus, applying the Cauchy–Schwartz inequality we obtain

nDE
F q sup

t
*
µ[0,1]

|f
n
(F, t* ) |r∏4{w(c)}−3n−D P2

0
w dF P 2

0
w2 dF�0,

as n�2, and (A2) follows. This completes the proof. %

L ower bound. We investigate how well the functional T (F ) can be estimated. Given an estimator
TC
n

of T (F) based on the observations X1 , . . . , Xn
, we measure its estimation accuracy by the risk

E
F
|TC
n
−T (F) |2. In the following theorem we establish a lower bound on the risk. Note that we do

not restrict ourselves to a parametric family of probability distributions F.

T A1. L et {U
N
(F )} be a sequence of neighbourhoods of the distribution FµF

w
in the weak

convergence topology such that U
N
(F ) shrinks to F as N�2. T hen

lim
N�2

lim inf
n�2

inf
TC
n

sup
GµU

N
(F)

E
G
{n |TC

n
−T (G) |2}�s2

F
,

where s2
F

is given by (3).

Proof. This is based on direct application of lower bounds for estimating nonparametric func-
tionals differentiable in the von Mises sense (Levit, 1975; Ibragimov & Has’minskii, 1981, Ch. IV,
§ 2). For each FµF

w
, T (F) is the unique solution of the equation

P2
0

y(x, t) dF(x)=0, y(x, t)=w(x){I
D
(x)−t},

where I
D
(x)=1 if xµD, and I

D
(x)=0 otherwise. In addition, the function

l
F
(t)=E

F
y(x, t)= P

D

w dF−t P2
0

w dF

is differentiable in t and l∞
F
{T (F)}=−∆2

0
w dFN0 for all FµF

w
. Further, it is immediately seen

that E
F
|y{x, T (F )}|2<2 for all FµF

w
. By straightforward calculation we obtain that, for any F1

and F2 from F
w
, one has T {F1+t(F2−F1 )}�T (F1 ) as t�0. Thus, all conditions of Example 4 of

Ibragimov & Has’minskii (1981, p. 224) hold, and the lower bound follows if we note that

s2
F
=[l∞

F
{T (F )}]−2 P2

0
[y{x, T (F )}]2 dF(x). %

Proof of T heorem 3. Let L
n
={(X1 , . . . , Xn

) : ∆
D

dF
n
N0}. Note that, on the complementary set

L9 n , TB
n
=T

n
=0. Thus, it suffices to prove that for every b>0

sup
FµF

w
(c,c)

P
F
(nD |Q

n
T
n
|>b, L

n
)�0, (A4)

as n�2. It is evident that n−D ∆
D
dF

n
(1−∆

D
dF

n
) converges in probability to 0, and this convergence
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is uniform in FµF
w
(c, c). Similarly, (∆

D
dF

n
)2+n−1 ∆

D
dF

n
(1−∆

D
dF

n
) converges in probability to

(∆
D

dF)2, and (A4) follows. Then, using

nD (TB
n
−T )=nD (T

n
−T )+nDQ

n
T
n

and Theorem 2, we complete the proof of the theorem. %
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