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Abstract

The paper studies the effect of the information agents have about
their peers’ effort on the principal’s cost of providing incentives. We
use the analysis to address the issue of co-location in organizations,
i.e., moving workers from private offices to open spaces or “war room-
s”.Using directed graphs to represent peer information we show how
the pricipal can gain from more transparancy among peers. We also
use the analysis to argue that process-based teams are more effective
than function-based teams.

1 Introduction

A noticeable recent trend in the evolution of the workplace is the move away
from private offices or cubicles to open-space environments or “war rooms.”
This strategy, which is being increasingly adopted by different types of or-
ganizations is often referred to as “co-location.” While the trend is there,
the debate over the net advantage of this strategy has not been concluded.
Among the obvious downside arguments are concerns about workers’ privacy
and the potential distraction when concentration is needed to perform indi-
vidual tasks. As for the gains, it is mainly argued that co-location allows
workers to coordinate their activity and offers them the possibility to learn
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from each other. The purpose of this paper is to address yet another role of
co-location, namely, its effect on workers’ incentives to exert effort. “Open”
offices and war rooms provide agents with information about their peers that
is not observable when they work in closed offices. The internal information
about peers affects agents’ incentives and thus also the principal’s cost of
providing them.
To address this issue we will present a moral hazard model in which

agents’ effort decisions are mapped into a probability that their joint project
will succeed. The principal offers agents rewards that are contingent only on
the final outcome of the project. Agents’ effort while unobservable by the
principal may be observable by peers. The internal information about peers
will be given in a rather general form. Specifically, we will represent the
information structure by a directed graph where an arc from agent i to agent
j means that i is informed about j0s effort. We will interpret these graphs
as emerging from the workplace structure where a movement towards co-
location corresponds to richer graphs, i.e., more transparency among peers.
Our analysis will compare different information structures in terms of the
cost of the optimal incentive mechanism.
Our first result asserts that transparency among peers works in favor

of the principal as it is easier to generate incentives under more transpar-
ent structures. Roughly, with more transparency among peers the implicit
threat against shirking is stronger. Agents who are observed by many of
their peers will be reluctant to shirk for fear that doing so will trigger the
shirking of other peers, which will substantially reduce the probability that
the project will succeed. This observation and the intuition behind it seem
consistent with various recent empirical studies about co-location and team
work. Teasley et al. (2002) study the effect of co-location in software develop-
ment teams. The authors evaluated the workers’ productivity using measures
commonly used in software development. Comparing the war room teams’
scores with those in traditionally arranged offices, they conclude that teams
in war rooms are twice as productive as similar teams working in closed of-
fices. A related evidence is reported by Heywood and Jirjahn (2004) who
show that blue-collar workers who work jointly in small teams have a lower
absentee rate than other similar workers who work alone.
While more transparency among peers can never harm incentives, not

every information arc between two agents contributes to incentives. Propo-
sition 2 asserts that the principal’s cost of inducing all agents to exert effort
depends on the graph (of information among peers) only through its transi-
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tive closure. Put differently, it does not matter whether agent i observes the
effort of agent j directly or through observing other agents, i.e., observing
an agent that observes an agent ... that observes agent j. In both cases the
cost of inducing agent i to exert effort will be the same. This result implies
that workplace structures that are rich in sequentiality are desirable from
the point of view of incentives. This result will also allow us to compare
workplace architectures on a wider domain than that of Proposition 1.
Architectural and organizational changes in the workplace affect the in-

ternal information peers have about each other. But in many environments
this effect is not deterministic but rather probabilistic. A move towards co-
location merely affects the probability that an agent will observe the effort
of his peers. Section 4 is meant to address this issue with a model of random
graphs. In this framework agent i observing agent j0s effort is a random
event that occurs with an exogenous probability. Our result in this section
will show that the principal’s cost of inducing effort by all agents is a de-
creasing function of this probability. Hence, even measures that only slightly
increase the probability of transparency among peers will have a strict posi-
tive effect on incentives.
The second part of the paper is devoted to studying the role of the orga-

nizational technology in attaining the incentive advantages from co-location.
We will show that transparency among peers is more effective when agents’
tasks are complementary (i.e., when the technology is convex) than when
there is substitution across tasks. Specifically, under complementarity the
gains from more transparency will occur also when the implementation of
effort is carried out with respect to more stringent solution concepts than
Nash equilibrium (such as perfect Bayesian or Nash with weakly undomi-
nated strategies). The basic intuition behind this result is that under com-
plementarity each agent’s incentives to exert effort grow the more others
exert effort. This intuition is consistent with a recent empirical study. Us-
ing a panel data on the performance of baseball players Gould and Winter
(2005) show that the nature of externalities among players depend on the
degree of complementarity and substitutability between players. Comple-
mentary players induce positive externalities on each other, i.e., the effort of
a player increases with the degree of effort by his peer. On the other hand
players who are substitutes generate negative peer effects.
The distinction we will make between complementarity and substitutabil-

ity will alow us to address a related important issue: Should team formation
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be process based or function-based1? In a process-based team or war room
each member is in charge of a different stage in the production process of
a single product. In contrast, a function-based team accommodates agents
who all work on the same stage of the production process (i.e., performing
identical tasks on different products). We shall argue that incentive consid-
erations should favor process-based teams since agents’ effort in such teams
involves complementarity.
This paper is part of the extensive literature on multi-agent incentive

mechanisms that started with Holmstrom (1982). Some of the papers in
this literature, such as Holmstrom and Milgrom (1990) and Itoh (1991),
have pointed out that a principal can gain from collusion or coordination
among his agents. Che and Yoo (2001) even made this collusion explicit
by considering a model in which agents interact repeatedly, while Baliga
and Sjoestrom (1998) consider side contracting among agents and messge
games. The current paper complements this literature by focusing on the
role information among peers in sustaining collusion. An important message
our results add to this literature is that the mere fact that agents are informed
about each other’s effort is sufficient for the principal to be better off even
when the organizational environment does not allow for real communication
among agents or side contracting.
Also related to the current work are two of my former papers Winter

(2004) and Winter (2005). These papers use a similar moral hazard model
to derive optimal incentive mechanisms. Winter (2004) argues that even when
agents are identical and act simultaneously (i.e., with no information about
peers) the principal may gain by discriminating among them. Winter (2005)
considers a sequential production and addresses the issue of how to allocate
optimally tasks and agents with different attributes across different produc-
tion slots. Like almost all the related literature, both papers deal with a
fixed structure of information about peers. In sharp contrast, however, our
main objective here is to compare between different information structures
and study their effect on agents’ incentives. Finally, we note that this paper,
in certain respects, also relates to the recent literature on networks in games,
which is extensively surveyed by Jackson (2005). Links in our networks stand
for information channels between peers. However, in contrast to the networks
literature, in which the game is in forming the network, here the network is

1I would like to thank Ilya Segal for pointing out the relevance of my model to this
issue.
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designed by the principal and the interaction among the agents relies on the
network rather than forms it.

2 A Simple Two-Agent Example

Before introducing the formal model in its generality it would be instructive
to demonstrate the incentive gains from transparency among peers with the
simplest possible example. Consider an organization of two agents, each of
which is in charge of one task on which he can either exert effort or shirk.
The cost of effort is c > 0 for both agents. If an agent does not exert effort
on his task the task will end successfully with probability α > 0. If the agent
exerts effort the task will succeed with probability 1. The two tasks together
form a project that will succeed if and only if both tasks are successful. The
principal cannot monitor agents’ effort or the outcome of individual tasks.
He can only find out whether the entire project is successful. A mechanism
pays the agents rewards v1, v2 if the projects succeeds and zero if it fails. We
would like to find the the mechanism with a minimal total reward that will
induce both agents to exert effort in equilibrium.
We first assume that the two agents act simultaneously; i.e., none of them

is informed about the effort decision of the other one. For effort by both
players to be an equilibrium it must be that effort by i is his best response
to effort by j. Suppose that agent i exerts effort, then agent j0s payoff will be
vj − c if he exerts effort as well and it will be αvj if he shirks. We therefore
must have vj − c ≥ αvj. Hence the principal must pay c/(1 − α) to each
agent in order to sustain effort by both.
Consider now the case in which the agents act sequentially; i.e., agent

1 makes his effort decision. Agent 2 observes that decision (but not the
outcome of the task) and decides himself whether to exert effort or to shirk.
To generate an equilibrium in which both agents exert effort player 2 must
be paid c/(1 − α) (as in the simultaneous case). If he is paid less his best
response to seeing agent 1 exerting effort would be to shirk. How much then
should agent 1 be paid to sustain an effort equilibrium? Suppose that agent
1 is promised v1 = c/(1−α2) if the project succeeds and player 2 is promised
c/(1 − α). We shall argue that there exists an equilibrium in which both
agents exert effort under these rewards. Consider the strategy profile under
which agent 1 exerts effort and agent 2 exerts effort if and only if agent 1
does so. If agent 1 deviates from his strategy by shirking agent 2 will shirk
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as well and agent 1 will get α2v1. If agent 1 instead exerts effort the project
will succeed with probability 1 and he will get v1 − c. Since α2v1 = v1 − c it
is optimal for agent 1 to exert effort, and given that agent 1 exerts effort it
is optimal for agent 2 to do likewise. In fact, for an arbitrarily small increase
of the rewards for the two agents the strategy profile specified above is also
the unique subgame perfect equilibrium of the game.
Because v1 = c/(1−α2) < c/(1−α) the principal needs to pay less if the

agents move sequentially. Put differently, the fact that agent 2 is informed
about agent 1’s effort decision makes it easier for the principal to provide
incentives for effort. Roughly, the implicit threat that agent 1 faces not to
shirk (because agent 2 will do likewise), which allows the principal to reduce
rewards for agent 1, applies only when they move sequentially. We will build
on this example in constructing a general model of an organization with
internal information about effort.

3 The Model

The organizational project involves a set N of n agents that collectively
manage a project. Each agent has to decide whether to exert effort towards
the performance of his tasks or not. The cost of effort is c and is constant
across all players. Henceforth we interchangeably use the term investment
for the action of exerting effort. The technology of the organization maps
a profile of investment decisions into a probability of the project’s success.
For a group S ⊆ N of investing agents the probability that the project will
succeed is p(S). The principal who cannot monitor the agents for their effort
but knows only if the project succeeds sets up a mechanism v = (v1, ..., vn) by
which agent i receives the payoff vi if the project succeeds and zero otherwise.
Agents’ decisions about whether to invest or not depend on the internal

information about other agents’ investment decisions.
An Internal Information about Effort (IIE) is defined to be a partial

order “k” over the set of agents N , where i k j stands for agent i knowing
the effort decision of agent j before making his own decision. We shall also
refer to this relation by saying that i sees j.
We impose that k is acyclic; i.e., for any sequence i1 k i2 k, ..., k ir with

r 6 n we must have that i1, ..., ir are distinct. This condition simply reflects
the fact that there can be no mutual knowledge about effort. Indeed i k j
implies that j has taken his effort decision before i, which precludes j k m for
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some m with m k i. The acyclicity property of k also implies that there is a
timing structure according to which agents make their investment decisions.
We denote by Ki the set of agents that i sees, i.e., Ki = {j| i k j}.
Given a vector of rewards v = (v1, ..., vn) that are to be paid if the project

succeeds, and an IIE k, we can now consider the following normal form game
G(k, v) :
A strategy for player i is a function si: 2Ki −→ {0, 1} specifying to

each player whether to invest (choose 1) or to shirk as a function of the
information he possesses on other agents’ decisions. For every strategy profile
s = (s1, ..., sn) we denote by M(s) the set of agents who exert effort under
the profiles. In the Appendix we argue that M(s) is well defined and show
how M(s) is constructed from the strategy profile s. Finally, the payoff for
player i under s = (s1, ..., sn) is given by fi(s) = vip(M(s)) − c if i ∈ M(s)
and fi(s)= vip(M(s)) if i /∈M(s).
We say that the vector of rewards v is an investment-inducing (INI) mech-

anism with respect to k if it induces all agents to invest in equilibrium. For-
mally, v is an INI mechanism if there exists a Nash equilibrium s for the
game G(k, v) with M(s) = N .
We say that v is an optimal INI mechanism if it yields minimal total

payoff among all INI mechanisms.
For an IIE k we denote by v∗(k) the total reward in an optimal INI mech-

anism with respect to k. We point out that assumption that the principal
provides incentives to all agents is merely for the sake of simplicity. An alter-
native model in which the principal attempts to maximize the net profit of
the project (taking into account the value of the project) makes the analysis
more cumbersome and offers no additional insight. The results will basically
remain the same.
As indicated earlier the binary relation “k” represents the prevailing in-

formation structure about peers’ effort in the organization. Our objective
is to compare such information structures in terms of the cost of inducing
effort by all agents. To this end we shall define a binary relation over IIEs by
which we shall be able to say that the one contains more information about
effort than the other.
Let K be the set of all IIEs. For k1 and k2 in K we say that k1 is richer

than k2 if for all i, j in N we have i k2 j implies i k1 j.
Proposition 1 argues that it is easier to provide incentives under more

transparency within the organization, i.e., more information about peers’
effort.
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Proposition 1: If k1 is richer than k2, then v∗(k1) 6 v∗(k2).
We will omit the proof of Proposition 1 here as we shall later state and

prove a stronger result. However, the example in Section 2 suggests the in-
tuition. In a richer IIE effort is more transparent, which allows more agents
to make their effort decision dependent on that of more of their peers. For
each of these agents shirking will result in a more detrimental effect on the
project’s success probability and thus also on the expected reward this agent
receives. Hence the exposure of an agent’s effort increases his/her incentive
to exert effort and thus decreases the principal’s cost of incentivizing that
agent.

4 Indirect Information about Effort

As we have seen in Proposition 1 the network of information about peer effort
affects the principal’s cost of providing incentives. We would now like to go
a step further in understanding how the information structure affects incen-
tives by extending Proposition 1 to the case where IIEs are not necessarily
comparable in terms of “richness.” This analysis relies on the observation
that agent i0s shirking may also affect the behavior of agents who do not
observe i0s shirking directly. Suppose for example that agent 1’s action is
observed only by agent 2, while agent 2’s action is observed only by agent 3.
Assuming that the three agents adopt strategies by which they shirk if and
only if they observe one of their peers shirking, we shall see agent 1 affecting
agent 3’s behavior without agent 3 being directly informed about what agent
1 did. In designing the optimal mechanism for a given IIE the principal will
attempt to sustain as an equilibrium the behavior described above by which
agents exert effort unless they detect one of their peers shirking. This in par-
ticular means that enriching the information structure described in the above
example by letting agent 3 directly observe agent 1’s effort choice does not
allow the principal to reduce the cost of incentivizing agent 1. This all hints
at the fact that in the IIE only those arcs i k j matter for which there is no
way for i to learn indirectly about the action of j through the actions of other
peers. This leads us to the graph-theoretic notion of Transitive Closure.
For an IIE k we denote by t(k) the IIE obtained from the transitive

closure of k. Specifically, in the IIE t(k) we have i t(k) j if and only if there
exists a sequence of agents i1, i2, ..., ir with i1 = i and ir = j and im k im+1
(m = 1, 2, ..., r − 1). Proposition 2 asserts that from the point of view of
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incentives only the transitive closure of an IIE matters.
Proposition 2: If t(k1) is richer than t(k2), then v∗(k1) 6 v∗(k2), with

strict inequality if and only if t(k1) 6= t(k2).
Proof: For each i ∈ N let C(i, k) be the set of agents seeing i ac-

cording to t(k), i.e., C(i, k) = {j ∈ N | j t(k) i}. We will show that vi =
c

p(N)−p(N\[C(i,k)∪{i}]) is the optimal incentive-inducing mechanism. Note that
the payoff vi makes i indifferent between shirking and investing provided that
his shirking triggers the shirking of all j in C(i, k) and no more; i.e., vi solves
the following:
p(N)vi −c = vip(N\[C(i, k) ∪ {i}]). (*)
If t(k1) is richer than t(k2), then C(i, k2) is a subset of C(i, k1) for all i.

Furthermore, if t(k1) 6= t(k2), then for some i this inclusion is strict. Hence
the mechanism proposed above satisfies v∗(k1) < v∗(k2). It thus remains to
show that the mechanism described above is the optimal incentive-inducing
mechanism. We first argue that with the above mechanism an equilibrium
exists in which all agents invest. Consider the strategy combination in which
each agent invests unless he sees (directly with respect to k) someone shirk-
ing. Under this profile all agents invest. Furthermore, any deviation by
player i will trigger (sequentially) all players in C(i, k) to shirk. Hence, if i
shirks his expected payoff will be according to the RHS of equation (*). This
means that i cannot increase his payoff by deviating. It remains to show that
any mechanism that pays less than vi to some player cannot admit an equi-
librium in which all agents invest. Indeed, consider by way of contradiction
an equilibrium of the underlying game in which all agents invest. Consider
such a player i. If C(i, k) is empty, then i is affecting no player’s behavior.
Since i is indifferent between investing and shirking in vi, a lesser payoff will
make shirking strictly preferable. Assume now that C(i, k) is not empty,
then shirking by i will trigger at most the set of players C(i, k) to shirk as
well (possibly less). Since vi makes i indifferent between investing and shirk-
ing, a lesser payoff will make shirking strictly better, which contradicts the
equilibrium assumption. Q.E.D.

An almost immediate consequence of Proposition 2 is that an information
structure corresponding to a chain is optimal for the principal. Specifically,
an IIE k is said to be a chain if there exists an order of the agents i1, i2, ..., in
such that the set of arcs i k is given by i1k i2, ..., k in. Such an IIE can
be interpreted as a sequential production in which each agent observes the
effort decision of his immediate predecessor. Furthermore, it follows trivially
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from Proposition 2 that the empty IIE, which corresponds to no internal
information about effort at all (as if all agents decides about their effort
simultaneously), is the least attractive for the principal.
Corollary 1: Among all IIEs an IIE ks corresponding to a chain yields

the minimal cost for the principal, i.e., v∗(ks) 6 v∗(k) for all k.
Proof: The result follows from the following graph-theoretic claim: If the

graph g is a chain, then the transitive closure of g is a maximal graph (richest)
among all acyclic graphs. This can be shown as follows: Take an ordered
sequence of nodes 1, 2, ..., n, and consider the graph g∗ =

Sn−1
i=1 {(i, k)| k > i},

where (i, j) stands for an arc from i to j. It is easy to note that g is maximal
among all acyclic graphs. Indeed, if we add another arc to g it must be of
the form (i, j), where j < i and 2 · i · n. But upon addition of such an arc
we create the cycle (i, j), (j, i). Hence g is maximal among all acyclic graphs.
Consider now the chain graph given by g = {(1, 2), (2, 3), ..., (n− 1, n)}. It is
easy to see that the transitive closure of g is g∗and the claim follows. The
corollary now follows directly from the claim together with Proposition 2.
Q.E.D.
Corollary 2: Among all IIEs the IIE ke that corresponds to the empty

graph yields the maximal cost for the principal, i.e., v∗(ke) > v∗(k) for all k.

5 Random Peer Monitoring

The fact that the internal information about effort among peers affects the
principal’s cost of incentivizing his agents suggests that the principal might
want to influence this information in order to reduce his cost. Since Propo-
sitions 1 and 2 assert that the principal can only gain from sustaining more
transparency among his peers he might want to “enrich” the IIE so that more
agents would be informed about more of their peers. This can be done, for
example, by forming teams and co-locating workers in one office. It can also
be achieved by organizing more frequent recreational activities within the
organization through which the information about effort is transmitted more
effectively. Finally, it can even be promoted by simply redesigning the archi-
tecture of the workplace so that there is more visibility across workers. Of
course, when promoting the objective of more visibility among peers the prin-
cipal will be sensitive to other managerial constraints that are not incentive-
based (such as the cost of reorganization). But regardless of the method the
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principal chooses to adopt in order to facilitate more transparency among
peers it is reasonable to assume that whether agent i is informed about
agent j0s effort remains a random event. The tools and means by which
the principal can affect the transparency among his peers can only influence
the probability that this event would take place. We would therefore like
to move on now to a model in which agents’ monitoring opportunities are
random. Specifically, we would like to model a situation where agents are un-
certain about which of their peers can observe their effort decisions. Roughly
speaking, our objective in this section is to argue that the principal’s cost
of incentivizing his agents is monotonically decreasing with the probability
with which an agent can observe his peers. Thus any measure taken by the
principal that can increase even slightly the probability of the availability
of information will result in a reduction in the principal’s cost of providing
incentives.
To be able to address this issue we will need to separate between the

chronology of the order of moves and the other factors that determine the
information about peers. This will be done by making the order of moves
explicit.
A random IIE is defined by a pair (w, kq), where w is an order of the agents

and kq is a random directed graph on the set of agents with arcs emerging
randomly according to an IID Bernoulli distribution with probability 0 < q <
1 (i.e., every arc forms with probability q independently of the other arcs).
We interpret w as the order in which agents take their effort decisions, and
kq represents the random structure of the information about peer effort. An
arc from i to j represents i0s technical or formal ability to monitor agent j0s
effort decision. More specifically, agent i is informed about agent’s j0s effort
decision before making his own if and only if i appears after j in the order w
and the arc (i, j) from i to j realizes in kq.When agent i takes his turn to act
(in the order w) a realization takes place to determine which of the arcs (i, j)
with w(j) < w(i) forms, i.e., whose effort action does i see among those who
preceded him? However, at this stage i is uncertain about who is going to
observe his own effort decision. We assume that each agent is informed about
the arcs formed among his predecessors but as we shall see this assumption
is inessential to the analysis. Of course the pair (w, kq) is commonly known
to all agents. The principal himself has to design the incentive mechanism ex
ante before any realization. He is only informed about q and w. As before,
given a reward mechanism v and a random IIE (w, kq) agents are facing a
game (now involving Nature’s random moves). The definition of an optimal
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incentive-inducing mechanism remains unchanged.
For a random IIE (w, kq) we denote by v∗(w, kq) the total reward of the

optimal incentive-inducing mechanism under kq. In the sequel and with a
slight abuse of notation we will use v∗(q) for v∗(w, kq). The result by which
the principal should favor transparency among peers now reads as follows:
Proposition 3: If q0 > q, then v∗(q) > v∗(q0).
Proof of Proposition 3: We start with some definitions and notations:

For an agent i and an order w we denote by W (i) the set of agents following
i including i himself, i.e., W (i) = {j∈ N ;w(j) ≥ w(i)}. Fix a probability q
and let Θ be the sample space that defines the realizations of kq. For each
θ ∈ Θ we denote by kq(θ) the deterministic graph that emerges at θ. Fix
a probability q, i ∈ N, θ ∈ Θ and an order w. Denote by kq(θ)|W (i) the
graph kq(θ) restricted to the set of nodes W (i); i.e., kq(θ)|W (i) is obtained
from kq(θ) by deleting all nodes in N\W (i) with all the arcs in and out of
these nodes. kq(θ)|W (i) represents the monitoring opportunities among i0s
successors. For each j in W (i) we denote by j → i if there exists a path
j = i1, ..., ir = i from j to i in the graph kq(θ)|W (i) such that w(ij) > w(ij+1).
The intuition behind j → i is that there is a channel of messages from i to
j based on the realized arcs such that the chain across which the messages
pass involves only i0s successors and is consistent with the order of moves. In
another words, if j → i, then agent j who succeeds i can indirectly monitor
(through a sequence of other agents) whether i has exerted effort. We next
denote by Sq(i, w, θ) the set of agents that can indirectly monitor i, i.e.,
Sq(i, w, θ) = {j ∈ N ; j → i}. If all agents adopt the strategy by which they
decide to shirk if and only if they (directly) detected the shirking of at least
one agent, then the random set Sq(i, w, θ) represents the set of agents that
will be triggered to shirk as a consequence of i0s shirking. For a technology p
and given the strategies specified above the probability that the project will
succeed following i0s shirking (and assuming all his predecessors are exerting
effort) is p(N\Sq(i, w, θ)), which is a random variable.
Lemma: If q0 > q, then p(N\Sq(i, w, θ)) ≥ p(N\Sq0(i, w, θ)) with a strict

inequality for some θ.
Proof: We can embed the two random graphs kq and kq0 in one sample

space such that the event “an arc exists from i to j in kq” is a subset of the
same event for the graph kq0, and such that these two events have probability
q and q0 respectively. Hence, kq(θ) ⊂ kq0(θ) for all θ, with some θ for which
this inclusion is strict. Therefore kq(θ)|W (i) ⊂ kq0(θ)|W (i) for all θ, with some
θ for which this inclusion is strict, and hence Sq(i, w, θ) ⊂ Sq0(i, w, θ) for all θ,
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with some θ for which this inclusion is strict. Because p is strictly increasing
we have p(N\Sq(i, w, θ)) ≥ p(N\Sq0(i, w, θ)) for all θ, with some θ for which
this inequality is strict.
We now continue with the proof of Proposition 3. Let pq(i) be the expecta-

tion of the random variable p(N\Sq(i, w, θ)), i.e., pq(i) =
R
θ
p(N\Sq(i, w, θ))dF (θ).

If all agents adopt the strategy by which they shirk if and only if they en-
counter at least one agent shirking, then pq(i) is the ex-ante probability that
agent i attributes to the project succeeding if he shirks. By the lemma above
we have pq(i) > pq0(i). We can now define v∗i (q) = c/[p(N) − pq(i)]. Since
pq(i) > pq0(i) the proof will be completed if we show that v∗i (q) is the optimal
INI mechanism under the probability q.
Consider again the strategy profile defined earlier in the proof; i.e., an

agent shirks if and only if he observes at least on of his predecessors shirking.
We first show that this profile is a Nash equilibrium under the mechanism
v∗i (q). By the definition of pq(i) and v

∗
i (q) we have p(N)v

∗
i (q)−c = v

∗
i (q)pi(q)

and each player i is indifferent between investing and shirking if all other
players adopt the strategy specified above. We now show that if some player i
receives a rewardwi < v∗i (q) and all other players j receive v

∗
j (q) or more, then

there exists no Nash equilibrium in which all players invest with probability
1. Assume by way of contradiction that such a Nash equilibrium exists.
It must be the case that the strategy specifies that a player invests if he
observes no shirking by others. Consider now player i0s deviation in which
he shirks regardless of the information he receives. Along the equilibrium
path, if i shirks under the realization θ he will trigger at most the set of
playersN\Sq(i, w, θ) to shirk (possibly a subset depending on the strategies of
others), so with a reward v∗i (q) player i is either indifferent between investing
and shirking or strictly prefers to shirk, and with a reward wi he strictly
prefers to shirk. Q.E.D.

6 Substitution vs. Complementarity

As we saw earlier the optimal mechanisms sustain investment by all agents
through a strategy profile in which every agent exerts effort unless observing
one of his peers shirking. The optimal mechanism is tailored so that this type
of “imitation” behavior is a Nash equilibrium. This applies regardless of the
technology and regardless of the information structure. But a closer look at
Example 1 shows that this strategy profile is not only a Nash equilibrium but
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it is also one using weakly undominated strategies.2 In this section we shall
argue that the proposed mechanisms, while valid for all technologies, are
expected to be more effective for technologies in which agents’ tasks satisfy
complementarity. For such technologies our mechanism will implement the
desired outcome as a Nash equilibrium with undominated strategies (which
will also be a perfect Bayesian equilibrium). This will not be the case for
technologies with substitution across tasks. We shall also show that the opti-
mal mechanisms implementing full effort as an equilibrium with undominated
strategies are different for technologies with substitution, and are invariant
with respect to the information structure about peer effort. The intuition
runs as follows: In the complementarity case each agent’s incentives to ex-
ert effort are increasing the more the others exert effort. This means that
the effort-implementing strategies by which agents are instructed to invest
if and only if they observe no shirking are optimal whether on or off the
equilibrium path. In particular, agents who observe shirking are better off
shirking as well. Under substitution this is not the case. Agents observing
others shirking are better off exerting effort. This means that implicit in-
centives generated by the strategies described above are more effective under
complementarity.
We will now provide a formal argument in the deterministic case.
We say that a technology p satisfies complementarity across tasks if for

every two sets of agents (coalitions) S, T with T ⊂ S and every agent i /∈
S we have p(S ∪ {i}) − p(S) > p(T ∪ {i}) − p(T ), i.e., i0s effort is more
effective the more the other agents exert effort. In contrast, we say that p
has substitutability across tasks if p(S∪{i})−p(S) · p(T ∪{i})−p(T ). Note
that that the example in Section 2 is one of complementarity. Specifically,
p(S) = α2−|S|.
Proposition 4: Suppose that the principal wants to implement full effort

as a Nash equilibriumwith undominated strategies. Then the following holds:
(1) If p satisfies complementarity across tasks, then the optimal mecha-

nism derived in Proposition 2 remains the optimal mechanism also within
this framework.
(2) If p satisfies substitutability across tasks, then the optimal incentive-

inducing mechanism is given by v∗i = c/[p(N) − p(N\{i})] and is identical
for all IIEs.
Proof: We first show (1). Consider the mechanism vi = c

p(N)−p(N\[C(i,k)∪{i}])

2In the sequential game this strategy profile also forms a subgame perfect equilibrium.
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as defined in the proof of Proposition 2. Let us denote by si the equilibrium
strategy of agent i by which he shirks if and only if he detects at least one
of his peers shirking. We have already seen that a profile of these strategies
forms a Nash equilibrium in the underlying game for any technology p and,
in particular, for ones that satisfy complementarity across tasks. We thus
need to show that this strategy in not weakly dominated. Consider a differ-
ent strategy s0i. Assume that this strategy instructs agent i to exert effort
under some scenario in which he observed one of his peers shirking. Let R
be the set of agents that i observes shirking under such a scenario. Assume
a strategy profile for N\{i} in which all agents other than those in R use
the strategy by which they shirk if and only if observing at least some other
agent shirking. Denote by R∗ = {j ∈ N |j t(k) m for some m ∈ R}; i.e.,
R∗ is the set of agents that see someone that sees someone ... that is in R.
Hence the shirking of the agents in R will trigger all the agents in R∗ to
shirk even if i himself is exerting effort. The expected payoff of agent i in
this case will be vip(N\R∗) − c. On the other hand, if i shirks his payoff is
vip((N\R∗)\(C(i, k)∪ {i})) (i.e., in addition to R∗ the coalition C(i, k)∪ {i}
will also shirk). At this stage we need a bit of set theory algebra:
Lemma: If p satisfies complementarity across tasks, then for any two

non-empty coalitions of agentsR,C ⊂ N we have p(N)−p(N\C) > p(N\R)−
p((N\R)\C).
Proof: We first note that if p satisfies complementarity, then the in-

equalities defining it also apply to coalitions, i.e., for any two coalitions S, T
with T ⊂ S and a coalition Q with Q ∩ S = ∅ we have
p(S ∪Q)− p(S) > p(T ∪Q)− p(T ) (**).
This is proved by induction on the number of members in Q using the

definition of complementarity agent by agent. Let now T = (N\R)\C, S =
N\C and Q = C. Because C 6= R we have T ⊂ S and we can use (**) to
establish the claim of the lemma.
By the lemma above we conclude that p(N) − p(N\[C(i, k) ∪ {i}]) >

p(N\R∗)−p((N\R∗)\(C(i, k)∪{i})) (i.e., setting R = R∗ and C = C(i, k)∪
{i}) and thus vip((N\R∗)\(C(i, k)∪{i})) > vip(N\R∗)−c. Hence no strategy
of the type s0i weakly dominates the strategy si. Clearly, the strategy by
which i is instructed to shirk when observing no agent shirking does not
weakly dominate si as well. This is because for any arbitrary increase of i0s
payoff he is better off investing (because he is indifferent between shirking and
investing when he is paid vi he is strictly better off investing when promised
more). With this we conclude that the profile in which each player is using
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si forms a Nash equilibrium with undominated strategies.
To show (2), assume that p satisfies substitution across tasks. For each

agent i let v∗i = c/[p(N) − p(N\{i})]. We argue that v∗i is the optimal
incentive- inducing mechanism regardless of the information structure about
peers’ efforts. Indeed, consider the strategy combination in which each agent
exerts effort regardless of the information that he/she observes about other
agents’ effort. We argue that if agents rewards are given by v∗i then this
strategy profile is a Nash equilibrium with undominated strategies regardless
of the information structure under which the game is played. To see that it is
an equilibrium note that under v∗i each agent is indifferent between exerting
effort and shirking given that all the other players are investing (i.e., v∗i solves
vp(N) − c = vp(N\{i})). We now argue that the strategy described above
is weakly undominated. For this it is enough to argue that under the above
mechanism the best response to observing some agents shirking is to exert
effort. Indeed, for any set S of shirking agents i0s expected payoff when
he exerts effort is v∗i p((N\S) ∪ {i}) − c and is v

∗
i p(N\S) when he shirks.

But since p satisfies substitution across tasks we have p(N) − p(N\{i}) ·
p((N\S) ∪ {i}) − p(N\S) and i is better off exerting effort. Finally, we
note that the mechanism v∗i is optimal. Consider some agent i and assume
a different mechanism that pays v0i < v∗i to player i. Suppose by way of
contradiction that an equilibrium exists in the corresponding game with all
players exerting effort. It must be the case that this equilibrium specifies
that each player exerts effort if he encounters no shirking. Otherwise, along
the equilibrium path there will be at least one agent shirking. But because
all agents are indifferent between investing and shirking under v∗i , they will
be induced to shirk under v0i. Q.E.D.
We note here that the equilibrium by which effort is implemented under

the mechanisms of Proposition 4 is also perfect Bayesian in the extensive
form game. Given what an agent observed transpire before making his effort
decision the specified action is optimal for each of his information sets and
independenly of his beliefs about those agents whose actions are unobserv-
able.

7 Function-Based vs. Process-Based Teams

The distinction between complementarity and substitution that we made
in Proposition 4 not only identifies the environments in which co-location
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is expected to be more effective, but it also has an important implication
for optimal structure of teams, i.e., which agents should be located together?
While our model suggests that, from the point of view of incentives, the more
peer information the better, there may be other managerial considerations
that favor keeping teams small. This brings us to the issue of how to design
teams optimally given a size constraint. We shall consider an environment
in which there are several products each of which is produced through a
process in which different agents ressume different functions. In a function-
based team all agents perform the same function on different products. A
process-based team involves agents dealing with the entire process of a single
product, each agent assuming a different function. Suppose for example that
a project involves the preparation of nine turkey sandwiches each of which
has to undergo a process of cutting the bread, spreading the mayonnaise, and
slicing the turkey. There are nine workers of which three are bread cutters,
three are mayonnaise spreaders, and three are turkey slicers. A process-
based structure will have three teams each consisting of one bread cutter,
one mayonnaise spreader, and one turkey slicer. A function-based structure
will again have three teams one consisting of all the bread cutters, one of
only mayonnaise spreaders, and one of only turkey slicers.
Our objective in this section is to argue that incentive considerations

should favor the process-based structure to the function-based one.
The intuition is roughly as follows: Agents who assume different func-

tions within the production of the same product are involved in tasks that
are complementary, whereas the relation between agents performing the same
function is that of substitution. As we argued earlier with sequential rational-
ity, agents with complementarity can generate implicit incentives when pos-
sessing information about peer effort, while agents with substitution cannot.
This means that in utilizing the implicit incentives optimally the principal
should co-locate agents among which there is complementarity.
We will now provide a formal argument to our intuition above, which, for

simplicity, will be presented in the framework of two-function, two-product
organizations. We first need to set up the properties of complementarity and
substitution as a binary relation among agents. This may be achieved in a
couple of definitions.
We say that agents i and j are complementary with respect to the tech-

nology p if the investment of each of these agents is more effective when
the other agent invests than when he does not. Formally: For each coali-
tion of agents S such that i, j /∈ S we have p(S ∪ {i, j}) − p(S ∪ {j}) >
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p(S∪{i})−p(S).We say that agents i and j are substitutable if each agent’s
investment (weakly) decreases the marginal contribution of the other agent,
i.e., p(S ∪ {i, j})− p(S ∪ {j}) · p(S ∪ {i})− p(S).3

Consider now the following four-agent organization involving the produc-
tion of two products A and B. The production of each product involves a
two-stage process: an upstream stage and a downstream stage. Each agent
is in charge of one production stage of one of the products. We denote by
ad, au, bd, bu the four agents according to the tasks they are in charge of (i.e.,
ad is in charge of the downstream task of product A, etc.). We assume that
there exists complementarity across different stages of the same product and
substitution across different products at the same stage. Specifically, there
exists complementarity between ad and au as well as between bd and bu,
whereas ad and bd are substitutes and so are au and bu. An example of a
technology satisfying these conditions can be given as follows: Assume that
each stage of production succeeds with probability α if effort is not exerted
and with probability β with β > α if effort is exerted. Each product succeeds
if and only if the two stages of its production end successfully. Define now
the project’s goal to be the successful production of at least one of the two
goods. The resulting technology p satisfies precisely the conditions imposed
above.
Suppose now that teams are constrained to contain no more than two

agents. The process-based structure involves two teams {ad, au} and {bd, bu},
while the teams in the function-based structure are {ad, bd} and {au, bu}.
To introduce the effect of co-location on agents’ information about peers’
effort we assume that in both structures and in each of the teams one agent
observes the action of the other agent in his team before performing his own
(i.e., an a-type acts before a b-type, and a d-type before a u-type). No effort
information is revealed between the teams. We can now assert the following:
Proposition 5: Suppose that the principal wants to sustain full effort as

a Nash equilibrium with undominated strategies. Then the optimal mecha-
nism in the process-based structure costs less than the optimal mechanism
in the function-based structure.
Lemma 1: The optimal mechanism under the process-based structure

pays the four agents the following rewards: ad : c
p(N)−p(bd,bu) , au :

c
p(N)−p(ad,bd,bu) ,

bd :
c

p(N)−p(as,au) , bu :
c

p(N)−p(ad,bd,au) .

3See Segal (2003) who discusses similar properties to study integration among agents
in a cooperative game using a Shapley value framework.
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Lemma 2: The optimal mechanism under the function-based struc-
ture pays the four agents the following rewards: ad : c

p(N)−p(bd,au,bu) , au :
c

p(N)−p(ad,bd,bu) , bd :
c

p(N)−p(ad,au,bu) , bu :
c

p(N)−p(ad,bd,au)
Proof of Lemma 1: Consider the following strategy profile in the game

induced by the process-based structure: Players ad and bd exert effort, and
player xu exerts effort if and only if player xd exerts effort, where x ∈ {a, b}.
We first argue that this strategy profile is an equilibrium with undominated
strategies. Assume first that ad exerts effort. Then under this profile player
au gets p(N)vau − c if he invests and p(ad, bd, bu)vau if he shirks (where vau is
the reward specified in the lemma). Hence au is indifferent between his two
actions when ad invests. We now show that it is optimal for au to shirk if ad
shirks. If au invests after ad shirks he receives p(au, bd, bu)vau − c and he gets
p(bd, bu)vau if he shirks. But because au and ad are complementary we have
p(N)−p(ad, bd, bu) > p(au, bd, bu)−p(bd, bu) and therefore p(au, bd, bu)vau−c <
p(bd, bu)vau. This implies that au is better off shirking. The same claims
established above apply also with respect to bd and bu. To verify that the
proposed strategy profile specifies optimal action for ad and bd we note that
if, say, ad shirks then au will shirk as well and the expected payoff for au is
p(bd, bu)vad, which is identical to p(N)vad−c; hence it is optimal for ad to exert
effort and also for bd to do so. We conclude that the strategy profile describe
above specifies optimal behavior for all agents both on and off the equilibrium
path, and is therefore an equilibrium with undominated strategies. To verify
that the rewards specified in the proposition are optimal consider a different
reward vector for which some agent gets less and consider a strategy profile
in which all agents exert effort. It is easy to see that such a profile cannot
be an equilibrium. For d-type agents this is straightforward because they
are already indifferent between shirking and investing under the rewards
specified in the lemma. For u-type agents the argument is as follows. First,
the strategy profile specified above cannot be an equilibrium because of the
indifference. So consider for example the strategy for au in which he exerts
effort regardless of the action taken by ad. It can easily be shown that
this strategy cannot be part of an equilibrium because of complementarity
(we have shown that under the reward specified in lemma 1 au is better
off shirking if ad shirks- all the more so for a lower reward). Hence, there
exists no equilibrium in which all agents invest under the alternative reward
scheme. Q.E.D.
Proof of Lemma 2: Consider the following strategy profile in the game

induced by the function-based structure: All agents exert effort regardless of
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the information they obtain about the others. It is easy to show that given
the rewards specified in Lemma 2 each agent is indifferent between exerting
effort and shirking given that the rest are exerting effort. Hence the strategy
profile above is an equilibrium. To show that the profile specifies optimal
action also off the equilibrium path we note that each agent who observes
his peer shirking is weakly better off investing than shirking. Consider agent
au who observed ad shirking. If au invests his payoff is p(au, bd, bu)vau −
c and it is p(bd, bu)vau if he shirks. But because of substitution we have
p(N)− p(ad, bd, bu) · p(au, bd, bu)− p(bd, bu) and hence p(au, bd, bu)vau − c ≥
p(bd, bu)vau, which establishes the claim. Showing that this mechanism is
optimal is proved similarly as in Lemma 1. Q.E.D.
Proof of Proposition 5: Let v1 and v2 be the total reward paid by the

principal under Lemmas 1 and 2 respectively. Then v1 − v2 = c
p(N)−p(bd,bu) +

c
p(N)−p(as,au)−

c
p(N)−p(ad,bd,bu)−

c
p(N)−p(ad,au,bu) . But because of strict monotonic-

ity of p we have p(N)−p(bd, bu) > p(N)−p(ad, bd, bu) and p(N)−p(as, au) >
p(N)−p(ad, au, bu) or c

p(N)−p(bd,bu) <
c

p(N)−p(ad,bd,bu) and
c

p(N)−p(as,au) <
c

p(N)−p(ad,au,bu) ,
implying that v1 − v2 < 0. Hence the optimal mechanism for the process-
based structure is less expensive. Q.E.D.

8 Discussion

The purpose of this paper is to study in isolation the role peer information
plays in providing incentives in organizations. In almost any organization,
with or without co-location, agents are exposed to some information about
their peers’ effort. Our main finding is that the more dispersed this informa-
tion, the easier it is to provide incentives. Co-location and teaming is one way
in which a better dispersion of this information can be achieved . Needless to
say, teams are not created for this sole purpose; they have other advantages
which may even be more prominent such as facilitating coordination between
agents and allowing them to learn from each other.
The role of peer information in teams is particularly important in envi-

ronments in which: (1) peers can easily monitor each other and are better
informed about each other’s effort than the principal is, and (2) agents’ tasks
involve complementarities. Environments in which agents work on profession-
ally similar tasks and for which the project’s output depends on the success
of the weakest link seem to have both these features. Software development,
R&D projects, and large architecture or engineering projects are some of the
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relevant examples. Further empirical studies into the functioning of these
types of environments are likely to shed additional light on the role of peer
information in providing incentives.

9 Appendix

Proposition: For every strategy profile s = (s1, ..., sn) the set M(s) is well
defined and unique.
Proof: Define by ki = {j ∈ N |j k i}, i.e., the set of agents seeing i.

We say that a player is a core player with respect to k if ki is empty. Since
k is acyclic it has a non-empty core and we denote it by C(N). Given the
strategy profile s, actions are uniquely determined for all players in the core.
Consider now the binary relation k restricted to the set of players N\C(N).
This binary relation is again acyclic and has a non-empty core which we
denote by C(N\C(N)). Any player j in C(N\C(N)) is informed only about
actions taken by players in C(N). Hence, given that the actions taken by
players in C(N) are well defined and unique, so are the actions of players in
C(N\C(N)). We can now proceed by induction. At each stage we eliminate
players for which the actions have already been determined and we remain
with an acyclic graph on the remaining players, which has a non-empty core.
The process terminates when no players are left, at which stage we attain
the vector of actions consistent with the profile s, andM(s) is simply the set
of players who choose to exert effort. Q.E.D.
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