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Abstract
People reason about real-estate prices both in terms of general rules

and in terms of analogies to similar cases. We propose to empirically
test which mode of reasoning fits the data better. To this end, we de-
velop the statistical techniques required for the estimation of the case-
based model. It is hypothesized that case-based reasoning will have
relatively more explanatory power in databases of rental apartments,
whereas rule-based reasoning will have a relative advantage in sales
data. We motivate this hypothesis on theoretical grounds, and find
empirical support for it by comparing the two statistical techniques
(rule-based and case-based) on two databases (rentals and sales).

1 Introduction

1.1 Motivation and Hypothesis

How do people assess real estate prices? Casual observation suggests that two

modes of reasoning are very common in generating such assessments. The
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first relies on general rules, such as, “In this area, the price per squared meter

is $3,000”. The second is case-based, as in the argument, ”The apartment

next door, practically identical to mine, was just sold for $300,000”. Indeed,

in the US the standard assessment procedure involves two assessments, one

that is rule-based and another that is case-based.

It seems safe to assume that, for the most part, both types of reasoning

are present when a person attempts to assess the market price of a given

real-estate asset. The question we wish to address is whether one can make

any qualitative predictions regarding the relative importance of rule-based

versus case-based reasoning. Specifically, do people think differently about

apartments for sale and apartments for rent?

We hypothesized that the answer would be in the affirmative. The reason

is as follows. A rental apartment is a pure consumption good. When one is

asked to assess the market price of such an apartment one may be using both

case-based and rule-based reasoning. Let us take this mix as a benchmark,

and ask how would the reasoning change if the apartment were for sale.

An apartment for sale is partly a consumption good, and partly an invest-

ment. Its value, should one wish to re-sell it, is determined by the market. It

follows that a person who considers buying an apartment needs to worry not

only about how much the apartment is worth to her, but also how much it

is worth to others. The purchase of apartment becomes a coordination game

of sorts: to a large extent, an apartment is worth what people think it is

worth, namely, whatever price the market coordinates on. Assessing the rent

of an apartment does not have this coordination aspect, unless one intends

to sublet the apartment.

We maintain that rule-based pricing is easier for the market to coordi-

nate on than is case-based pricing. The reason is that rules are simple to

state and to transmit, whereas cases are numerous and difficult to convey.

To illustrate this point, imagine that an experienced real-estate agent wishes

to transfer her knowledge to a young colleague. If this knowledge takes the

2



form of a rule, it will generally be succinct and easily stated. If, however,

the expert’s knowledge is case-based, it is necessary to convey the expert’s

similarity function, but also the entire database of cases that she uses for

generating assessments. It follows that rules, which are by nature succinct

and easy to describe, are easier to coordinate on than are cases. We there-

fore hypothesize that case-based reasoning will have a relative advantage

in explaining rental data, whereas rule-based reasoning will have a relative

advantage in explaining sales data.

1.2 Methodology

We analyze two databases of asking prices on apartments in the greater Tel-

Aviv area: one consists of apartments for rent, and the other — for sale. We

contrast the simplest possible models of rule-based and of case-based reason-

ing. Rule-based reasoning is represented by hedonic regression (see Rosen

(1974)), where the asking price is regressed linearly on certain characteristics

of the apartment such as its size, number of rooms, floor, etc. If we denote

the asking price in observation i by Yi and the vector of characteristics — by

Xi = (X
1
i , ...,X

m
i ), we estimate the regression

Yi = β0 + β1X
1
i + ...+ βmX

m
i + εi (1)

How should we model case-based assessments, and how should we esti-

mate such a model? Gilboa, Lieberman, and Schmeidler (2004) axiomatize

an assessment rule that is based on a similarity function s : Rm×Rm → R++.
Given such a function s, n observations (X1

i , ..., X
m
i , Yi) for i = 1, ..., n, and

a new apartment with characteristics Xn+1 = (X
1
n+1, ...,X

m
n+1), they suggest

that Yn+1 be assessed by the similarity-weighted average of past Yi values.

More explicitly,

Yn+1 =

P
i≤n s(Xi,Xn+1)YiP
i≤n s(Xi, Xn+1)

+ εn+1 (2)

where εi
i.i.d.∼ N(0, σ2).
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This formula should be interpreted as follows. Ms. A wants to sell her

apartment, with characteristics Xn+1 = (X
1
n+1, ...,X

m
n+1). She has to deter-

mine her asking price, Yn+1. She gets to observe the asking prices on other,

similar apartments, Yi, i = 1, ..., n. She evaluates the similarity between the

characteristics of her apartment, Xn+1, and the characteristics of each apart-

ment she has seen on the market, Xi. This similarity is s(Xi, Xn+1). Next,

Ms. A decides that a reasonable asking price for her apartment will be the

similarity-weighted average of the asking prices she has observed, where the

price Yi gets a weight proportional to the similarity of apartment i to apart-

ment n + 1. As usual, the error term εn+1 stands for various unobservable

variables, inherent uncertainty, and measurement errors.

Suppose that equation (2) models the way people determine asking prices.

We would now like to estimate the function s from the data, in a way that

parallels the estimation of the coefficients (βj)0≤j≤m in linear regression. To

this end, we would like to assume that an equation such as (2) governed the

process that generated (Yt)t≤n. However, the data we have are not ordered.

Therefore, in the estimation process we assume that each Yt is distributed

around the weighted average of all other values, (Yi)i6=t. Specifically,

Yt =

P
i6=t s(Xi,Xt)YiP
i6=t s(Xi, Xt)

+ εt for every t ≤ n (3)

Observe that we assume that the function s is the same for all individuals

who generated past data (Yt)t≤n. This assumption parallels the assumption

in equation (1), that the coefficients (βj)0≤j≤m are independent of i.
1

Estimating the function s from a given database is consistent with a

scenario in which all sellers have access to exactly the same database, which

is also the one we analyze. This would be the case if all sellers obtained

the same database that we have, and, more importantly, had no access to

asking prices of other sellers posted in other databases. This assumption is,

1Alternatively, one may view our approach as estimating a similarity function of a
representative agent, as axiomatized in Gilboa, Lieberman, and Schmeidler (2004).
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of course, not very realistic. Moreover, in reality we cannot expect to have

access to the actual database that each and every seller has. Hence, we take

the single database that we have as a proxy for the databases that each seller

had. Should our database be representative of the information that sellers

actually have, we might hope that the estimation process will be unbiased.

The equations (3) do not suffice to specify the values of (Yt)t≤n as a

function of (εt)t≤n. These equations can be solved to extract the differences

between any two Yt’s. But if (Yt)t≤n solve (3), so would (Yt+ λ)t≤n for every

λ ∈ R. We therefore add a parameter α to the model, which will stand for
the expected value of (Yt)t≤n. The resulting model is:

√
n
¡
Ȳn − α

¢
= ε1

where

Ȳn =
1

n

X
i≤n

Yi

and, for every 1 < t ≤ n,

Yt =

P
i6=t s(Xi,Xt)YiP
i6=t s(Xi,Xt)

+ εt (4)

In this paper we take a parametric approach to the estimation of the

function s in the system (4). The advantages of a parametric approach in

our case are threefold. First, a parametric approach simplifies the analysis.

Second, it serves as a reasonable counterpart to the parametric approach

of linear regression, and allows a comparison of two models with the same

number of unknown parameters. Finally, our parametric approach will also

allow us to test hypotheses about the significance of particular variables in

the similarity model (4), in a way that parallels the tests of significance in

the regression model (1).

Specifically, we are interested in similarity functions that depend on a

weighted Euclidean distance. Define, for a vector w ∈ Rm
++, the w-weighted
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Euclidean distance:

dw(x, x
0) =

sX
j≤m

wj(xj − x0j)2 (5)

This distance function allows different variables to have different impact on

the measure of “distance”. There are two reasons for which we resort to a

weighted Euclidean distance rather than, say, standard Euclidean distance.

First, the variables are on different scales. For instance a difference of 1

in “number of rooms” is quite different from a difference of 1 in “area in

square feet”. Second, even if the variables were normalized, a variable such as

“number of rooms” would probably be more influential than a variable such as

“the apartment has bars on its windows”. The weighted Euclidean distance

allows a wide range of distance functions, weighing the relative importance

of the variables involved.

Next, we wish to translate the distance function to a similarity function.

It is natural to assume that the similarity function is decreasing in the dis-

tance, and as the distance goes up from 0 to∞, the similarity function goes
down from 1 (maximal similarity) to 0. We define the similarity function by

sw(x, x
0) =

1

1 + dw(x, x0)
(6)

Plugging this function into the system (4) we obtain the parametric ver-

sion of our model, which we estimate. We will henceforth refer to (4) with

the additional specification s = sw.

Given estimators (β̂j)0≤j≤m of the parameters (βj)0≤j≤m in equation (1),

and estimators (ŵj)1≤j≤m of the parameters (wj)1≤j≤m in equation (4), we

can ask which model fits the data better, for each of the databases we analyze.

Observe that the two models have exactly the same number of parameters,

namely,m+2 (including σ2). We wish to compare the two models in terms of

their likelihood functions, as well as in terms of the out-of-sample predictions

generated by their maximum likelihood estimators. To this end we need
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to compute the likelihood function of (4). Maximization of this likelihood

function will provide an estimate of the weights (wj)1≤j≤m, and will also allow

us to test them for significance, in a way that parallels significance tests for

(βj)0≤j≤m in linear regression.

1.3 Related Literature

Hedonic regression has been a standard tool for studying real-estate pric-

ing for decades (see Rosen, 1974). Spatial methods have also been well-

established and widely used tools. (See Ord, 1975, Ripley 1981, 1988, Anselin,

1988, and Dubin, 1988.) A typical model would regress the price variable

on several hedonic variables, as well as on other price variables, in a manner

that bears mathematical resemblance to autocorrelation techniques. Specif-

ically, whereas in an autocorrelation model a variable Yt is regressed on its

past values Yt−1, Yt−2, ..., in spatial models real-estate properties that are ge-

ographically close are assumed to be interrelated. Recent models of this type

include Kim, Phipps, and Anselin (2003) and Brasington and Hite (2004),

who use the following model

ν = ρWν +Xβ +WXα+ ε, ε ∼ N
¡
0, σ2In

¢
(7)

where W is a fixed, known matrix.2 Thus, in this model, the price vector

ν depends on a weighted sum of itself, Wν. In this respect, our model (4)

resembles (7). However, in (7), the matrix W is assumed fixed, whereas we

derive it from a similarity function and estimate this function.

The regression model we use in this paper is a classical example of the

hedonic regression family. It is much simpler than spatial regression mod-

els such as (7). By contrast, our similarity model does not seem to have a

counterpart in the literature. It differs from spatial regression models in two

2The efficacy of purely hedonic and of spatial regression models has also been a topic
of study. (See Gao, Asami, and Chung, 2002.)
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important ways. First, as mentioned above, in our model the similarity ma-

trix is estimated empirically. Second, our model uses a similarity-weighted

average formula, rather than a linear formula, as the underlying data gener-

ating process.

Our goal in this paper is to compare two modes of reasoning, represented

by two statistical methodologies. To this end, we chose to use exactly the

same variables and the same number of parameters in each model. In doing

so, we also provided each model with equally low levels of preliminary rea-

soning or external information. It stands to reason that one may combine

the two models in a way that parallels the combination of rule-based and

case-based techniques in human reasoning, and thereby to obtain a better fit

for the data than either model can achieve on its own.

The paper is organized as follows. Section 2 develops the statistical the-

ory. It computes the likelihood function for the model (4), and develops tests

for the significance of weights (wj)1≤j≤m. Section 3 describes the data, the

analysis conducted, and the results. It also comments on some statistical

issues that arise in the interpretation of the results. Section 4 concludes with

final remarks.

2 Statistical Theory

2.1 The Likelihood function

Define

S = S (w) =


1/
√
n 1/

√
n ... 1/

√
n

− sw,2,1

i6=2 sw,2,i
1 − sw,2,n

i6=2 sw,2,i
... ...

− sw,n,1

i6=n sw,n,i
− sw,n,n−1

i 6=n sw,n,i
1

 .

The structural and reduced form models are

Sy =
√
nαe1 + ε
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and

y =
√
nαS−1e1 + S−1ε.

where ei is the i-th unit vector, y and ε are n×1 vectors, with ε ∼ N(0, σ2I).

Note that S1 =
√
ne1, where 1 is the n × 1 vector whose entries are all 1.

Hence S−1e1 = n−1/21, so that

y = α1 + S−1ε.

That is, the unconditional expectation of the y-vector is α.

Set

H =
S0S
σ2

.

The log-likelihood function is

l (θ) = −n
2
log (2π) +

1

2
log det (H)− 1

2
(y − α1)0H(y − α1).

Clearly, for any given (wj)1≤j≤m, the profile MLE of α is

α̂ = (10H1)−1 10Hy = Ȳn,

since 10S0 =
√
ne01.

Define

S0 = S0 (w) =


0 0 ... 0

− sw,2,1

i6=2 sw,2,i
1 − sw,2,n

i 6=2 sw,2,i
... ...

− sw,n,1

i6=n sw,n,i
· · · − sw,n,n−1

i6=n sw,n,i
1

 .

Now, Sy−√nȲne1 = S0y. The profile log-likelihood function is readily seen

to be

lP (w) = −n
2
[log (2π) + 1− log n]−n

2
log (y0S00 (w)S0 (w) y)+

1

2
log det (S0 (w)S (w)) .

It follows that the log-likelihood function will be maximized for (wj)1≤j≤m
that maximize

−n
2
log (y0S00 (w)S0 (w) y) +

1

2
log det (S0 (w)S (w)) .
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2.2 Inference

Set θ = (σ2, w1, . . . , wm, α). We know that

√
n
³
θ̂ − θ

´
d→ N

¡
0, IA (θ)−1

¢
,

where

IA (θ) = lim
1

n
I (θ) ,

and I (θ) is the Fisher information matrix, given by

I (θ) = −Eθ

µ
∂2l (θ)

∂θ∂θ0

¶
.

Now,

∂l (θ)

∂θr
=
1

2
tr
³
H−1Ḣr

´
− 1
2
(y − α1)0Ḣr(y − α1), r = 1, ...,m+ 1,

and

∂2l (θ)

∂θr∂θs
=
1

2
tr
³
−H−1ḢsH

−1Ḣr +H−1Ḧrs

´
−1
2
(y−α1)0Ḧrs(y−α1), r, s = 1, ...,m+1.

Hence,

Ir,s (θ) = −
·
1

2
tr
³
−H−1ḢsH

−1Ḣr +H−1Ḧrs

´
− 1
2
tr
³
H−1Ḧrs

´¸
=

1

2
tr
³
H−1ḢsH

−1Ḣr

´
, r, s = 1, ...,m+ 1.

Also,
∂l (θ)

∂α
= 10H(y − α1)

∂2l (θ)

∂α2
= −10H1 = − n

σ2

and
∂2l (θ)

∂α∂θr
= 10Ḣr(y − α1), r = 1, ...,m+ 1.
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The asymptotic information matrix is seen to be

IA (θ) =

Ã ³
lim 1

2n
tr
³
H−1ḢsH

−1Ḣr

´´
1≤r,s≤m+1

0

0 1
σ2

!
.

A more explicit calculation of IA (θ) will be given in the next sub-section.

To conduct a hypothesis test of the form

H0 : θr = 0 vs. H1 : θr > 0, r = 1, ...,m+ 1,

we need to use the statistic √
nθ̂r³

IA−1
³
θ̂
´´1/2

r,r

.

Since the limit is generally unknown we can replace IA
³
θ̂
´
by I

³
θ̂
´
/n and

use

t =

√
nθ̂rµ³

I
³
θ̂
´
/n
´−1¶1/2

r,r

=
θ̂rr³

I−1
³
θ̂
´´

r,r

. (8)

We reject H0 when t is large (e.g., when it exceeds 1.645, if a 5% significance

level is desired).

Note that √
n (α̂− α) ∼ N

¡
0, σ2

¢
in finite samples. The variance σ2 of

√
n (α̂− α) follows from the (m+ 2,m+ 2)-

th element of the inverse of IA (θ)−1.

For multiple linear hypotheses of the form

H0 : Rθ = r vs. H1 : Rθ 6= r,

where R is a q× (m+2) matrix consisting of q < (m+ 2) independent linear

hypotheses, we can use the Wald test, given by

W =
³
Rθ̂ − r

´0 h
RI−1

³
θ̂
´
R0
i−1 ³

Rθ̂ − r
´
.

The statistic is asymptotically distributed χ2 (q) under H0. We reject H0

when W is large.
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2.3 Calculation of IA (θ)

Some simplification of the calculation of IA (θ) results from the following.

Ḣ1 = − 1
σ2

H

from which follows that

IA1,1 =
1

2σ4
.

Also,

Ḣr =
Ṡ0rS + S0Ṡr

σ2
, r = 2, ...,m+ 1

implying that

1

2n
tr
³
H−1ḢrH

−1Ḣ1

´
= − 1

2nσ2
tr
³
H−1Ḣr

´
= − 1

2nσ2
tr

Ãµ
S0S
σ2

¶−1
Ṡ0rS + S0Ṡr

σ2

!
= − 1

nσ2
tr
³
S−1Ṡr

´
.

3 Data and Results

3.1 Data

We obtained two databases of apartments, one consisting of apartments for

sale, and one — for rent. Both databases are maintained by the Student

Association of Tel-Aviv University.3 Tel-Aviv University students have free

access to the databases, whereas non-students can obtain it for a fee. Any-

one may post an apartment in the appropriate database for a fee. Posting

an apartment is done by filling out a questionnaire over the phone, where

certain data are mandatory, and various verbal descriptions can be added as

comments. Each posting is paid for two months, but it is updated every two

weeks at most. At the end of a two-week cycle, the owner of the apartment is

3We thank the Student Association of Tel-Aviv University for the data.
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called and asked whether she wishes to keep the posting, and if so, whether

she would like to update the asking price. The database is therefore best

conceptualized as atemporal: the asking price of an early posting may be

updated in light of newer asking prices that were posted later on. This is

reflected in the seemingly circular nature of the system (4).

The two databases were sampled at the same time, early August 2003.

The rental database contained about 2000 entries, whereas the sales database

— about 300. This size difference is typical because the students, who have

free access to the databases, are more often interested in renting than in

buying apartments.

All apartments were in the greater Tel-Aviv area. In more remote (and

less expensive) suburbs there were mostly apartments for sale. To control for

a possible effect of the suburb/township, we restricted attention to three mu-

nicipalities, in all of which there were relatively large number of apartments in

both databases: Tel-Aviv, Ramat-Gan, and Givataim. These municipalities

are geographically contiguous.

Ideally, we would like to have the exact location of each apartment as

part of the data. Unfortunately, the databases only contained street names,

rather than exact addresses.4 We therefore approximated the street address

by the exact location of the midpoint of the street. We excluded from the

data very long streets, for which such an approximation would not be very

informative. We ended up with n = 1240 apartments for rent, and n = 219

apartments for sale.5

The complete list of variables for each database is given in Appendix A.

4This is typical of such databases. Because sellers normally do not grant real estate
agents exclusivity rights, agents do not provide the exact address until they meet the
buyer/renter and have them sign an exclusivity form. As a result, exact addresses almost
never appear in public postings.

5We thank Professor Juval Portugali of Tel-Aviv University for access to a database
that contained street lengths, as well as geographical coordinates of each street’s midpoint.
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3.2 Method

Each database was split two: a sample (learning database), consisting of

75% of the observations, and a prediction (test) database, consisting of the

remaining 25%. The prediction database was selected as each fourth observa-

tion. Since the observations were ordered by the apartment size, the sample

and prediction databases were slightly more representative of the entire data-

base they were drawn from than a completely random selection would have

been.

For the sales and the rental database we performed the following. (i)

Regressing Y on X1, ...,Xm in the sample; (ii) finding the maximum likeli-

hood similarity function for the system (4) in the sample; (iii) computing the

maximum likelihood values for the two models (regression and similarity) on

the sample; (iv) generating predictions for the prediction database using the

two methods, and computing their SSPE (sum of squared prediction errors).

3.3 Results

Appendix B contains the estimated values of the relevant parameters and

their standard deviations.

The main results are reported in Table 1.

––––––––––––

Insert Table 1 about here

––––––––––––

Table 1 reports the value of the log-likelihood function (LIKE) and the

value of the sum of squared prediction errors (SSPE) for the two databases,

for both the regression and the similarity models.

Table 1 shows that on the database of apartments for sale, the regression

model performs better than does the similarity model: the likelihood function

in the sample is higher for the regression, and the SSPE out-of-sample is
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lower. This pattern is reversed in the database of apartments for rent: in

this database, the similarity model achieves a higher value of the likelihood

function, as well as lower value of the SSPE.

The results appear to support our hypothesis: in databases of apartments

for sale, the rule-based (regression) model performs better than does the case-

based (similarity) model, both in terms of maximizing the likelihood function

in the sample and in terms of minimizing the sum of squared errors out-of-

sample. This pattern is reversed in databases of apartments for rent.

3.4 Statistical Issues

Perusing Tables 1 and 2, one notices the difference in the sample size between

the two databases considered. The number of apartments for sale, n = 219, is

lower than the number of the apartments for rent, n = 1240, by a factor of 6

almost. This discrepancy raises the question, can the difference between the

performance of the regression and the similarity models in the two database

be simply due to the sizes? That is, is it possible that the effect we have

found is solely a statistical artifact, and has nothing to do with the economic

reasoning behind purchase and rental decisions?

This possibility might appear quite plausible. The regression model uses

the data only for the estimation of the regression equation. If the data gener-

ating process (DGP) were indeed (1), and if we were to miraculously discover

the actual parameters β0, β1, ..., βm, σ
2, then we would need no further data

in order to make the best predictions possible. By contrast, the similarity

model (3) is inherently data-dependent. Datapoints are not only used to

estimate the parameters α,w1, ..., wm, σ
2: datapoints also enter the DGP of

(4) itself. Hence, having a larger database will improve the predictions gen-

erated by the similarity model even if the true parameters were known to us.

Conversely, more datapoints may improve the predictions of the similarity

model even if the estimates of the parameters w1, ..., wm are not accurate.

To see this point more clearly, assume that the actual DGP involves a
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non-linear relationship between Y and X1, ...,Xm. The regression model is

restricted to linear relationships. By contrast, the similarity model generates

predictions according to

Ŷn+1 =

P
i≤n ŝ(Xi,Xn+1)YiP
i≤n ŝ(Xi, Xn+1)

(9)

where ŝ is the estimated similarity function. Thus, for every prediction Ŷn+1,

the similarity model uses all datapoints, in a formula that may be viewed as

local interpolation. This prediction is akin to the Nadaraya-Watson estimator

for non-parametric regression, where the estimated ŝ/
P

i≤n ŝ(Xi, Xn+1) plays

the role of the kernel function. Finding the appropriate kernel function is

typically considered a theoretical problem. In our model, we turn it into

an empirical problem.6 But even a similarity function ŝ that does not have

the optimal weights w1, ..., wm could serve as a kernel function, and may be

expected to generate better predictions for Y than would linear regression,

provided that n is large and that the similarity function is not too “flat”.

To test the possibility that our results are solely an artifact of the sample

size, we ran the two models on sub-samples of the rental database. The

number of datapoints in the sample of the sales database was 165 (roughly

75% of n = 219). Hence we wished to test the models on a sub-sample of

nk = 165 datapoints from the rental database. Recall that the corresponding

number in the entire rental database was 930 (75% of 1240). We also took

a sample for an intermediate value of 465 (a half of 930). For each sample

size, nk = 165, 465, and 930, we selected a sample of the apartments for rent,

ran the two models, and compared them in terms of LIKE and SSPE. The

SSPE was computed over the remaining database. Thus, for a sample of nk
datapoints we had a prediction database containing (1240−nk) observations.
The results are reported in Table 2.

6Finding an optimal bandwidth for the kernel function is often done empirically. In
our model, all m parameters of the kernel functions are estimated from the data, allowing
us to empirically determine their relative importance.
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––––––––––––

Insert Table 2 about here

––––––––––––

Table 2 indicates that the sample size does indeed have an effect on the

relative performance of the two methods. Considering the LIKE criterion

first, the similarity model does not perform as well as the regression model

for a small sample (nk = 165). The two models have very similar likelihood

values for a mid-size sample (nk = 465), and it is only for a large sample

(nk = 930) that the similarity model performs better than does the regression

model.

Turning to the SSPE criterion, it turns out that the similarity model

performs better than does the regression model on all three databases. Yet,

when we compare the SSPE’s generated by the two models, we find that for

a larger sample the advantage of the similarity model increases. To see this,

we computed the ratio of the SSPE of the regression to the SSPE of the

similarity model (in the last column of the table). As can be seen, this ratio

grows with nk: whereas the regression model’s prediction is worse than that

of the similarity model only by 8.7% for a small sample, this factor grows to

22% for a large database.

Thus, our data indicate that the statistical effect we suspected does indeed

exist. Yet, it is important to note that this statistical effect does not explain

the entire pattern of results obtained. Even for a small database, the SSPE

of the similarity model was lower than that of the regression model, while

this pattern was reversed on an equally-sized database of apartments for

sale. Hence, the statistical effect cannot be solely responsible for the results

reported in Tables 1 and 2, and the economic effect we hypothesized probably

plays a role as well.

Table 2 also suggests that if we had a larger database of apartments

for sale, it is quite possible that the similarity model would have obtained

better results than would the regression model. Generally speaking, one
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should expect the similarity model to perform better for larger databases.

We conjecture that this statistical effect would be independent of the type

of the data analyzed. The economic effect, however, implies that for rental

data the similarity model would be better than the regression model already

for smaller databases than for sales data.

The statistical effect we conjecture might also be reflected in human rea-

soning. Specifically, it is possible that people use rule-based reasoning when

they have a database that is not too large, but that they switch to case-based

reasoning when the database is very large. This might be optimal because,

when the database is large enough, there is no need to develop theories (or

rules): every possible instance, that is, every relevant combination of values

of X1, ...,Xm, has enough cases in memory that are similar to it, for the

person to be able to come up with a good assessment of the value of Y based

on these similar cases.7

Observe that the similarity model performs better than the regression

model in terms of a low SSPE already for small sample sizes (low values of nk
above), whereas a better performance in terms of a higher LIKE is obtained

only for larger samples. We speculate that this pattern is not coincidental.

The reason might be the following. The LIKE criterion is the criterion by

which we choose the parameters of both models. It should therefore be ex-

pected that the parameters chosen for a particular sample will not perform

as well on the prediction database (out-of-sample).8 This bias exists to the

7When the database is very small, it may not contain enough datapoints to support
any theory. Thus, case-based reasoning may be more prevalent than rule-based reasoning
for small and for large databases, whereas rule-based reasoning may be more prevalent for
medium-sized databases, that contain enough observations to generate theories, but not
enough observations to do without theories.

8This might be viewed as a type of “regression to the mean” phenomenon: the particular
values of the parameters that we choose are those that happen to perform well in the
sample. Part of the success of these parameters might be due to random factors, and
these need not be equally auspicious outside the sample. It follows that one should not
expect the chosen parameters to perform on a new database as well as they did on the
sample.
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same degree for the regression and for the similarity model. However, the

similarity model has a self-correction mechanism: because it uses the entire

database for each prediction it generates, it may perform well out-of-sample

even if the similarity function, which was chosen based on in-sample perfor-

mance, is not necessarily the best one. By contrast, the regression model

does not have any similar self-correction mechanism: the regression coeffi-

cients that were chosen based on their in-sample performance are used for

out-of-sample prediction with no further aid from the data.

4 Concluding Remarks

It stands to reason that certain combinations of the regression and the simi-

larity models may perform better than both in terms of providing the best fit.

For instance, one may use our similarity-weighted average and plug it into

the regression model as another explanatory variable. This would resemble

a hedonic spatial regression, in which one attempts to estimate the weight

matrix (along the lines suggested in this paper). However, such a hybrid

model will not be able to compare the two modes of reasoning in their pure

form.

We do not expect to obtain a qualitatively clear result, saying that people

think in terms of cases or in terms of rules. We believe that both modes are

involved in almost any reasoning, and that a variety of factors may affect

their relative importance. Our focus in this paper is on a particular economic

factor, namely, the nature of the market under discussion. We conjecture that

in general, in comparison to rule-based reasoning, case-based reasoning will

be more prevalent in non-speculative markets than in speculative ones.

5 Appendix A: The Variables

––––––––––––

Insert Table 3a about here
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––––––––––––

––––––––––––

Insert Table 3b about here

––––––––––––
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6 Appendix B: Estimates of Parameters

––––––––––––

Insert Table 4a about here

––––––––––––

––––––––––––

Insert Table 4b about here

––––––––––––
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Table 1: LIKE and SSPE, for regression and similarity, and for the two

databases.

Sales (n = 219) Rent (n = 1240)
Regression Similarity Regression Similarity

LIKE −876 −902 −5, 420 −5, 380
SSPE 146, 759 185, 160 2, 550, 834 1, 985, 600

LIKE — Value of the log-likelihood function (in-sample, 75% of the data

points)

SSPE — Sum of Squared Prediction Errors (out of sample, remaining 25%

of the data points)
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Table 2: LIKE and SSPE for the two models, for various samples of the

rental database.

nk Regression Similarity SSPE ratio
165 LIKE −951 −974

SSPE 8, 690, 667 7, 877, 800 1.103
465 LIKE −3, 630 −3, 605

SSPE 4, 543, 413 3, 783, 500 1.201
930 LIKE −5, 420 −5, 380

SSPE 2, 550, 834 1, 985, 600 1.284

LIKE — Value of the log-likelihood function (in-sample, 75% of the data

points)

SSPE — Sum of Squared Prediction Errors (out of sample, remaining 25%

of the data points)
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Table 3a: Variables Names and Descriptions — Sales database

Variable Description
Rooms
Size in m2

Floor
Elevator indicator
Parking indicator
Air-conditioning indicator
Renovated verbal
Quiet verbal
Balcony verbal
x coordinate
y coordinate
No sections in the street indicates length of street
View verbal
Roof verbal
Direction of ventilation no. of directions of apt’s windows
Face front indicator
Face rear indicator
Face both indicator
Other

Comments (for Tables 4a and 4b): “Indicator” variables are mandatory.

“Verbal” variables are also indicator variables that were picked from the

verbal description. The variables “x coordinate”, “y coordinate”, and “No of

sections in the street” were obtained from the geographical database using

the street name. The rest of the variables originate from the posting.
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Table 3b: Variables names and descriptions — Rentals database

Variable Description
Rooms
Big verbal
Floor
Elevator indicator
Parking indicator
Air-Conditioned indicator
Renovated verbal
Quiet verbal
Balcony verbal
x coordinate
y coordinate
No sections in the street indicates length of street
Furnished verbal
Garden verbal
Duplex verbal
Gallery indicates a sleeping gallery (loft style)
Studio verbal
Washer verbal
Boiler verbal
Villa verbal
Roof verbal
Bars indicates if windows have bars

(See Comments following Table 3b.)
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Table 4a: Variables and estimated coefficients (and standard deviations)

for Regression and Similarity — Sales database
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Regression Similarity
Variable β̂j ŵj

Rooms
14.163
(8.420)

453.650
(21.334)

Size
1.625
(0.293)

0.002
(0.000)

Floor
−2.285
(3.018)

0.000
(0.012)

Elevator
24.234
(11.800)

0.000
(0.201)

Parking
5.898
(10.426)

0.638
(0.244)

Air-conditioning
8.869
(10.785)

0.000
(0.212)

Renovated
4.093
(8.771)

0.000
(0.200)

Quiet
19.210
(10.505)

0.000
(0.127)

Balcony
0.662
(10.944)

0.000
(0.189)

x coordinate
−0.008
(0.003)

0.000
(0.000)

y coordinate
0.000
(0.000)

0.000
(0.000)

No sections in the street
−1.060
(0.915)

0.342
(0.014)

View
21.184
(15.434)

86.016
(10.668)

Roof
18.376
(22.229)

0.000
(0.356)

Direction of ventilation
6.322
(15.143)

0.000
(0.204)

Face front
10.988
(12.108)

0.000
(0.213)

Face rear
0.260
(0.185)

Face both
18.587
(13.030)

0.000
(0.173)

Other
3.106
(12.595)

0.094
(0.196)

C
1, 388.505
(474.029)

192.415
(4.286)
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Table 4b: Variables and estimated coefficients (and standard deviations)

for Regression and Similarity — Rentals database
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Regression Similarity
Variable β̂j ŵj

Rooms
127.033
(4.247)

3, 496.100
(360.011)

Big
14.821
(6.148)

0.806
(0.076)

Floor
12.836
(2.225)

0.226
(0.016)

Elevator
36.733
(10.644)

0.000
(0.087)

Parking
16.513
(8.966)

0.000
(0.099)

Air-Conditioned
25.677
(6.604)

25.460
(0.934)

Renovated
7.519
(5.734)

0.000
(0.064)

Quiet
1.940
(5.776)

0.000
(0.067)

Balcony
19.356
(6.377)

3.636
(0.157)

x coordinate
−0.017
(0.002)

0.000
(0.000)

y coordinate
0.000
(0.000)

0.000
(0.000)

No sections in the street
−1.533
(0.530)

0.009
(0.001)

Furnished
16.365
(5.984)

0.000
(0.074)

Garden
20.339
(13.653)

6.385
(0.520)

Duplex
40.773
(48.352)

82.656
(20.846)

Gallery
−19.548
(24.427)

0.000
(0.063)

Studio
37.977
(17.943)

11.847
(0.374)

Washer
−20.661
(22.659)

0.052
(0.292)

Boiler
3.610
(7.267)

0.192
(0.091)

Villa
11.619
(32.616)

0.000
(0.796)

Roof
−10.825
(20.419)

0.932
(0.133)

Bars
24.676
(7.176)

0.000
(0.059)

C
3, 298.435
(297.705)

593.090
(2.494)
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