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Abstract

We consider a class of games in which players with private information
are motivated to differ in their actions. Two related questions are studied:
(1) the existence of a “collision-free” equilibrium, in which no two players
choose the same action; (2) the maximal social welfare. We give exact
answers for some specific information structures, and a lower bound for
the general case.

Keywords: differentiation, incomplete information, partitions, collisions, social
payoff.
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1 Introduction

In many situations players might be better off by taking different actions than
the other players. For instance, if two store owners sell the same kind of prod-
ucts, then while each wishes to choose a good location for setting her business,
both of them also prefer to have their stores in two different neighborhoods.
Similarly, scientists wish to work on “good” scientific questions, and may also
prefer not to work on the same questions as others (see, e.g., Chen et al. (2015).

Our paper analyzes situations characterized by such a motivation of the
players to differ in their actions, and yet make good choices. While the equilibria
of such games may be relatively simple when players are fully informed, the
analysis becomes more involved when players have asymmetric information,
which is the case we consider. We give sufficient conditions for the existence of a
“collision-free” equilibrium (i.e., where all players choose different actions), and
we further study the highest social welfare that can be achieved in equilibrium.1

We describe the incomplete information games using the knowledge parti-
tions model of Aumann (1976). In our model, there is a given set Ω of choices
available to the players (let us call these choices “locations”). One of these
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1In fact, the restriction to equilibria turns out to be inconsequential in this sense, see below.
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locations contains a prize. If more than one player chooses the location that
contains the prize, the prize is equally shared among the players who “found”
it. Ex-ante, the common prior of the players is that the prize may be in any of
the locations with equal probability. Each player is associated with a partition
of Ω, and her private information consists of the element of her partition that
contains the actual location of the prize (“the real state of the world”). Thus,
each player knows that the prize is located in a subset of Ω, but that subset
may differ from one player to another.

A strategy of a player consists of choosing, for each subset in her partition,
a location within that subset. Since the prior probability is uniform over Ω, her
posterior (i.e., after being informed of the subset) is uniform over that subset.
Thus, if there were no other players, all strategies would have been equal.

A player can only be harmed by the presence of other players, since she
may have to share the prize with them. Now, if a profile of strategies ensures
that such collisions never occur, then this profile gives each player her maximal
expected payoff, and therefore: (a) it is an equilibrium; (b) it yields the optimal
(expected) social payoff.

In Section 3.1 we show that in any differentiation game, even in those games
where collisions cannot be avoided, the optimal social payoff is always sup-
ported by some (pure) equilibrium.2 This serves as motivation to study not
only collision-freeness, but the optimal social payoff in general.

The finer the partitions of the players, the higher the social payoff. Of
course, fine partitions also increase the chances of collisions. In Section 3.2 we
give a few sufficient conditions on the size of the elements of the partitions that
either guarantee that the game is collision-free or guarantee that the prize will
be found. A special case is where the size of all elements of each of the n players
is n: in this case the game is collision-free, and the prize is always found.

These results are in fact special cases of our main theorem (Theorem 3.6),
which gives a lower bound for the optimal social payoff. First, note that had
there been a geometry underlying the partitions of the players, we could have
said, as a rule of thumb, that within “areas” in which information is abundant
(i.e., partitions are fine) the chances of finding the prize are high, and within
areas in which information is scarce the chances are low (and also collisions
are easier to avoid). But such a geometry need not exist, since we consider
arbitrary partitions. However, we define a “local” property of states (the index
of a state), by which we can identify some parts of the world within which the
prize is going to be found, and parts within which collisions can be avoided.

In Section 3.4 we consider the special case of independent signals. Then any
non-degenerate game is collision-free.

Differentiation games bare only a remote similarity to Congestion Games
(Rosenthal, 1973), which are complete information games in which each player

2As a simple example, suppose there are two players and let Ω = {a, b, c}. Player 1’s
partition is {{a} , {b, c}} and her strategy chooses a from the first element and b from the
second. Player 2’s partition is {{a, b} , {c}} and she chooses b from the first element and c
from the second. Although the players will have to share the prize if it lies in b, this is an
equilibrium, and it is of course socially optimal, since it guarantees that the prize is found.

2



chooses a set of items to use, and players may prefer less loaded items. The
scenario of privately informed scientists who choose projects is studied by Chen
et al. (2015). They consider mechanism designs that allow the players to co-
operate, i.e., share information. Kleinberg and Oren (2011) study mechanisms
for allocating the credit for research by scientists.

Some popular puzzles about information and hats are in fact differentiation
games, see Section 4.

In Section 2 we define the model, and in Section 3 we present the results
and a few examples. Section 4 contains some further remarks, and Section 5
contains the proofs.

2 Model

Let N be a set of players, |N | = n, and let Ω be a finite set of locations. A
“treasure” worth $1 is hidden in one of the locations. The private information
of the players is represented by partitions (see, e.g., Aumann (1976)): for each
player i there is a partition Ki of Ω, namely a list of disjoint subsets of Ω whose
union is the whole space Ω. When the true state of the world (i.e., the location
of the treasure) is ω ∈ Ω, player i knows3 Pi(ω) (i’s “ken”), which is the element
of her partition that includes ω.4 The common prior belief of all players about
the state of the world is a uniform distribution over Ω.

Each player makes a guess about the location of the treasure, and thus
her set of actions is Ω. Therefore, a pure strategy for player i is a function
fi : Ki → Ω from i’s kens to states, and w.l.o.g. we assume that for every
k ∈ Ki, fi(k) ∈ k (player i knows that the true state is within k, and would be
foolish to choose anything outside k). Similarly, a mixed strategy for player i is
a function fi : Ki → ∆(Ω) from i’s kens to probability distributions over states,
where for every k ∈ Ki, fi(k) ∈ ∆(k). The payoff for a player who found the
treasure is 1/m, where m is the number of players who found the treasure, and
zero if she did not find it.

A profile of strategies f = (f1, . . . , fn) is an equilibrium if for any player i
and any ken k ∈ Ki, i’s expected payoff does not strictly increase by altering
fi(k), given that the other players play according to f−i.

For a profile of pure strategies f , we say that a state ω is covered if there
exists a player i and a ken k ∈ Ki such that fi(k) = ω. Note that it must then
be the case that k = Pi(ω). Therefore, when the state of the world is indeed
ω, player i will choose ω (and possibly other players may choose it as well).
The expected social payoff in this game, i.e., the expected sum of the players’
payoffs, equals the probability that the treasure will be found. By the above,
the social payoff equals the proportion of the covered states out of the whole
space Ω (and of course the social payoff can never be more than 1).

3I.e., i knows that the true state is one the states in Pi(ω), and that is all she knows.
4As is usual in these models, the partitions themselves are common knowledge among all

players.
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Since a pure strategy is a function from kens to states, the number of covered
states is bounded by

∑
i∈N |Ki|. The actual number of covered states may be

much lower, depending on the information structure of all players. The above
bound can be achieved only if “collisions” can be avoided.

Definition 2.1. A profile of pure strategies f is collision-free if for any two
players i, j and any ki ∈ Ki, kj ∈ Kj , fi(ki) 6= fj(kj). A game is collision-free if
it admits a collision-free profile of strategies.

In general, a player may only lose from the presence of others, because of col-
lisions. Under a collision-free profile f each player has her best possible expected
payoff, as player i then covers |Ki| states, and expects |Ki| / |Ω|. Therefore, the
optimal social payoff is also achieved under f , and f is also an equilibrium. We
denote by xi the number of kens of i. More generally, for a subset E ⊂ Ω, xi(E)
denotes the number of kens of i that are included in E. Hence, xi = xi(Ω).

The following “local” definition will turn out to have implications for the
overall number of states that can be covered.

Definition 2.2. The index of ω, denoted i(ω), is defined by i(ω) =
∑

i∈N 1/ |Pi(ω)|.

In words, i(ω) is the sum of the probabilities that players relate, after learn-
ing their kens, to the state of the world being ω, when the real state is indeed
ω.

3 Results

3.1 Preliminary

The following proposition connects between equilibria and the optimal social
payoff.

Proposition 3.1. There exists a pure equilibrium in which the sum of expected
payoffs of all players equals the socially optimal payoff. We call such an equi-
librium a “socially optimal equilibrium”.

Thus, whenever we state that some level of social payoff can be achieved, it
implies that there exists a (pure) equilibrium that achieves it.

Not all equilibria are socially optimal. For example, consider the following
differentiation game. There are 2 players, Ω is a 2× 2 matrix. Let (i, j) denote
the location in row i and column j. Player I’s partition consists of the rows
(i.e., I’s partition is {{(1, 1), (1, 2)} , {(2, 1), (2, 2)}}) and player II’s partition
consists of the columns.

First, here is an equilibrium, depicted in Figure 1, that is socially optimal,
since it yields a social payoff of 1. f1(row 1) = (1, 1), f1(row 2) = (2, 2), and
f2(column 1) = (2, 1), f2(column 2) = (1, 2).

Now, the following pair of strategies is another equilibrium, that is not so-
cially optimal. f1(row 1) = (1, 1), f1(row 2) = (2, 1), and f2(column 1) = (1, 1),
f2(column 2) = (1, 2).
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Figure 1: Socially optimal equilibrium

3.2 Optimal equilibria

Note that the optimal social payoff never exceeds one. It equals one if and only
if the whole space can be covered. The following results identify some games in
which the optimal social payoff is found out, either by collision-freeness or by
covering the whole space.

The first result asserts that if there are enough players with enough knowl-
edge then the socially optimal payoff is one:

Proposition 3.2. If there are at least k players whose kens are at most of size
k, then the socially optimal payoff equals 1.

If the kens of all players are at least of size n there is no general simple
algorithm to find a profile of strategies that is collision-free. However, as the
following result asserts, such a profile of strategies does exist (and hence is also
a socially optimal equilibrium, as mentioned above).

Proposition 3.3. If all the kens of all players are at least of size n, then the
game is collision-free.

Another proposition is as follows:

Proposition 3.4. If each player has kens of uniform size, then the socially
optimal payoff equals min

{
1,
∑

i∈N 1/qi
}

, where qi is the size of i’s kens.

An interesting case is when all kens of all players are of size n.

Corollary 3.5. If all the kens of all players are exactly of size n, then the game
is collision-free and the socially optimal payoff equals 1.

3.3 Main Theorem

In the previous section we considered games in which the information structures
took some “restrained” forms. The following theorem generalizes the previous
ideas to general games. It uses the “local” index property (Definition 2.2) to
get a lower bound on the overall number of states that can be covered.

Theorem 3.6. The socially optimal payoff is at least
(
|ΩH |+

∑
i∈N xi(ΩL)

)
/ |Ω|,

where ΩL = {ω ∈ Ω|i(ω) ≤ 1} and ΩH = Ω \ ΩL.

A dual of this theorem, with < in the definition of ΩL, also holds, with the
same proof.
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3.4 Independent signals

Here we consider the special case of differentiation games in which the signals
(i.e., the kens) of all the players are independent (as random variables). We will
see that in this case the game is collision-free, unless it has a very small state
space.

Since the real state of the world ω is a random variable, so are the kens of
the players P1(ω), . . . , Pn(ω). Let us now suppose that they are independent.
Since the common prior is uniform, this is equivalent to assuming that for any
tuple k1, . . . , kn where each kj ∈ Kj is some possible ken of player j, and for
any player i,

|∩j 6=ikj | ·
|ki|
|Ω|

= |∩ni=1ki| . (1)

An example of independent signals is when the state of the world is a vector
of n coordinates, and each player i knows the i-th coordinate. But a game with
independent signals need not have this form.

Proposition 3.7. If the signals are independent then exactly min {|Ω| ,
∑n

i=1 xi}
states can be covered.

Independent signals have the property that any tuple of kens k1, . . . , kn
(kj ∈ Kj) has a nonempty intersection, as this follows from (1). The above
proposition holds, in fact, not just for the case of independent signals, but for
any game with this property.

Lemma 3.8. If any tuple of kens k1, . . . , kn (kj ∈ Kj) has a nonempty inter-
section, then exactly min {|Ω| ,

∑n
i=1 xi} states can be covered.

4 Concluding Remarks

We analyzed a Bayesian game in which players are motivated to differentiate.
Our analysis focused on two questions with respect to equilibria in the game:
first, what is the maximal social welfare that players can get in equilibrium.
Second, whether or not there is a collision free equilibrium.

Following Aumann (1976) we assumed that “kens” of players are elements
of partitions where the partitions themselves are common knowledge. A nat-
ural extension is to assume other structures of knowledge. The most general
structure of knowledge that one can think of is the case were signals of players
are any subsets of Ω rather than elements of common-known partitions of Ω.
However, this assumption is too general as it is easy to see that in this case, even
with two players and |Ω| = 3 there is no collision-free equilibrium. However,
a collision-free equilibrium does exist if we assumed that players do not know
much about the world, i.e., the size of their kens is greater than a lower bound
L. In this case we have the following result.

Proposition 4.1. A collision-free equilibrium exists if and only if

L ≥ n− 1

n
|Ω|+ 1, (2)
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where n is the number of players. The proof of the proposition is relegated
to the appendix.

Interestingly, some popular puzzles can be viewed as treasure finding games.
One of those puzzles can be described as follows. n agents are wearing hats
which can be of n different colors (each hat has one color; there can be multiple
hats with the same color). Each agent can see the colors of all hats except his
own. The agents must simultaneously call out a color; they win if at least one
agent calls the color of his own hat. They can agree on a strategy beforehand;
the set of possible colors is known. The question is whether there is a winning
strategy. In our terms, “locations” are n-dimension vectors of colors, where Ω
contains all such locations. Each player has a partition with nn−1 elements, and
the size of each element is n ( the number of possible colors of his hat). The
treasure is located in the true vector of colors. Obviously, if there is a collision-
free equilibrium then the answer to the puzzle is affirmative as they agree on
the collision-free equilibrium strategies. Indeed, it follows from corollary 3.5
that there is a collision-free equilibrium. It is easy to see that the information
of players is independent in the sense of Gossner, Kalai and Weber (2009). For
such information structure a collision-free profile of strategies can be described
explicitly.5

5 Proofs

It will be useful to recall Hall’s Marriage theorem.

Halls marriage theorem. Assume that each woman in W has a set of men
which is a subset of M that she likes. A matching between women and men
that they like exists if and only if, for every subset X ⊆ W of women, the set
of men Y ⊆M liked by women in X is at least as big as X.

Proof of Proposition 3.1. The idea: we should choose among the socially
optimal settings one that is also an equilibrium, i.e., no player can move from
a crowded state to a less crowded one. This is a “minimal” object, and it
exists because after a few iterations we will reduce all the inequality that can
be reduced.

Proof of Theorem 3.6. The proof relies on the following two lemmata. The
first lemma states that areas with high index can be fully covered.

5For instance, in the puzzle, players can agree on the following strategy. The set of players
and the set of colors are indexed (separately) arbitrarily by numbers between zero to n− 1, a
different index for each element. The “guess” of a player number i is a color that makes the
sum of the colors of all players’ hats, including the color of i’s hat, equal i mod n. It is easy
to see that this strategy solves the puzzle. Many puzzles of this kind may be found on web
and in severl books. One of these books that we find especially interesting is Winkler (2004).
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Lemma 5.1. Let E ⊂ Ω. If for any ω ∈ E, i(ω) ≥ 1, then E can be covered.

(Of course, this means that E is covered by the kens that intersect E, as we
assumed that you never choose anything unless it is in your ken, hence other
kens will not go into E).

If Ω is covered then the treasure will be found for sure and therefore the
optimal social payoff equals 1.

The second lemma states, roughly, that within an area with low index colli-
sions can be avoided.

Lemma 5.2. Let E ⊂ Ω. If for any ω ∈ E, i(ω) ≤ 1, then there exists a profile
of strategies under which the kens contained in E do not collide.

To prove the theorem, let K be the set of all the kens of all the players, and
let F ⊂ K be the kens that are contained in ΩL. ∪F ⊂ ΩL denotes the union
over all the members of F . By Lemma 5.2 we can cover |∪F| =

∑
i∈N xi(ΩL)

points in ΩL by the kens in F . The remaining kens are exactly those that
intersect ΩH , and by Lemma 5.1 these kens can cover all the points in ΩH .

Proof of Lemma 5.1. We will show that for any subset F ⊂ E, the number
of kens that intersect F is ≥ |F |. By Hall’s marriage theorem it then follows
that for any ω ∈ E, we can choose a ken that intersects it and no ken is used
twice, as required.

Let Ki denote the kens of player i, and K = ∪i∈NKi be all the kens. For F
as above,

|F | =
∑
ω∈F

1 ≤
∑
ω∈F

i(ω) =
∑
i∈N

∑
ω∈F

1/ |Pi(ω)| =
∑
i∈N

∑
K∈Ki

|K ∩ F | / |K| ,

because the contribution by K ∈ Ki to the sum
∑

ω∈F 1/ |Pi(ω)| is 1/ |K| for
those ω where K = Pi(ω), and 0 for other ω; thus, it contributes exactly |K ∩ F |
times. Now, this is∑

i∈N

∑
K∈Ki

1 {K ∩ F 6= ∅} =
∑
K∈K

1 {K ∩ F 6= ∅} = |{K ∈ K : K ∩ F 6= ∅}| ,

where 1 denotes the indicator function, i.e., 1V = 1 where the event V occurs,
and 0 elsewhere.

Proof of Lemma 5.2. Let F denote the set of all kens that are contained in
E. We want to show that there exists a selection of distinct representatives of
F , i.e., there exists a function g : F → ∪F that is injective and s.t. for any
f ∈ F , g(f) ∈ f .

Let Q ⊂ F be any subset of F .

|Q| =
∑
q∈Q

1 =
∑
q∈Q

∑
ω∈q

1/ |q|
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By changing the order of summation

=
∑

ω∈∪Q

∑
q∈Q:w∈q

1/ |q|

For any ω ∈ Ω, the set of all kens (in K) that include ω is {Pi(ω)}. Since Q ⊂ K,
{q ∈ Q : w ∈ q} ⊂ {Pi(ω)}. Therefore,

∑
q∈Q:w∈Q 1/ |q| ≤

∑
i∈N 1/Pi(ω) =

i(ω). Thus,

≤
∑

ω∈∪Q
i(ω) ≤

∑
ω∈∪Q

1 = |∪Q| .

Thus, we got that for any Q ⊂ F , |Q| ≤ |∪Q|. By Hall’s theorem, this ensures
the existence of a function g as above.

Proof of Propositions 3.2, 3.3, and 3.4. (i) The corollary follows from
Theorem 3.6: by assumption for all ω, i(ω) ≥ 1 and therefore Ω can be covered,
implying that the optimal social payoff equals 1.

(ii) To see that, note that if all the kens of all players are at least of size n
then in terms of Theorem 3.6 ΩL ≡ Ω. Therefore the number of covered places
is the total number of kens. Hence, the equilibrium is collision free.

(iii) To see that, the index of any ω ∈ Ω is constant and equals
∑

i∈N 1/ki.
If this sum is greater than one, than ΩH = Ω and therefore the corollary follows
from Theorem 3.6. If is is smaller than one then ΩL = Ω. In this case ki = xi/|Ω|
and therefore the corollary is a result of Theorem 3.6.

Proof of Proposition 4.1. In the first direction, assume that there is a collision-
free equilibrium and we have to show that L ≥ (n − 1)/n|Ω| + 1. This claim
follows from the idea that the minimal number of different locations that might
be chosen by an equilibrium strategy of a player is |Ω| − L + 1. To see that,
assume w.l.o.g. that f1({ω1, ω2, ...ωL}) = ω1. If we replace ω1 by ωL+1 in the
set {ω1, ω2, ...ωL}, the strategy should choose another location which is not ω1.
We can repeat on this action of replacing the representative (as chosen by the
strategy) by a new location until we finish all locations in Ω. This procedure
gives us |Ω|−L+ 1 different locations that were chosen by the strategy. Denote
this set by li. In order to avoid collision, the intersection between li and lj for
all i, j should be empty. Therefore, n[|Ω| − L + 1] ≤ |Ω| should be satisfied,
implying the desired result.

In the opposite direction, we have to show that if L satisfies the condition,
there is a collision-free equilibrium. We do it by showing a profile of strategies
of such equilibrium. Recall that a strategy is basically a function that chooses a
representative of any possible ken. Define n sets of representatives from the size
bΩ/nc, one for each player. Since any ken is of size greater than L, any ken of any
player contains at least one location of the player’s set of representatives. Now
index each player’s set of representative. The strategy for player i is defined by
f(S) = ωk where ωk is the highest indexed location in the set of representatives
of player i that is contained in S.
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Proof of Lemma 3.8. TBD.
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