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Abstract

In matching games, agents must all agree for a match to beefhrand some agents can make only a
finite number of matches. | examine the nonparametric ifleation and estimation of match production
functions in matching games with endogenous prices andfaeeable utilities. Inequalities derived from
single-agent best responses underly a nonparametric maxgoore estimator of match production functions.
The inequalities do not require data on prices, quotas,ahjution levels. The estimator does not suffer from
a computational or data curse of dimensionality in the nurobagents in a matching market as the estimator
avoids solving for an equilibrium and estimating first-gagatch probabilities. Further, using only a subset
of the possible inequalities preserves consistency. Ttima&®r allows markets with one-to-one, one-to-
many, many-to-many and coalition formation matching, alt asexternalities from agents outside a given
match. For games with multiple equilibrium sets of matchhbsre is no need to estimate an equilibrium
selection rule or computationally itemize the equilibria.

*Thanks to helpful comments from many colleagues as well akshop participants at Chicago, Minnesota, the New York Redth
Carolina, Northwestern, Stanford and Virginia. Email: @uchicago.edu.



1 Introduction

Becker (1973) introduces the use of two-sided matchingrthmanalyze empirical evidence on marriages
between men and women. He models marriage as a competitiketweth endogenous prices, or transfers
between spouses. Other markets can be modeled as two-satetimg games with finite numbers of het-

erogeneous agents. Examples include the matching of wotkdirms and upstream to downstream firms.
Simpler matching games where one side of the market may oy@bout money include families to houses,

members to exogenously specified clubs and bidders to Heutijects for sale in an auction. A key feature
differentiating two-sided matching games from normal nisdé supply and demand is that, in matching, at
least some agents on both sides of the market can make adimitaber of trades. In marriage, each woman
and have only one husband, so there is rivalry between meata/tihe most attractive women.

Another matching framework is coalition formation, or asided matching. A group of agents divide them-
selves into mutually exclusive clubs, and the number alestitf clubs are not specified exogenously. Coalition
formation can be used to study neighborhoods, politicaigmand industry alliances with horizontally differ-
entiated firms. Theoretical work is also ongoing on modelmahy-sided matching, which can be used to
study multi-tiered supply chains, for example. In the abgames, this paper allows for externalities on pay-
offs arising from matches of agents outside of a given reetiip.

Matching games are attractive frameworks for empiricalkywas the models apply to a finite number of agents
with flexible specifications for the productions functiorengrating match output. A typical data set for a
matching market lists a series of observed matches and sbanaateristics about the parties in each match.
Economists want to estimate the production function gaimgranatch output for observed and counterfactual
matches. The research goal is primarily positive: to urtdacsthe relative importance of various observed
agent characteristics in the equilibrium sorting of agéimis we see in the data. Estimating match production
functions can also produce an ordinal ranking of the effiyesf different match assignments for the same set
of agents.

Matching games with endogenous prices have been used asrattbal inspiration for univariate descriptive
empirical work by Becker (1973) and others. However, dedpiéir attractive theoretical properties, with one
exception (which does not try to explain micro data on matchee below) matching games with endogenous
prices have not been used for formal structural estima#tomajor impediment has been that standard maxi-
mum likelihood and method of moments estimators requireséedecomputation of an equilibrium for every
realization of errors terms in order to evaluate the objedtinction for given parameter values. These complex
equilibrium computations are nested within an integralrdiie unobserved error terms in the market, which
should be of dimension equal to the number of potential nestaithe market. For example, a simple marriage
market with 100 men and 100 women nests the equilibrium caation inside al0¢? = 10,000 dimensional
numerical integral, and this integral must be repeatedijumated at different trial parameter values in an outer
optimization routine.

To address these practical concerns, this paper providessastent, nonparametric estimator for match pro-
duction functions that is much easier to implement than #stad equilibria computation approach. The new
estimator does not suffer from a curse of dimensionalithaumber of agents in the market, and program-
ming the objective function involves only evaluating th&kmown production functions and checking inequal-



ities. More abstractly, this paper presents conditionsumdich the match-specific production functions in a
matching game with endogenous prices and transferabitéastiire nonparametrically identified.

Some members of the class of matching games with transéetdiiities are known as assignment games.
The assignment problem was introduced by Koopmans and Beukif1957) and later examined by Shapley
and Shubik (1972) and Becker (1973) for one-to-one matchietso and Crawford (1982) for one-to-many
matching, Leonard (1983) and Demange, Gale and Sotoma986)Tor multiple-unit auctions, Sotomayor
(1992) for many-to-many matching, Kovalenkov and Wood2898) for the case of arbitrary (no sides) coali-
tion formation, and Ostrovsky (2004) for supply chain maighamong others. These models are applications
of general equilibrium theory to games with finite numberagénts. This paper allows for externalities, mean-
ing the production form a match is a function both of the agémthe match and the matches formed by other
agents. Overall, this paper uses the term “matching gameht@mpass a broad class of models, including
some games where the original theoretical analyses udedattif names.

One part of the outcome of a matching game is an assignmenatoches for each agent, such as the identities
of the suppliers for each retailer in a vertical market. Taper considers using data on only the assignment of
matches, even though the matching game also has endogeitmssgnd production levels. A benefit to using
assignments is that data on prices and production levelstmag be available in many matching markets where
economists believe prices are used. Becker (1973) studiesage, a matching market where husbands and
wives might exchange transfers, but those transfers aneootded in typical data sets. Inter-firm contracting,
such as vertical relationships between suppliers andeetaalso has the flavor that the contracting firms often
transfer money, but the transfers are often confidentiaraotual details and not released to researchers.

An assignment is a qualitative outcome, so there are nalinka between estimating matching games and
single-agent discrete choice models, such as the well-krilogit and probit discrete choice estimators. As in
single-agent discrete choice, an agent picks the partngartmers that maximize the agent’s payoffs from the
partners that would agree to the match, all at the given prilwever, estimating a matching game presents
additional complications because the actions of agentsatehmmay preclude the possibility that other agents
can match with the same parties. There are physical contsti@juotas) about how many matches each party
can make. More simply, agents on the same side of the markeivalts, and the choice set of any agent is
endogenously determined to be those agents on the othewidlidg to match with it.

Applying single-agent methods to matching games may gigerinistent parameter estimates. For example,
a mine extracting a scarce mineral faces a capacity constad cannot sell to all customers. Consider a
downstream manufacturer not being supplied with the minataral resource. It would be incorrect to apply a

single-agent discrete choice model to the decision of a dowam manufacturer to source materials from the
mine and infer that the manufacturer does not want the respas the true interpretation may be that other
manufacturers have more valuable uses for the scarce oesdbven if the customer-specific price for every

alternative to the mine is observed, in an econometric stgsprices are likely to be endogenous, as prices
are correlated with unobserved components of the reldtiprspecific costs and benefits from each customer-
resource pair. The endogenous prices would make a singlet-dgscrete choice estimator with those prices
included as a choice-specific regressor inconsistent.

The definition of transferable utility is that payoffs to ageat making a match are additively separable (quasi-
linear) in the transfer paid to that agent by its partner.sbassume that all agents make a single-agent best



response: each agent’s profit from its current matches nrasee the profit if the agent were to match with a
counterfactual partner, and pay that partner a transfenth&es the partner indifferent between the new match
and the partner’s old match. Transferable utility plus theumption of single-agent best responses implies a
condition | call local production maximization: two pairbrnatches must together have a greater sum of pro-
duction than if the four agents in question exchanged pextdis inequality forms the basis for identification
and estimation.

The local production maximization inequality may be a nsaegand not a sufficient condition for certain
equilibrium concepts, so identification and estimation wdt require computing equilibria. Further, | will
show the useful result that estimation does not requird¢ezation of the inequalities for all pairs of observed
matches, so estimation does not suffer from a computatmmrak of dimensionality in the number of agents
in a matching market. Evaluating the inequality also dogg@guire any first stage, nonparametric estimates
of matching probabilities, so the estimator does not stiften a data curse of dimensionality in the number of
agents in the market.

The inequality involves only exchanging partners, so dagsequire the economist to consider alternative
assignments with different numbers of matches for eachtagemerefore, the economist does not have to
specify the maximum number of matches (the quota) each aganhake, which is an advantage as quotas are
not found in many data sets.

Motivating the inequalities using single-agent best respoactions, given price-taking agents, requires rela-
tively weak assumptions. The inequalities can be writtemd@@mning on the matches of agents not involved
in a relationship, so the estimator can allow for arbitratieenalities. In a vertical market, the actions of two
firms to match may create a cheaper product in the downstresmetthat competes with other firms and low-
ers the other firms’ profits. Alternatively, two firms matahimight represent a merger that lowers competition
and raises profits for all firms. In a more traditional extétpa&xample, two firms matching may cause pol-
lution that reduces the profits of other firms. As the extétigaldrop into the estimator’s inequalities, adding
externalities does not change the computational burdemeaéstimator.

For the dependent variable, the estimator in this paper assignment and not price data. There may be
multiple assignments supporting equilibria, but as theredbr uses necessary conditions only, consistency
is preserved under multiple equilibria. Unlike some recgmproaches to estimating noncooperative, static
Nash games, the estimator does not require estimation ofj@iticgium selection rule and does not require
computing all equilibrium assignments for a given paramea@ie and realization of error terms (Ciliberto and
Tamer, 2003; Bajari, Hong and Ryan, 2004). No variablesramg¢he equilibrium selection rule but excluded
from the profits of agents in the market are required. Likeahproach to estimating static Nash games of
Pakes, Porter, Ho and Ishii (2005), the matching games a&timuses moment inequalities. However, this
paper works with a maximum score estimator, which maintegrssistency in the presence of unobservables
that affect choices, an issue that troubles the estimat®akés et al. in many standard applications such as
single-agent discrete choice.

A major contribution of the paper is to introduce a tractableximum score estimator for matching games.
Evaluating the objective function requires only computmngtch production levels and checking inequalities.
The estimator is nonparametric because it does not redngragsumption of parametric distributions for the
stochastic portions of marketwide errors, and does notire@uknown parametric structure for the determin-



istic production functions. In practice, researchers likitly use a semiparametric version of the estimator:
using economic theory to specify a parametric determmjatbduction function, but leaving the distribution
of the error terms unspecified.

The matching maximum score estimator has already been nsadapplication. Bajari and Fox (2005) esti-
mate the payoffs of bidders for items for sale in a multiptetauction. The application is to US auctions for
distinct geographic markets for providing mobile phonever. A multiple-unit auction is a special case of a
two-sided matching market where one side of the market,témes for sale, care only about the endogenous
prices they sell for. A key issue in spectrum auctions is dempntarities across items: is the valuation of a
package of geographically near mobile phone markets grifate the sum of the valuations of the markets if
won separately? Spectrum auctions highlight the maximworesestimator’s ability to estimate nonlinearities
in the payoffs across multiple geographic markets won byséme bidder.

Recently, several papers have proposed somewhat para@ag@gbrioaches to estimating matching games, both
with and without endogenous pricésin contrast with the maximum score estimator in this papgeesé
methods all require parametric functional form assumgstion the distribution of the error terms, and most
suffer from curses of dimensionality in the number of agentthe market. Many also make unattractive
assumptions to resolve multiple equilibria issues.

Choo and Siow (2003) estimate a matching model with endagepnces in a marriage application. In their
model, the prices and error terms vary only over discretselsiof agents and are used to clear aggregate market
clearing conditions, not to explain micro data on matches. &related estimation approach in housing, see
Bayer, McMillan and Reuben (2004). If it were to be appliedsale of their application, Choo and Siow’s
estimator suffers from two curses of dimensionality: a datse of dimensionality reflecting the need for first-
stage nonparametric estimates of match probabilitieschvaie of high dimension if data across markets are
used, and a second-stage need to solve a logit-derivedrsg$teonlinear equations in the number of discrete
types of agents in the market.

Whether a researcher should estimate a game with or witmalgigeenous transfers depends on the researcher’s
understanding of the market in question. Boyd, Lankfordelb@and Wyckoff (2003), Sgrensen (2004) and
Hitsch, Hortagsu and Ariely (2005) estimate Gale and Slyafil862) matching games where agents cannot
transfer endogenous prices. All these approaches to astgrgames without prices require additional as-
sumptions to resolve a multiple equilibria problem in theafenatches. Boyd et al. and Sgrensen, to differing
degrees, require the nested solution of a matching meahafus every realization of the error terms for all
matches in a market, the economist must compute an equitibriitsch et al. use data on both accepted and
rejected matches from a website to estimate a dynamic progiag search model, where some of the curse
of dimensionality is alleviated because agents in the niatkare the econometrician’s uncertainty about the
unknown error terms. The current paper primarily considafart information matching games, although |
discuss whether search is an candidate for the model'stenras in Section 5.7.

The rest of the text switches between less and more genededlmoBecause the more general notation can
obscure the basic ideas, Section 2 introduces the estirftattre simplest example of two-sided matching:

1In addition, estimating matching games is related to mahgra¢mpirical literatures: auctions, supply and demancbaidgeneous
goods, non-cooperative static Nash games, models of gartid public good provision, equilibrium models with diffatiated products,
hedonic models of equilibrium product characteristic cepand models of price setting under search.



marriage. The main portions of the paper work with a more gardass of matching games that incorporates
important features of games, such as externalities, usawlirstrial organization, labor and public finance.

Section 3 discusses identification, and Section 4 disctiss@saximum score estimator. Work on the marriage,
labor and financial investment markets has often focusedanmeg without externalities, so Section 5 drops
externalities to discuss additional results about gam#sauiestrictive property: the decentralized equilibrium
is in the core of the game.

2 The Simple Example of Marriage

Becker (1973) introduces a market model of marriage thagestg men with more education marry women
with more education when the schooling of men and women amptments in production. However, having a
spouse of the same religion may also be a factor in producimhreligion may be correlated with schooling, so

a researcher wants to estimate the complementarities eetwale and female schooling while controlling for
the possibility that more surplus is generated in a marnegen spouses have the same religion. The presence
of two inputs per agent requires a multivariate analysid,fsence formal estimation becomes attractive.

Consider a marriage market where a mmamarries a womanv and they produce output according to the
production function

f (m,w | B) = B1 x schooh x school, + B2 x 1[religion,, = religion,],

whereschool, is the years of schooling of a mareligion,, is the religion of a man, and the variables for
women are similarly named. The indicator variab|eeligion,, = religion,] is 1 when a hypothetical married
couple share areligion, and 0 when they have differentiogigy A researcher wants to estimate the production
function parameters such @s, which, if positive, means that male and female schoolirgcamplements.
Qualitative data on who matches with whom can only identifyduction functions up to scale normalizations,
sof; = +1. The parametes, shows the benefit of having the same religion in schoolingipetion units?

Say marriages only happen within towns. Within each towerdtwill be a potential computational curse of
dimensionality in the number of agents in a town. To undeibthe logic behind the combinatorics, let there
be 3 men and 3 women in a town, none of whom can be single (flisity only). Let the notation 12 refer
to a hypothetical marriage between man 1 and woman 2. It nuhthat there aré? = 9 possible marriages
that can happen, which are

11,12, 13, 21, 22, 23, 31, 32, 33.

However, in an assignment of men to women for the entire niaeleh individual can join only one marriage.
There ares! = 6 possible assignments for the entire market, which can beztl as

{11,22,33}, {11,23,32} ,{12,21,33} , {12,23,31}, {13,21,32} , {13,22,31} .

2The full production function might also have non-interaicsehooling terms, such s x schooj, andB4 x schooly. As | will explain
later, these terms do not affect the matches that will forraqguilibrium, and cannot be identified from data on realizeataimes. Their
non-identification does not prevent the identification & pfarameters multiplying the interaction of male and ferohkracteristics.



To see how the combinatorics explode, now let there be 100andriLl00 women in a town. There are now
100 = 10,000 matches and00! = 9.33x 10*>” marketwide assignments. By contrast, the number of atoms in
the universe is much lower, at aroun@®, than the number of assignments. Forming the probabildy tine
observed assignment represents the market's equilibrésigrmment will not be possible in a perfect informa-
tion setup where a matching mechanism must be solved foy egalization of the error termsTherefore, a
standard likelihood estimator is not practical.

However, it is possible to derive inequalities that are seagy conditions for an equilibrium, and that are
tractable to work with in estimation. Let the utility of marfrom matching with his observed wife, be be

v (a,Wa) —taw,, Wherev? (a,way) iS mana’s experience utility, anthw, is a (possibly negative) transfer paid by
his wife to him. Let the payoffs of mah from his wife w, have a similar functional formy™ (b, wy) — tow, -
The payoff from womarnv, of matching with her husbaruadis VW (a,w,) + taw,, Wherevw (a,w,) is womanw,’s
experience utility anth, is the transfer she pays her husband.

Transfers are not observed in the data, so the goal will bestivelan inequality restriction involving total
match production functions of the forina,wa) = v (a,wa) + V" (a,wa). It will be a result that assignment data
alone can only identify match production functions, notdtiéties of men and women separately.

Single-agent best response indicates that the totalutiiimana from marrying his observed wife, exceeds
his utility from instead marrying womam, at a transfer level equal to the level that would makeswitch
from her observed husbaibd

V" (a,Wa) — taws > V" (8, Wh) — faw, Q)

wherefay, is the price that makes, indifferent betweera andb:
VW (a,Wp) +Taw, = V" (b,Wp) +tow, -
Substituting in the definition dfw, into (1) gives
V™ (8, Wa) — tawy > V" (a,Wh) — (VY (b, Wp) +tow, — V" (a,Wp)) - (2)
Repeating the above algebra for the decisioh wf marryw, instead ofw, gives

V™ (b, Wh) — tow, > V™ (b,Wa) — (V" (2, Wa) +taw, — V" (b, Wa)) . 3)

Adding the inequalities in (2) and (3) leaves, as the trassfg, andty,, cancel,
VT (a,wa) + V7 (b,wp) > V™ (a,wh) — (VW (b,wp) — VW (a,wh)) + V™ (b,wa) — (VY (a,wa) — VW (b, wy)).

Rearranging two of the’s and substituting in the definition of a production functid (a,wa) = V™ (a,wa) +
W(a,wg), leaves
f (a7Wa) + f (b>Wb) > f (a>Wb) + f (b>Wa) .

This condition says that if the marriagas, andbw, are observed, then single-agent best responses under price

3In an assignment game where an equilibrium assignment ieicdre of the game, a matching mechanism can be implemented a
linear programming problem.



taking behavior imply that the sum of the match productieelefromaw, andbw, must exceed the production
levels from the exchange of spouses, andbw,. | call this inequalitylocal production maximizatigras the
price-taking best responsesah, w, andw, ensure that production is maximized within the two marrg&age

Some numbers may help crystallize why local production mé&ation can identify match production func-
tions. Say there are two men and two women, andfthat0, so that religion does not enter production. Let
one man and one woman each have a schooling level of 10, atttelether man and other woman have a
schooling level of 1. The data are that agents assortatmalgh: the two high schooling people marry each
other, and similarly the two low schooling agents marry. ttee local production maximization inequality is

B1x10x10+B1 x1x1>PB1x10x1+By x1x10,

or, simplifying, 1101 > B;20, which implies thaB; > 0, or B; = 1 given the scale normalization th@gt = +1.
Note that while the inequalities in estimation involve onlyservable characteristics, | will discuss how the
matching maximum score estimator is consistent when mategprobabilistic to the econometrician because
of unobservables.

Readers familiar with Becker’s original model will recogeithat local production maximization is consis-
tent with Becker’s theorem that assortative matching happeéhen production functions are complementary
(supermodular) in a matched pair of inputs, one per agentupergnodular, or complementary, production
function has a positive cross-derivative in the inputs ohraad women, o% > 0, so that incremental
marriage production is especially high when a man with higication marries a woman with high education.
However, the local production maximization inequality erlgling my formal estimation procedure generalizes
to more than Becker’s case of one continuously varying imgautagent in a one-to-one two-sided matching
game. | will show that local production maximization allomsny inputs per agent (in this section, school-
ing and religion), unordered inputs (religion), produntfanctions that are not globally super or submodular
in pairs of inputs, interactions between different chargstics of the same agent, many-to-many two-sided
matching with nonlinearities across payoffs of agents angame side of the market, one-sided matching,
multiple equilibrium assignments, and games with extétieal Local production maximization will apply
to many games where the decentralized equilibrium does agimize total marketwide (global) production,
which is the property Becker uses to prove his theorem.

A researcher has data from 10 towns, indexetl.bjhe observed wife of maain townhiswi. The researcher
knows the years of schooling and religion of all adults. Fos tlata, the maximum score objective function
introduced in this paper is

10 100 100

QB =3 5 5y 1[f(awh|B)+1(owh(B)>1(aud|p)+f(bvliB)].
h=la=1b=a+1
The maximum score estimator imposes the best responsasptisu and finds the production function pa-
rameters most consistent with local production maximizatiFor a market, the estimator itemizes over all
pairs of mera andb and their observed wiveg] andwl. For a given vector of production function parameters,
the estimator asks whether the sum of the productions of taiages exceeds the sum of the productions
when the two couples exchange partners. If the deterngmistiduction from the observed marriages is larger,
the score of correct predictions according to local prodactmaximization, and hence the maximum score



objective function, increases by 1.

A researcher uses a global optimization routine to numiyiozaximize Q(B) to find the vector of production
function parameters that make the observed marriages haxgréatest score of correct predictions according
to Becker's model. Evaluating the objective function regsionly computing production for given marriages
and checking inequalities. No complex matching algorithmsst be solved and the estimator avoids any
first stage estimation of matching probabilities. The eatonis semiparametric because it does not require
the researcher to assume a particular functional form ferdiktribution of the error terms. The maximum
score estimator in this paper is nonparametric in its moség® form, as the estimator will also not require a
functional form assumption for the production function.

3 Identification in Matching Games

This section proves that production functions in matchiamgs can be nonparametrically identified. Identifi-
cation results, in contrast to estimation, assume thatemreker has an infinite amount of data, and computa-
tional concerns are not relevant. Estimation will be disedlsin Section 4.

This paper considers matching games with transferabliéyudihd endogenous prices. Matching games have
been fairly well studied in the theoretical literature. Eapositional purposes, | divide matching games into
two subcategories: multi-sided matching and coalitiomfation games. In a coalition formation game (or

one-sided matching), any arbitrary subset of agents in ¢bea@my may form a match. Examples include a

group of people choosing roommates, local residents faymlimbs, and so on. In this framework, the number
of clubs arises endogenously.

By contrast, in multi-sided matching agents in exclusividés” of the market match at least with some agents
from other other sides. The most common example of mulgichatching is two-sided matching, which |
use here for simplicity. As its name implies, two-sided rhatg relies on dividing agents into two exclusive
groups, such as upstream and downstream firms. Agents omdenaf he market, such as upstream firms, can
only match with the agents on the other side, in this case dtaam firms.

Two-sided matching is itself divided into one-to-one, mamyone and many-to-many matching. A one-to-one
matching market is like the marriage market in Western $gcieach man can marry only one woman. A
many-to-one matching market is like a stylized version ofidtiple-unit auction or labor market: each bidder
can win multiple items but each item can be one only once, and eorker can have only one job, while each
employer can hire multiple workers, perhaps up to some eyepispecific limit, or quota. Finally, in many-
to-many matching, both sides of the market can make multidéches up to some agent-specific number of
matches, or quota. An example is the matching of upstrears {isappliers) and downstream firms (retailers).
Each retailer may stock items from multiple suppliers, aadhesupplier is likely to sell to multiple retail
outlets.

Throughout the discussion of two-sided matching, | usetimadased upon the example of upstream and
downstream firms, as many-to-many matching is more genasal bne-to-one and many-to-one matching,
and important for applications to supply chains.



3.1 Agents and Match Production

Let there be two sides to a market, upstream firms and dovamstiiems. There arg upstream firms, indexed
bya=1,...,U. The other side of the market is tbedownstream firms, indexed by=1,...,D. U andD refer
to both the sets and numbers of firms.

Each firm has a quota, the number of matches that it can pliysiake. The quota of upstream firmis

g4, and likewise the quota of downstream fifris g?. An agent can often make fewer matches than its quota,
although that feature of the model is not essential. A quartsbe set ta-«, so that a firm may be unconstrained
in the number of matches it can makidg is a set of downstream firms that may hypothetically matck wit
upstream firma. If g = ¢ = 1vac U, d € D, the game is the familiar one-to-one or marriage model.

Each agent has a vector of characteristics in the data. FEbragmn firma, x4 is a vector ofr" different charac-
teristics. For example, we could observe characteristich asa’s location and product quality. Likewise for
downstream firm, X! is a vector of¢ observable characteristics.

The production function from a match is the key structuraingtive that drives the pattern of matching and
is the goal of estimation. A production function takes theeted characteristics of the parties in a match
and creates some level of output. In one-to-one matchimgaifa marries womat, total match production is

f (x4,x9). In many-to-one matching, if downstream firirendj match with upstream firm, total production is

f (xg7xid x‘f) . If upstream firma has a quota aj, = 3, then the firm can supply up to three downstream firms, so
a more general notation for output when fiamatches andj is f (xg,&d,x?,o), where the empty sé@stands

in for the idea that slot 3 is not filled. As abow; = {i, j} is the set of downstream firms supplied by fiam
Another way of writing production functions is thér(x; {xﬁ}keMa>, where the empty set for the vacant slot
is suppressed for convenience, and the set notation forowariates for the downstream firms is meant to be

expanded to be equal f(](xﬁi{)gd,xj’) .

This notation quickly becomes cumbersome. In many ins@ncese the shorthand notatidria,i, j) or

f (a,Ma) to stand in forf (xg,xﬁx?). Remember that production functions are always functidriseobserv-

able characteristics of agents, even if the charactesitemselves are suppressed in the notation. Sometimes,
a matching withi is written asai.

As with the previous marriage example, we can microfouncchptoduction functions with the non-transfer
revenue functions over various matching agents, as in

f (xg,xd,x‘f) =W (x&xﬁx?) + (xﬁ,x,—‘{x?) + (xg,x‘jj7 i ) ,

wherew is the pre-transfer revenue function for an upstream firmd \éris the revenue function for a down-
stream firm.

Itis usual in matching games to normalize the productiomfremaining single to be zero, 6tx4) = f (x!) =0

Vi e D,ae U. This normalization is not necessary, but it does make #imal results in matching easier to
derive. In some cases, a researcher might want to includehrspiecific covariate§dd), such as the distance
between two firms. Estimation can proceed as long as the dataio match-specific covariates for both
observed and counterfactual matches. Match-specific iedgarmake the identification problem easier by



having the production of individual matches shift aroundirflexible way. | will not consider match-specific
covariates further in this section to prove that they arereqtiired for identification.

Writing production functions in many-to-many matches igtgly more complicated. Consider a market where
upstream firma sells to downstream firmisand j andi also receives product from upstream fiomf we allow

for arbitrary nonlinearities across these relationships,production function should be written &&,b,i, ).

We need a mechanism to distinguish the fact thddes not supply. Typically in an application, a researcher
will choose a parametric functional form férso that nonlinearities iis profits across its supplier’s character-
istics are distinguished frods nonlinearities across the retailers it sells to. Howewdren being completely
nonparametric, some additional assumption needs to begtatf. For simplicity of exposition, in many-to-
many two-sided matching | assume that the revenue functiothe downstream firm is additively separable
across suppliers, or

(b any K ) = keéb}vd (') = ke%b}vd (ki)

where in this case downstream fiii: payoffs are evaluated at its matches with suppbeardb.*

| should emphasize that this assumption is made for sintplésid is not related to any deep limitation from
matching theory. Again, in practice a researcher will puagametric structure ofithat handles the nonlinear-
ities across multiple partners separately for each agent.

For coalition formation, agents are not exogenously ditigeo sides of the market. Therefore, there is no
need to distinguish between downstream and upstream firhgsnatation is the same as many-to-one (if each
agent can join only one coalition) or many-to-many matchkifggents can join multiple coalitions), without

u andd superscript8. The production if agents, b andc all match together i$ (a, b, c).

The discussion of the payoff framework of a matching gamebeaformalized into an assumption.

Assumption 1. 1. Agents care only about payments / profits, or alternafitr@nsfers enter profits quasi-
linearly (transferable utility).

2. If f is nonparametric, for many-to-many matching, one side®ftlarket has revenues that are additively
separable across multiple matches. Without loss of geitgribel the side of the market with revenues
that are additive across multiple matches the “downstreamdt.

An outcome of a matching game is a set of physical matchesliféirras and a set of monetary transfers
between matched firms. The main dependent variable in mysinas the set of physical matches for an entire
matching market, which | label an assignment.

Definition 1. Let anassignment {Ma},-, be a physically possible set of physical matches, wiigiis the set of
downstream firms matching with upstream fanPhysically possible means quotas are satisfipd} < divae

U and [M{] < ¢f Vi € D andM{ is the implied (by{Ma},.,) set of upstream firms matching with downstream
firmi.

4Sotomayor (1992) and Sotomayor (1999) study many-to-maatghing under the stronger assumption that payoffs for bpgtream
and downstream firms are additively separable across reultiptches.

5| restrict attention to markets where agents can join onlingls coalition at a time, although the the equivalence ketwa social
planning problem and the decentralized equilibrium shewténd to the more general case, given appropriate notation

10



In many games, it will be important to allow for externalitid-or example, if firms are competing in a product
market, then the decision of some firms to match (cooperategeh may raise (if the merger reduces com-
petition) or lower (if cooperation produces a lower cost petitor) the profits of other firms. To allow for
externalities, | write that a match’s production is a fuaotdf its own characteristics, and the characteristics
and matches of all the firms in an assignment.E.bt an assignment. é#fmatches with the downstream firms
and externalities are importarfs match production can be written d&$a,M, | E), where the conditioning
notation implies that the matches of other firms may exerigereality on the firms matching with

3.2 Single-Agent Best Responses and Local Production Maximation

This paper identifies the production function in a matchiaghg using a system of inequalities derived from
revealed preference arguments. The condition | use isddalbal production maximization. Itis a consequence
of single-agent best responses under price taking behagdhave already shown for the marriage example.
If both matches of upstream firmawith downstream firm and upstream firnb with downstream firmj are
observed, then a local implication of production maximimais that the total production of the two matches
exceeds the total production from the exchange of partagesdbi. Otherwise, matchesj andbi could form
without disturbing any other matches and without changimgtotal number of matches of any agent. The
formal definition of local production maximization is asléolss.

Definition 2. ¢ In a two-sided matching game with assignmentonsider two upstream firma,andb,
two groups of downstream firmg, and My, and two downstream firmé.c M, and j € My, all in a
matching markeb. Further leti ¢ M, and j ¢ M,, and letE be the assignmerit except thatj and bi
match andai andbj do not match. The matchasandbj satisfylocal production maximization when

f(aMa|E)+f(bMy|E) > f (& (Ma\ (i) U{i} | E)+ T (b.(Mp\ {j) ULi} | E). (@)

e In a coalition formation game with assignmeft consider two coalition$1, and M,, and one agent
from each coalitionM, > i ¢ Mp andMp, > j ¢ Ma. LetE be the overall assignment whit > i ¢ M, and
Ma > j ¢ My. The observed matchasandbj satisfylocal production maximization when

f(Ma|E)+f(Mp|E) > f((Ma\{i})U{j}[E)+f((Mp\{i})U{i} |E).

In the rest of the paper, | will focus on two-sided many-toammatching for conciseness. Coalition formation
just drops the distinction between upstream and downstfieaus, and Definition 2 sufficiently documents how
the inequality in the estimator changes for the case of tmaliormation. Once one understands the derivation
of the inequalities, it is easy to extend the analysis toratietching games with endogenous transfers, such as
the many-sided chain matching studied by Ostrovsky (2004).

| will derive the local production maximization inequadis from an assumption of single-agent best responses
for the case of upstream and downstream firms Mgt M\ {i} be the downstream firms other thiamatching

with a, and similarly letvi, = M\ {j}. The profit of upstream firma from matching with the downstream firms
Ma iS W (a,i,Ma | E) —tgi — Y keM, tak, Wherew! (a,i,Mqa | E) are the revenues from the market assignment, and
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tai IS @ payment from upstream firmto downstream firmi. The profits and revenues bfare similar. Let
the profit of downstream firmfrom matching with upstream firm and the other downstream firmshfy be
VA (a,i,Ma | E) +tai, Wwherevd (a,i,Ma | E) is i’s revenues from its business at the market assignmentt,aisd
the transfer payment from The goal will be to derive a local production maximizatiandition involving
production functions of the form(a,i,Ma | E) =W (a,i,Ma | E) +V4 (a,i,Ma | E).

Single-agent best response indicates that the prddifrmim matching withi exceeds the profit from matching
with j ini’s place at the transfgrwould require to switch fronb

\/J(avivl\za | E) *tai - Z takZ\/J (a,j,Ma ‘ E) 7faj - Z tak: (5)
keMa keMa

wheref,; is the price that makegindifferent betweem andj’s observed partner.
Vd (a7 j,Ma ‘ E) +faj :vd (b,j,Mb | E)+tbj

Note that | do not consideraddingj while a remains matched to Such a move is possibleafhas unused
quota, but | do not consider that deviation in the derivatiérthe local production maximization condition
because data on quotas are often not available to a reseaBchustituting in the definition d§; into (5) and
cancelling the duplicate transfeyg. . tak gives

\/u(a.7i7Ma ‘ E)_tal Z\/J(a7j7Ma| E) - (Vd (b7]7Mb | E)+tbj _vd (a,jJ\Za‘ E)) . (6)
Repeating the above algebra for decisiom td match withj instead of gives

W (b, ,Mp |E) —tp; > (b,i,Mp | E) — (Vd(avivma | E) +tai — V¥ (b,i,Mp | E)) (7)
Adding the inequalities in (6) and (7) leaves, as the trassfgandt, cancel out,

W (a,i,Ma|E)+V (b, j,Mp |E) > W (a j,Ma|E) - (vd(b,ij |E)—v (a,j,Ma| E))+
V! (b,i,My | E) — (vd (,i,Ma | E)+tai — VA (b,i,My | E)).

Rearranging two of thés and substituting in the definition of a production funatjé (a,i,Ma | E) =W (a,i,Ma | E) +
Vi (a,i,Ma | E), leaves

f(a7i7Ma| E)+f(b7]7Mb|E)Z f (a7j7ma‘ E)+f (b7|7Mb|E)7

which is just Definition 2, local production maximization.

Notice how local production maximization depends on onéyghoduction functions (a,i,M, | E). Using data

on assignments alone, | cannot hope to identify the revamuibns for upstream and downstream firms sepa-
rately. This is not necessarily a weaknessi, @si, My | E) is more general thaw (a,i,M, | E) andvd (a,i, Mg | E)

as separate functions, &a,i,M, | E) does not require that the production from a match be adtjitseparable
across agents. Also note that transfers do not enter thedomduction maximization inequality. This too may
be an advantage if the researcher does not have data oretsainstween agents. In many inter-firm contracting
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applications, firms exchange transfers but do not rele@sédtails of the transfers to researchers.

Local production maximization was not derived from a cortglquilibrium concept, but from only the def-
initions of single-agent best response under price takettpbior and transferable utility. A8 includes the
actions of other agents, the framework can handle quitergefoems of externalities. For example, two firms
matching may create a competitive pressure for the othes finthe downstream market if the matching firms
can offer a cheaper produt.

An equilibrium that satisfies local production maximizati@r single-agent best responses) for all pairs may
not satisfy global production maximization: the sum of newide match production may not be maximized.
For exampleai andbj may find it in their private interests to match, but they mapase an externality on
other firms, such as the matck If the externality onck is large enough, it could be that this equilibrium
produces a lower sum of marketwide production than if alffsins had formed a grand coalition and chosen
an alternative matching arrangement. Local productionmization is not derived from a restriction involving
group decision making.

3.3 Firm Beliefs About Counterfactual Externalities

Definition 2, local production maximization, allows a resgeer to include externalities in the payoff of agents.
The inequalities as written assume that upstream dibmlieves that when replaces its partnemwith a new
downstream firmj, i will choose to match withj’s old partnetb. The counterfactual assignment with matches
aj andbi is labeledE. The inclusion ofE in Definition 2 can be motivated by any of three assumptions: 1
Upstreama is naive and believeiswill match with b whena dropsi; 2) There is not time for to find any
other partner than the now availall@ftera dropsi, soi must match witho; and 3) All firms are small in the
calculation of externalities, and the assignmeig a’'s approximation as to what will happen. Any of the three
arguments lead to Definition 2 as written.

In some games it may be possible thaiill choose to match with some third firmafter being dropped ba.

To facilitate the match with, ¢ might drop its partnek, producing a chain of disruptions. As this new chain
was precipitated by an out-of-equilibrium deviationdpyhe chain is unlikely to lead to a new equilibrium and
hence end. It does not seem logical thabuld work out a reasonable counterfactual implicatiorhef¢hain

of disruptions it causes, and incorporate how those digmpwill affect the externalities imposed arwhen

it dropsi for j.

Chains of disruptions do not arise when testing whether tofstrategies is a pure strategy Nash equilibrium

to a static noncooperative game. In a normal form Nash gaaw, agent’s strategy space is unrivaled: any
strategy is physically possible. If the game is an entry gagaeh agent can choose to enter the market
regardless of what other agents do. To check if a deviatigmaitable, a researcher fixes the actions of all

other playerd. On the other hand, in a matching game, the actions of firmsanst@ined to by physically

6An externality caused by the internal operations of an agenither aspects of the same agent's operations will not berafble, if
the internal operations of an agent are not modeled in thehimat game.

"The closest approximation to holding the actions of othetigmfixed in a matching game is to consider counterfactewdduated
at externalitiesE instead ofE. However, it is physically impossible for matchag and bi to form as part of the original assignment
E, because irE (the data) matchesi andbj but notaj andbi form. The identification strategy in this paper works by camipg the
probabilities of different assignments. A physically inspible assignment has a probability of zero.
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possible: a firm can only make more matches if it has unusethqudpstream firma must, if its quota is
constrained, dropto match withj. Having an agent make a deviation while holding the actidrith® other
involved agents fixed does not make sense in a matching gatnexternalities.

The focus on the beliefs of firms making a deviation about terdiactual externalities only arise in matching
games where production is a function of the matches of agenssde of the current match. Without external-
ities, Definition 2 is derivable from single-agent best mses without arguments about a firm’s beliefs about
counterfactual externalities. With externalities, thailgrium concept for the game in question will determine
whether Definition 2 is applicable. Again, any of the threplarations listed above provides a motivation for
Definition 2.

3.4 Equilibrium Existence and Uniqueness

| have not introduced a definition of an equilibrium, and Itaarly have not imposed sufficient conditions to
ensure the existence of an equilibrium. The concept thaforimally label “single-agent best responses” is
closely related to the notion of a “stable allocation” in fieltl and Milgrom (2005). In many-to-one two-sided
matching with complementarities across matches on the sate®f the market, Hatfield and Milgrom (2005)
present a constructive theorem that demonstrates tharprefe profiles can be found for where there is no
stable allocation. The result of Hatfield and Milgrom doesmean that an equilibrium does not exist for any
empirical application, just that very general existen@dtiems cannot be proved.

Another solution concept is known as the core. Lucas (198&ldses some core non-emptiness results for
assignment games when there are more than two sides to a.n@stiovsky (2004) shows how a special
chain structure fon-way matching guarantees the existence of a stable chaier wmdiogenous prices and
restrictions on payoffs. Abeledo and Isaak (1991) discassthere may not exist a stable match in a market,
like the roommates problem of Gale and Shapley (1962), winatehes are between agents on the same side
of a market. Kovalenkov and Wooders (2003) use a weakermofithe core, the-core, and derive conditions

on parameterized families of games for the non-emptineseafcore for coalition formation games.

Many interesting empirical applications require inveating possibilities outside of the scope of current ex-
istence theorems. | make the assumption that the data orssignenent are generated by a matching game
with endogenous prices, and represent an equilibrium fgdme. At this equilibrium, the local production
maximization condition holds for all subsets of firms safisf] the conditions of Definition 2. Mathematically,
this existence assumption is nested into the forthcomirsyifption 3.

Many games with where an equilibrium is defined to be robuptiowvise deviations will have multiple equi-
libria, including multiple equilibrium assignments, indition to multiple vectors of transfers between matched
partners in the assignment. As estimation will rely on thelgroduction maximization inequalities, rather
than computing an equilibrium, the multiple equilibriuns@gmments property of many matching games will
not pose a problem for estimatién.

8A common solution concept in match games without extetiaalis the core. A core outcome is robust to deviations byitimas of
agents. As the core solution concept is used in importasselof matching games, | discuss the core more formallyatidBes.
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3.5 A Class of Production Functions for Identification

In a single-agent discrete choice model, the discrete ehaoliserved in data is a qualitative outcome. The
preference ordering generating the discrete choice caafyesented on the real line using a utility function,
with preferred choices offering higher utility values. ¢ta commonly known result in choice theory that any
positive monotonic transformation of an agent’s utilitynétion will produce the same preference ordering,
and thus discrete choice data can only identify utility filmies up to positive monotonic transformations. In
single-agent, semiparametric discrete choice estimatibere deterministic payoffs are assumed to be of the
form x'B, location and scale normalizations must be imposefl.ddommon scale normalizations impose that
B'B =1 and, alternatively, normalize the value of one element efuwbctor to be+1. In a generalization,
Matzkin (1993) considers nonparametric identificationted payoff function, and must restrict attention to a
class of utility functions where no function is a positive matonic transformation of another function in the
class.

In the matching estimators introduced in this paper, thg onkcome data being used are the assignments.
An assignment is a qualitative outcome, and so productiontfons are only identifiable in classes that give
unigue predictions about local production maximization.

Assumption 2. Let f € ©, whereo is a set of match production functions satisfying the foltmaproperties.

1. For eachf € ©, there is nof € @ such that for all two vectors of characteristics for upstrefirmsxd and
XBIY
P0G % | E)+106,% | B) > F (4% | E)+ (% | E) <= T (& % | E)+ T (6, % | €) > (04, % | E) + F (x5, % | E),
where for feasible groups of downstream fipsk,, X3, andxy, %3 is formed fron®; by exchanging one
partner fromg,, andx, is formed fronx, by exchanging one partner with. For games with externalities,

E is an assignment where matchesndbj form, andE is the same assignment except that matejes
andbi form instead ofi andbj.

2. For eachf € ©, f is continuous in all of its arguments.

3. @is compact.

Data on assignments identify tradeoffs of inputs in detamgj the rank ordering of production from rearrange-
ments of matches in a matching game, not the cardinalityadyoction.

The interaction of characteristics of upstream and dowastrfirms drives the patterns of matches that are the
endogenous variables used in identification. Definition Xesahis clearer. As the same set of firms appear
on either side of the local production maximization inegyaterms that do not involve interactions between
the characteristics of firms difference out. For exampl@, éme-to-one marriage market without externalities,
if f(x4,x3) = Buxd+Bygx, then the local production maximization inequality in Deffion 2 reduces to

Buxa + Bax{ +[3uxg+[3dx? > Buxp+ B! +Buxg+5dx?y
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or 0> 0, so the definition has no empirical content. Theoretic#iiig, uninteracted characteristics are valued
equally by all potential partner firms, and are priced outgnikbrium. Only the differential production levels
of various matches affect assignments.

If there is a observed characteristic suckigthat is not interacted with the characteristics of dowrastréirms,
then the parametd, multiplying x4 cannot be identified from the qualitative assignment datawéver, as
Buxd cancels out from the local production maximization comdifiother parameters can be identified. Thus
production functions are identified only within a clasatisfying Assumption 2.

For some policy questions, the cancellation of charadiesithat are not interactions between the character-
istics of upstream and downstream firms is an empirical adgan Many datasets lack covariate data on all

important characteristics of upstream and downstream fithsome of these characteristics affect the match

production of all matches equally, the characteristicked#hce out, and do not affect the assignment of up-
stream to downstream firms. Therefore, if the policy questiof interest to the investigator are not functions

of these unobserved characteristics, then differenciamtbhut leads to empirical robustness to missing data
problemst?

For researchers interested in nonparametric identificatiother examples can clarify what properties of pro-
duction can be identified in a clags Consider the marriage model in Becker (1973) with one ctiara
istic for each spouse Focus on the two seemingly very diffeproduction functions (a,i) = 2x4 and
fai)=-(x4- ><,d . These production functions have the same cross- derew%lé% 2, so the production
functlons are both globally supermodular. Both productiorctions imply that, when agent characteristics are
schooling levels, highly educated men should marry highblyoated women. The reasoning is different, as in
f matching two agents with high schooling levels createsgelamount of production, and fnnot matching
two agents with the same schooling creates a loss. It is rssilple to use data on assignments to distinguish
betweenf and f, which are both supermodular over their entire support aaa lthe same predictions for
observed assignments.

However, even for the case of only one characteristic pentagermal estimation can identify more than
Becker (1973). Again, consider the case of one-to-one fdedsmatching (marriage). Then, in Part 1 of
Assumption 2g; = %4 andx, = %3. The condition in Part 1 can be rewritten as

f O %) — f 08 %) > f (%) — F 0, %) <= F 0, %0) — %) > F (. %0) — F 0, %),

which, if x4 is a scalar, is a non-derivative based definition of supetrtaoity (increasing differences). The
condition states that there must be at least one point wirdnt implications for supermodularity. Assump-
tion 2 requires only one point of disagreement betweemd f, not the supermodularity of over its entire
support, as in Becker (1973). So, nonparametrically, itoissible to identify the sign of the cross-derivative

90ne way of identifying the coefficierfi, on x! in payoffs is if unmatched upstream firms are observed, anthtohed firms do not
value their own characteristic;. Thenxy is implicitly multiplied by an indicator variable equal toifla match partner is not the null set,
and 0 if the match partner is remaining unmatched. In this,odss truly not a characteristic valued equally by all downatrefirms, as
being unmatched is treated as a type of firm.

10In demand estimation methods such as Berry, Levinsohn akelsRa995), investigators are often concerned that thegamuis
prices are correlated with unobserved product charatitaris As instruments are hard to find, typically researclemsume that the
observed product characteristics are independent of thbsemved characteristics. By contrast, prices do not appehe definition
of local production maximization, so the advantage of déffesing out unobserved product characteristics involvesreern that the
unobserved characteristics are correlated with the obdevaracteristics.
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of f (for continuous characteristics) over its entire suppa@ather than assuming is either globally sub or
supermodular, as in production functions such @si) = 2x4x¢.

This paper considers many other classes of games than jusbgea For these games, generalizations of
concepts such as local supermodularity still are some gbtbperties of production functions that arise from
single-agent best responses and therefore drive equilibassignments. Part 1 of Assumption 2 uses the local
production maximization condition to precisely state weeat be identified using data on assignments alone.

One limitation of Assumption 2 is that two class membgind f must be distinguishable by exchanges of
only downstream firm per upstream firm. Single-agent beporeses imply the local production maximization
inequality, which involves exchanges of one downstream fiemupstream firm. It is hypothetically possible
that f and f could produce the same ranking for the relative sums of piioiu of all exchanges of one
downstream firm, but not agree on the ranking of the sums afymtion from exchanges of two downstream
firms per upstream firm. For exampleand f might give different implications for the inequality (whe for
f)

f(ai,j)+f(bk1) > f(akl)+f(bij),

as one cannot typically derive whether the inequality isr < using a series of exchanges of one downstream
firm per upstream firna or b. Under Assumption 2, the classmust rule out the possibility thatand f only
disagree over exchanges of two downstream firms per upsfieam

Most parametric forms chosen by researchers in applicatigh not involve such complex nonlinearities
in production functions, and the local identification calesed in Assumption 2 will not pose an empirical
obstacle. For example, Bajari and Fox (2005) estimate cemg@htarities across multiple geographic markets
for sale in a government auction. Complementarities argipddoy a measure of the geographic closeness of
a collection of geographic markets. Exchanging one geducaparket per competing bidder provides local
variation in the closeness measure for each bidder, antbttabvariation is enough for identification using the
local production maximization inequalities in the pararicatlass of production functions considered.

Note that the limitation to local identification in Assungnti 2 is a consequence of not making strong as-
sumptions about equilibria. Section 5 shows that a gameemier equilibrium is in the core allows global
identification, as Assumption 2 can be extended to allow amghs of more than one downstream firm per
upstream firm

Assumption 2 also states that the class of production fanstior identification is compact. Compactness is
required for the consistency of many extremum estimatatsptnerwise is not deeply related to identification.

3.6 The Definition of a Market

The use of asymptotic theory to prove identification of matchduction functions requires me to choose
whether the limiting population is observing a matching kegwvith an infinite number of agents, or observing
an infinite number of matching markets, each with a finite nends firms. A market with an infinite number

LAlternatively, one could specify a larger cla® and then argue the local production maximization inegealitdentify a subset
of @° c ©F with similar implications for local production maximizati as the otherwise point identifietf € ©, where® satisfies
Assumption 2. This paper does not pursue set identificatemaulse this type of non-identification seems far removed oy empirical
example, and in any case working with games in the core alforglobal identification.
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of firms changes the character of the matches that will berebdegit is much simpler to consider a limiting
population with an infinite number of markets.

Note that while asymptotics in the number of agents in a mdrke a lot of practical appeal to researchers
with data on only one market, it does not have a tight link ta¢bncept of a law of large numbers in statistics.
Laws of large numbers are used to prove consistency. Uslaally of large numbers consider adding more
data, holding the previous data constant. However, in ammaianarket, adding another agent to the market
alters the matches of the existing agents. So not only is mhai@ added, but the data the researcher already
has is altered. Nevertheless, Section 5.6 presents a shousdion relating increasing the number of agents
in a market to the empirical industrial organization demastimation literature on increasing the number
of products in a differentiated products market. Also, etgpresent a Monte Carlo study that includes an
examination of the properties of the estimator when usirig ftam only one market.

So this paper primarily considers asymptotics in the nuroberarkets. Each marketis distinguished by its
observed characteristics, its observed set of matchehambtentially unobserved endogenous prices, and the
yet-to-be-introduced unobserved stochastic error termngiating the observed matches. The collecpis

an important construct in understanding the theoretiogp@rties of the estimator | will introduce belov,
contains most of the exogenous characteristics of a magcharket.

Definition 3. The collection of most of the exogenous characteristicsab€ining market is X;,.

e X, contains the number of upstreany,, and the number of downstream firn@s,, in marketh, or the
total number of agents in a coalition formation game.

e For each upstream firma, X, contains the (potentially) observable vector ptharacteristicsy entering
match production functions, also contains the quotat, the number of physical matchesan make.

e For each downstream firiy X, contains the (potentially) observable vectorrgicharacteristics¢ en-
tering match production function, also contains the quotgf, the number of physical matchiesan
make.

¢ Any characteristics entering the value of remaining unrattalso enter intex,.

¢ In models with multiple physical assignments than can stggupilibria, the equilibrium selection rule
entersX.

e The agent-specific nest fixed effects introduced in the retiba are inXy.

If there are 1000 upstream firms and 1000 downstream fiXgnsontains 2000 vectors of covariates as well as
other data. The stochastic payoff terms are exogenous frmatehing theory standpoint, but are specifically
excluded fronix;,.

In order to compute an equilibrium assignment for a givetization of all the error terms, every component
of X, must be observable. Consider a marriage market, where Kaogend Beckmann (1957) show that a
linear program can be used to compute an equilibrium asgghnConsider a (computationally intractable)
parametric maximum likelihood procedure that involves ste@ solution to the linear programming problem
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for random combinations of error term values and trial geg$sr the unknown production functidn Every
component ok, would be needed to compute the equilibrium assignment ardfibre for feasible estimation.

In many matching games, there can be multiple physical as®gts that support equilibria. In this case,
X contains the exogenous process that selects an equilifptiysical assignment. Such a rule computes a
solution to the market for a given realization of the erronts.

Identification in this paper relies on the necessary but heays sufficient local production maximization
property of the observed equilibrium assignment. Secti@ha@ws that not every componentXf must be
observable for identification and estimation. An imporexample is the quota of each agent is not needed for
estimation. Another example is that the equilibrium sébecits rule is not required.

In matching theory, a market is the collection of agents wtay physically match with each other. In many
applications, the definition of a market may be unclear toett@nometrician. The definition of the relevant
market is an importantissue in most anti-trust litigatidthe economic theory of matching is only developed for
the case where a market is well defined. However, as Secti@tdsdes, consistency will often be maintained
if a researcher defines a market conservatively, and usgsaauibset of the restrictions imposed by the theory.

3.7 Agent-Specific Nest Fixed Effects

The previous discussion of matching games has focused emdetstic models without error terms. However,
such purely deterministic models will often not be flexibh@agh to perfectly fit the assignments from realistic
data sets. Properly specified econometric models make tlelmonsistent with arbitrary outcome data by
adding error terms to the model. There are two basic appesatthadding error terms to discrete choice
models. The parametric approach assumes a known funcfiomalfor the error terms. By contrast, the
semiparametric and nonparametric approaches derivéfidation and consistent estimators that are valid for
any error distribution satisfying broad properties. Théger uses the nonparametric approach, as functional
forms for the error terms and the production functions ateassumed.

Typically, a researcher will want to allow agent and matpkeific unobservable components of production to

be correlated across similar match partners. A researelmecansistently estimate production functions while

allowing for agent-specific fixed effects that are constantss nests specified by the researcher. The fixed
effects represent unobservables in agent revenues. fidatitin and estimation then proceeds by comparing
alternative match partners within the same nest, wherexthd &ffect is held constant and does not affect the
relative ranking of alternative match partners. Fixed affdor different nests can be correlated, and fixed

effects for a given agent can be correlated with that agehgsacteristics, as well as the characteristics and
fixed effects of other agents.

For a matching market let there be a set of nests for upstream fings and let the corresponding set of nests
for downstream firms be,d. Letnl be an individual nest for upstream firms, and likewisenfebe a nest for
downstream firms. In an extension of notation,rgti) be a function that gives the nest of downstream firm
i. The production function for the match of upstream famwith set of downstream firms i, at the market
assignment is

u d
faMal )+ 3 (g + )
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wherea € ng, E; is upstream firma’s unobserved fixed effect for a downstream fikra nﬁ (k), Egnﬁ is down-
stream firmk's ﬁxed effect for upstream firms such asn the nestn. The fixed effects enter additively

separably into match productida.

Consider an inequality focusing on the upstream figraadb, the set of downstream firms matched withnd
b, Mz andMy, and downstream firmid, > i ¢ My andMy, > j ¢ Ma. Also assume thatandb are in the same nest
ntl, andi andj are in the same nesj. The sum of the payoffs of the observed matches are

u d u d
f(a,Ma | E)-i-ke%a( arﬁ(k) +Ekphu) +f(b,Mp | E)+ke%b ( brﬁ(k) +Ekr‘h“) )

while the sum of the payoffs when insteachatches withj andb matches with is

hy r: . = u d
(a (M} ULi} E) +ke(MQ\%})u{j} (Ea,ﬁ“() +Ekrﬁ) +

hy rs e u d
f (b, (MB\ {3} ) U{i} | E) +k€(ME\%})U{i} ( brf(0) +Ek%) :

By the assumption thatandb and alsd andj are in the same nests, the sums of fixed effects of the form

u d u d
ke%( arﬁ<k>+£knﬁ> +k€%b( brﬁ(k)*zknﬁ)

are identical under the observed matches and the exchangstoéam firms forandj. Thus, the fixed effects
cancel out from Definition 2, local production maximizatiofhe necessary condition for local production
maximization depends only ohwhen the two upstream firms are in the same nest the and twosti@am
firms are part of the same nest.

By looking within nests, a researcher can identify the umkmproduction functiorf using within-nest varia-
tion in characteristics, while allowing the unobservedqdts/of firms to be correlated with covariates, and to be
correlated across similar match partners. The fixed efigmpsoach is powerful, but there are two downsides.
First, the method is only consistent if the researcher doedafine the nest too broadly. As with the definitions
of markets that | discussed above, using too narrow nessepues consistency. Second, the inclusion of fixed
effects means that the researcher cannot identify the mdesson covariates that do not vary within nests. It
should be noted that variants on these two drawbacks aldg tapine use of fixed effects in linear regression
models, and are not unique to matching games.

3.8 Within Nests: The Rank Order Property for Local Production Maximization

The previous section introduces agent-specific fixed effeetr nests of choices. Such fixed effects add error
terms to the model and will often explain a good deal of reslidariation in the data. Indeed, i.i.d. logit errors
over broad types/nests of potential spouses are the omyterms in Choo and Siow (2003), meaning that the
nest fixed effects already add a richer stochastic strutharesome earlier work. If a researcher is happy with

12For single-agent discrete choice versions of the maximuonesestimator, the payoffs only need to enter weakly sepai&iox,
2005). The additive separability here comes from the needdcthe production from the sets of matches of two upstreans fir
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agent-specific nest fixed effects, than nothing more neels tone to ensure consistency. However, in any
data set it is likely that suboptimal (in observable chaastics) matches will be seen within a nest, making
the introduction of additional errors necessary to makarbdel able to explain the within-nest data.

An insight of Manski (1975) for single-agent discrete cleomodels is that under some conditions choice
probabilitiesP (i | X) are rank ordered by the deterministic part of util{§, so observed choices should, more
often than not, have greater deterministic linear indib@s tunobserved choices. Consider an agent making
a standard, single-agent, multinomial discrete choicenfaoset) of choices. A choicé gives payofixp+¢;,
whereg; is a choice-specific error term. Fix two choicégnd j, from the set) of all choices. If the joint
density of the error terms for all choices is exchangeajfe> X, if and onlyP(i | X) > P(j | X) .13

A literal extension of the rank ordering of outcome probiéied does not hold in matching games, as a match
ai that gives a higher deterministic paydffa,i) than another matchj may not be observed with higher
frequency ifi has attractive outside options. For nonparametric ideatifin, | need to find a similar rank
ordering property for matching games.

| extend Definition 2, local production maximization, to tb&se where the econometrician does not observe
the stochastic error terms for partners with the same nésesmatching game will have local socially optimal
matching in a probabilistic sense. Given two upstream firitisima nest and two downstream firms within a
nest, it is more likely that the combination of two matchewiie higher deterministic payoff will be observed
than the alternative combination.

In many matching games, there can be multiple equilibriusigagents. Recall that the equilibrium assign-
ment selection rule is iR,. For any realization of the error terms, the equilibriunesébn rule finds a physical
set of matches. When the econometrician integrates outlogerror terms for a given selection rule, the fol-
lowing property is assumed to hold. As externalities caeepayoffs, in the most general form the property
refers to the probability of an entire assignment arising.

Assumption 3. In a two-sided matching game with assignmentonsider two upstream firms,andb, two
groups of downstream firms, andM,, and two downstream firmise M, and j € My, all in a matching market

h. Further leti ¢ My and j ¢ Ma, and letE be the assignmeiit except thatj andbi match andcai andbj do not
match. Finally,a andb are in the same nest of upstream firms, aadd j are in the same nest of downstream
firms. Assume

f(aMal E)+f(b,Mp|E)>f(a (Ma\{i})U{i}|E)+f (b, (Mp\{j})U{i} | E)

if and only if
P(E | th) > Pab(E ‘ Xh,f),

whereP (E | X, f) is the probability to the econometrician that the assigntiiehappens, conditional on the
potentially observable exogenous market characterigticg and the match production function

The rank order assumption is key to identification. The aggiem uses the notion of an assignment matching
probability, or the probability that a set of matches inwogyall agents in a market happen at the same time.

13f the errors are independent and identically distributetbss choices, the proof is Case (b) of Step 2 on pages 21»Rt®
consistency theorem in Manski (1975), and relies on writtngfunctional form for choice probabilities in terms of aegral over the
error terms in the model. Fox (2005) discusses the extengierchangeability.
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P(E | X, f) is the probability, from the econometrician’s point of vi@fithe assignmert arising. Calculating
P(E | X,, f) involves integrating out the vector of all error terms ovge region where the assignmehts
optimal. Proving that an extremum estimator is consisteqtiires showing that the probability limit of the
objective function has a unigue relevant extremum at the parameter value. The probability limit of the
maximum score objective function will involve probabisi of the formP (E | X, f).

The assignment matching probabilities are computed hglfiked the collectiorx,, of all potentially observ-
able exogenous market characteristics Xf\san have thousands of elements, an estimator that invapest-
edly solving for an equilibrium for realizations of the erterms to compute assignment match probabilities
will not be tractable.

Again, the property in Assumption 3 holdg fixed. X, includes the equilibrium selection rule as a function
of the unobservables. Therefore, the equilibrium selactide can be different across markets, as well as
correlated with the other exogenous characteristics ofitheket inX;, as well as the unknown and market-
specific distribution function of the error ternis.

The possibility of multiple equilibrium assignments preteany formal analysis of sufficient conditions for
Assumption 3. Assumption 3 is more likely to hold if the etrium assignment selection rule selects “nearby”
assignments when the realizations of the error terms ase cldowever, the concept of “nearby” equilibrium
assignments is not formal, and so no formal analysis can tertaken under multiple equilibria. Assumption
3 should be seen as a primitive assumption on both the equititselection rule irk;, and the distribution of

unobservable error terms.

When the core is the solution concept, in many games theteébwih unique equilibrium assignment with
probability 1, and it is possible to discuss sufficient cdiodss for Assumption 3 to hold. Therefore, Section 5
discusses a set of sufficient conditions that generate Assom3.

3.9 Identification Through Covariate Variation

Point identification proves that there is only one produtfimction 0 in the clas that could generate the
data for an infinite number of observed markets. If there arinfinite number of markets, there are also
an infinite number of identical markets, and the matchindpahditiesP (E | X, f) are observable. Given the
matching probabilities, Assumption 3 places restrictionshe set of production functiorighat are consistent
with the data. Without additional assumptions than Assimnp3, the identified set of production functions
comprises the production functions consistent with ramledng.

Definition 4. The identified set of production functions comprises functiohsuch that Assumption 3 holds
for all possible marketX, pairs of upstream firms,b € Uy, that are in the same nest, feasible downstream
matches fom andb M, C D, and My, C Dy, pairs of downstream firmgl, > i ¢ My andMy, > j ¢ M, that are in

the same nest, and assignmehts

Without any restrictions oix, | can only prove that this set exists, and that it is not the entire spag®f
theoretically possible parameters. In other woffdis, set-identified, and we can use the rank order property to
identify bounds orf°: the boundaries of .

14Notationally, the distribution of the error terms shouldity&}, but | want to emphasize that identification does not recgprifying
the distribution of the error terms.
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Most applied economists prefer to report point estimatdgerahan estimates of sets. Manski (1975), Manski
(1988) and other authors have discussed the semiparametnitidentification of discrete choice models,
where semiparametric means that the distribution of thehststic error terms is not specified. Matzkin (1993)
extends the identification and estimation results to thgpamametric identification of the deterministic portion
of utility as well. This section follows Matzkin by showingfficient conditions on the variation in the data
that allow point identification of the production functions

Definition 5. The match production function is point identified if theresexa set of markets with positive
measure such that for anfye ©, f + {0, there exists assignmeriissuch that (E | Xy, %) # P (E | Xy, f).

The mathematical argument for point identification focusasvarying the characteristics of two upstream
firms in each market, as seen in the local production maxiioizénequality. To this end, make the following
assumption about the identities of the relevant two upstraad two downstream firms and the corresponding
variation in the observable data. | first need to split theaeaf characteristicgl for upstream firms entering
into production intoxg = (xiavxlil,a>’ wherex{ , is the first, scalar component of the vector afid,, is the
vector of all other covariates.

Assumption 4. For every markeh, there are two particular upstream firmsandb, which are always in the
same nest. The joint distribution of the vectors of the cbiastics ofa andb entering into match production,
conditional on other market characteristigs is g (xg, xg | X\ {x4, %0 }).

e The joint density of the first elementsaaindb’s characteristics conditional on the other charactegsti
for aandb and all other market c:haracteristicg,(xia,x‘l{ID [ X\ {xia,xll{b}), has an everywhere positive
density inR2.

e The data across markets are sampled statistically indepethg

The sampling rule for the datg, should be seen as an implication of the sampling rule focHaacteristics

of all matches in the entire markeq,. This includes whatever rule is being used to assign firmsfiardnt
markets to the abstract firm indices suchaas, i andj. The special random variabl, is assumed to be
freely varying conditional on the other characteristicihaf upstream and downstream firms. The existence
of such a freely varying covariate is required for point itiéeation of discrete choice models (Manski, 1988;
Horowitz, 1998).

Intuitively, the support condition fox{ , andx{, means there exist a continuum of moment restrictions (one
for each value of the characteristics), and moment restnisthat are relevant for every potential value of the
unknown production functiofi. In the case of matching, the number of possible matchesémare matching
market is large, but still finite. Itemizing over the entiet sf possible match quartets only provides the finite
number of inequality moments from Assumption 3. On the ofiaerd, adding additional observations with new
continuous characteristie$ , andx; ,, from an infinite number of new markets (the exercise in ideatiion)
creates a continuum of restrictions from Assumption 3. T$amiparametric point identification takes advan-
tage of continuously varying covariates suchgsandx; ,, and identification does not require examination of
the entire set of possible matchiés.

15The assumption that the supportxdf, andxj , is R?, rather than some compact subsefR3f is made for convenience. Manski
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The following assumption states that the vector of the attarstics of all firms and matcheg is observable.
This assumption is made to conceptualize the set of obseneadlly equivalent markets in order to observe
matching probabilities. The consistency proof of the eatonshows that, in the case of the quota of matches
each firm can make and the equilibrium selection rule, themability of all elements oX;, is a convenience,
and not a necessity for identification.

Assumption 5. For every matching markét the econometrician observes the matrix of market charesties
X

Identification is stated in the following theorem, and thediem is proved in Appendix A.1. The proof works
by finding a point where the rank order property does not heotd, exploiting the continuous characteristic to
show that a set around that point also does not satisfy theaer property, so that the points not satisfying
the rank order property have positive measi§re.

Theorem 1. Under Assumptions 1, 2, 3, 4 and 5, the true production fonct? from the data generating
process is point identified in the s@t

4 Estimation of Match Production Functions

The previous section shows that match production functwasionparametrically identified within a cla@s
under the assumption that match probabilities are ranketidiy deterministic contributions to output maxi-
mization. Ignoring issues with multiple equilibria, by limlving the identification argument, one can construct
a potentially consistent estimator of the production fiorgtf. The researcher nonparametrically estimates
assignment probabilitieB(E | X,, f°) by using data across markets. Then the researcher usedithates of
simultaneous match probabilities to estimatethe identified set using the conditions of Assumption 3. As
data on more markets appear, the estimate abnverges to the true production functiét if the conditions

for identification are met, and under possible additionglitarity conditions.

Given thatX, may have thousands or even millions of elements, and the euofbmarkets in the data may
be low, the dimensionality of match probabilities implibésit first-stage nonparametric estimation of match
probabilities is not a tractable strategy for typical datas This section provides a more practical maximum
score estimator. The maximum score estimator works dyredgth the production functiorf, and does not
involve auxiliary nonparametric estimates of matchingyatuailities.

4.1 Choosing Inequalities

Before estimating the production function, the researoiest choose a set of inequalities to form the objective
function. LetBs“?(X,) be a set-of-sets-valued function returning the matchesddniestimation for a market

(1988) and Horowitz (1998) show how to relax the full supmsumption for the identification of single agent binaryichanodels. The
identification arguments in this paper are not related tadhetification at infinity arguments made in the literatureselection and the
related work on the special regressor estimator of LewtE@R

18|dentification can proceed using other assumptions thamathieorder property, Assumption 3. For example, in thekefyi even
that there are match-specific regressagg) vith full support that are independent of the error terrdentification based on the “special
regressor” arguments of Lewbel (2000) might be possiblee Déwbel single-agent, multinomial choice estimator reggimultidimen-
sional density estimation and therefore suffers from aecafglimensionality in the number of choices. Likewise, aratching estimator
based on the “special regressor” identification argumelhinat be tractable in markets of reasonable size.
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with characteristic,. An element ofBS“?(X,,) comprises a quartet of two upstream firms from the same nest
and two downstream firms from the same nest to focus on, antdaf sther downstream firms potentially
matched to the two upstream firms at the same time and an assign In notation, an elemenbf the set
BSUP(Xy,) is a set

z={ab,i, j,Ma,Mp,E} wherea# b,a,b € Uy, a,b e nj,i, j enﬂ,Mag Dy, Mp C Dy,

Ma i ¢ Mp,Mp > | ¢ Ma, |Ma| < 64 [Mp| < o}, > 2Vk € My Ma,

whereE is an assignmentl;, is the set of upstream firms in marketand likewiseDy, is the set of downstream
firms in market. HereM; is a hypothetical set of matches for upstream ficrandM,, is a set of downstream
firms for upstream firnb. Only cases wher®l, has weakly fewer downstream firms than the quota afd
My has fewer downstream firms than the quota @fre considered. Further, only ség andM, where all
downstream firms in both sets have quotas of at least two agdered at the same time.

There are several things to keep in mind when chooB#4g(X,). First, the researcher should include some
inequalities involving exchanging agents with very diffiet characteristics, in order to rule out production
functionsf that are far from the truth. Second, the researcher shotdchpt to use a deterministic rule to
select inequalities, so as to aid replication by other meseais. One typical deterministic rule includes all
inequalities formed by exchanges of one downstream firm eatlveen two upstream firms. Third, if the
researcher is unsure whether an exchange of partners iscalypossible, the researcher should consider
not including the corresponding inequality. For examléhé researcher is unsure of the exact definition of
the matching market, using a conservative definition of tlheket to form pairwise comparisons will preserve
consistency if the formal conditions @#°(x,,) listed below are satisfied. Including inequalities invalyi
exchanges that are not physically possible will break ctesty, as there is no information on the revealed
preferences of agents in those inequalities.

In many applications the number of exchanges of one dovwarstfirm each between two upstream firms
will be so large that the evaluation of all the inequalitiesnfi the simplest deterministic rule will be too
computationally expensive. If there are 100 upstream firnts 2000 downstream firms and each upstream
firm is the only supplier for 10 downstream firms in the data, tital number of inequalities that “turn on”
for a given dataset (see below)§3% 55,51 512, 1= 495000 If there are too many more inequalities
than 495,000, the deterministic rule of using exchangesef aownstream firm per upstream firm will be
computationally infeasible given current computer tedbgg.

This paper considers only inequalities where each of twéreas firms exchanges one downstream firm with
the other supplier. In markets where the equilibrium coh@glves only pairwise deviations, inequalities
with exchanges of more than two firms are not theoreticaltivelble from the assumption of single-agent best
responses.

To apply a lemma from asymptotic thedrywe need the following assumption about the data generating
process.

Assumption 6. The number of possible matching quartets included in themmam score objective function,

17Lemma 2.4 from Newey and McFadden (1994), which appearseipthof of Theorem 2.
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|BSUP(X,)|, does not have an infinite mean across markets. Further #tglglitionG (X,) of observable covari-
ates, including the numbers of upstream and downstream,fisndentical and independent across markets.

I make the following covariate assumption that extends deafification covariate conditions to all included
inequalities.

Assumption 7. The underlying data generating process and the choice @fualties to include irBsUo(X;)
make the conditions of Assumption 4 hold for every inequidithe maximum score objective function.

In the usual case when not all theoretically possible inkiggare included in the objective function, it is
important that, asymptotically, all configurations of coates appear. Otherwise, the production function is
not identifiable at those points.

Assumption 8. The choice of inequalities iBSU?(X,,) induces a distribution of included characteristics with
support equal to the sampling distribution of the charaistiérs in the true data generating process.

4.2 The Matching Maximum Score Estimator

Define the matching maximum score estimator to be any pramuittnctionf € © that maximizes the objective
function

LEinh x1[f (& Ma |E)+ f (b.Mp | E) > (& (Ma\ {i}) U{i} | E) + T (b, (Mp\ { ) U{i} | E)]

Il

Qn (f)=
heH zeBﬁ‘Z(Xh)

+1[Einh] x1[f (&,Ma|E)+f (b,Mp |E) < f (&, (Ma\{i}) U{i} |E) + f (b, (Mp\{i})U{i} | E)]. (8)

where for all inequalities the assignmehis formed frome by replacing matclai with aj and matctbj with

bi.

HereH is the number of markets observed by the econometriciantérhes1[-] are indicator functions equal
to 1 when the condition in brackets is true, and 0 otherwige Main dependent variable of interest from the
two-sided game ig[Einh], which is equal to 1 if the assignmehtoccurs in the data for market As part of

E, upstream firma matches with the set of downstream firma4gand likewise suppliets matches with the set
of retailers inM,. Note that if the game does not have externalities, the dipdvariable can be rewritten as
1[Ma,Myinh], which is 1 if upstream firma matches with the set of downstream firmg (and only those) and
upstream firmb matches with the safl, in marketh, which could happen under many different assignmgnts

The above primitive definition fo@y () is written in a way that makes it easy to compute the prokigiitnit

of the maximum score objective function in the proof of thénaator's consistency. The dependent variable
data are not known when taking a probability limit. Howey@ggramming the objective function for a given
dataset is much simpler, as the dependent variable datanavenkand there is no need to itemize over terms
that are known be to be zero for all trial production funciénFor a given data set, a researcher only programs
the inequalities that actually “turn on” because the depahdariable data in the relevant indicator functions
are true. For a given dataset with dependent variable d#t&, be the quartets that are relevant given the set
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of physical matches seen in the data. Furthemviebe the downstream firms supplied by upstream firim
the data. The maximum score objective function one progiams

Qu (”:%%{ap,%@hl[f (aMBEn)+ 1 (DM En) > (a (MBV(I}) U{i}En)+ 1 (b (MJ\(i}) Ui} En)],

whereE, is the counterfactual assignment that is equat{@xcept that andb exchange the partnersind

j. For a finite sample, the objective function considers gisrf two upstream firms and one downstream
firm being supplied by each upstream firm, but not the other. oA-stochastic notion of local production
maximization implies that if supplier matches with retailerrbut notj, and supplieb matches with retailey

but noti, then the sum the production for the observed matches mugtda¢er than the production from the
suppliers exchanging retailers. Assumption 3, the rankmpdoperty, extends local production maximization
to the stochastic case where there are error terms unoldsiertke econometrician. If the local production
maximization condition is met for an observed pair of sugplelationships at some trial production function
f, the score of correct predictions within the quartet insesaby 1. The matching maximum score estimator is
any production function in the classthat receives the highest score for not violating predictiof Assumption
3's version of local production maximization for observedtoh quartets.

Note that the quotas, the numbers of maximum physical mateh®loyers can make, do not enggy (f)
explicitly when it is programmed for a given data set. Any ahdtig situation that violates the quota of any
agent will not appear in the data, so we know that all inegjealin the objective function will correspond to
matching situations that do not violate quota restrictidrigerefore, by focusing on the data at hand, the econo-
metrician is guaranteed to not violate quotas. Also, thienegor only considers deviations in the inequalities
where the number of matches for each firm are kept the samesaserisin the data. The estimator does not
consider any deviations that might break the quota of antagerthe estimator does not require or use data on
guotas'®

For games with multiple equilibrium assignments, equilibr selection rules do not enter the objective func-
tion. Unlike some procedures for dealing with multiple ditpuia, there is no need to estimate the equilibrium
selection rule in order to estimate the match productioctions.

As the objective function is a step function, there will ajde more than one global maximum; finding one is
sufficient for estimation. As proved below, maximiziQg (f) produces a consistent estimator of the true pop-
ulation parameter vectdf € ©. Numerically maximizing an objective function over the spaf an unknown
function f that must be in some class satisfying Assumption 2 is nonstandard. Matzkin (1990)jates

an operational procedure for the case wheiis defined to be the class of least-concave functions. Matzki
(1991) and Matzkin (1992) also discuss estimation of discehoice payoff functions under nonparametric
shape restrictions.

18As a requirement of nesting a matching mechanism into a petranestimator, a researcher must make often unverifiasieraptions
about the size of the quota of each agent in their estimatiompe. Sgrensen (2004) assumes that all agents (ventutalistg in his
example) use all of their quota, so the quota is equal to theben of observed matches for each venture capitalist. Bayikford, Loeb
and Wyckoff (2003) study the hiring of public school teachemd argue that state laws mandate that a fixed number betsamust be
hired based upon an exogenously specified number of studieitsling a school.

Correlation between quotas and other observable exogemoiables is not a problem for the maximum score estimateithir this
paper nor any other considers the case where the quotasimeightdogenous: there are firm-specific unobservable terthe jsroduction
functions correlated with the quotas. For some applicatid@ris best to assume that quotas are not binding, and letuimber of vacant
match slots arise endogenously in equilibrium.
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A more standard computer programming approach is to défiteebe a class of production functions defined
to be a parametric function known up to a finite-dimensioredtor of unknown parameterg, When one
specifies a parametric functional form for the productionction, the maximum score estimator is labeled
semiparametric, rather than nonparametric. In practice uses a numerical optimization package to compute
a maximum of the objective function. The objective functismot differentiable in3, so local numerical
optimization methods cannot be usédlhe estimates in the application of Bajari and Fox (2005)augtbal
optimization routine, specifically differential evolutigStorn and Price, 1997).

Researchers may in practice use a parametric linear-gmpeters specification for production functions. For
identification, scale normalizations must be imposed odittear-in-parameters production function. A con-
venient scale normalization to use during numerical oétion for an extremum estimatorfig = +1, where

B, is the coefficient on a continuous agent characteristicaalpetion20

4.3 Consistency

The following theorem states that the matching maximumesestimator is consistent, including when a subset
of possible match quartets is used in estimation.

Theorem 2. Under Assumptions 1, 2, 3, 6, 7, and 8, any production functipe © that maximizes the
matching maximum score objective function is a consist&imator for f° € ©, the true production function.

The proofis in Appendix A.2. The most economically inteiregtpart of the proof proves the true production
function f© maximizes the probability limit of the objective functioifthe dependent variable data indicator
functions of the form} st | 1[Einh| converge to the expectation of matching probabiliiggP (E | X, f°) }.
Thus, asymptotically the estimator uses choice probasléven though computationally estimation does not
require a first-stage nonparametric estimatioR (& | X, f°) or the computation o (E | X, f) using a matching
mechanism (linear program) for trial guesses of

Assumption 3, the rank order property, is used to show thairthqualities involving the production functions
will multiply the higher ofP (E | X, %) andP (E | X, f0), whereE is E with aj replacingai andbi replacingbj,
when the trial production function is the trut,21

5 Games with the Core Solution Concept

The previous discussion emphasizes the weak conditionkeosttucture of a matching game (single-agent
best responses under price taking behavior) required fosistency of the maximum score estimator. Using

191t is not clear that local optimization routines should bedisor many smooth objective functions because even smdimttive
functions may have many local optima.

20In estimation, if the sign oy is not known from economic theory, it can be superconsisterstimated by estimating the model
twice, once wher@ is fixed at—1, and once wherp; is fixed at 1. The final estimates for all parameters corredporihe sign o3y
with the highest objective function value.

21such an argument would not work if the objective functioroired minimizing the number of incorrect predictions tinaetpenalty
term” (other than the current 1s and 0s) reflecting the diffee between the production levels of the matches in the atatasome
counterfactual matches, when evaluated at a hypotheitical

28



weak conditions on equilibria is important for games withegralities and complementarities between the
characteristics of agents on the same side of the market.ettawsome games, such as Becker's marriage
model, produce equilibria that are in the core of the gameor& outcome is robust to deviations by coalitions
of agents. As the entire market is one such coalition, anomacin the core must maximize the sum of match
productions for all matches in the assignment supportiagtiicome.

The robustness of the core to deviation by coalitions of egereans that identification can include exchanges
of two or more downstream firms per upstream firm. Comparedsgufption 2, it is now possible to con-
sider global identification of production functions, meanproduction functions in the identifiable set can now
disagree about any arbitrary exchange of downstream firnhde\i the discussion of Assumption 2 | empha-
sized that global nonparametric identification is not lkil be empirically relevant in most applications, it is
of interest from the viewpoint of econometric theory.

When programming the estimator, a researcher can incluteaeges of more than two downstream firms per
upstream firm, as the core is robust to any deviation by atemabif agents. In some instances, including more
inequalities in estimation may increase the finite-sampeipion of the estimator.

An assignment supporting the core is unique with probaghllitf the production levels have full support on
the real line, as two arbitrary combinations of real numheitssum to the same value with probability O.
This means that a matching probability is well-defined withihe need to specify an unobserved equilibrium
assignment selection rule. Therefore, this section ugeagbumption that the observed assignment supports a
core outcome to investigate sufficient conditions on with@st error terms to satisfy Assumption 3, the rank
order property. This section concludes with a Monte Canllgthat examines whether the estimator has a
large finite-sample bias under model assumptions that d@renmugh for consistency. This discussion can be
skipped by those readers willing to understand Assumptiag &n intuitive assumption that can be motivated
by several more primitive conditions, or an assumption ihaf second-order importance in practice because
most of the residual variation in the assignment data isucagtwith agent-specific nest fixed effects.

5.1 The Core

This section presents an alternative derivation of locatipction maximization using a cooperative game the-
ory and general equilibrium solution concept: the core. @@ can be used for games without externalities
as well as for games with externalities that allow for sidgmants between unmatched partners. Most appli-
cations with externalities do not allow side payments, sadadability | drop externalities in this section.

Firms receive monetary payments that are their profits. Wrddream firms and j and upstream firna all
match,i receives profip?, j receives profipd, anda receives profipy. All firms prefer to receive higher profits.
As firms only want to maximize profits, firms have transferalilkty.

A matching game with endogenous prices produces as an oata@®t of physical pairings between firms in
the market (an assignment) and a vector of profits, one fdr faa. | will define the core of a matching game
to be the set of profits that are both feasible and satisfy thpasty that no group of firms would prefer to
deviate and match outside of the mechanism.

Definition 6. 1. Let anoutcome {{pg}aeu ,{pid}iem{Ma}aeu} be a vector of profits for all firms and an
assignment.
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2. Let afeasible outcome be an outcome that includes a vector of profits thphysically possible to
produce given the assignment, or where

pir Y pl< S f(aMa).
anJ 2 i€ I anJ :

3. Letacontained coalition be a sefC! c U,c? € D} of upstream firms" and downstream firna?, where
all matches of upstream firmsa¥ are with downstream firms o9, and all matches of downstream firms
in cd are with upstream firms igV.

4. Let ana contained coalition with a feasible internal arrangement, C = {C” cu.,cico, {Mg}aecu}, be
a contained coalition with a given set of matches of dowastréo upstream firms for the firms in the
coalition, where feasible meaidS| < gsvacU and’MiC*d’ < Vi e D, whereM is the set of upstream
firms matching with downstream firnmn the contained coalition.

5. Let afeasibleore outcome be a feasible outcome where each contained coalitth a feasible internal
arrangement = {C“ cu,cico, {Mg}aecu} receive greater profits than its production, or

PRSI EDRICIHE

jiecd

and that each firm receives nonnegative profits, or

py>0vacU andpid >0VieD.

Agents in a match split the production from the match. In mtmynany matching, splitting output general-
izes to the notion that any contained coalition splits thedpction from the set of matches in the coalition.
Therefore, adding side payments to a game without extéigstioes not change the outcome.

Lemma 1. For an outcome{{p;{}EleU ,{pid}ieD,{Ma}an} in the feasible core, the profits and the assignment
generating production satisfy, for any contained coaltitisith a feasible internal arrangemeatthat is part
of the outcome,

u d __ C
P ”pa+iezcd p _a;uf (a,Ma).
Proof. Assume to the contrary for some contained coalitiohat is part of the core outcome. $f,ccupl +
Siecd pd < Taccu f (@ MS), then the coalitiorC would be better off by deviating from the core assignment,
as all members could be paid more than their current profitss adcu pi + ¥icca PY > Saccu f (a,MS), then
feasibility means that the level of profits that the coatitibearns is not all produced by the membersand
must come from some other contained coalition. Therefbiergtexists at least one other contained coalition
with a feasible internal arrangemeihtc NC = 0, such thaty ,_su P+ Ficga PP < Taccu (a, Mg) which means
that the contained coalitiod would want to deviate from the core outcome. The deviatio@ gifolates the
definition of the core, and is a contradiction.

If the contained coalitiorC is the entire market, theRaccu P+ ¥ ccd pl > Saccu f (aMg) implies that the
outcome is not feasible.
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The key property for estimation of transferable utility tsilled matching games is that any outcome in the
core must maximize the total marketwide outgudy f (a,Ma).

Lemma 2. Let the outcomt{{p};{}aeu 7{pid}i€D7{Ma}a€U} be in the feasible core. Then the assignment in the
outcome maximizes total marketwide outpyyy, f (a,Ma).

Proof. Output maximization follows from the definition of the coas,the entire market is a contained coalition
with a feasible internal arrangement that maximizes tatgbat. If output is not being maximized, the coalition
of the entire market would deviate.

O

In a competitive economy with homogeneous goods for sadefitst welfare theorem states that any compet-
itive equilibrium is Pareto optimal. With transferablelityj Pareto optimality is strengthened to production
maximization in the sense that the decentralized equilibnmaximizes total marketwide production. Like-
wise, Lemma 2 states that any decentralized core outcomamnizas a social planning problem for the case
of matching??

5.2 Global Identification

The solution to the social planner’s problem implies marsfrietions for two upstream and two downstream
firms at a time, in two-sided matching. Consider a hypotlégolution to the marketwide social planning
problem with matchesai andbj but notaj andbi. If the local production maximization inequality conditio

Definition 2, is not satisfied, having matchegsandbi would improve total production from the quartet, without
disturbing the matches of firms outside of the quartet. In eketavhere only one-to-one matching is allowed,
itemizing over all possible quartets, b, i andj) produces the definition of production maximization for the
entire market, as long as remaining unmatched is considepetential matching partner, where appropriate.

For many-to-one and many-to-many two-sided matching akagetoalition formation, the global production
maximization property of the core allows estimation to irtd inequalities with exchanges of two or more
downstream firms per upstream firm or coalition, for four orefirms being exchanged in total. Any deviation
from global production maximization provides a valid setr@fqualities unless the deviation violates quotas.

Including inequalities with exchanges of more than two dstneam firms per upstream firm may not dra-
matically change the finite sample estimates, especiabytifht parametric specification for the cla@of
production functions is being used. In the multiple-unittaan application of Bajari and Fox (2005), we found
that the magnitudes and signs of parameters were similan wieeestimated using mainly exchanges of two
items per bidder.

22The definition of the core involves group decision makingis linore traditional in two-sided matching theory (even withexter-
nalities) to define another solution concept. An example diffarent solution concept is a stable match, which consideviations by
pairs of upstream and downstream firms. A theorist then grthet the other solution concept is equivalent to the cordoftlinately, in
many-to-one and many-to-many matching with general prisgiuéunctions that allow for complementarities acrosstipld downstream
firms matching with the same upstream firm, the core is notvatgrit to pairwise deviations.
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Nevertheless, extending the discussion of local identifioao global identification may be of some theoreti-
cal interest. In Section 3.5, Assumption 2 states that tbel [production maximization inequality allows the
identification of production functions within a cla®svhere local identification is sufficient for point identifica
tion. The single-agent best response motivation for looadipction maximization requires weak assumptions
about the equilibrium of the matching game. By contrastjieisg the equilibrium is in the core is a strong
assumption, but it will allow global identification.

Consider two production functionsand f in some class. It may be the case thatnd f disagree only over
exchanges of two downstream firms per upstream firm, as in

f(ai,j)+f(bkl)> f(akl)+f(bi,j)andf(ai,j)+f(bkl) < fakl)+f(bij).
If the equilibrium to a game is in the core, these inequalitien be used for identification and estimation. The

version of the previous Assumption 2 for games where thdibguim is in the core follows.

Assumption 9. Let f € ©, whereo is a set of match production functions satisfying the foltmaproperties.

1. For eachf € @, there is nof € © such that for all two vectors of characteristics for upstrefirmsxd and
Xgl

FOa % | E)+f (5% | E) > f (% | E)+f (% | E) <= (&% | E)+ T (4% | E) > (4. % | E) + f (x5.% | E),

where for feasible groups of downstream firRasx,, X3, and¥y, Xs is formed fronk; by exchangingy
partners fronk,, andx, is formed fronk, by exchanging)l partners with,. For games with externalities,
E is an assignment where matchesafith the downstream firms with characteristigsandb with the
firms in%, form, andE is the same assignment except that matchasagth the firms represented lsy
andb with the firms represented Iy form.

2. For eachf € ©, f is continuous in all of its arguments.

3. @is compact.

The difference from the case where equilibria are not in thre ¢s that now exchanges Rf> 1 downstream
firms per upstream firm are allowed. Assumption 3, the withist rank order property, needs to be extended
to allow for exchanges of > 1 downstream firms per upstream firm as well. For conciseneksnbt repeat
the assumption with this slight change in notation and waydi

With Assumption 9 and the above revision to Assumption 3,raiagous theorem to Theorem 1 can be easily
be proved with a very similar argument. The maximum scorenasbr, equation (8), can be extended to allow
for exchanges dfl or less downstream firms per upstream firm. Finally, consigteTheorem 2, can be proved
with almost the same argument.

5.3 Assortative Matching and the Supermodularity of Produdion

Lemma 2 shows that any core solution to a marriage market masimize total marketwide output. Consider
first the case where the production from a marriage is equhkteum of the schooling of the mayxg, and the
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schooling of the womai x¢, with estimable weightg, andpq: f (x4, x) = Buxi +Bax!. Here, marriages with
partners who have more schooling produce more output. Hewvava market with at least one partner for
every participant, it should be clear that any assignmentarfiages where all agents marry produces the total
marketwide outputy .oy Buxd + Saep Bex. Because output is purely linear in characteristics, anyaestive

assignment will maximize total social surplus, and therefmy assignment can underly a core outcome.

The assignment, the set of physical matchings, only affibetéotal marketwide production if the character-
istics of men and women interact in production. A conditibattguarantees that the market will produce an
assortative matching of highly-schooled men to women igsupdularity of production in schooling levels.

Supermodularity means the cross-derivative of produatitth respect to male and female characteristics is

. of (x4 )
pOS|t|Ve, or axgaxid

> 0.

Becker (1973) uses these predictions about univariateugtih functions to explain stylized facts about the
labor market. Becker’s analysis is incompletelifandx{ are vectors. For example, some of the inputs of men
and women may be complements, and others may be substanteth)ese characteristics may be correlated in
the cross section of men and the cross section of women. \WMedewvel of a dependent variable such as output
is observed in data, controlling for multiple inputs, andtjgalarly the correlation of inputs, lets multivariate
ordinary least squares produce different coefficients timawariate least squares run for each input separately.

When one extends the set of models considered to includéosmany and many-to-many two-sided matching
as well as coalition formation, researchers are not onbrésted in whether the inputs of agents on opposite
sides of the market are complements or substitutes. Withipteipartners, agents on the same side of the
market may be complements or substitutes. For exampleriBajd Fox (2005) use the estimator in this paper
on data from spectrum auctions to estimate whether geomayradjacent markets for mobile phone service
are complements or substitutes.

To clarify, Becker’s analysis and many of these follow-ufnp®do not apply if the model’s equilibrium is not
in the core. Formal estimation is the only valid approachaialysis in a model with multiple equilibrium
assignments and/or externalities.

5.4 Assignment Match Probabilities

All of the sufficient conditions for Assumption 3 rely on sfging some solution to the overall matching
market as a function of the error terms, and then integratinghe errorsp, to create a market assignment
probability. Recall that an assignment is a set of physia#iqgs, but not the endogenous price vector. The
following definition more formally defines the simultaneanatch probabilities that appear in the statement of
Assumption 3.

Definition 7. In a matching market with a matrix of characteristic¥;,, consider the assignmeBt

P(E | X, f) = Prohy, 1[E marketassignmentX, f], 9)

23In linear regression, multivariate least squares applieduces the same slope coefficients as univariate leastesgapplied to each
covariate separately when the covariance between thediedtloharacteristics is 0.

33



whereyy, is a vector of error terms unobserved to the econometricldms definition is well-defined if there is
a unique assignment supporting the core with probability 1.

Typically, there will be a unique assignment with probabpili when the error terms and production functions
take values on the real line. A core outcome must solve alsol@aning problem. The probability that any
two combinations of an arbitrary collection of real numb&rs to the same value is 0.

5.5 The Social Planning Problem as a Single-Agent Discreteh@ice Problem

In a matching game where Lemma 2 states that core outcomiesge solutions to social planning problems,
the “single agent” from the random utility model literatusethe social planner. The social planner acts like
a single agent making a discrete choice from the large buefmimber of marketwide assignments. Let the
massive set of all feasible assignmentszheThe unique socially optimal assignmétsatisfies,

a; f (a, MEh) + g, > agm f (a, Mih) + Wz, V allocationsZy, # En, Zn € 2n, (10)

whereyyz, is a composite error term reflecting the sum of the unobsepeetions of production in the as-
signmentz,. The above single-agent decision rule states that the suitmegbayoffs of a socially optimal
assignment is greater than other feasible assignmentsevidasible assignments enforce the quotas of agents.
The inequality in equation (10) transforms the computatibtine social optimum into a single-agent discrete
choice problem with extra additive errors.

A sufficient condition for the rank order property involvdaging the error terms at the marketwide assignment
level. The final perceived marketwide payoff of assignmris .. f (a,ME) + We, whereye is an error
term corresponding to the marketwide assignntenthis transforms a complex matching market estimation
problem into a single-agent discrete choice problem. Aalquanner considers the sum of deterministic
payoffs generated by any marketwide matching assignnygn, f (a,M£), and adds a random error term to
the final payoff.

The interpretation is that the social planner tries to maeentotal output, but is unable to do so because of
random disturbances. Equivalently, these marketwide®rapresent inefficiencies in finding a core outcome
in the decentralized market. Marketwide errors are simiathe quantal response equilibrium concept in
Goeree, Holt and Palfrey (2004). In a quantal responseibguih, agents choose a best response subject to
some noise. Here, the “agent” is the social planner, or tiead®lled decentralized process of finding a core
outcome.

Manski (1975) proves that if a single agent decides betwedioices, with each choidegiving payoffu(x;) +

gj, then the probability of picking choicgexceeds the probability of picking an alternativé and only if
u(xj) > u(x) when the error terms; are i.i.d or exchangeable. In words, the choice probadslitire rank-
ordered by the deterministic payoffigx;). The multinomial maximum score estimators of Manski (1975)
Matzkin (1993) and Fox (2005) allow the estimation of singtgent discrete choice models without imposing
a particular parametric functional form for the disturbaierm. An important assumption is, however, that the
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joint density of the error terms is exchangeable, for a gagent?

Assumption 10. For all marketwide physical assignme@®f upstream to downstream firms in markeand
including the option of remaining unmatched where appratg;i let there be random variablg=,,. Let the
joint density ofygn be w (W | X,), whereyy, is the vector of allpgy,’s.

1. Letw(yn | Xn) be exchangeable across assignmdhtsind statistically independent across markiets
conditional on the matrix of potentially observable examgesnmarket characteristics,.

2. Letw(yn | Xn) have full support oM, whereN, = dimyp,.

The density function of the error terms can vary across ntankéh potential market observablgg. While
exchangeable stochastic error terms is a restrictive gasoumif the observable covariates have low explanatory
power for predicting matches, Section 3.7 discusses hoeléx Assumption 10 by allowing for firm-specific
fixed effects over pre-specified nests of match partners.

The following lemma indicates that Assumption 10 is a sudfitifor the rank-order property, Assumption 3.

Lemma 3. Under Assumption 10, the rank order property, AssumptidroB]s.

The proof of the result is in Appendix .

An exchangeable density is not the only condition under tvit@ rank order property will hold. For quantal
response equilibria and single-agent discrete modelse Hdbrtacsu and Kosenok (2004) show that any set of
choice probabilities can be generated by a member of the ofgsint distributions for random variables that
are independent but do not have identical marginal digidhs, and, alternatively, a member of the class of
joint distributions for random variables with identical rganal distributions but that are notindependent across
choices. As there are many realizations of matching prdibiabiconsistent with the rank order property, there
are many joint distribution for the social planner’s errtitat are consistent with the rank order property for a
production function and a given realization of the potdlytiabservable characteristiog of a market®

5.6 Match-Specific Errors

The most natural extension of the single-agent discreteelrandom utility model formulation is to assume
that the total production from upstream fiermatching with the set of downstream firmg is (ignoring fixed
effects)f (a, ME“) + Yiem, Wai, Whereys, reflects the idiosyncratic production of upstream firmatching with
downstream firm. The total marketwide production from an assignmgnof downstream firms to upstream
firms is (again ignoring fixed effects)

PR (aMz") + v, =3 (amah) IR

iEa

24The functional form for the disturbances can be completifgrént across observationally distinguishable agestighat agents from
Texas might have Laplace errors, and agents from lllinoghirfiave multimodal, mixed normal errors with much smalkiances.

25| prove that Assumption 3 holds as written, rather than argresion to exchanges 6f > 1 downstream firms per upstream firm,
although the same argument will establish the: 1 case.

26Consistency of the maximum score estimator requires tHeaster property to hold for all markets. It does not requirat the same
distribution of errors generate the rank order propertyaichemarket.
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It is not a theorem that Assumption 3 holds if tlhg are independent and identically distributed with full
support. The fact that a match appears in multiple assigtsigmakes the assignment-level composite error
terms statistically correlated. Eliminating non-exchealgle correlation across market outcomes is critical for
the single-agent rank order property of Manski (1975) taltot all possible deterministic payoffs and func-
tional forms for the error terms. Of course, for any given keathe error terms could have a joint distribution
such that the rank order property holds. In this case, thie @asher condition is a primitive assumption based
upon economic intuition.

One approach to arguing for some notion of asymptotic gotéier in the number of agents in a market is
to have the error terms die out as the market gets bigfgérliterature in empirical industrial organization,
such as Ackerberg and Rysman (2006) and Bajari and Benk88B)2argues that the variance of error terms
should be decreased as the number of products increases;hasea product adds another error term and in
a sense is an agent-specific product characteristic. In ehingtgame, each agent in a market adds as many
new match-specific errors as the number of other agentsesotél number of match-specific characteristics
quickly explodes.

If the number of agents in a marketust D, then one way of modeling error terms (inspired by Ackerlzerd
Rysman (2006)) is to writess = gl2ly, wheren,; in some base error term that has its magnitude decreased as
the number of agents, + D, goes to infinity. Then as the number of agents increasesdikel converges to

a matching game in only observable characteristics. Naik ithmatching theory, adding i.i.d. match-specific
errors to the true payoff of each match removes any role feraisserved characteristics (types in theory)
in theoretically computing the optimal assignment. Awaiyr match production levels are used in matching
games with finite numbers of agents, for example Koopman®8ackmann (1957). On the other hand and for
good practical reasons, matching games with a continuurgerita almost always restrict the final production
function to be a function of only agents’ types, and not mapécific error terms. For example, see Shimer and
Smith (2000). So the Ackerberg and Rysman suggestion otmedthe importance error terms as the number
of agents increases corresponds to moving from the flexitddyztion specifications used in the literature
on games with finite numbers of agents to the type-specifidymion levels used in games with continua of
agents.

| explore the robustness of the estimator to the presenceatfhyspecific i.i.d. errors in a finite sample in a
Monte Carlo study below.

5.7 Search Costs

Many matching markets have a large number of agents. In sackeats, not all agents may be aware of all
other agents. For example, in a marriage market, a man mayomigesome subset of women in his dating life.
Let the random variable “error terndi,;, for marketh be equal to 1 if upstream firmis aware of downstreaim
and, mutually, downstreanis aware of upstream firiag and O otherwise. Let search be costless and undirected,
so that each pair of firms is mutually aware of the other withadgrobability.

27 will not formally argue that this type of argument will giensistency in the size of a market, as the set of matchesl fagents
will change as new potential match partners are added to #nkety and this makes proving uniform convergence of theirmamx score
objective function nonstandard.
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One can redefine the matching jargon terms in Definition 6 abah assignment is only physically possible
if, in addition to satisfying quotas, all matched pairs of ggstream and an downstream firm are aware of
each other. Lety, be the set of physically possible assignments given a egiizof random error termg,,.
Lemma 2, the equivalence of the decentralized core outcathegocial planning problem, naturally extends,
except that production maximization and the core are defin@nsider only set the set of assignments
and deviations of coalitions of mutually aware agents.

For one-to-one matching with costless and undirected bedrcan be shown that Assumption 3 holds when
there is only one characteristic (say schooling) for each arad women entering production functions, and
those production functions are either submodular or supdutar at all characteristic levels. Under supermod-
ularity, core outcomes give an assortative ordering of hestcIf the most highly schooled man is not aware of
the most highly schooled woman, in a core assignment the niibmatch with the next most highly schooled
woman. The assortative matching logic rules out a coungengie to Assumption 3 that can hold with non-sub
or supermodular production. In the counterexample, m@mdb match with womernj andi respectively when

b is not aware ofj, but whenb becomes aware gf b matches withj anda matches with some other woman
k, instead ofi, and even if the sum of production from mamnarrying womar and marb marrying woman

j exceeds the production from mammarryingj andb marryingi, which is the hypothesis from Assumption
3. The counterexample arises because production is nata@sse apparentlyi is a productive match, but
ai is not so productive, asdoes not match withwhen the very attractive option 6f becomes possible and
frees ug. Under assortative matchingwould always match withwhenb is aware ofj if revealed preference
shows the production dfj is very high, anch was the match partner ¢fwhenbj was not possible.

The supermodularity result can be embedded in a search mitidbrward-looking agents. In a search model

with explicit search costs, Atakan (2004) shows that supetarity of production drives assortative matching.

In a search model where costs are driven by time discouriihigner and Smith (2000) show that supermod-
ularity plus some other conditions are sufficient for asgae matching. In these models, supermodularity
plays two roles. First, supermodularity implies that thefget information competitive benchmark involves

assortative matching, which was shown by Becker (1973) o&#csupermodularity ensures that all agents
on one side of the market agree on the ordering of agents ooiliiee side of the market, so that agents will

predictably pick the best available partner from the rarisgt@f mutually aware partners.

Using only a univariate characteristic for each agent asdrasg that the production function is either super-
modular or submodular in the characteristic does not maieifich empirical investigation. The matching esti-
mator in this paper is most useful when there are multipleadtaristics entering production and the economist
does not make a priori assumptions about super or submdstulamfortunately, an i.i.d. search technology is
not sufficient to generate the rank order property when tisemet assortative matching in univariate inputs.

5.8 Thee-Core: Switching Costs for Deviating

Some games have empty cores, so theorists have introduie¢eldreolution concepts that are more likely
to be nonempty. Kovalenkov and Wooders (2003) discuss octe salution concept, thecore. In are-core
equilibrium, a coalition that wants to deviate must pay adwing cost, equal tBe, wheree > 0is the switching
cost andB is the number of firms in the coalition.
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In a more general formulation, the switching cost might balition specific. Will match-specific switching
costs provide a sufficient condition for the rank order prope There are two points to consider. First, the
introduction of switching costs implies that there may bétiple equilibrium assignments. Therefore, the rank
order property will be based on the unmodelled equilibriwsignment selection rule, and a formal analysis of
sufficient conditions for the rank order property will not peactical. Second, match-specific switching costs
induce correlation in the total switching costs for coufstetual assignments, just as match-specific production
shocks induce correlation in the total unobservable privdléor assignments.

5.9 Monte Carlo Evidence on the Maximum Score Estimator

This section presents brief evidence that the maximum sstmmator works well in finite samples. The goal
is not to document the asymptotic argument of increasinghtimber of markets to infinity, but to consider
variation that might be common in practice. | am especiafigaerned with several aspects of data that do
not match the precise asymptotic consistency argumentmdidata on a large number of agents in a single
market, and having data that was generated with match{gpeiior terms.

Most commonly, researchers will use the semiparametrigioernf the estimator where production functions
are parameterized by a finite-dimensional parameter v@cteor simplicity, the Monte Carlo study examines

games of one-to-one two-sided matching when each agerdtisgliished by two observables characteristics,
for men,x; m andxym, and for womeny;, andxy,,. This game’s equilibrium is in the core, as shown by
Shapley and Shubik (1972), among others. The Monte Cartly stses the parametric production function

£ (Xm, Wy | B1,B2) = B1 X Xy.m X X1w + B2 X Xa.m X Xo,w-

As is standard in semiparametric discrete choice modetspbse the scale normalization thgat= +1. The
sign ofB; is superconsistently estimable, so | set it to the true valuel throughout the study. For each gender

(e )

| choose high means to ensure that the values of the chasticteare almost always positive. The positive co-

and men as an example,

variance between the observables suggests that usingigariate estimator might be important for inference.
| setp, = 1.5, so that the second observable characteristic is more apan sorting?®

| investigate two different specifications for the true misderror terms. The first specification is when the
social planner has i.i.d. errors over marketwide assignsaémthis case, each assignmephas total produc-
tion

; f (xm, Wiy | B1,B2) + Wen,

whereygn has a normal distribution with a standard deviation thaitisee 1 or 5. The rank order property
holds under this specification. The main trouble with impdeiting the Monte Carlo study is that there are so
many errorsm! for each market, that generating the fake data is compuattiomuch more burdensome than
estimating the model.

28Als0, | am concerned that@ might be a default starting value in numerical optimizatioutines.
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The second specification uses match-specific errors, actinB8&.6. | sample match specific errors and solve
for the optimal assignment using the linear programmindlenm that defines the social planner’s problem.
The linear programming formulation makes it much fasterdoneyate the fake data. Like the market-specific
errors case, the distribution of the errors is normal witteadard deviation of either 1 or%.

For all specifications, the maximum score objective funcitonumerically maximized using the global opti-
mization routine known as differential optimization (St@nd Price, 19973

Table 1 reports estimates of the bias and root mean-squan@d(BMSE) of the matching maximum score
estimates under both specifications. The first two rows denshe specification with match-specific errors.
For these specifications, generating fake data is probiensat| consider twenty-five markets, each one with
low numbers of agents. Both the bias and RMSE decrease whenthber of agents per market increases.

The third through fifth rows consider estimation when thesgah-specific errors. The third and fourth rows
consider a single market with a large number of agents. Adlaénbias and RMSE decrease as the number of
agents increases, which suggests that the matching estimay perform well with data from a single, large
market. The fifth row considers ten markets with thirty med #rirty women each, for a total @0-30-10=
9000possible matches. This compares to the third row, wh 100= 10,000 possible matches. The bias and
RMSE using ten smaller markets is smaller than using onetangrket, even though the number of inequalities
involving two men and two women is larger in the single, largerket. Even though both estimators are
misspecified, it appears averaging across markets imptbedmite-sample performance of the estimator.

The last five rows repeat the earlier Monte Carlo studies withrger standard deviation of the error term

(5), to see how sensitive the above conclusions are to thévwelexplanatory power of the signal (observed
covariates) and noise (the error terms). The RMSE's areshdbrger than the case with a standard deviation
of 1, but the biases and RMSE's still decrease with the sasipée On the other hand, the benefit of having

ten smaller markets seems to evaporate when the varianee efror term increases.

In these examples, the estimator does not have a large arnbbids when the precise conditions of the
available consistency results are violated. The estimsgems reasonable to apply without making strong
assumptions about the underlying model.

6 Subsampling and Smoothing for Inference

Aside from the original work of Manski (1975) and a few othsugh as Matzkin (1993) and Fox (2005), the
single-agent maximum score literature has focused on tharpichoice estimator. Kim and Pollard (1990)
show that the binary-choice maximum score estimator cgegeat the rate of/n (instead of the more typical

291n the first specification, for programming simplicity, | igre the complication that individuals can remain unmatctedhe second
specification, the linear programming formulation ensuhes all consummated matches must provide nonzero sur@@iven the high
means of both characteristics, very few of the agents agesin the fake data.

30For a finite sample, the objective function is a step functamd there is a continuum of global maxima, even if the patenfs is
point identified asymptotically. For each replication, tente Carlo study reports the maximum provided by the oaton routine,
which is a consistent estimator under the conditions inghjger. If the maximum reported by the optimization packages to always be
near the lower bound of the set of finite-sample maxima, itccoreate an apparent downward, finite-sample bias. Inipeathe presence
of multiple global maxima in a finite sample often pales in artance when compared to the more serious concerns of iistemsy due
to model misspecification.
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Table 1: Monte Carlo Results, True Valpg= 1.5

Errors #Men #Women # Markets Error| Bias RMSE
Std. Dev.
Assignment 5 5 25 1 0.170 0.560
Assignment 8 8 25 1 0.073 0.302
Match 100 100 1 1 0.105 0.316
Match 200 200 1 1 0.044 0.116
Match 30 30 10 1 0.039 0.193
Assignment 5 5 25 5 0.194 151
Assignment 8 8 25 5 0.114 0.807
Match 100 100 1 5 0.234 1.09
Match 200 200 1 5 0.173 0.662
Match 30 30 10 5 0.252  0.990

v/n) and that its limiting distribution is too complex for useinierence. However, there are several constructive
suggestions for conducting asymptotic inference.

Delgado, Rodriguez-Poo and Wolf (2001) show that a resagpliocedure, subsampling, consistently esti-
mates the asymptotic distribution of test statistics (idahg the usual 95% confidence intervals) for the class
of ¥n-consistent estimators studied by Kim and Pollard. Subfiampas developed by Politis and Romano
(1994), and is a procedure that, in contrast to the bootstiags not rely on the smoothness of an objective
function. The book Politis, Romano and Wolf (1999) providedetailed overview of subsampling.

An alternative procedure to subsampling is to estimate sofimed version of the maximum score estimator.
Smoothing makes the objective function differentiagifor finite samples. For the single-agent binary-choice
maximum score estimator, Horowitz (1992) proves that, uadelitional smoothness assumptions about the
underlying model, a smoothed version converges at a rae obg/n (the exact rate depends on the smoothing
parameter and model assumptions) and, more importandgyisptotically normal with a variance-covariance
matrix than can be estimated and used for inference. Unfatélly, Monte Carlo studies show the finite-
sample performance of the asymptotic distribution is pand Horowitz (2002) proves the applicability of the
bootstrap to refine the estimates of individual componehtseovariance formula. Horowitz (2002) presents
Monte Carlo evidence that the coverage of the bootstrape@fisymptotic distribution approximates the finite-
sample distribution’s coverage well. | conjecture Horagitresults could be extended to the current matching
estimators?

7 Calibrating Using Profit and Transfer Data?

In some cases, researchers have data on the trangfeogi{ween firms or the profitg¥) firms receive. Many
researchers have the intuition that price data can be usealibvate the scale (cardinality) of production, as
well as to estimate non-interacted production terms sufpds-B4x that do not contribute (if no agents can be

31Smoothing the maximum score step function does not solvendir issue in the computational cost of numerically maxingjizhe
objective function: the presence of local hills providiegnipting regions for a greedy optimization routine to cogeeo.
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single) to the assignments in the data. Further, transfipeafit data hold out the possibility of distinguishing
the payoffs of upstream and downstream firms.

Unfortunately, error term assumptions become critical mwverking with price data. The Monte Carlo study
shows that the maximum score estimator often performs neddp even if the error term assumption does
not fit precisely into a case where we have a consistency éheoiThe reason is that consistency requires
Assumption 3 to hold within a nest, and even if the rank ordeperty is violated, the property is quite
intuitive and in many cases is not likely to be violated byrgésamount.

The same is not true of price data. Let the true model be matebifec errors, as in Section 5.6. A selec-
tion problem will arise: the matches where we have observefitr transfer data will tend to have attrac-
tive observables and error terms, so those matches witlraciate observables are likely to have especially
high unobservable error terms. This negative correlatfotscand errors for the selected sample of observed
matches will make most estimates from including transfer puofit data as regressors or dependent variables
inconsistent, and the finite-sample bias may be large.

For an example, say in a one-to-one matching market a résanas data on the profits of upstream and
downstream firms. The profits of upstream fienare p and the profits of downstream firinare pd. A
researcher first uses the discrete assignment data and #imunascore estimator and estimates a linear-in-
parameters production functidn(xs,x?) = B,axd«x¢, where here means that the researcher forms all cross
products of inputs. The researcher must make a scale naatiati in the maximum score stage, and wants
to use the profit data to identify the production functiorgaley in monetary units, as well as the parameters
By andBy on the uninteracted terms. Assume that there are no agedaifismest fixed effects. Then the agent
runs a profit regression to estimgte,, B4 and the constarnt in the model

P+ pd = o+ Buxd + B + YBugxd + X + Wai.

If Wy is just measurement error in profits, or a expectational émrprofits, theny,; is likely uncorrelated with
the included characteristics of the firmandi. Indeed, ify, is measurement error, one should just estimate
the parameters from this regression and forget the matctzitey

On the other hand, i), is a match-specific error observed to the firms during the hiradcprocessipa,;

will likely be correlated with thecs, even if in the population of the matching game all hyptitteé match-
specific errors are uncorrelated with agent charactesisfitie reason is that this regression is being run on
only observed matches: the matches that are part of anleguiti. AsBygxd«x andy,; are substitutes in the
profitability of a match, they are likely to be negatively egated. Fixing this selection problem may require
joint estimation of the profit and matching problems, anditsiale the scope of this pap@r.

8 Conclusions

This paper’s main purpose is to prove the identification af ismtroduce a new nonparametric maximum score
estimator for generalized versions of the matching gamstsdiudied by Koopmans and Beckmann (1957),

32Sgrensen (2004) implements a parametric version of jotithason for selection correction in a Gale and Shapley 2)36atching
game without endogenous transfers.
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Shapley and Shubik (1972) and Becker (1973), and extend&elsp and Crawford (1982), Leonard (1983),
Demange, Gale and Sotomayor (1986), Sotomayor (1992),l&okav and Wooders (2003) and Ostrovsky
(2004), among others. The main assumptions for these ngtgiaimes are the presence of endogenous prices
and additive separability between transfers and othespdrpayoffs. If price-taking agents make single-
agent best responses, productions functions must satedyalities | call local production maximization: if an
exchange of partners produces a higher production lexal,itttannot be individually rational for some agent.

The matching maximum score estimator has many practicalradges over possible alternative estimation
methods. First, the maximum score estimator is honpar@&neteaning that functional forms for the pro-
duction function and a parametric distribution for the esrdo not need to specified. Second, the matching
maximum score estimator uses data on only observed matodesgant characteristics. It does not require
the often unavailable data on endogenous prices, quotapraddction levels. Third, the estimator allows
externalities based upon the matches of other agents.H; theetestimator can handle multiple equilibrium as-
signments without exclusion restrictions, estimatingiidgiium selection rules, or computing all equilibrium
assignments as part of estimation.

Fifth and finally, the matching maximum score estimator &smmably easy to compute. Evaluating the objec-
tive function involves only calculating match productieméls and checking the local production maximization
inequality. No nested matching mechanism needs to be sollsd, first stage estimates of match probabilities
are not needed. Most importantly, the maximum score espingiates not suffer from a curse of dimensionality

in the number of agents in a market, as the estimator is densiwhen a subset of matching inequalities are
entered into the objective function.

A Proofs

A.1 Theorem 1 (Identification)

We want to show that the identified setC © is a singleton production functioff, using the data on the
observed match probabilities(E | X, f) for different markets characterized by the matix Assume to the
contrary. Then there is ic @ such thaff + f°, whereP (E | X, f%) =P (E | X, f) for all markets, except possibly
for a set of markets with zero measure.

As f is a different function thari®, by Assumption 2 there exist markets where, focusing on thesf, b, i
andj mentioned in the statement of the theorem, as well as theititmfiof £,

fO(@Ma|E)+fO(b,My | E) > f°(a (Ma\ {i) U{i} | E) +° (b, Mo\ {i}) U{i} | E)
faMalE)+f(b,Mp|E) < f(a (Ma\{i})U{i} | E)+f (b, M\ {i})U{i}|E),

or the reverse inequalities<(and then>). Part 1 of Assumption 2 rules out that evaluating a locaiadoc
maximization inequality at different sets of firms alwaysguces the same value féft andf .

The inequalities are strict because of the continuous @earAssumption 4, and the continuity of production
functions, Assumption 2. Focus on the direction of the iraitjes in the displayed equations. By Assumption
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3, the rank order property, at this market, the productiocfion f° predicts that
P(E\X,fo) > P(E|X7f0>

while f predicts that
P(E[X,f) <P(E|Xn,f).

This is a contradiction if there exists a positive measursugh markets. This is immediate because Assump-
tion 2 states that production functions are continuous,Asslimption 4 states that at least one covariate for
upstream firms has full support and is continuously varying.

A.2 Theorem 2 (Consistency)

The proof of the theorem is based upon the standard consystieeorem in the econometrics literature, Theo-
rem 2.1 in Newey and McFadden (1994). The theorem appliesriergl maximization problems and does not
require that an element of the parameter space be a finiterv€yptimization over function space is allowed.
The theorem has four conditions:

1. The probability limit of the subset maximum score objeefunction,Q. (f), has a unique global maxi-
mum at the true production functioff} (constructive identification).

2. The parameter spa@eis compact.

3. The probability limit of the objective functio®. (f), is continuous irf.

4. The objective function converges uniformly in probaiitp its limit.

Condition 2, compactness, is satisfied by Assumption 2.

A.2.1 Constructive ldentification

The economically interesting condition to verify is Comalit 1, which is a constructive identification condition.
As the number of markets{, goes to infinity, we observe infinitely many markets with fzene number of
agents and identical characteristics, all captureckbyBy a law of large numbers and the law of iterated
expectations,

H
plimy_c, (;hz 1[Einh]> — Exy {1[E]} = ExEy {1[E] | X} =Ex {P(E|X, 1) },
=1

wherey, is the vector of all stochastic terms in the market, and the production functiori® has been added
to the notation for matching probabilities in order to engiha that the probability limit is calculated using
the sampling rule of the true data generating process. Aaimigument shows that the limit @ (f) as the
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number of marketsd, goes to infinity is

(=8 3 P(E|X, %) x1[f (aMa| E)+f (b,Mp | E) > f (& (Ma\ {i}) U{i} | E)+ (b, Mo\ {i})U{i} | E)]
zeBSUN(X)

+P(EIX,1%) x1[f(aMa|E)+ T (b,My | E) < T (a (Ma\ [ U{i} | E) + (b, (Mo\ {iU{i} | E)],

where the derivation uses a law of large numbers and the ldterated expectations as well as the fact that
the local production maximization inequality does not depeny and can be factored out of the expectation
with respect tap, conditional onx.

| prove thatQw (f) has a global maximum at the true production functi@rby first proving the integrand
evaluated at particular set of the characteristics of ahégin a market, is globally maximized at®. If the
integrand is indeed maximized for &l except for a set with probability 0, then wheg (f) is computed by
integrating ouiX, the value of the integral will be maximized &t

Therefore, fixx. For eactze BS'"(X), two additively separable terms appea@in(f): once where (E | X, f°)
multiplies an inequality involving production functiorend once where (E | X, f°) multiplies the opposite
inequality. First, under the covariate Assumption 4,

f(aMa|E)+f(b,Mp|E)=f(a,(Ma\{i})U{j} |E)+f (b.(Mo\{i})U{i}|E)

with probability 0, as each match upstream firm’s charasties has a freely varying characteristic conditional
on the characteristics of the other firms. As the inequaliti®., (f) are strict, such points do not contribute to
the objective function, but as they occur with probabilitgBoosing an alternative parameter vedtos make
one or the other arrangement faand j have a greater sum of production levels will not increasevttee of

Qe ().

| can restrict attention to the cases where one of the sum®dfiption levels is strictly greater than the sum of
production levels with the exchange of partners for dovaastr firms andj. Notice that the two inequalities
involving sums of production levels are mutually exclusise one of the two indicator functions has value 1
and the other has value 0. An assignment where the value ofitiphas the higher of the two probabilities
for all ze BU0(X) is a global maximum of the integrand evaluatedkatBy Assumption 3, the rank order
property, the true production functiof? implements this assignment. Asis arbitrary, the integrand for a
givenz e BSU®(X) is globally maximized at all points, other than a set of mea€y by f°. As zis arbitrary,
Qw () is globally maximized at®°.

Note that there is an strong inequality in the indicator fiorcin the objective function, so thdt= 0 for all
possible matches is a global minimum and not a global maximum

The next step of the proof is to show that the global maximum@.off), f°, is unique. This argument is the
same as the proof of Theorem 1, identification. For some plassther global maximunt, € ©, the proof of
Theorem 1 shows that there is a set of markets wiiegizes inconsistent predictions according to the rank
order property, Assumption 3. By Assumption 4, this set fwsitiye measure. Sbimplements a sub-optimal
series of match probabilities to ent@s, (f), and thus cannot be a global maximumf(f).
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A.2.2 Continuity of the Limiting Objective Function and Uni form Convergence

The two-sided matching maximum score objective functionds continuous inf. Condition 3 is that the
probability limit of the objective functiornQ.. (f), is continuous inf. Lemma 2.4 from Newey and McFadden
(1994) can be used to prove continuity@f (f) as well as uniform in probability convergence@f (f) to

Qw (f), which is Condition 4. Remember that the asymptotics areémumber of markets. The conditions of
Lemma 2.4 are that the data (across markets) are i.i.d. jwvaie hold even if we view the number of upstream
and downstream firms as random; that the parameter spasecompact (part of Assumption 2), that the
terms for each market are continuous with probability ¥;imnd that the terms for each market are bounded
by a function whose mean is not infinite. While the terms farhemarket are not continuous inbecause
of the indicator functions, they are continuous with praligb1 by the support condition on the covariates,
Assumption 4. As the continuous covariatg is freely varying conditional on the other covariates tieshie
inequalities in the objective function happen with protiab0.

The other condition we need to verify to apply Lemma 2.4 i$ tha market-specific inequalities are bounded
by a function with a non-infinite mean. The score of correetigtions for a market can be at most the number
of inequalities included iBS“*(X;,), which itself can be no larger than the number of combinatininsets of
agents and two members from those sets, which is large big fithe number of agents in a market is finite.
Assumption 6 states that the mean number of such ineqsditiot infinite.

A.3 Lemma 3 (Exchangeability Sufficient for the Rank Order Property)

| first derive an explicit formulation for choice probaki#is in terms of the density function for the exchange-
able errors. Lety be the vector of error terms for all marketwide physical gssients. The condition for an
assignmengy, to be optimal is seen in equation (10). Writing equation @X)in more detail gives

P (En | %) = /‘oo /Zaeu f(angh)JquEh*Zagu f(a’Mih)

TOZ#ERT T

(W] X)dy,

or an integral with as many dimensions as marketwide assgitsnThe upper limit of the integrals is strictly
increasing in the deterministic payoff for choosing markide assignmergy,, Sy f (a, MaE“), and one upper
limit is strictly decreasing in the marketwide assignmemtdll Z # E,,. Because the joint densitly(y | X) is
exchangeable, the function(E; | X,) is the same aB(E; | X,) for two different assignments; andE,, except
where the payoffs df; andE, enter. If two functions are the same, except for componerttss first function
resulting in a larger value, the first function will have agler value. The strictness of the inequalities come
from the full support portion of Assumption 10, which statieat the support of the error terms will always be
larger than the support of the data, so that one does not titiroberror terms.

The above argument is the same with agent-specific nest fikectincluded, because the only difference
betweerE andE is the matchesi andbj in E are reversed i, anda andb are in the same nest, andndj
are in the same nest. The fixed effects are the same for tlmassntsE andE.

The “only if” part of Assumption 3 follows easily by revergjithe above arguments: if two functions are the
same, except that the first function value is larger, theffirsttion must have a larger argument if the functions
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are increasing in their arguments.
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