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Abstract. The paper studies a class of resource-symmetric singleton congestion 
games with two types of players having diametrically opposite preferences. 
Congestion-averse players wish to avoid congestion, while congestion-seeking players 
favor it. We show that a pure-strategy Nash equilibrium may or may not exist, 
depending on the number of players of each type and the number of resources in the 
game. The same numbers also determine whether the game is acyclic with respect to 
unilateral best-improvement moves, that is, whether such moves always lead to an 
equilibrium. We also study the sequential-move versions of the game, in which the 
players choose resources one by one after observing the choices of all preceding 
players, and cannot later change them. The players’ choices in a subgame perfect 
equilibrium in this game do not necessary constitute an equilibrium in the original, 
simultaneous-move game. However, the converse does hold: every equilibrium in the 
simultaneous-move game is a sequential-move equilibrium, in the sense that it is 
obtained as the equilibrium path in some subgame perfect equilibrium for some 
entrance order. 

1. INTRODUCTION 

Congestion games are a class of non-cooperative games first introduced by 
Rosenthal (1973). In a congestion game, each strategy is a particular subset of a 
common set of resources. The utility associated with each resource is a function of 
the number of players who include it in their choice. Each player’s payoff is the sum 
of the utilities associated with the resources included in his choice. Every game in 
this class has at least one pure-strategy Nash equilibrium. This result follows from 
the existence of an exact potential (Monderer and Shapley, 1991)—a real-valued 
function over the set of (pure) strategy profiles having the property that the gain or 
loss of a player shifting to a new strategy is equal to the corresponding increment of 
the potential function. The existence of a potential moreover implies that the game 
has the finite improvement property, or FIP (Monderer and Shapley, 1991): any 
sequence of strategy profiles in which each entry differs from the preceding one 
only in the strategy of a single player, whose deviation strictly increases the payoff 
he receives, is finite.  
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Several variants and special cases of Rosenthal’s congestion games, making different 
assumptions about the players and resources, have been studied. These include 
singleton congestion games, in which each strategy is a single resource, and games 
in which the utility functions, which specify the dependence of the payoff from using 
each resource on the number of its users, are player-specific (Milchtaich, 1996). 
Many recent papers assume monotone utility functions: either decreasing or, less 
commonly, increasing (Rozenfeld and Tennenholtz, 2006). In this paper, we assume 
that the game has both congestion-averse players, who prefer to share their resource 
with as few others as possible, and congestion-seeking players, whose utility from 
using a resource increases as its number of users increases. On the other hand, the 
resources in our model are all identical. 

The presence of the two opposite kinds of players affects the existence of pure-
strategy Nash equilibrium. Unlike the cases of only congestion-averse or congestion-
seeking players, existence of equilibrium is not guaranteed even with identical 
resources. As a simple example, consider a game with two players of opposite types 
and two (identical) resources. There is no equilibrium, since the congestion-seeking 
player would like to share a resource with the congestion-averse one while the 
latter would prefer to avoid him. However, as we show in this paper, the players’ 
opposite preferences are not totally incompatible with equilibrium existence. We 
identify all combinations of the numbers of players of each type and of resources for 
which an equilibrium does exist. 

The existence of equilibrium raises the question of convergence to it, in particular, 
whether the game has the finite improvement property as in Rosenthal’s games. In 
fact, it is not difficult to see that, with three or more resources, our games never have 
that property (see Section 4). However, in some cases they possess the weaker finite 
best-improvement, or acyclicity, property. This means that an improvement path is 
necessary finite if in each step the unique deviator shifts to a strategy that is a best 
response against the strategies played by the other players. For the case in which 
the game has an equilibrium but is not acyclic, we prove that from any initial 
strategy profile there is some best-improvement path that ends in an equilibrium. In 
other words, games with congestion-averse and congestion-seeking players are 
always weakly acyclic. These results are summarized in Table 1. 

An improvement path represents myopic behavior by players. In each step, one 
player chooses a resource that maximizes his current payoff, but does not consider 
the effect of his choice on the others’ future behavior. We also examine convergence 
to equilibrium for players who are “forward looking”. Specifically, we study 
sequential-move versions of the game, in which players enter the game one by one 
in a particular order. An entering player chooses his resource after observing the 
choices of the preceding players, and after the entrance of the last player, the payoffs 
are determined according to the utility functions in the original, simultaneous-move 
game. In general, the equilibrium outcomes in a sequential-move version of a 
strategic game may be very different from those in the simultaneous-move game. 
For example, the equilibrium payoffs in a Cournot competition are different from 
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The quotient 
   

 
 is: Property 

An integer Acyclic (Theorem 2) 

A non-integer less than      Weakly Acyclic (Theorem 3) 

Otherwise No Equilibrium (Theorem 1) 

Table 1. Whether a game with congestion-averse and congestion-seeking players possesses a 
pure-strategy Nash equilibrium, and whether the players may spontaneously converge to it, is 
completely determined by the number of players  , the number of congestion-seeking players 
   and the number of resources  . For each of the three cases on the left column, the right 
column gives the strongest property of the game. 

those in the corresponding Stackelberg model. We show, however, that if the 
entrance order is such that congestion-seeking players precede the congestion-
averse ones, there exists a subgame perfect equilibrium whose equilibrium path is 
an equilibrium in the original, simultaneous-move game. Moreover, all the equilibria 
in that game can be obtained this way. 

The next section formally describes our model. The equilibrium existence theorem 
is presented in Section 3. Convergence to equilibrium is examined in Section 4, 
where the proofs of the results in Table 1 are given. In Section 5 we explore the 
sequential-move versions of the game and the relations between their subgame 
perfect equilibria and the equilibria in the original game. 

2. THE MODEL 

A (singleton) congestion model with congestion-averse and congestion-seeking 
players is defined as follows. There are   players            , who must each 
choose one of   (  ) identical common resources. The payoff of a player who 
chooses resource               is a function of the number    of players using 

that resource. Depending on the player, this utility function may be either    or   . 
The first function is monotonically decreasing, 

                       

and the second function is monotonically increasing, 

                       

A player with utility function    is said to be congestion-averse and a player to 
whom    applies is congestion-seeking. We assume that the numbers    and 
           of players of each kind are both at least  . Otherwise, the game would 
reduce to a special case of Rosenthal’s classic model. 
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Figure 1. An equilibrium in (A) a game with many congestion-seeking players (condition     in 
Theorem 1 holds) and (B) a game with fewer such players (condition      holds). 

Note that in our model, unlike Rosenthal’s one, all resources are identical. 
Consequently, the model would not have been more general if we allowed different 
congestion-averse or congestion-seeking players to have different utility functions. 
This is because allowing this would not change the preferences of each kind of 
player: a change of resource benefits a congestion-averse or congestion-seeking 
player if and only if the resource he moves to has fewer or more users, respectively, 
than the one he leaves.  

A congestion model as above defines a (simultaneous-move) congestion game  , in 
which players choose resources simultaneously and receive their payoffs according 
to their utility functions. Together with a specified ordering of the players, it also 
defines a sequential-move version of  , which is the perfect-information extensive-
form game in which the players choose resources one after the other according to 
the specified order rather than simultaneously. Whereas for the simultaneous-move 
game the basic solution concept we employ is pure-strategy Nash equilibrium, for 
the sequential-move one it is subgame perfect equilibrium. 

3. EXISTENCE OF EQUILIBRIUM 

As shown above, games with congestion-averse and congestion-seeking players do 
not generally admit a pure-strategy Nash equilibrium. The next theorem identifies 
necessary and sufficient condition for equilibrium existence. 

Theorem 1. A game with congestion-averse and congestion-seeking players has a 

pure-strategy Nash equilibrium if and only if the quotient 
   

 
 is     less than      

or      an integer. 

Condition    ,    
   

 
  , means that the number of congestion-seeking players in 

the game is relatively large. Condition      means that dividing the total number of 
players (of either type) by the number of resources leaves a remainder of one, that 
is,          . Figure 1 shows a typical equilibrium configuration for each case. 

 

 

  

 

 

 

 

  

  

 

 

 

 

Congestion-seeking player Congestion-averse player   

(A) (B) 



5 

Proof. Suppose that 
   

 
 satisfies condition    . Let all congestion-seeking players be 

concentrated on the first resource and the congestion-averse players distributed as 
equally as possible on the     other resources (which means they all have at least 

⌊
    

   
⌋ users but some of them may have one additional user; see Figure 1(A)). Since 

all congestion-seeking players use the resource with the largest number of users, 
none of them would benefit from changing resource. The congestion-averse players 
also do not have an incentive to move, since the number of users of any alternative 
resource is smaller by at most  . Therefore, this configuration is an equilibrium. 

Suppose now that     does not hold but      holds. This means that the players can 

be distributed among the resources in such a way that              
   

 
. 

Considering that condition     does not hold, we can moreover place all congestion-
seeking players on the first resource, which has the largest number of users. By the 
same argument used in the previous case, this configuration is an equilibrium.  

Finally, suppose that both     and      do not hold. We have to show that an 
equilibrium does not exist. In any equilibrium, all congestion-seeking players must 
use a resource that has a larger number of users than any other resource. Suppose 

this is resource 1, so that             , and therefore      
   

 
. On the 

other hand, since by assumption both     and      do not hold, 
   

 
     . It 

follows that      , so that at least one congestion-averse player uses resource 1. 
Since, by the equilibrium condition, that player does not want to move to one of the 
other resources, which have fewer users, it must be that             . 
However, this means that the total number of players satisfies     , a contradiction. 
This contradiction proves that an equilibrium actually does not exist. ∎ 

When an equilibrium does exist, it is unique up to permutations of resources and of 
players of the same type. This assertion is a corollary of the following three 
observations, which pertain to any equilibrium and follow immediately from the 
definition. See Figure 1. 

Observation 1. All congestion-seeking players use the same resource, which is the 
unique resource      with a maximal number of players:  

     
               

Observation 2. For any two resources   and    such that at least one congestion-
averse player uses  , 

          

Observation 3. As a corollary of Observations 1 and 2, the inequality  
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holds (that is, some congestion-averse player uses     ) if and only if    
   

 
. In 

this case, each of the resources other than      has precisely      
   (congestion-

averse) users. 

One may wonder whether the conditions in Theorem 1 actually imply a stronger 
property than the existence of equilibrium, namely, existence of a strong or (at least) 
coalition-proof equilibrium. In a strong equilibrium (Aumann, 1959), beneficial 
deviations do not exist, not only for individual players but also for coalitions. 
Coalition-proof equilibrium (Bernheim et. al., 1987) is a weaker solution concept in 
which beneficial coalitional deviations may exist but they are not self-enforcing.  

Holzman and Law-Yone (1996) study the conditions for the existence of strong 
equilibrium in congestion games with congestion-averse players (i.e., decreasing 
utility functions) in which strategies are sets of resources. They observe that a 
strong equilibrium always exists in the singleton case (where, as in our model, all 
strategies are singletons). They moreover prove that, in this case, every Nash 
equilibrium is strong. Rosenfeld and Tennenholtz (2006) consider the case of 
congestion-seeking players (increasing utility functions) and show that, essentially, 
the only strategy spaces that guarantee existence of strong equilibrium are those 
with singleton strategies. The necessity of the singleton condition is due to the 
extremely strong sense of “guaranteeing” in their model. For a given collection of 
strategies, they consider all ways of deciding which strategies are allowed for each 
player, and require that all corresponding congestion games possess strong 
equilibria. In summary, in the singleton-strategies case of both models, the set of 
strong equilibria is nonempty. Konishi et al. (1997) prove that, moreover, this set 
coincides with that of all coalition-proof equilibria. 

The next proposition shows that, formally, the same coincidence also holds in our 
model, which differs in considering singleton congestion games with both 
congestion-averse and congestion-seeking players. However, it holds largely 
vacuously. With the exception of the special case of a single congestion-seeking 
player, strong and coalition-proof equilibria actually do not exist in our games.  

Proposition 1. Consider a game   with congestion-averse and congestion-seeking 
players. 

1. If     , then every pure-strategy Nash equilibrium is strong. 
2. If     , then the game does not have a strong, or even coalition-proof, 

equilibrium. 

In the following, we use the notation   
  and   

  for the number of congestion-averse 

and congestion-seeking users, respectively, of a resource  . 
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Proof. 1. Suppose that     , and consider any Nash equilibrium. We have to show 
that, in the equilibrium, a coalitional deviation that is profitable to every coalition 
member does not exist. Suppose the contrary, that such a deviation does exist. As we 
show below, this assumption leads to a contradiction whether the coalition is 
heterogeneous, that is, consisting of both congestion-averse and congestion-seeking 
players, or homogeneous, and includes congestion-averse players only. 

Suppose that the deviating coalition is heterogeneous. By Observation 1, its single 
congestion-seeking member deviates from the unique resource      having the 
maximal number of players to another resource   . Since the deviation is profitable, 

  ̃        
   (1)  

where    and  ̃  are the number of players using a resource   before and after the 

coalitional deviation, respectively. Since     , it follows from (1) and the 
definition of      that at least one congestion-averse player also moved to   , from 
another resource   . Since this deviation is also profitable, necessarily  

  ̃        (2)  

However, inequalities (1) and (2) together contradict the maximality of      
. 

Suppose now that the deviating coalition consists of congestion-averse players only. 
The assumption implies that the coalitional deviation did not increase the number of 
players using any resource. This is because a congestion-averse player who moved 
to a resource where the number of users increased could have achieved at least as 
much by moving alone to that resource, contradicting the equilibrium assumption. 
Since the total number of players did no change, the number of users of each 
resource did not decrease either. Therefore, the coalitional deviation must be a 
permutation of its members’ choice of resources, which implies that their total 
payoff did not change. However, this conclusion contradicts the assumption the 
deviation benefited them all. A similar argument is used in the proof of Holzman and 
Law-Yone’s (1996) Theorem 2.1. 

2. Suppose now that     , and consider any equilibrium. To show that the 
equilibrium is not coalition-proof, it suffices to prove the same for the congestion-
seeking players’ strategies in the (  -player) subgame defined by fixing the 
strategies of the congestion-averse players. The strategies of the congestion-seeking 
players do not constitute a coalition-proof equilibrium because, as we show below, 
they can increase their payoffs to the maximum possible payoff in the subgame by 
deviating together from their common resource      (see Observation 1) to a 
resource    with a maximal number of congestion-averse players: 

    
     

 
  

    

To prove this assertion, it suffices to show that  
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   (3)  

If      

   , inequality (3) holds trivially, since     . Assume then that      

   . 

By Observation 2,      
    

   . Rearranging and using      
      

     gives 

   
       

        

Considering the assumption     , this inequality proves (3). ∎ 

4. CONVERGENCE TO EQUILIBRIUM 

This section studies convergence to equilibrium under the assumption that players 
change their choice of resources one after the other. A finite sequence of strategy 
profiles obtained by such unilateral deviations is called a path. If the first and last 
strategy profiles are identical, the path is called a cycle. An improvement path or 
cycle is defined by the minimal rationality requirement that each deviation along the 
path is an improvement: it increases the deviating player’s payoff. A best-(response) 
improvement path or cycle is one that satisfies the additional requirement that each 
deviating player’s move is a best-improvement move: his choice of resource is a best 
response to the other players’ choices. Non-existence of improvement cycles is a 
stronger property than non-existence of best-improvement ones. In a finite game, 
the first property is equivalent to the finite improvement property (see Section 1). 
The second property is referred to in this paper simply as acyclicity. Thus, a finite 
game is acyclic (with respect to best-improvement moves) if it does not have any 
best-improvement cycle. (Note that this definition is different from that of Young, 
1993. The same applies to the definition of weak acyclicity below.) 

A game with congestion-averse and congestion-seeking players with more than two 
resources does not have the finite improvement property. Indeed, such a game 
always has an improvement cycle similar to the one in the following example. 

Example 1. Suppose that     ,      and    . The congestion-averse player 
uses resource 1, one congestion-seeking player uses resource 2, and the other two 
use resource 3. The following is a better-response cycle: The first congestion-
seeking player moves to resource 1, the congestion-averse player moves to resource 
2, the congestion-seeking player returns there, and the congestion-seeking player 
returns to resource 1, thus completing the cycle. 

In Example 1, the congestion-seeking player never chooses his best-response 
strategy, which is moving to the resource with the other two congestion-seeking 
players. If he did so, the cycle would be broken and an equilibrium would be 
reached. This observation leads to the question of whether the existence of cycles 
persists under best improvements, which is addressed by the following theorem. 
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Theorem 2. A game with congestion-averse and congestion-seeking players is 
acyclic if and only if condition      in Theorem 1 holds, that is,          . 

An immediate corollary of the theorem is that, in the special case of only two 
resources, the game has the finite improvement property if and only if the number 
of players is odd. 

Proof. ( ) Suppose that          , so that   
   

 
 is an integer. For each 

strategy profile, let    {  ∣     } be the set of resources with   or fewer users 

and    {  ∣     } the resources with more than   users. These sets cannot be 

empty.      would mean that the number of players in the game is at least 
             , which is higher than the actual number   since    . 
Similarly,      would mean that the number of players is at most        .  

Claim 1 In a best-improvement path, no congestion-averse player moves to a 
resource in    and no congestion-seeking player moves to a resource in   . 

This result in an immediate corollary of the non-emptiness of    and   . 

Claim 2. In a best-improvement path, no resource shifts from the set    to   . In a 
best-improvement cycle, the sets    and    moreover never change. 

A resource   can shift from    to   only as the result of a move to   of some player   
who becomes the      -th user of  . By claim 1, player   is necessarily congestion-
averse. Since the deviation is a best-improvement move, there must be at least     
other players in the resource that   comes from and at least   players in every other 
resource. However, this means that the total number of players is at least      , 
which contradicts the fact that         . The contradiction proves that no 
resource shifts from    to   . 

To complete the proof of Claim 2, it only remains to note that, in a best-
improvement cycle, no resource   can shift also in the opposite direction, from    to 
  . This is because, later in the cycle,   would have to return from    to   .  

By a similar argument, Claims 1 and 2 imply the following. 

Claim 3. In a best-improvement cycle, no congestion-averse or congestion-seeking 
player moves from a resource in    or in   , respectively. 

By the above claims, in any best-improvement cycle, congestion-averse and 
congestion-seeking players move only within    and   , respectively. As we show 
below, this means that the following expression must increase after each move: 

  ∑   
 

    

 ∑   
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Suppose that a congestion-averse player moves from a resource       to a 
resource      . Since the player’s move is an improvement, the following 
inequality must holds before it is performed:  

           

The inequality implies that 

  ((     )
 
 (     )

 
)  (   

     
 )   (         )     (4)  

which proves that the change in   is positive. 

Similarly, a move of a congestion-seeking player from a resource       to a 
resource       is an improvement only if, before the move, 

           

which again implies that the corresponding change in   is positive. Thus,   
increases after each player’s move along the cycle. However, this conclusion 
contradicts the fact that   must have the same value at the beginning of the cycle 
and at its end. The contradiction proves that the game is acyclic. 

( ) Suppose that          . We have to show that a best-improvement cycle 
exists. Distribute the players among resources as equally as possible, so that, for 
some integer  , either all resources have   users or some of them have   and the 
others     users. From the assumption           it follows that there must be 
at least two resources,    and   , with a maximal number of players (either   or   
 ). Assuming, without loss a generality, that some congestion-seeking player    uses 
   and some congestion-averse player    uses    (see example in Figure 2(A)), the 
following is a best-improvement cycle:    moves to   ,    moves to   ,    returns to   , 
and   returns to   , thus completing the cycle. ∎ 

The cycle presented at the last part of the proof can be broken. For example, in 
Figure 2, if all the congestion-seeking players followed player    and moved to 
resource    (Figure 2(B)), and only then the congestion-averse players moved, an 
equilibrium would necessarily be reached (Figure 2(D)). Thus, the initial strategy 
profile in this example is connected to an equilibrium by some best-improvement 
path. The following theorem shows that this observation can be generalized. A game 
is said to be weakly acyclic if, starting at any strategy profile, there is some best-
improvement path that ends in an equilibrium.  

Theorem 3. Every game with congestion-averse and congestion-seeking players 
that has an equilibrium is weakly acyclic. Moreover, in such a game, every strategy 
profile is the starting point of some best-improvement path that ends in an 
equilibrium and in which each player moves at most once. 
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Figure 2. A best-improvement path in a game with     ,      and    . Beginning with 
the initial state (A), three congestion-seeking players move one after the other and join the 
fourth one in the left-most resource, which becomes the one with the largest number of 
players (B). Their place is then taken by one of the congestion-averse players not using that 
resource (C). Finally, the two congestion-averse players in the left-most resource leave it and 
move to other resources. The outcome (D) is an equilibrium. 

Proof. We define a prioritizing algorithm (or a scheduler; see Apt and Simon, 2012) 
and show how it helps players to avoid cycles and reach an equilibrium. At each 
step, the algorithm assigns a priority,   (the highest),   and  , to each player 
according to the following criteria: 

 )  Congestion-seeking players.  
 )  Congestion-averse players not sharing a resource with congestion-seeking ones. 
 )  Congestion-averse players sharing a resource with at least one congestion-

seeking player. 

One player then makes a best-improvement move. His identity is constrained only 
by the condition that no higher-priority player wants to move (that is, has a best-
improvement move). The algorithm stops when no player wants to move, which 
means that an equilibrium was reached. See example in Figure 2.  

To prove that the algorithm necessarily stops, it suffices to present a function   over 
the set of strategy profiles that increases at each step in the process. Such a function 
is defined by 

        

 
             

 
 

∑   
  

   

   

where       

 
             

 is the number of congestion-seeking players using the resource with  

the maximal number of players, and if there are several such resources, the one with 
the smallest number of congestion-seeking players. 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

 

 

 

(A) (B) (C) (D) 

  Congestion-seeking player Congestion-averse player 
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There are three cases to consider,  ,   and  , according to the priority of the moving 
player. 

 ) A congestion-seeking player necessarily moves to a resource      with a maximal 
number of players, where, by definition, the number of congestion-seeking players 

is at least       

 
             

. After the move, resource      becomes the unique resource with 

the maximal number of players,  

      
    

       
     (5)  

which implies that       

 
             

 has increased by at least  . Since the second term in   is 

always positive and less than  , the total change in   must be positive. 

 ) Since, by assumption, no congestion-seeking player wants to move, all of them 
are using the unique resource      with the maximal number of players. Therefore, 
the first term in   is equal to   . A congestion-averse player   moves from a resource 
        to some resource    with          . After the move, inequality (5) still 

holds, which implies that the first term in   did not change. The change in the 
second term is given by the following expression, which by (4) is positive: 

 

(     )
 
 (     )

 
 ∑   

  
       

 
 

∑   
  

   

   

 ) A congestion-averse player   moves from the resource      used by all the 
congestion-seeking players to some other resource, with has less than          

users. Before the move, inequality (5) holds. As we show below, the same is true 
after  ’s move, which implies that the first term in   did not change. By the same 
argument used in case  , the second term increased, and therefore the same is true 
also for   itself. 

By assumption, no congestion-averse player using a resource different from      
wants to move, and since the move of (the congestion-averse) player   is a best-
response one, the same is true after his move. Therefore, after the move,  

 |       |    (6)  

for all            . Suppose that (5) does not hold after  ’s move, so that there are 
then     resources where the number of players is maximal, and equal to  

               

It then follows from (6) that the other     resources have     users each. 
Summing up the numbers of users, we get that 
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              (7)  

Since    , it follows from (7) that condition      in Theorem 1 does not hold. 
Condition     also does not hold, since  

     
   

 
   

   

 
  . 

This contradicts the assumption that an equilibrium exists. The contradiction proves 
that (5) does in fact hold after player  ’s move, and completes the analysis of case  . 

The analysis of the three possible cases proves that, if the players move according to 
the prioritizing algorithm,   always increases. As indicated, this implies that the 
algorithm necessarily stops, and ends in an equilibrium. We can now complete the 
proof of the theorem by showing that, moreover, each player moves at most once.  

The first to move are the congestion-seeking players, who gather at a single 
resource     . After the last of their moves, inequality (5) holds. (The inequality 
holds also if the congestion-seeking players are at a single resource      already at 
the beginning and they do not want to move.) Then, the congestion-averse players 
move. As shown above, (5) still holds after each such move, and therefore the 
congestion-seeking players never have an incentive move again. It remains to show 
that any congestion-averse player who moves also never wants to move again. The 
argument below is similar to that used by Fotakis (2010, Lemma 1). 

Consider a congestion-averse player   that has just performed a best-improvement 
move to a resource  , and thus has no incentives at the current time to move again. 
We will show that player   will not have any incentives to move also at any later 
time. Suppose this is not so, and consider the first time resource   is not player  ’s 
optimal choice, but some other resource    is optimal. This means that another 
congestion-averse player    has either just moved to resource   or moved from    to 
some third resource     . However, in the first case, player    also would be better 
off choosing    rather than  , a contradiction to the assumption that his choice of   
was a best response. The second case contradicts the assumption that the move of 
player    was an improvement, since it implies that player   would also be better off 
moving to   . Indeed, the increase in the payoff of player   from doing so would be 
the sum of the increase in the payoff of player    from moving from    to    and the 
increase in his own payoff from his subsequent move from   to   . These 
contradictions prove that player   will not in fact have an incentive to move again. ∎ 

The proof of Theorem 3 presents a so-called weak potential: a real-valued function   
over the set of strategy profiles with the property that, at every strategy profile that 
is not an equilibrium, some player has a best-improvement move that increases  . In 
a finite game, the existence of a weak potential implies weak acyclicity (since every 
best-improvement path along which   increases cannot visit the same strategy 
profile twice), and the converse implication holds as well (Kukushkin, 2004). 
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Figure 3. A subgame perfect equilibrium path in a sequential-move version of a game with one 
congestion-averse and two congestion-seeking players. The congestion-averse player enters 
first. Then a congestion-seeking player enters, and correctly predicts that if he chooses the 
same resource the first player chose, the third player will do so. The result (A) is not an 
equilibrium in the simultaneous-move game, since the congestion-averse player can increase 
his payoff by moving to the second resource.  Such a move results in an equilibrium (B). 

5. THE SEQUENTIAL MOVE GAME 

The previous section is concerned with games where players choose resources 
myopically, that is, they maximize their payoff right after making the choice but do 
not consider the possible responses of the other players. In addition, each player is 
allowed to change resources multiple times. In this section, we explore the ability of 
players to reach an equilibrium by choosing resources sequentially and irrevocably: 
once a resource is selected, it cannot be changed. After all the players have chosen 
their resources, each player’s payoff is determined according to his utility function. 
Crucially, we assume that players are forward looking, and strive to predict the 
choices of their followers. Specifically, we look for a subgame perfect equilibrium in 
a sequential-move version of the game (see Section 1). That game, and therefore 
also its set of subgame perfect equilibria (which in nonempty, as is the case for any 
finite perfect-information extensive form game), is determined by the players’ 
entering order. Our main concern is with the equilibrium paths of these equilibria, 
that is, the players’ actual choice of resources. 

As the example in Figure 3 shows, the equilibrium path of a subgame perfect 
equilibrium is not necessarily an equilibrium in the simultaneous-move game. 
Moreover, for the sequential-move game considered in that example, there is no 
subgame perfect equilibrium that gives an equilibrium in the simultaneous-move 
game. (Therefore, that game is not sequentially solvable; see Milchtaich, 1998.) 
However, such a subgame perfect equilibrium would exist if we changed the 
entering order by letting the two congestion-seeking players enter first. The 
equilibrium in Figure 3(B) would then be a subgame perfect equilibrium outcome. 
As we show below, an entering order whereby congestion-seeking players precede 
congestion-averse ones always guarantees the existence of some subgame perfect 
equilibrium whose equilibrium path is an equilibrium in the original game, if the set 
of equilibria in that game is nonempty. Moreover, every equilibrium in that set can 
be obtained this way. 

 

 

 

Congestion-seeking player Congestion-averse player   

(A) 

 

 

 

(B) 
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Figure 4. The depicted configuration is an equilibrium. It is also the equilibrium path of a 
subgame perfect equilibrium in the sequential-move version of the game where the players’ 
entering order is that indicated by the arrows (so that, in particular, the first to choose their 
resources are the congestion-seeking players). 

An equilibrium in a strategic game is said to be a sequential-move equilibrium 
(Milchtaich, 1998) if it coincides with the equilibrium path of some subgame perfect 
equilibrium in some sequential-move version of the (simultaneous-move) game. 

Theorem 4. Every pure-strategy Nash equilibrium in a game with congestion-
averse and congestion-seeking players is a sequential-move equilibrium. 

The players’ forward-looking behavior in the sequential-move game may seem to be 
at odds with the simple, myopic response of choosing an optimal resource given the 
choices of the preceding players (that is, a resource with a minimal or maximal 
number of users, depending on the entering player’s type). However, the proof of 
the theorem shows that the two different manners of choosing resources may be 
reconciled. Specifically, the subgame perfect equilibrium strategies constructed in 
the proof always specify that an entering player reacts optimally to his 
predecessors’ choices. Moreover, this is so also off-equilibrium, that is, after one or 
more of the previous players did not act according to his strategy. The players’ 
strategies nevertheless incorporate an effective punishing mechanism, which 
guarantees that no single player can gain from choosing a different resource than 
that specified by his strategy.  

Proof of Theorem 4. Let an equilibrium in the game be given. Without loss of 
generality, it may be assumed that the resources are indexed in such a way that 
          . It may also be assumed that the players are indexed as follows. 
Players          are congestion-seeking (and therefore, by Observation 1, use 
resource 1). The congestion-averse players               use resources 
     , respectively, as do players               , and so on. This 
numbering scheme continues up to player    {     }. The remaining congestion-
averse players, if any, are indexed in such a way that players               
use resources      , respectively, and so on (see Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Congestion-seeking player Congestion-averse player   
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In the sequential-move version of the game in which the players enter in the order 
       , the following two rules recursively define a strategy for each player. As we 
show below, this strategy profile is a subgame perfect equilibrium whose 
equilibrium path coincides with the given equilibrium (in the simultaneous-move 
game). 

BEST-RESPONSE RULE. Given the choice of resources by the preceding players, consider 
the set   of all resources yielding maximum payoff (which, for a congestion-averse or 
congestion-seeking player, are the resources with minimal or maximal number of 
users, respectively). Choose the “left-most” resource in  , that is, the one with the 
smallest index. 

PUNISHMENT RULE. This rule describes an exception to the previous one, which only 
applies if | |    and at least one of the preceding players who use a resource in   is 
a congestion-averse player who violated his strategy by choosing that resource. In 
this case, choose the resource the last such violator chose.  

If the players follow these rules, then by Observations 1, 2 and 3 in Section 3 the 
result is the given equilibrium. It remains to show that the strategy profile specified 
by the rules is a subgame perfect equilibrium. Thus, it has to be shown that, 
regardless of the choices of the previous players, an entering player cannot benefit 
from violating the rules and choosing a resource    different from the resource    
prescribed by them, assuming that all later entrants will follow the rules. 

For a resource  , set         and, for      , let       and   
     be the number 

of players and congestion-seeking players, respectively, using resource   right after 
player   enters the game, if player   chooses resource   . Let  ̃     and  ̃ 

      be 

defined similarly, accept that now player   chooses resource   . 

Assume first that player   is congestion-averse. To prove that   will not gain from 
choosing    instead of   , we have to show that the inequality  

         ̃      (8)  

holds for    . For    , (8) holds by the Best-Response Rule. If this is not so for 
some larger  , then the largest         for which (8) does hold satisfies  

        ̃      

and 

          ̃           

The two equalities means that     if player   chooses resource   , then player     
also chooses   , but      if   chooses   , then     does not choose   . It follows from 
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    and the Best-Response Rule that              for all  . Therefore, the number of 

players among           who chose each resource   is at least [              ]  

(where [ ]     {   } denotes the positive part of a number  ). Summing up over 
all resources, we obtain: 

 ∑[              ]
 

 

        (9)  

It follows from      and the Best-Response and Punishment Rules that there is some 
resource    with  ̃       ̃     . Again by the Best-Response Rule, each resource   

chosen by one or more of the players           satisfies  ̃      ̃        

(  ̃     ). These inequalities give  

 ∑[ ̃       ̃      ]
 

 

       (10)  

(where the strict inequality reflects the strict inequality that refers to resource   ). 
However, since  ̃               for all       and         ̃       

inequalities (9) and (10) contradict one another. The contradiction proves that (8) 
in fact does hold for all    , and in particular for  . This proves that a congestion-
averse player cannot gain from deviating from his strategy. 

Suppose now that player   is congestion-seeking. If he follows his strategy and 
chooses resource   , it becomes the unique resource with a maximal number of 
users, so that every congestion-seeking player who enters after   also chooses   . If   
chooses   , the following congestion-seeking players may still choose    but they 
may also choose   . Thus, whether player   chooses    or   , no resource ends up 
having more than    

     congestion-seeking users. There are now two cases to 

consider, according to the size this bound. 

CASE 1:    
        .  

To prove that, in this case, the congestion-seeking player   does not gain from 
choosing resource    instead of    it suffices to show that  

    
 

 ̃        
       

If this inequality does not hold, then by the Best-Response Rule, applied to the 
congestion-averse players,  

   
 

 ̃        
      

However, this inequality contradicts the assumption that    
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CASE 2:    
        . 

Whether player   chooses    or   , the assumed inequality and the Best-Response 
Rule imply that, right before or at some point after the congestion-averse players 
start entering the game, the following situation occurs: all the resources have the 
same number of users, and that number is    

    . Then, the remaining congestion-

averse players, if any, enter the game according to the Best-Response and 
Punishment Rules. From the latter it follows that  ̃            . ∎ 
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