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Abstract

In matching games, agents must all agree for a match to be formed, and some agents can make only a

finite number of matches. I examine the nonparametric identification and estimation of match production

functions in matching games with endogenous prices and transferable utilities. Inequalities derived from

single-agent best responses underly a nonparametric maximum score estimator of match production functions.

The inequalities do not require data on prices, quotas, or production levels. The estimator does not suffer from

a computational or data curse of dimensionality in the number of agents in a matching market as the estimator

avoids solving for an equilibrium and estimating first-stage match probabilities. Further, using only a subset

of the possible inequalities preserves consistency. The estimator allows markets with one-to-one, one-to-

many, many-to-many and coalition formation matching, as well as externalities from agents outside a given

match. For games with multiple equilibrium sets of matches,there is no need to estimate an equilibrium

selection rule or computationally itemize the equilibria.

∗Thanks to helpful comments from many colleagues as well as workshop participants at Chicago, Minnesota, the New York Fed, North
Carolina, Northwestern, Stanford and Virginia. Email: fox@uchicago.edu.



1 Introduction

Becker (1973) introduces the use of two-sided matching theory to analyze empirical evidence on marriages

between men and women. He models marriage as a competitive market with endogenous prices, or transfers

between spouses. Other markets can be modeled as two-sided matching games with finite numbers of het-

erogeneous agents. Examples include the matching of workers to firms and upstream to downstream firms.

Simpler matching games where one side of the market may care only about money include families to houses,

members to exogenously specified clubs and bidders to multiple objects for sale in an auction. A key feature

differentiating two-sided matching games from normal models of supply and demand is that, in matching, at

least some agents on both sides of the market can make a limited number of trades. In marriage, each woman

and have only one husband, so there is rivalry between men to marry the most attractive women.

Another matching framework is coalition formation, or one-sided matching. A group of agents divide them-

selves into mutually exclusive clubs, and the number and titles of clubs are not specified exogenously. Coalition

formation can be used to study neighborhoods, political parties and industry alliances with horizontally differ-

entiated firms. Theoretical work is also ongoing on models ofmany-sided matching, which can be used to

study multi-tiered supply chains, for example. In the abovegames, this paper allows for externalities on pay-

offs arising from matches of agents outside of a given relationship.

Matching games are attractive frameworks for empirical work, as the models apply to a finite number of agents

with flexible specifications for the productions functions generating match output. A typical data set for a

matching market lists a series of observed matches and some characteristics about the parties in each match.

Economists want to estimate the production function generating match output for observed and counterfactual

matches. The research goal is primarily positive: to understand the relative importance of various observed

agent characteristics in the equilibrium sorting of agentsthat we see in the data. Estimating match production

functions can also produce an ordinal ranking of the efficiency of different match assignments for the same set

of agents.

Matching games with endogenous prices have been used as a theoretical inspiration for univariate descriptive

empirical work by Becker (1973) and others. However, despite their attractive theoretical properties, with one

exception (which does not try to explain micro data on matches, see below) matching games with endogenous

prices have not been used for formal structural estimation.A major impediment has been that standard maxi-

mum likelihood and method of moments estimators require a nested computation of an equilibrium for every

realization of errors terms in order to evaluate the objective function for given parameter values. These complex

equilibrium computations are nested within an integral over the unobserved error terms in the market, which

should be of dimension equal to the number of potential matches in the market. For example, a simple marriage

market with 100 men and 100 women nests the equilibrium computation inside a1002 = 10,000 dimensional

numerical integral, and this integral must be repeatedly evaluated at different trial parameter values in an outer

optimization routine.

To address these practical concerns, this paper provides a consistent, nonparametric estimator for match pro-

duction functions that is much easier to implement than the nested equilibria computation approach. The new

estimator does not suffer from a curse of dimensionality in the number of agents in the market, and program-

ming the objective function involves only evaluating the unknown production functions and checking inequal-
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ities. More abstractly, this paper presents conditions under which the match-specific production functions in a

matching game with endogenous prices and transferable utilities are nonparametrically identified.

Some members of the class of matching games with transferable utilities are known as assignment games.

The assignment problem was introduced by Koopmans and Beckmann (1957) and later examined by Shapley

and Shubik (1972) and Becker (1973) for one-to-one matching, Kelso and Crawford (1982) for one-to-many

matching, Leonard (1983) and Demange, Gale and Sotomayor (1986) for multiple-unit auctions, Sotomayor

(1992) for many-to-many matching, Kovalenkov and Wooders (2003) for the case of arbitrary (no sides) coali-

tion formation, and Ostrovsky (2004) for supply chain matching, among others. These models are applications

of general equilibrium theory to games with finite numbers ofagents. This paper allows for externalities, mean-

ing the production form a match is a function both of the agents in the match and the matches formed by other

agents. Overall, this paper uses the term “matching game” toencompass a broad class of models, including

some games where the original theoretical analyses used different names.

One part of the outcome of a matching game is an assignment of matches for each agent, such as the identities

of the suppliers for each retailer in a vertical market. Thispaper considers using data on only the assignment of

matches, even though the matching game also has endogenous prices and production levels. A benefit to using

assignments is that data on prices and production levels might not be available in many matching markets where

economists believe prices are used. Becker (1973) studies marriage, a matching market where husbands and

wives might exchange transfers, but those transfers are notrecorded in typical data sets. Inter-firm contracting,

such as vertical relationships between suppliers and retailers, also has the flavor that the contracting firms often

transfer money, but the transfers are often confidential contractual details and not released to researchers.

An assignment is a qualitative outcome, so there are naturallinks between estimating matching games and

single-agent discrete choice models, such as the well-known logit and probit discrete choice estimators. As in

single-agent discrete choice, an agent picks the partner orpartners that maximize the agent’s payoffs from the

partners that would agree to the match, all at the given prices. However, estimating a matching game presents

additional complications because the actions of agents to match may preclude the possibility that other agents

can match with the same parties. There are physical constraints (quotas) about how many matches each party

can make. More simply, agents on the same side of the market are rivals, and the choice set of any agent is

endogenously determined to be those agents on the other sidewilling to match with it.

Applying single-agent methods to matching games may give inconsistent parameter estimates. For example,

a mine extracting a scarce mineral faces a capacity constraint and cannot sell to all customers. Consider a

downstream manufacturer not being supplied with the mine’snatural resource. It would be incorrect to apply a

single-agent discrete choice model to the decision of a downstream manufacturer to source materials from the

mine and infer that the manufacturer does not want the resource, as the true interpretation may be that other

manufacturers have more valuable uses for the scarce resource. Even if the customer-specific price for every

alternative to the mine is observed, in an econometric sensethe prices are likely to be endogenous, as prices

are correlated with unobserved components of the relationship specific costs and benefits from each customer-

resource pair. The endogenous prices would make a single-agent discrete choice estimator with those prices

included as a choice-specific regressor inconsistent.

The definition of transferable utility is that payoffs to an agent making a match are additively separable (quasi-

linear) in the transfer paid to that agent by its partner. I also assume that all agents make a single-agent best
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response: each agent’s profit from its current matches must exceed the profit if the agent were to match with a

counterfactual partner, and pay that partner a transfer that makes the partner indifferent between the new match

and the partner’s old match. Transferable utility plus the assumption of single-agent best responses implies a

condition I call local production maximization: two pairs of matches must together have a greater sum of pro-

duction than if the four agents in question exchanged partners. This inequality forms the basis for identification

and estimation.

The local production maximization inequality may be a necessary and not a sufficient condition for certain

equilibrium concepts, so identification and estimation will not require computing equilibria. Further, I will

show the useful result that estimation does not require the itemization of the inequalities for all pairs of observed

matches, so estimation does not suffer from a computationalcurse of dimensionality in the number of agents

in a matching market. Evaluating the inequality also does not require any first stage, nonparametric estimates

of matching probabilities, so the estimator does not sufferfrom a data curse of dimensionality in the number of

agents in the market.

The inequality involves only exchanging partners, so does not require the economist to consider alternative

assignments with different numbers of matches for each agent. Therefore, the economist does not have to

specify the maximum number of matches (the quota) each agentcan make, which is an advantage as quotas are

not found in many data sets.

Motivating the inequalities using single-agent best response actions, given price-taking agents, requires rela-

tively weak assumptions. The inequalities can be written conditioning on the matches of agents not involved

in a relationship, so the estimator can allow for arbitrary externalities. In a vertical market, the actions of two

firms to match may create a cheaper product in the downstream market that competes with other firms and low-

ers the other firms’ profits. Alternatively, two firms matching might represent a merger that lowers competition

and raises profits for all firms. In a more traditional externality example, two firms matching may cause pol-

lution that reduces the profits of other firms. As the externalities drop into the estimator’s inequalities, adding

externalities does not change the computational burden of the estimator.

For the dependent variable, the estimator in this paper usesassignment and not price data. There may be

multiple assignments supporting equilibria, but as the estimator uses necessary conditions only, consistency

is preserved under multiple equilibria. Unlike some recentapproaches to estimating noncooperative, static

Nash games, the estimator does not require estimation of an equilibrium selection rule and does not require

computing all equilibrium assignments for a given parameter value and realization of error terms (Ciliberto and

Tamer, 2003; Bajari, Hong and Ryan, 2004). No variables entering the equilibrium selection rule but excluded

from the profits of agents in the market are required. Like theapproach to estimating static Nash games of

Pakes, Porter, Ho and Ishii (2005), the matching games estimator uses moment inequalities. However, this

paper works with a maximum score estimator, which maintainsconsistency in the presence of unobservables

that affect choices, an issue that troubles the estimator ofPakes et al. in many standard applications such as

single-agent discrete choice.

A major contribution of the paper is to introduce a tractablemaximum score estimator for matching games.

Evaluating the objective function requires only computingmatch production levels and checking inequalities.

The estimator is nonparametric because it does not require the assumption of parametric distributions for the

stochastic portions of marketwide errors, and does not require a known parametric structure for the determin-
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istic production functions. In practice, researchers willlikely use a semiparametric version of the estimator:

using economic theory to specify a parametric deterministic production function, but leaving the distribution

of the error terms unspecified.

The matching maximum score estimator has already been used in an application. Bajari and Fox (2005) esti-

mate the payoffs of bidders for items for sale in a multiple-unit auction. The application is to US auctions for

distinct geographic markets for providing mobile phone service. A multiple-unit auction is a special case of a

two-sided matching market where one side of the market, the items for sale, care only about the endogenous

prices they sell for. A key issue in spectrum auctions is complementarities across items: is the valuation of a

package of geographically near mobile phone markets greater than the sum of the valuations of the markets if

won separately? Spectrum auctions highlight the maximum score estimator’s ability to estimate nonlinearities

in the payoffs across multiple geographic markets won by thesame bidder.

Recently, several papers have proposed somewhat parametric approaches to estimating matching games, both

with and without endogenous prices.1 In contrast with the maximum score estimator in this paper, these

methods all require parametric functional form assumptions on the distribution of the error terms, and most

suffer from curses of dimensionality in the number of agentsin the market. Many also make unattractive

assumptions to resolve multiple equilibria issues.

Choo and Siow (2003) estimate a matching model with endogenous prices in a marriage application. In their

model, the prices and error terms vary only over discrete classes of agents and are used to clear aggregate market

clearing conditions, not to explain micro data on matches. For a related estimation approach in housing, see

Bayer, McMillan and Reuben (2004). If it were to be applied outside of their application, Choo and Siow’s

estimator suffers from two curses of dimensionality: a datacurse of dimensionality reflecting the need for first-

stage nonparametric estimates of match probabilities, which are of high dimension if data across markets are

used, and a second-stage need to solve a logit-derived system of nonlinear equations in the number of discrete

types of agents in the market.

Whether a researcher should estimate a game with or without endogenous transfers depends on the researcher’s

understanding of the market in question. Boyd, Lankford, Loeb and Wyckoff (2003), Sørensen (2004) and

Hitsch, Hortaçsu and Ariely (2005) estimate Gale and Shapley (1962) matching games where agents cannot

transfer endogenous prices. All these approaches to estimating games without prices require additional as-

sumptions to resolve a multiple equilibria problem in the set of matches. Boyd et al. and Sørensen, to differing

degrees, require the nested solution of a matching mechanism; for every realization of the error terms for all

matches in a market, the economist must compute an equilibrium. Hitsch et al. use data on both accepted and

rejected matches from a website to estimate a dynamic programming search model, where some of the curse

of dimensionality is alleviated because agents in the market share the econometrician’s uncertainty about the

unknown error terms. The current paper primarily consider perfect information matching games, although I

discuss whether search is an candidate for the model’s errorterms in Section 5.7.

The rest of the text switches between less and more general models. Because the more general notation can

obscure the basic ideas, Section 2 introduces the estimatorfor the simplest example of two-sided matching:

1In addition, estimating matching games is related to many other empirical literatures: auctions, supply and demand of homogeneous
goods, non-cooperative static Nash games, models of sorting and public good provision, equilibrium models with differentiated products,
hedonic models of equilibrium product characteristic choice, and models of price setting under search.
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marriage. The main portions of the paper work with a more general class of matching games that incorporates

important features of games, such as externalities, used inindustrial organization, labor and public finance.

Section 3 discusses identification, and Section 4 discussesthe maximum score estimator. Work on the marriage,

labor and financial investment markets has often focused on games without externalities, so Section 5 drops

externalities to discuss additional results about games with a restrictive property: the decentralized equilibrium

is in the core of the game.

2 The Simple Example of Marriage

Becker (1973) introduces a market model of marriage that suggests men with more education marry women

with more education when the schooling of men and women are complements in production. However, having a

spouse of the same religion may also be a factor in production, and religion may be correlated with schooling, so

a researcher wants to estimate the complementarities between male and female schooling while controlling for

the possibility that more surplus is generated in a marriagewhen spouses have the same religion. The presence

of two inputs per agent requires a multivariate analysis, and hence formal estimation becomes attractive.

Consider a marriage market where a manm marries a womanw and they produce output according to the

production function

f (m,w | β) = β1×schoolm×schoolw +β2×1[religionm = religionw] ,

whereschoolm is the years of schooling of a man,religionm is the religion of a man, and the variables for

women are similarly named. The indicator variable1[religionm = religionw] is 1 when a hypothetical married

couple share a religion, and 0 when they have different religions. A researcher wants to estimate the production

function parameters such asβ1, which, if positive, means that male and female schooling are complements.

Qualitative data on who matches with whom can only identify production functions up to scale normalizations,

soβ1 = ±1. The parameterβ2 shows the benefit of having the same religion in schooling production units.2

Say marriages only happen within towns. Within each town, there will be a potential computational curse of

dimensionality in the number of agents in a town. To understand the logic behind the combinatorics, let there

be 3 men and 3 women in a town, none of whom can be single (for simplicity only). Let the notation 12 refer

to a hypothetical marriage between man 1 and woman 2. It turnsout that there are32 = 9 possible marriages

that can happen, which are

11, 12, 13, 21, 22, 23, 31, 32, 33.

However, in an assignment of men to women for the entire market, each individual can join only one marriage.

There are3! = 6 possible assignments for the entire market, which can be itemized as

{11,22,33} , {11,23,32} ,{12,21,33} , {12,23,31} , {13,21,32} , {13,22,31} .

2The full production function might also have non-interacted schooling terms, such asβ3×schoolm andβ4×schoolw. As I will explain
later, these terms do not affect the matches that will form inequilibrium, and cannot be identified from data on realized matches. Their
non-identification does not prevent the identification of the parameters multiplying the interaction of male and femalecharacteristics.
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To see how the combinatorics explode, now let there be 100 menand 100 women in a town. There are now

1002 = 10,000 matches and100! = 9.33×10157 marketwide assignments. By contrast, the number of atoms in

the universe is much lower, at around1079, than the number of assignments. Forming the probability that the

observed assignment represents the market’s equilibrium assignment will not be possible in a perfect informa-

tion setup where a matching mechanism must be solved for every realization of the error terms.3 Therefore, a

standard likelihood estimator is not practical.

However, it is possible to derive inequalities that are necessary conditions for an equilibrium, and that are

tractable to work with in estimation. Let the utility of mana from matching with his observed wifewa be be

vm(a,wa)− tawa, whereva(a,wa) is mana’s experience utility, andtawa is a (possibly negative) transfer paid by

his wife to him. Let the payoffs of manb from his wife wb have a similar functional form,vm(b,wb)− tbwb
.

The payoff from womanwa of matching with her husbanda is vw (a,wa)+ tawa, wherevw (a,wa) is womanwa’s

experience utility andtawa is the transfer she pays her husband.

Transfers are not observed in the data, so the goal will be to derive an inequality restriction involving total

match production functions of the formf (a,wa) ≡ vm(a,wa)+vw (a,wa). It will be a result that assignment data

alone can only identify match production functions, not theutilities of men and women separately.

Single-agent best response indicates that the total utility of mana from marrying his observed wifewa exceeds

his utility from instead marrying womanwb at a transfer level equal to the level that would makewb switch

from her observed husbandb,

vm(a,wa)− tawa ≥ vm(a,wb)− t̃awb, (1)

wheret̃awb is the price that makeswb indifferent betweena andb:

vw (a,wb)+ t̃awb = vw (b,wb)+ tbwb
.

Substituting in the definition of̃tawb into (1) gives

vm(a,wa)− tawa ≥ vm(a,wb)−
(

vw (b,wb)+ tbwb
−vw (a,wb)

)

. (2)

Repeating the above algebra for the decision ofb to marrywb instead ofwa gives

vm(b,wb)− tbwb
≥ vm(b,wa)− (vw (a,wa)+ tawa −vw (b,wa)) . (3)

Adding the inequalities in (2) and (3) leaves, as the transfers tawa andtbwb
cancel,

vm(a,wa)+vm(b,wb) ≥ vm(a,wb)− (vw (b,wb)−vw (a,wb))+vm(b,wa)− (vw (a,wa)−vw (b,wa)) .

Rearranging two of thev’s and substituting in the definition of a production function, f (a,wa) ≡ vm(a,wa) +

vw (a,wa), leaves

f (a,wa)+ f (b,wb) ≥ f (a,wb)+ f (b,wa) .

This condition says that if the marriagesawa andbwb are observed, then single-agent best responses under price

3In an assignment game where an equilibrium assignment is in the core of the game, a matching mechanism can be implemented as a
linear programming problem.
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taking behavior imply that the sum of the match production levels fromawa andbwb must exceed the production

levels from the exchange of spouses:awb andbwa. I call this inequalitylocal production maximization, as the

price-taking best responses ofa, b, wa andwb ensure that production is maximized within the two marriages.

Some numbers may help crystallize why local production maximization can identify match production func-

tions. Say there are two men and two women, and thatβ2 = 0, so that religion does not enter production. Let

one man and one woman each have a schooling level of 10, and letthe other man and other woman have a

schooling level of 1. The data are that agents assortativelymatch: the two high schooling people marry each

other, and similarly the two low schooling agents marry. Then the local production maximization inequality is

β1×10×10+β1 ×1×1≥ β1×10×1+β1 ×1×10,

or, simplifying,β1101> β120, which implies thatβ1 > 0, or β1 = 1 given the scale normalization thatβ1 = ±1.

Note that while the inequalities in estimation involve onlyobservable characteristics, I will discuss how the

matching maximum score estimator is consistent when matches are probabilistic to the econometrician because

of unobservables.

Readers familiar with Becker’s original model will recognize that local production maximization is consis-

tent with Becker’s theorem that assortative matching happens when production functions are complementary

(supermodular) in a matched pair of inputs, one per agent. A supermodular, or complementary, production

function has a positive cross-derivative in the inputs of men and women, or∂ f (xm,xw)
∂xm∂xw

> 0, so that incremental

marriage production is especially high when a man with high education marries a woman with high education.

However, the local production maximization inequality underlying my formal estimation procedure generalizes

to more than Becker’s case of one continuously varying inputper agent in a one-to-one two-sided matching

game. I will show that local production maximization allowsmany inputs per agent (in this section, school-

ing and religion), unordered inputs (religion), production functions that are not globally super or submodular

in pairs of inputs, interactions between different characteristics of the same agent, many-to-many two-sided

matching with nonlinearities across payoffs of agents on the same side of the market, one-sided matching,

multiple equilibrium assignments, and games with externalities. Local production maximization will apply

to many games where the decentralized equilibrium does not maximize total marketwide (global) production,

which is the property Becker uses to prove his theorem.

A researcher has data from 10 towns, indexed byh. The observed wife of mana in townh is wh
a. The researcher

knows the years of schooling and religion of all adults. For this data, the maximum score objective function

introduced in this paper is

Q(β) =
10

∑
h=1

100

∑
a=1

100

∑
b=a+1

1
[

f
(

a,wh
b | β

)

+ f
(

b,wh
b | β

)

> f
(

a,wh
b | β

)

+ f
(

b,wh
a | β

)]

.

The maximum score estimator imposes the best responses assumption and finds the production function pa-

rameters most consistent with local production maximization. For a market, the estimator itemizes over all

pairs of mena andb and their observed wiveswh
a andwh

b. For a given vector of production function parameters,

the estimator asks whether the sum of the productions of two marriages exceeds the sum of the productions

when the two couples exchange partners. If the deterministic production from the observed marriages is larger,

the score of correct predictions according to local production maximization, and hence the maximum score
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objective function, increases by 1.

A researcher uses a global optimization routine to numerically maximizeQ(β) to find the vector of production

function parameters that make the observed marriages have the greatest score of correct predictions according

to Becker’s model. Evaluating the objective function requires only computing production for given marriages

and checking inequalities. No complex matching algorithmsmust be solved and the estimator avoids any

first stage estimation of matching probabilities. The estimator is semiparametric because it does not require

the researcher to assume a particular functional form for the distribution of the error terms. The maximum

score estimator in this paper is nonparametric in its most general form, as the estimator will also not require a

functional form assumption for the production function.

3 Identification in Matching Games

This section proves that production functions in matching games can be nonparametrically identified. Identifi-

cation results, in contrast to estimation, assume that a researcher has an infinite amount of data, and computa-

tional concerns are not relevant. Estimation will be discussed in Section 4.

This paper considers matching games with transferable utility and endogenous prices. Matching games have

been fairly well studied in the theoretical literature. Forexpositional purposes, I divide matching games into

two subcategories: multi-sided matching and coalition formation games. In a coalition formation game (or

one-sided matching), any arbitrary subset of agents in the economy may form a match. Examples include a

group of people choosing roommates, local residents forming clubs, and so on. In this framework, the number

of clubs arises endogenously.

By contrast, in multi-sided matching agents in exclusive “sides” of the market match at least with some agents

from other other sides. The most common example of multi-sided matching is two-sided matching, which I

use here for simplicity. As its name implies, two-sided matching relies on dividing agents into two exclusive

groups, such as upstream and downstream firms. Agents on one side of the market, such as upstream firms, can

only match with the agents on the other side, in this case downstream firms.

Two-sided matching is itself divided into one-to-one, many-to-one and many-to-many matching. A one-to-one

matching market is like the marriage market in Western society: each man can marry only one woman. A

many-to-one matching market is like a stylized version of a multiple-unit auction or labor market: each bidder

can win multiple items but each item can be one only once, and each worker can have only one job, while each

employer can hire multiple workers, perhaps up to some employer-specific limit, or quota. Finally, in many-

to-many matching, both sides of the market can make multiplematches up to some agent-specific number of

matches, or quota. An example is the matching of upstream firms (suppliers) and downstream firms (retailers).

Each retailer may stock items from multiple suppliers, and each supplier is likely to sell to multiple retail

outlets.

Throughout the discussion of two-sided matching, I use notation based upon the example of upstream and

downstream firms, as many-to-many matching is more general than one-to-one and many-to-one matching,

and important for applications to supply chains.
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3.1 Agents and Match Production

Let there be two sides to a market, upstream firms and downstream firms. There areU upstream firms, indexed

by a = 1, . . . ,U . The other side of the market is theD downstream firms, indexed byi = 1, . . . ,D. U andD refer

to both the sets and numbers of firms.

Each firm has a quota, the number of matches that it can physically make. The quota of upstream firma is

qu
a, and likewise the quota of downstream firmi is qd

i . An agent can often make fewer matches than its quota,

although that feature of the model is not essential. A quota can be set to+∞, so that a firm may be unconstrained

in the number of matches it can make.Ma is a set of downstream firms that may hypothetically match with

upstream firma. If qu
a = qd

i = 1 ∀a∈U, d ∈ D, the game is the familiar one-to-one or marriage model.

Each agent has a vector of characteristics in the data. For upstream firma, xu
a is a vector ofru different charac-

teristics. For example, we could observe characteristics such asa’s location and product quality. Likewise for

downstream firmi, xd
i is a vector ofrd observable characteristics.

The production function from a match is the key structural primitive that drives the pattern of matching and

is the goal of estimation. A production function takes the observed characteristics of the parties in a match

and creates some level of output. In one-to-one matching, ifmana marries womani, total match production is

f
(

xu
a,x

d
i

)

. In many-to-one matching, if downstream firmsi and j match with upstream firma, total production is

f
(

xu
a,x

d
i ,xd

j

)

. If upstream firma has a quota ofqa = 3, then the firm can supply up to three downstream firms, so

a more general notation for output when firma matchesi and j is f
(

xu
a,x

d
i ,xd

j , /0
)

, where the empty set/0 stands

in for the idea that slot 3 is not filled. As above,Ma = {i, j} is the set of downstream firms supplied by firma.

Another way of writing production functions is thenf
(

xu
a,
{

xd
k

}

k∈Ma

)

, where the empty set for the vacant slot

is suppressed for convenience, and the set notation for the covariates for the downstream firms is meant to be

expanded to be equal tof
(

xu
a,x

d
i ,xd

j

)

.

This notation quickly becomes cumbersome. In many instances, I use the shorthand notationf (a, i, j) or

f (a,Ma) to stand in forf
(

xu
a,x

d
i ,xd

j

)

. Remember that production functions are always functions of the observ-

able characteristics of agents, even if the characteristics themselves are suppressed in the notation. Sometimes,

a matching withi is written asai.

As with the previous marriage example, we can microfound match production functions with the non-transfer

revenue functions over various matching agents, as in

f
(

xu
a,x

d
i ,xd

j

)

≡ vu
(

xu
a,x

d
i ,xd

j

)

+vd
(

xu
a,x

d
i ,xd

j

)

+vd
(

xu
a,x

d
j ,x

d
i

)

,

wherevu is the pre-transfer revenue function for an upstream firm, and vd is the revenue function for a down-

stream firm.

It is usual in matching games to normalize the production from remaining single to be zero, orf (xu
a) = f

(

xd
i

)

= 0

∀ i ∈ D, a∈ U . This normalization is not necessary, but it does make theoretical results in matching easier to

derive. In some cases, a researcher might want to include match-specific covariates
(

xud
ai

)

, such as the distance

between two firms. Estimation can proceed as long as the data contain match-specific covariates for both

observed and counterfactual matches. Match-specific covariates make the identification problem easier by
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having the production of individual matches shift around inan flexible way. I will not consider match-specific

covariates further in this section to prove that they are notrequired for identification.

Writing production functions in many-to-many matches is slightly more complicated. Consider a market where

upstream firma sells to downstream firmsi and j andi also receives product from upstream firmb. If we allow

for arbitrary nonlinearities across these relationships,the production function should be written asf (a,b, i, j).

We need a mechanism to distinguish the fact thata does not supplyj. Typically in an application, a researcher

will choose a parametric functional form forf so that nonlinearities ini’s profits across its supplier’s character-

istics are distinguished froma’s nonlinearities across the retailers it sells to. However, when being completely

nonparametric, some additional assumption needs to be placed on f . For simplicity of exposition, in many-to-

many two-sided matching I assume that the revenue function for the downstream firm is additively separable

across suppliers, or

vd
(

{xu
k}k∈{a,b} ,xd

i

)

= ∑
k∈{a,b}

vd
(

xu
k,x

d
i

)

= ∑
k∈{a,b}

vd (k, i) ,

where in this case downstream firmi’s payoffs are evaluated at its matches with suppliersa andb.4

I should emphasize that this assumption is made for simplicity and is not related to any deep limitation from

matching theory. Again, in practice a researcher will put a parametric structure onf that handles the nonlinear-

ities across multiple partners separately for each agent.

For coalition formation, agents are not exogenously divided into sides of the market. Therefore, there is no

need to distinguish between downstream and upstream firms. The notation is the same as many-to-one (if each

agent can join only one coalition) or many-to-many matching(if agents can join multiple coalitions), without

u andd superscripts.5 The production if agentsa, b andc all match together isf (a,b,c).

The discussion of the payoff framework of a matching game canbe formalized into an assumption.

Assumption 1. 1. Agents care only about payments / profits, or alternatively transfers enter profits quasi-

linearly (transferable utility).

2. If f is nonparametric, for many-to-many matching, one side of the market has revenues that are additively

separable across multiple matches. Without loss of generality, label the side of the market with revenues

that are additive across multiple matches the “downstream firms”.

An outcome of a matching game is a set of physical matches for all firms and a set of monetary transfers

between matched firms. The main dependent variable in my analysis is the set of physical matches for an entire

matching market, which I label an assignment.

Definition 1. Let anassignment {Ma}a∈U be a physically possible set of physical matches, whereMa is the set of

downstream firms matching with upstream firma. Physically possible means quotas are satisfied:|Ma| ≤ qu
a∀a∈

U and
∣

∣Md
i

∣

∣ ≤ qd
i ∀ i ∈ D andMd

i is the implied (by{Ma}a∈U ) set of upstream firms matching with downstream

firm i.

4Sotomayor (1992) and Sotomayor (1999) study many-to-many matching under the stronger assumption that payoffs for bothupstream
and downstream firms are additively separable across multiple matches.

5I restrict attention to markets where agents can join only a single coalition at a time, although the the equivalence between a social
planning problem and the decentralized equilibrium shouldextend to the more general case, given appropriate notation.
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In many games, it will be important to allow for externalities. For example, if firms are competing in a product

market, then the decision of some firms to match (cooperate, merge) may raise (if the merger reduces com-

petition) or lower (if cooperation produces a lower cost competitor) the profits of other firms. To allow for

externalities, I write that a match’s production is a function of its own characteristics, and the characteristics

and matches of all the firms in an assignment. LetE be an assignment. Ifa matches with the downstream firms

and externalities are important,a’s match production can be written asf (a,Ma | E), where the conditioning

notation implies that the matches of other firms may exert an externality on the firms matching witha.

3.2 Single-Agent Best Responses and Local Production Maximization

This paper identifies the production function in a matching game using a system of inequalities derived from

revealed preference arguments. The condition I use is called local production maximization. It is a consequence

of single-agent best responses under price taking behavior, as I have already shown for the marriage example.

If both matches of upstream firma with downstream firmi and upstream firmb with downstream firmj are

observed, then a local implication of production maximization is that the total production of the two matches

exceeds the total production from the exchange of partners,a j andbi. Otherwise, matchesa j andbi could form

without disturbing any other matches and without changing the total number of matches of any agent. The

formal definition of local production maximization is as follows.

Definition 2. • In a two-sided matching game with assignmentE, consider two upstream firms,a andb,

two groups of downstream firmsMa and Mb, and two downstream firms,i ∈ Ma and j ∈ Mb, all in a

matching marketh. Further let i /∈ Mb and j /∈ Ma, and letẼ be the assignmentE except thata j andbi

match andai andb j do not match. The matchesai andb j satisfylocal production maximization when

f (a,Ma | E)+ f (b,Mb | E) ≥ f
(

a,(Ma\{i})∪{ j} | Ẽ
)

+ f
(

b,(Mb\{ j})∪{i} | Ẽ
)

. (4)

• In a coalition formation game with assignmentE, consider two coalitionsMa and Mb, and one agent

from each coalition:Ma ∋ i /∈ Mb andMb ∋ j /∈ Ma. Let Ẽ be the overall assignment whenMb ∋ i /∈ Ma and

Ma ∋ j /∈ Mb. The observed matchesai andb j satisfylocal production maximization when

f (Ma | E)+ f (Mb | E) ≥ f
(

(Ma\{i})∪{ j} | Ẽ
)

+ f
(

(Mb\{ j})∪{i} | Ẽ
)

.

In the rest of the paper, I will focus on two-sided many-to-many matching for conciseness. Coalition formation

just drops the distinction between upstream and downstreamfirms, and Definition 2 sufficiently documents how

the inequality in the estimator changes for the case of coalition formation. Once one understands the derivation

of the inequalities, it is easy to extend the analysis to other matching games with endogenous transfers, such as

the many-sided chain matching studied by Ostrovsky (2004).

I will derive the local production maximization inequalities from an assumption of single-agent best responses

for the case of upstream and downstream firms. LetM̄a = Ma\{i} be the downstream firms other thani matching

with a, and similarly letM̄b = Mb\{ j}. The profit of upstream firma from matching with the downstream firms

Ma is vu (a, i,M̄a | E)− tai −∑k∈M̄a
tak, wherevu (a, i,M̄a | E) are the revenues from the market assignment, and
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tai is a payment from upstream firma to downstream firmi. The profits and revenues ofb are similar. Let

the profit of downstream firmi from matching with upstream firma and the other downstream firms inMa be

vd (a, i,M̄a | E) + tai, wherevd (a, i,M̄a | E) is i’s revenues from its business at the market assignment, andtai is

the transfer payment froma. The goal will be to derive a local production maximization condition involving

production functions of the formf (a, i,M̄a | E) ≡ vu(a, i,M̄a | E)+vd (a, i,M̄a | E).

Single-agent best response indicates that the profit ofa from matching withi exceeds the profit from matching

with j in i’s place at the transferj would require to switch fromb

vu (a, i,M̄a | E)− tai − ∑
k∈M̄a

tak ≥ vu(a, j ,M̄a | Ẽ
)

− t̃a j − ∑
k∈M̄a

tak, (5)

wheret̃a j is the price that makesj indifferent betweena and j ’s observed partnerb:

vd (a, j ,M̄a | Ẽ
)

+ t̃a j = vd (b, j ,M̄b | E)+ tb j.

Note that I do not considera adding j while a remains matched toi. Such a move is possible ifa has unused

quota, but I do not consider that deviation in the derivationof the local production maximization condition

because data on quotas are often not available to a researcher. Substituting in the definition of̃ta j into (5) and

cancelling the duplicate transfers∑k∈M̄a
tak gives

vu(a, i,M̄a | E)− tai ≥ vu(a, j ,M̄a | Ẽ
)

−
(

vd (b, j ,M̄b | E)+ tb j −vd (a, j ,M̄a | Ẽ
)

)

. (6)

Repeating the above algebra for decision ofb to match withj instead ofi gives

vu(b, j ,M̄b | E)− tb j ≥ vu(b, i,M̄b | Ẽ
)

−
(

vd (a, i,M̄a | E)+ tai −vd (b, i,M̄b | Ẽ
)

)

. (7)

Adding the inequalities in (6) and (7) leaves, as the transfers tb j andtai cancel out,

vu (a, i,M̄a | E)+vu (b, j ,M̄b | E) ≥ vu(a, j ,M̄a | Ẽ
)

−
(

vd (b, j ,M̄b | E)−vd (a, j ,M̄a | Ẽ
)

)

+

vu(b, i,M̄b | Ẽ
)

−
(

vd (a, i,M̄a | E)+ tai −vd (b, i,M̄b | Ẽ
)

)

.

Rearranging two of thev’s and substituting in the definition of a production function, f (a, i,M̄a | E)≡ vu(a, i,M̄a | E)+

vd (a, i,M̄a | E), leaves

f (a, i,M̄a | E)+ f (b, j ,M̄b | E) ≥ f
(

a, j ,M̄a | Ẽ
)

+ f
(

b, i,M̄b | Ẽ
)

,

which is just Definition 2, local production maximization.

Notice how local production maximization depends on only the production functionsf (a, i,M̄a | E). Using data

on assignments alone, I cannot hope to identify the revenue functions for upstream and downstream firms sepa-

rately. This is not necessarily a weakness, asf (a, i,M̄a | E) is more general thanvu (a, i,M̄a | E) andvd (a, i,M̄a | E)

as separate functions, asf (a, i,M̄a | E) does not require that the production from a match be additively separable

across agents. Also note that transfers do not enter the local production maximization inequality. This too may

be an advantage if the researcher does not have data on transfers between agents. In many inter-firm contracting
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applications, firms exchange transfers but do not release the details of the transfers to researchers.

Local production maximization was not derived from a complete equilibrium concept, but from only the def-

initions of single-agent best response under price taking behavior and transferable utility. AsE includes the

actions of other agents, the framework can handle quite general forms of externalities. For example, two firms

matching may create a competitive pressure for the other firms in the downstream market if the matching firms

can offer a cheaper product.6

An equilibrium that satisfies local production maximization (or single-agent best responses) for all pairs may

not satisfy global production maximization: the sum of marketwide match production may not be maximized.

For example,ai andb j may find it in their private interests to match, but they may impose an externality on

other firms, such as the matchck. If the externality onck is large enough, it could be that this equilibrium

produces a lower sum of marketwide production than if all sixfirms had formed a grand coalition and chosen

an alternative matching arrangement. Local production maximization is not derived from a restriction involving

group decision making.

3.3 Firm Beliefs About Counterfactual Externalities

Definition 2, local production maximization, allows a researcher to include externalities in the payoff of agents.

The inequalities as written assume that upstream firma believes that whena replaces its partneri with a new

downstream firmj, i will choose to match withj ’s old partnerb. The counterfactual assignment with matches

a j andbi is labeledẼ. The inclusion ofẼ in Definition 2 can be motivated by any of three assumptions: 1)

Upstreama is naive and believesi will match with b whena dropsi; 2) There is not time fori to find any

other partner than the now availableb aftera dropsi, so i must match withb; and 3) All firms are small in the

calculation of externalities, and the assignmentẼ is a’s approximation as to what will happen. Any of the three

arguments lead to Definition 2 as written.

In some games it may be possible thati will choose to match with some third firmc after being dropped bya.

To facilitate the match withi, c might drop its partnerk, producing a chain of disruptions. As this new chain

was precipitated by an out-of-equilibrium deviation bya, the chain is unlikely to lead to a new equilibrium and

hence end. It does not seem logical thata could work out a reasonable counterfactual implication of the chain

of disruptions it causes, and incorporate how those disruptions will affect the externalities imposed ona when

it dropsi for j.

Chains of disruptions do not arise when testing whether an set of strategies is a pure strategy Nash equilibrium

to a static noncooperative game. In a normal form Nash game, each agent’s strategy space is unrivaled: any

strategy is physically possible. If the game is an entry game, each agent can choose to enter the market

regardless of what other agents do. To check if a deviation isprofitable, a researcher fixes the actions of all

other players.7 On the other hand, in a matching game, the actions of firms are constrained to by physically

6An externality caused by the internal operations of an agenton other aspects of the same agent’s operations will not be observable, if
the internal operations of an agent are not modeled in the matching game.

7The closest approximation to holding the actions of other parties fixed in a matching game is to consider counterfactualsevaluated
at externalitiesE instead ofẼ. However, it is physically impossible for matchesa j andbi to form as part of the original assignment
E, because inE (the data) matchesai andb j but nota j andbi form. The identification strategy in this paper works by comparing the
probabilities of different assignments. A physically impossible assignment has a probability of zero.
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possible: a firm can only make more matches if it has unused quota. Upstream firma must, if its quota is

constrained, dropi to match with j. Having an agent make a deviation while holding the actions of the other

involved agents fixed does not make sense in a matching game with externalities.

The focus on the beliefs of firms making a deviation about counterfactual externalities only arise in matching

games where production is a function of the matches of agentsoutside of the current match. Without external-

ities, Definition 2 is derivable from single-agent best responses without arguments about a firm’s beliefs about

counterfactual externalities. With externalities, the equilibrium concept for the game in question will determine

whether Definition 2 is applicable. Again, any of the three explanations listed above provides a motivation for

Definition 2.

3.4 Equilibrium Existence and Uniqueness

I have not introduced a definition of an equilibrium, and I certainly have not imposed sufficient conditions to

ensure the existence of an equilibrium. The concept that I informally label “single-agent best responses” is

closely related to the notion of a “stable allocation” in Hatfield and Milgrom (2005). In many-to-one two-sided

matching with complementarities across matches on the sameside of the market, Hatfield and Milgrom (2005)

present a constructive theorem that demonstrates that preference profiles can be found for where there is no

stable allocation. The result of Hatfield and Milgrom does not mean that an equilibrium does not exist for any

empirical application, just that very general existence theorems cannot be proved.

Another solution concept is known as the core. Lucas (1995) discusses some core non-emptiness results for

assignment games when there are more than two sides to a match. Ostrovsky (2004) shows how a special

chain structure forn-way matching guarantees the existence of a stable chain under endogenous prices and

restrictions on payoffs. Abeledo and Isaak (1991) discuss how there may not exist a stable match in a market,

like the roommates problem of Gale and Shapley (1962), wherematches are between agents on the same side

of a market. Kovalenkov and Wooders (2003) use a weaker notion of the core, theε-core, and derive conditions

on parameterized families of games for the non-emptiness oftheε-core for coalition formation games.

Many interesting empirical applications require investigating possibilities outside of the scope of current ex-

istence theorems. I make the assumption that the data on the assignment are generated by a matching game

with endogenous prices, and represent an equilibrium for the game. At this equilibrium, the local production

maximization condition holds for all subsets of firms satisfying the conditions of Definition 2. Mathematically,

this existence assumption is nested into the forthcoming Assumption 3.

Many games with where an equilibrium is defined to be robust topairwise deviations will have multiple equi-

libria, including multiple equilibrium assignments, in addition to multiple vectors of transfers between matched

partners in the assignment. As estimation will rely on the local production maximization inequalities, rather

than computing an equilibrium, the multiple equilibrium assignments property of many matching games will

not pose a problem for estimation.8

8A common solution concept in match games without externalities is the core. A core outcome is robust to deviations by coalitions of
agents. As the core solution concept is used in important classes of matching games, I discuss the core more formally in Section 5.

14



3.5 A Class of Production Functions for Identification

In a single-agent discrete choice model, the discrete choice observed in data is a qualitative outcome. The

preference ordering generating the discrete choice can be represented on the real line using a utility function,

with preferred choices offering higher utility values. It is a commonly known result in choice theory that any

positive monotonic transformation of an agent’s utility function will produce the same preference ordering,

and thus discrete choice data can only identify utility functions up to positive monotonic transformations. In

single-agent, semiparametric discrete choice estimation, where deterministic payoffs are assumed to be of the

form x′β, location and scale normalizations must be imposed onβ. Common scale normalizations impose that

β′β = 1 and, alternatively, normalize the value of one element of the vectorβ to be±1. In a generalization,

Matzkin (1993) considers nonparametric identification of the payoff function, and must restrict attention to a

class of utility functions where no function is a positive monotonic transformation of another function in the

class.

In the matching estimators introduced in this paper, the only outcome data being used are the assignments.

An assignment is a qualitative outcome, and so production functions are only identifiable in classes that give

unique predictions about local production maximization.

Assumption 2. Let f ∈ Θ, whereΘ is a set of match production functions satisfying the following properties.

1. For eachf ∈ Θ, there is nof̃ ∈ Θ such that for all two vectors of characteristics for upstream firmsxu
a and

xu
b,

f (xu
a,~x1 | E)+ f (xu

b,~x2 | E)≥ f (xu
a,~x3 | E)+ f (xu

b,~x4 | E)⇐⇒ f̃
(

xu
a,~x1 | Ẽ

)

+ f̃
(

xu
b,~x2 | Ẽ

)

≥ f̃
(

xu
a,~x3 | Ẽ

)

+ f̃
(

xu
b,~x4 | Ẽ

)

,

where for feasible groups of downstream firms~x1,~x2,~x3, and~x4,~x3 is formed from~x1 by exchanging one

partner from~x2, and~x4 is formed from~x2 by exchanging one partner with~x1. For games with externalities,

E is an assignment where matchesai andb j form, andẼ is the same assignment except that matchesa j

andbi form instead ofai andb j.

2. For eachf ∈ Θ, f is continuous in all of its arguments.

3. Θ is compact.

Data on assignments identify tradeoffs of inputs in determining the rank ordering of production from rearrange-

ments of matches in a matching game, not the cardinality of production.

The interaction of characteristics of upstream and downstream firms drives the patterns of matches that are the

endogenous variables used in identification. Definition 2 makes this clearer. As the same set of firms appear

on either side of the local production maximization inequality, terms that do not involve interactions between

the characteristics of firms difference out. For example, ina one-to-one marriage market without externalities,

if f
(

xu
a,x

d
i

)

= βuxu
a +βdxd

i , then the local production maximization inequality in Definition 2 reduces to

βuxu
a +βdxd

i +βuxu
b +βdxd

j ≥ βuxu
b +βdxd

i +βuxu
a +βdxd

j ,
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or 0≥ 0, so the definition has no empirical content. Theoretically,the uninteracted characteristics are valued

equally by all potential partner firms, and are priced out in equilibrium. Only the differential production levels

of various matches affect assignments.

If there is a observed characteristic such asxu
a that is not interacted with the characteristics of downstream firms,

then the parameterβu multiplying xu
a cannot be identified from the qualitative assignment data. However, as

βuxu
a cancels out from the local production maximization condition, other parameters can be identified. Thus

production functions are identified only within a classΘ satisfying Assumption 2.9

For some policy questions, the cancellation of characteristics that are not interactions between the character-

istics of upstream and downstream firms is an empirical advantage. Many datasets lack covariate data on all

important characteristics of upstream and downstream firms. If some of these characteristics affect the match

production of all matches equally, the characteristics difference out, and do not affect the assignment of up-

stream to downstream firms. Therefore, if the policy questions of interest to the investigator are not functions

of these unobserved characteristics, then differencing them out leads to empirical robustness to missing data

problems.10

For researchers interested in nonparametric identification, further examples can clarify what properties of pro-

duction can be identified in a classΘ. Consider the marriage model in Becker (1973) with one character-

istic for each spouse. Focus on the two seemingly very different production functionsf (a, i) = 2xu
axd

i and

f̃ (a, i) = −
(

xu
a−xd

i

)2. These production functions have the same cross-derivative, ∂ f (a,i)
∂xu

a∂xd
i

= 2, so the production

functions are both globally supermodular. Both productionfunctions imply that, when agent characteristics are

schooling levels, highly educated men should marry highly educated women. The reasoning is different, as in

f matching two agents with high schooling levels creates a large amount of production, and iñf not matching

two agents with the same schooling creates a loss. It is not possible to use data on assignments to distinguish

betweenf and f̃ , which are both supermodular over their entire support and have the same predictions for

observed assignments.

However, even for the case of only one characteristic per agent, formal estimation can identify more than

Becker (1973). Again, consider the case of one-to-one two-sided matching (marriage). Then, in Part 1 of

Assumption 2,~x1 =~x4 and~x2 =~x3. The condition in Part 1 can be rewritten as

f (xu
a,~x1)− f (xu

a,~x2) ≥ f (xu
b,~x1)− f (xu

b,~x2) ⇐⇒ f̃ (xu
a,~x1)− f̃ (xu

b,~x2) ≥ f̃ (xu
a,~x1)− f̃ (xu

b,~x2) ,

which, if xu
a is a scalar, is a non-derivative based definition of supermodularity (increasing differences). The

condition states that there must be at least one point with different implications for supermodularity. Assump-

tion 2 requires only one point of disagreement betweenf and f̃ , not the supermodularity off over its entire

support, as in Becker (1973). So, nonparametrically, it is possible to identify the sign of the cross-derivative

9One way of identifying the coefficientβu on xu
a in payoffs is if unmatched upstream firms are observed, and unmatched firms do not

value their own characteristicxu
a. Thenxu

a is implicitly multiplied by an indicator variable equal to 1if a match partner is not the null set,
and 0 if the match partner is remaining unmatched. In this case,xu

a is truly not a characteristic valued equally by all downstream firms, as
being unmatched is treated as a type of firm.

10In demand estimation methods such as Berry, Levinsohn and Pakes (1995), investigators are often concerned that the endogenous
prices are correlated with unobserved product characteristics. As instruments are hard to find, typically researchersassume that the
observed product characteristics are independent of the unobserved characteristics. By contrast, prices do not appear in the definition
of local production maximization, so the advantage of differencing out unobserved product characteristics involves aconcern that the
unobserved characteristics are correlated with the observed characteristics.
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of f (for continuous characteristics) over its entire support,rather than assumingf is either globally sub or

supermodular, as in production functions such asf (a, i) = 2xu
axd

i .

This paper considers many other classes of games than just marriage. For these games, generalizations of

concepts such as local supermodularity still are some of theproperties of production functions that arise from

single-agent best responses and therefore drive equilibrium assignments. Part 1 of Assumption 2 uses the local

production maximization condition to precisely state whatcan be identified using data on assignments alone.

One limitation of Assumption 2 is that two class membersf and f̃ must be distinguishable by exchanges of

only downstream firm per upstream firm. Single-agent best responses imply the local production maximization

inequality, which involves exchanges of one downstream firmper upstream firm. It is hypothetically possible

that f and f̃ could produce the same ranking for the relative sums of production of all exchanges of one

downstream firm, but not agree on the ranking of the sums of production from exchanges of two downstream

firms per upstream firm. For example,f and f̃ might give different implications for the inequality (written for

f )

f (a, i, j)+ f (b,k, l) > f (a,k, l)+ f (b, i, j) ,

as one cannot typically derive whether the inequality is> or ≤ using a series of exchanges of one downstream

firm per upstream firma or b. Under Assumption 2, the classΘ must rule out the possibility thatf and f̃ only

disagree over exchanges of two downstream firms per upstreamfirm.

Most parametric forms chosen by researchers in applications will not involve such complex nonlinearities

in production functions, and the local identification considered in Assumption 2 will not pose an empirical

obstacle. For example, Bajari and Fox (2005) estimate complementarities across multiple geographic markets

for sale in a government auction. Complementarities are proxied by a measure of the geographic closeness of

a collection of geographic markets. Exchanging one geographic market per competing bidder provides local

variation in the closeness measure for each bidder, and thislocal variation is enough for identification using the

local production maximization inequalities in the parametric class of production functions considered.

Note that the limitation to local identification in Assumption 2 is a consequence of not making strong as-

sumptions about equilibria. Section 5 shows that a game where the equilibrium is in the core allows global

identification, as Assumption 2 can be extended to allow exchanges of more than one downstream firm per

upstream firm.11

Assumption 2 also states that the class of production functions for identification is compact. Compactness is

required for the consistency of many extremum estimators, but otherwise is not deeply related to identification.

3.6 The Definition of a Market

The use of asymptotic theory to prove identification of matchproduction functions requires me to choose

whether the limiting population is observing a matching market with an infinite number of agents, or observing

an infinite number of matching markets, each with a finite number of firms. A market with an infinite number

11Alternatively, one could specify a larger classΘ+ and then argue the local production maximization inequalities identify a subset
of Θ0 ⊂ Θ+ with similar implications for local production maximization as the otherwise point identifiedf 0 ∈ Θ, whereΘ satisfies
Assumption 2. This paper does not pursue set identification because this type of non-identification seems far removed from any empirical
example, and in any case working with games in the core allowsfor global identification.
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of firms changes the character of the matches that will be observed; it is much simpler to consider a limiting

population with an infinite number of markets.

Note that while asymptotics in the number of agents in a market has a lot of practical appeal to researchers

with data on only one market, it does not have a tight link to the concept of a law of large numbers in statistics.

Laws of large numbers are used to prove consistency. Usuallylaws of large numbers consider adding more

data, holding the previous data constant. However, in a matching market, adding another agent to the market

alters the matches of the existing agents. So not only is moredata added, but the data the researcher already

has is altered. Nevertheless, Section 5.6 presents a short discussion relating increasing the number of agents

in a market to the empirical industrial organization demandestimation literature on increasing the number

of products in a differentiated products market. Also, I later present a Monte Carlo study that includes an

examination of the properties of the estimator when using data from only one market.

So this paper primarily considers asymptotics in the numberof markets. Each marketh is distinguished by its

observed characteristics, its observed set of matches and the potentially unobserved endogenous prices, and the

yet-to-be-introduced unobserved stochastic error terms generating the observed matches. The collectionXh is

an important construct in understanding the theoretical properties of the estimator I will introduce below.Xh

contains most of the exogenous characteristics of a matching market.

Definition 3. The collection of most of the exogenous characteristics of matching marketh is Xh.

• Xh contains the number of upstream,Uh, and the number of downstream firms,Dh, in marketh, or the

total number of agents in a coalition formation game.

• For each upstream firma , Xh contains the (potentially) observable vector ofru characteristicsxu
a entering

match production functions.Xh also contains the quotaqu
a, the number of physical matchesa can make.

• For each downstream firmi, Xh contains the (potentially) observable vector ofrd characteristicsxd
i en-

tering match production functions.Xh also contains the quotaqd
i , the number of physical matchesi can

make.

• Any characteristics entering the value of remaining unmatched also enter intoXh.

• In models with multiple physical assignments than can support equilibria, the equilibrium selection rule

entersXh.

• The agent-specific nest fixed effects introduced in the next section are inXh.

If there are 1000 upstream firms and 1000 downstream firms,Xh contains 2000 vectors of covariates as well as

other data. The stochastic payoff terms are exogenous from amatching theory standpoint, but are specifically

excluded fromXh.

In order to compute an equilibrium assignment for a given realization of all the error terms, every component

of Xh must be observable. Consider a marriage market, where Koopmans and Beckmann (1957) show that a

linear program can be used to compute an equilibrium assignment. Consider a (computationally intractable)

parametric maximum likelihood procedure that involves a nested solution to the linear programming problem
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for random combinations of error term values and trial guesses for the unknown production functionf . Every

component ofXh would be needed to compute the equilibrium assignment and therefore for feasible estimation.

In many matching games, there can be multiple physical assignments that support equilibria. In this case,

Xh contains the exogenous process that selects an equilibriumphysical assignment. Such a rule computes a

solution to the market for a given realization of the error terms.

Identification in this paper relies on the necessary but not always sufficient local production maximization

property of the observed equilibrium assignment. Section 4shows that not every component ofXh must be

observable for identification and estimation. An importantexample is the quota of each agent is not needed for

estimation. Another example is that the equilibrium selection is rule is not required.

In matching theory, a market is the collection of agents who may physically match with each other. In many

applications, the definition of a market may be unclear to theeconometrician. The definition of the relevant

market is an important issue in most anti-trust litigation.The economic theory of matching is only developed for

the case where a market is well defined. However, as Section 4 discusses, consistency will often be maintained

if a researcher defines a market conservatively, and uses only a subset of the restrictions imposed by the theory.

3.7 Agent-Specific Nest Fixed Effects

The previous discussion of matching games has focused on deterministic models without error terms. However,

such purely deterministic models will often not be flexible enough to perfectly fit the assignments from realistic

data sets. Properly specified econometric models make the model consistent with arbitrary outcome data by

adding error terms to the model. There are two basic approaches to adding error terms to discrete choice

models. The parametric approach assumes a known functionalform for the error terms. By contrast, the

semiparametric and nonparametric approaches derive identification and consistent estimators that are valid for

any error distribution satisfying broad properties. This paper uses the nonparametric approach, as functional

forms for the error terms and the production functions are not assumed.

Typically, a researcher will want to allow agent and match-specific unobservable components of production to

be correlated across similar match partners. A researcher can consistently estimate production functions while

allowing for agent-specific fixed effects that are constant across nests specified by the researcher. The fixed

effects represent unobservables in agent revenues. Identification and estimation then proceeds by comparing

alternative match partners within the same nest, where the fixed effect is held constant and does not affect the

relative ranking of alternative match partners. Fixed effects for different nests can be correlated, and fixed

effects for a given agent can be correlated with that agent’scharacteristics, as well as the characteristics and

fixed effects of other agents.

For a matching marketh, let there be a set of nests for upstream firmsN u
h , and let the corresponding set of nests

for downstream firms beN d
h . Let nu

h be an individual nest for upstream firms, and likewise letnd
h be a nest for

downstream firms. In an extension of notation, letnd
h (i) be a function that gives the nest of downstream firm

i. The production function for the match of upstream firma with set of downstream firms inMa at the market

assignmentE is

f (a,Ma | E)+ ∑
k∈Ma

(

ξu
and

h(k)
+ξd

knu
h

)
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wherea∈ nu
h, ξu

and
h

is upstream firma’s unobserved fixed effect for a downstream firmk ∈ nd
h (k), ξd

knu
h

is down-

stream firmk’s fixed effect for upstream firms such asa in the nestnu
h. The fixed effects enter additively

separably into match production.12

Consider an inequality focusing on the upstream firmsa andb, the set of downstream firms matched witha and

b, Ma andMb, and downstream firmsMa ∋ i /∈ Mb andMb ∋ j /∈ Ma. Also assume thata andb are in the same nest

nu
h, andi and j are in the same nestnd

h. The sum of the payoffs of the observed matches are

f (a,Ma | E)+ ∑
k∈Ma

(

ξu
and

h(k)
+ξd

knu
h

)

+ f (b,Mb | E)+ ∑
k∈Mb

(

ξu
bnd

h(k)
+ξd

knu
h

)

,

while the sum of the payoffs when insteada matches withj andb matches withi is

f
(

a,
(

Mh
a\{i}

)

∪{ j} | Ẽ
)

+ ∑
k∈(Mh

a\{i})∪{ j}

(

ξu
and

h(k)
+ξd

knu
h

)

+

f
(

b,
(

Mh
b\{ j}

)

∪{i} | Ẽ
)

+ ∑
k∈(Mh

b\{ j})∪{i}

(

ξu
bnd

h(k)
+ξd

knu
h

)

.

By the assumption thata andb and alsoi and j are in the same nests, the sums of fixed effects of the form

∑
k∈Ma

(

ξu
and

h(k)
+ξd

knu
h

)

+ ∑
k∈Mb

(

ξu
bnd

h(k)
+ξd

knu
h

)

are identical under the observed matches and the exchange ofupstream firms fori and j. Thus, the fixed effects

cancel out from Definition 2, local production maximization. The necessary condition for local production

maximization depends only onf when the two upstream firms are in the same nest the and two downstream

firms are part of the same nest.

By looking within nests, a researcher can identify the unknown production functionf using within-nest varia-

tion in characteristics, while allowing the unobserved payoffs of firms to be correlated with covariates, and to be

correlated across similar match partners. The fixed effectsapproach is powerful, but there are two downsides.

First, the method is only consistent if the researcher does not define the nest too broadly. As with the definitions

of markets that I discussed above, using too narrow nests preserves consistency. Second, the inclusion of fixed

effects means that the researcher cannot identify the parameters on covariates that do not vary within nests. It

should be noted that variants on these two drawbacks also apply to the use of fixed effects in linear regression

models, and are not unique to matching games.

3.8 Within Nests: The Rank Order Property for Local Production Maximization

The previous section introduces agent-specific fixed effects over nests of choices. Such fixed effects add error

terms to the model and will often explain a good deal of residual variation in the data. Indeed, i.i.d. logit errors

over broad types/nests of potential spouses are the only error terms in Choo and Siow (2003), meaning that the

nest fixed effects already add a richer stochastic structurethan some earlier work. If a researcher is happy with

12For single-agent discrete choice versions of the maximum score estimator, the payoffs only need to enter weakly separably (Fox,
2005). The additive separability here comes from the need toadd the production from the sets of matches of two upstream firms.
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agent-specific nest fixed effects, than nothing more needs tobe done to ensure consistency. However, in any

data set it is likely that suboptimal (in observable characteristics) matches will be seen within a nest, making

the introduction of additional errors necessary to make themodel able to explain the within-nest data.

An insight of Manski (1975) for single-agent discrete choice models is that under some conditions choice

probabilitiesP(i | X) are rank ordered by the deterministic part of utilityx′iβ, so observed choices should, more

often than not, have greater deterministic linear indices than unobserved choices. Consider an agent making

a standard, single-agent, multinomial discrete choice from a setJ of choices. A choicei gives payoffx′iβ + εi ,

whereεi is a choice-specific error term. Fix two choices,i and j, from the setJ of all choices. If the joint

density of the error terms for all choices is exchangeable,x′iβ > x′j β if and onlyP(i | X) > P( j | X) .13

A literal extension of the rank ordering of outcome probabilities does not hold in matching games, as a match

ai that gives a higher deterministic payofff (a, i) than another matcha j may not be observed with higher

frequency if i has attractive outside options. For nonparametric identification, I need to find a similar rank

ordering property for matching games.

I extend Definition 2, local production maximization, to thecase where the econometrician does not observe

the stochastic error terms for partners with the same nests.The matching game will have local socially optimal

matching in a probabilistic sense. Given two upstream firms within a nest and two downstream firms within a

nest, it is more likely that the combination of two matches with the higher deterministic payoff will be observed

than the alternative combination.

In many matching games, there can be multiple equilibrium assignments. Recall that the equilibrium assign-

ment selection rule is inXh. For any realization of the error terms, the equilibrium selection rule finds a physical

set of matches. When the econometrician integrates out overthe error terms for a given selection rule, the fol-

lowing property is assumed to hold. As externalities can enter payoffs, in the most general form the property

refers to the probability of an entire assignment arising.

Assumption 3. In a two-sided matching game with assignmentE, consider two upstream firms,a andb, two

groups of downstream firmsMa andMb, and two downstream firms,i ∈ Ma and j ∈ Mb, all in a matching market

h. Further leti /∈ Mb and j /∈ Ma, and letẼ be the assignmentE except thata j andbi match andai andb j do not

match. Finally,a andb are in the same nest of upstream firms, andi and j are in the same nest of downstream

firms. Assume

f (a,Ma | E)+ f (b,Mb | E) ≥ f
(

a,(Ma\{i})∪{ j} | Ẽ
)

+ f
(

b,(Mb\{ j})∪{i} | Ẽ
)

if and only if

P(E | Xh, f ) > Pab
(

Ẽ | Xh, f
)

,

whereP(E | Xh, f ) is the probability to the econometrician that the assignment E happens, conditional on the

potentially observable exogenous market characteristicsin Xh and the match production functionf .

The rank order assumption is key to identification. The assumption uses the notion of an assignment matching

probability, or the probability that a set of matches involving all agents in a market happen at the same time.
13If the errors are independent and identically distributed across choices, the proof is Case (b) of Step 2 on pages 212-213of the

consistency theorem in Manski (1975), and relies on writingthe functional form for choice probabilities in terms of an integral over the
error terms in the model. Fox (2005) discusses the extensionto exchangeability.
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P(E | Xh, f ) is the probability, from the econometrician’s point of view, of the assignmentE arising. Calculating

P(E | Xh, f ) involves integrating out the vector of all error terms over the region where the assignmentE is

optimal. Proving that an extremum estimator is consistent requires showing that the probability limit of the

objective function has a unique relevant extremum at the true parameter value. The probability limit of the

maximum score objective function will involve probabilities of the formP(E | Xh, f ).

The assignment matching probabilities are computed holding fixed the collectionXh of all potentially observ-

able exogenous market characteristics. AsXh can have thousands of elements, an estimator that involves repeat-

edly solving for an equilibrium for realizations of the error terms to compute assignment match probabilities

will not be tractable.

Again, the property in Assumption 3 holdsXh fixed. Xh includes the equilibrium selection rule as a function

of the unobservables. Therefore, the equilibrium selection rule can be different across markets, as well as

correlated with the other exogenous characteristics of themarket inXh, as well as the unknown and market-

specific distribution function of the error terms.14

The possibility of multiple equilibrium assignments prevents any formal analysis of sufficient conditions for

Assumption 3. Assumption 3 is more likely to hold if the equilibrium assignment selection rule selects “nearby”

assignments when the realizations of the error terms are close. However, the concept of “nearby” equilibrium

assignments is not formal, and so no formal analysis can be undertaken under multiple equilibria. Assumption

3 should be seen as a primitive assumption on both the equilibrium selection rule inXh and the distribution of

unobservable error terms.

When the core is the solution concept, in many games there will be a unique equilibrium assignment with

probability 1, and it is possible to discuss sufficient conditions for Assumption 3 to hold. Therefore, Section 5

discusses a set of sufficient conditions that generate Assumption 3.

3.9 Identification Through Covariate Variation

Point identification proves that there is only one production function f 0 in the classΘ that could generate the

data for an infinite number of observed markets. If there are an infinite number of markets, there are also

an infinite number of identical markets, and the matching probabilitiesP(E | Xh, f ) are observable. Given the

matching probabilities, Assumption 3 places restrictionson the set of production functionsf that are consistent

with the data. Without additional assumptions than Assumption 3, the identified set of production functions

comprises the production functions consistent with rank ordering.

Definition 4. The identified setF of production functions comprises functionsf such that Assumption 3 holds

for all possible marketsX, pairs of upstream firmsa,b ∈ Uh that are in the same nest, feasible downstream

matches fora andb Ma ⊆ Dh andMb ⊆ Dh, pairs of downstream firmsMa ∋ i /∈ Mb andMb ∋ j /∈ Ma that are in

the same nest, and assignmentsE.

Without any restrictions onX, I can only prove that this setF exists, and that it is not the entire spaceΘ of

theoretically possible parameters. In other words,f is set-identified, and we can use the rank order property to

identify bounds onf 0: the boundaries ofF .
14Notationally, the distribution of the error terms should bein Xh, but I want to emphasize that identification does not requirespecifying

the distribution of the error terms.
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Most applied economists prefer to report point estimates rather than estimates of sets. Manski (1975), Manski

(1988) and other authors have discussed the semiparametricpoint identification of discrete choice models,

where semiparametric means that the distribution of the stochastic error terms is not specified. Matzkin (1993)

extends the identification and estimation results to the nonparametric identification of the deterministic portion

of utility as well. This section follows Matzkin by showing sufficient conditions on the variation in the data

that allow point identification of the production functions.

Definition 5. The match production function is point identified if there exists a set of marketsh with positive

measure such that for anỹf ∈ Θ, f̃ 6= f 0, there exists assignmentsE such thatP
(

E | Xh, f 0
)

6= P
(

E | Xh, f̃
)

.

The mathematical argument for point identification focuseson varying the characteristics of two upstream

firms in each market, as seen in the local production maximization inequality. To this end, make the following

assumption about the identities of the relevant two upstream and two downstream firms and the corresponding

variation in the observable data. I first need to split the vector of characteristicsxu
a for upstream firms entering

into production intoxu
a =

(

xu
1,a,x

u
−1,a

)

, wherexu
1,a is the first, scalar component of the vector andxu

−1,a is the

vector of all other covariates.

Assumption 4. For every marketh, there are two particular upstream firmsa andb, which are always in the

same nest. The joint distribution of the vectors of the characteristics ofa andb entering into match production,

conditional on other market characteristicsX, is g
(

xu
a,x

u
b | X\

{

xu
a,x

u
b

})

.

• The joint density of the first elements ofa andb’s characteristics conditional on the other characteristics

for a andb and all other market characteristics,g
(

xu
1,a,x

u
1,b | X\

{

xu
1,a,x

u
1,b

})

, has an everywhere positive

density inR
2.

• The data across markets are sampled statistically independently.

The sampling rule for the data,g, should be seen as an implication of the sampling rule for thecharacteristics

of all matches in the entire market,Xh. This includes whatever rule is being used to assign firms in different

markets to the abstract firm indices such asa, b, i and j. The special random variablexu
1,a is assumed to be

freely varying conditional on the other characteristics ofthe upstream and downstream firms. The existence

of such a freely varying covariate is required for point identification of discrete choice models (Manski, 1988;

Horowitz, 1998).

Intuitively, the support condition forxu
1,a andxu

1,b means there exist a continuum of moment restrictions (one

for each value of the characteristics), and moment restrictions that are relevant for every potential value of the

unknown production functionf . In the case of matching, the number of possible matches in anentire matching

market is large, but still finite. Itemizing over the entire set of possible match quartets only provides the finite

number of inequality moments from Assumption 3. On the otherhand, adding additional observations with new

continuous characteristicsxu
1,a andxu

1,b from an infinite number of new markets (the exercise in identification)

creates a continuum of restrictions from Assumption 3. Thussemiparametric point identification takes advan-

tage of continuously varying covariates such asxu
1,a andxu

1,b, and identification does not require examination of

the entire set of possible matches.15

15The assumption that the support ofxu
1,a andxu

1,b is R
2, rather than some compact subset ofR

2, is made for convenience. Manski
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The following assumption states that the vector of the characteristics of all firms and matchesXh is observable.

This assumption is made to conceptualize the set of observationally equivalent markets in order to observe

matching probabilities. The consistency proof of the estimator shows that, in the case of the quota of matches

each firm can make and the equilibrium selection rule, the observability of all elements ofXh is a convenience,

and not a necessity for identification.

Assumption 5. For every matching marketh, the econometrician observes the matrix of market characteristics

Xh.

Identification is stated in the following theorem, and the theorem is proved in Appendix A.1. The proof works

by finding a point where the rank order property does not hold,and exploiting the continuous characteristic to

show that a set around that point also does not satisfy the rank order property, so that the points not satisfying

the rank order property have positive measure.16

Theorem 1. Under Assumptions 1, 2, 3, 4 and 5, the true production function f 0 from the data generating

process is point identified in the setΘ.

4 Estimation of Match Production Functions

The previous section shows that match production functionsare nonparametrically identified within a classΘ

under the assumption that match probabilities are ranked bytheir deterministic contributions to output maxi-

mization. Ignoring issues with multiple equilibria, by following the identification argument, one can construct

a potentially consistent estimator of the production function, f 0. The researcher nonparametrically estimates

assignment probabilitiesP
(

E | Xh, f 0
)

by using data across markets. Then the researcher uses the estimates of

simultaneous match probabilities to estimateF , the identified set using the conditions of Assumption 3. As

data on more markets appear, the estimate ofF converges to the true production functionf 0, if the conditions

for identification are met, and under possible additional regularity conditions.

Given thatXh may have thousands or even millions of elements, and the number of markets in the data may

be low, the dimensionality of match probabilities implies that first-stage nonparametric estimation of match

probabilities is not a tractable strategy for typical datasets. This section provides a more practical maximum

score estimator. The maximum score estimator works directly with the production functionf , and does not

involve auxiliary nonparametric estimates of matching probabilities.

4.1 Choosing Inequalities

Before estimating the production function, the researchermust choose a set of inequalities to form the objective

function. LetBsub(Xh) be a set-of-sets-valued function returning the matches to use in estimation for a market

(1988) and Horowitz (1998) show how to relax the full supportassumption for the identification of single agent binary choice models. The
identification arguments in this paper are not related to theidentification at infinity arguments made in the literature on selection and the
related work on the special regressor estimator of Lewbel (2000).

16Identification can proceed using other assumptions than therank-order property, Assumption 3. For example, in the unlikely even
that there are match-specific regressors (xai) with full support that are independent of the error terms, identification based on the “special
regressor” arguments of Lewbel (2000) might be possible. The Lewbel single-agent, multinomial choice estimator requires multidimen-
sional density estimation and therefore suffers from a curse of dimensionality in the number of choices. Likewise, any matching estimator
based on the “special regressor” identification argument will not be tractable in markets of reasonable size.
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with characteristicsXh. An element ofBsub(Xh) comprises a quartet of two upstream firms from the same nest

and two downstream firms from the same nest to focus on, and a set of other downstream firms potentially

matched to the two upstream firms at the same time and an assignment. In notation, an elementz of the set

Bsub(Xh) is a set

z= {a,b, i, j ,Ma,Mb,E} wherea 6= b,a,b∈Uh,a,b∈ nu
h, i, j ∈ nd

h,Ma ⊆ Dh,Mb ⊆ Dh,

Ma ∋ i /∈ Mb,Mb ∋ j /∈ Ma, |Ma| ≤ qu
a, |Mb| ≤ qu

b,q
d
k ≥ 2∀k∈ Mb∩Ma,

whereE is an assignment,Uh is the set of upstream firms in marketh, and likewiseDh is the set of downstream

firms in marketh. HereMa is a hypothetical set of matches for upstream firma, andMb is a set of downstream

firms for upstream firmb. Only cases whereMa has weakly fewer downstream firms than the quota ofa and

Mb has fewer downstream firms than the quota ofb are considered. Further, only setsMa andMb where all

downstream firms in both sets have quotas of at least two are considered at the same time.

There are several things to keep in mind when choosingBsub(Xh). First, the researcher should include some

inequalities involving exchanging agents with very different characteristics, in order to rule out production

functions f that are far from the truth. Second, the researcher should attempt to use a deterministic rule to

select inequalities, so as to aid replication by other researchers. One typical deterministic rule includes all

inequalities formed by exchanges of one downstream firm eachbetween two upstream firms. Third, if the

researcher is unsure whether an exchange of partners is physically possible, the researcher should consider

not including the corresponding inequality. For example, if the researcher is unsure of the exact definition of

the matching market, using a conservative definition of the market to form pairwise comparisons will preserve

consistency if the formal conditions onBsub(Xh) listed below are satisfied. Including inequalities involving

exchanges that are not physically possible will break consistency, as there is no information on the revealed

preferences of agents in those inequalities.

In many applications the number of exchanges of one downstream firm each between two upstream firms

will be so large that the evaluation of all the inequalities from the simplest deterministic rule will be too

computationally expensive. If there are 100 upstream firms and 1000 downstream firms and each upstream

firm is the only supplier for 10 downstream firms in the data, the total number of inequalities that “turn on”

for a given dataset (see below) is∑100
a=1 ∑100

b=a+1 ∑10
i=1 ∑10

j=1 1 = 495,000. If there are too many more inequalities

than 495,000, the deterministic rule of using exchanges of one downstream firm per upstream firm will be

computationally infeasible given current computer technology.

This paper considers only inequalities where each of two upstream firms exchanges one downstream firm with

the other supplier. In markets where the equilibrium concept involves only pairwise deviations, inequalities

with exchanges of more than two firms are not theoretically derivable from the assumption of single-agent best

responses.

To apply a lemma from asymptotic theory,17 we need the following assumption about the data generating

process.

Assumption 6. The number of possible matching quartets included in the maximum score objective function,

17Lemma 2.4 from Newey and McFadden (1994), which appears in the proof of Theorem 2.
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∣

∣Bsub(Xh)
∣

∣, does not have an infinite mean across markets. Further the distributionG(Xh) of observable covari-

ates, including the numbers of upstream and downstream firms, is identical and independent across markets.

I make the following covariate assumption that extends the identification covariate conditions to all included

inequalities.

Assumption 7. The underlying data generating process and the choice of inequalities to include inBsub(Xh)

make the conditions of Assumption 4 hold for every inequality in the maximum score objective function.

In the usual case when not all theoretically possible inequalities are included in the objective function, it is

important that, asymptotically, all configurations of covariates appear. Otherwise, the production function is

not identifiable at those points.

Assumption 8. The choice of inequalities inBsub(Xh) induces a distribution of included characteristics with

support equal to the sampling distribution of the characteristics in the true data generating process.

4.2 The Matching Maximum Score Estimator

Define the matching maximum score estimator to be any production function f ∈Θ that maximizes the objective

function

QH ( f ) =
1
H ∑

h∈H
∑

z∈Bsub(Xh)

1[E inh]×1
[

f (a,Ma | E)+ f (b,Mb | E) > f
(

a,(Ma\{i})∪{ j} | Ẽ
)

+ f
(

b,(Mb\{ j})∪{i} | Ẽ
)]

+1
[

Ẽ inh
]

×1
[

f (a,Ma | E)+ f (b,Mb | E) < f
(

a,(Ma\{i})∪{ j} | Ẽ
)

+ f
(

b,(Mb\{ j})∪{i} | Ẽ
)]

, (8)

where for all inequalities the assignmentẼ is formed fromE by replacing matchai with a j and matchb j with

bi.

HereH is the number of markets observed by the econometrician. Theterms1[·] are indicator functions equal

to 1 when the condition in brackets is true, and 0 otherwise. The main dependent variable of interest from the

two-sided game is1[E inh], which is equal to 1 if the assignmentE occurs in the data for marketh. As part of

E, upstream firma matches with the set of downstream firms inMa and likewise supplierb matches with the set

of retailers inMb. Note that if the game does not have externalities, the dependent variable can be rewritten as

1[Ma,Mb inh], which is 1 if upstream firma matches with the set of downstream firmsMa (and only those) and

upstream firmb matches with the setMb in marketh, which could happen under many different assignmentsE.

The above primitive definition forQH ( f ) is written in a way that makes it easy to compute the probability limit

of the maximum score objective function in the proof of the estimator’s consistency. The dependent variable

data are not known when taking a probability limit. However,programming the objective function for a given

dataset is much simpler, as the dependent variable data are known, and there is no need to itemize over terms

that are known be to be zero for all trial production functions f . For a given data set, a researcher only programs

the inequalities that actually “turn on” because the dependent variable data in the relevant indicator functions

are true. For a given dataset with dependent variable data, let Ah be the quartets that are relevant given the set
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of physical matches seen in the data. Further, letMh
a be the downstream firms supplied by upstream firma in

the data. The maximum score objective function one programsis

QH ( f ) =
1
H ∑

h∈H
∑

{a,b,i, j}∈Ah

1
[

f
(

a,Mh
a | Eh

)

+ f
(

b,Mh
b | Eh

)

> f
(

a,
(

Mh
a\{i}

)

∪{ j} | Ẽh

)

+ f
(

b,
(

Mh
b\{ j}

)

∪{i} | Ẽh

)]

,

whereẼh is the counterfactual assignment that is equal toEh except thata andb exchange the partnersi and

j. For a finite sample, the objective function considers quartets of two upstream firms and one downstream

firm being supplied by each upstream firm, but not the other. A non-stochastic notion of local production

maximization implies that if suppliera matches with retaileri but not j, and supplierb matches with retailerj

but not i, then the sum the production for the observed matches must begreater than the production from the

suppliers exchanging retailers. Assumption 3, the rank order property, extends local production maximization

to the stochastic case where there are error terms unobserved to the econometrician. If the local production

maximization condition is met for an observed pair of supplier relationships at some trial production function

f , the score of correct predictions within the quartet increases by 1. The matching maximum score estimator is

any production function in the classΘ that receives the highest score for not violating predictions of Assumption

3’s version of local production maximization for observed match quartets.

Note that the quotas, the numbers of maximum physical matches employers can make, do not enterQH ( f )

explicitly when it is programmed for a given data set. Any matching situation that violates the quota of any

agent will not appear in the data, so we know that all inequalities in the objective function will correspond to

matching situations that do not violate quota restrictions. Therefore, by focusing on the data at hand, the econo-

metrician is guaranteed to not violate quotas. Also, the estimator only considers deviations in the inequalities

where the number of matches for each firm are kept the same as isseen in the data. The estimator does not

consider any deviations that might break the quota of an agent, so the estimator does not require or use data on

quotas.18

For games with multiple equilibrium assignments, equilibrium selection rules do not enter the objective func-

tion. Unlike some procedures for dealing with multiple equilibria, there is no need to estimate the equilibrium

selection rule in order to estimate the match production functions.

As the objective function is a step function, there will always be more than one global maximum; finding one is

sufficient for estimation. As proved below, maximizingQH ( f ) produces a consistent estimator of the true pop-

ulation parameter vectorf 0 ∈ Θ. Numerically maximizing an objective function over the space of an unknown

function f that must be in some classΘ satisfying Assumption 2 is nonstandard. Matzkin (1990) provides

an operational procedure for the case whereΘ is defined to be the class of least-concave functions. Matzkin

(1991) and Matzkin (1992) also discuss estimation of discrete choice payoff functions under nonparametric

shape restrictions.

18As a requirement of nesting a matching mechanism into a parametric estimator, a researcher must make often unverifiable assumptions
about the size of the quota of each agent in their estimation sample. Sørensen (2004) assumes that all agents (venture capitalists, in his
example) use all of their quota, so the quota is equal to the number of observed matches for each venture capitalist. Boyd,Lankford, Loeb
and Wyckoff (2003) study the hiring of public school teachers, and argue that state laws mandate that a fixed number of teachers must be
hired based upon an exogenously specified number of studentsattending a school.

Correlation between quotas and other observable exogenousvariables is not a problem for the maximum score estimator. Neither this
paper nor any other considers the case where the quotas mightbe endogenous: there are firm-specific unobservable terms inthe production
functions correlated with the quotas. For some applications, it is best to assume that quotas are not binding, and let thenumber of vacant
match slots arise endogenously in equilibrium.
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A more standard computer programming approach is to defineΘ to be a class of production functions defined

to be a parametric function known up to a finite-dimensional vector of unknown parameters,β. When one

specifies a parametric functional form for the production function, the maximum score estimator is labeled

semiparametric, rather than nonparametric. In practice, one uses a numerical optimization package to compute

a maximum of the objective function. The objective functionis not differentiable inβ, so local numerical

optimization methods cannot be used.19 The estimates in the application of Bajari and Fox (2005) usea global

optimization routine, specifically differential evolution (Storn and Price, 1997).

Researchers may in practice use a parametric linear-in-parameters specification for production functions. For

identification, scale normalizations must be imposed on thelinear-in-parameters production function. A con-

venient scale normalization to use during numerical optimization for an extremum estimator isβ1 = ±1, where

β1 is the coefficient on a continuous agent characteristic in production.20

4.3 Consistency

The following theorem states that the matching maximum score estimator is consistent, including when a subset

of possible match quartets is used in estimation.

Theorem 2. Under Assumptions 1, 2, 3, 6, 7, and 8, any production function fH ∈ Θ that maximizes the

matching maximum score objective function is a consistent estimator for f 0 ∈ Θ, the true production function.

The proof is in Appendix A.2. The most economically interesting part of the proof proves the true production

function f 0 maximizes the probability limit of the objective function.The dependent variable data indicator

functions of the form1
H ∑H

h=11[E inh] converge to the expectation of matching probabilitiesEX
{

P
(

E | X, f 0
)}

.

Thus, asymptotically the estimator uses choice probabilities even though computationally estimation does not

require a first-stage nonparametric estimation ofP
(

E | X, f 0
)

or the computation ofP(E | X, f ) using a matching

mechanism (linear program) for trial guesses off .

Assumption 3, the rank order property, is used to show that the inequalities involving the production functions

will multiply the higher ofP
(

E | X, f 0
)

andP
(

Ẽ | X, f 0
)

, whereẼ is E with a j replacingai andbi replacingb j,

when the trial production function is the truth,f 0.21

5 Games with the Core Solution Concept

The previous discussion emphasizes the weak conditions on the structure of a matching game (single-agent

best responses under price taking behavior) required for consistency of the maximum score estimator. Using

19It is not clear that local optimization routines should be used for many smooth objective functions because even smooth objective
functions may have many local optima.

20In estimation, if the sign ofβ1 is not known from economic theory, it can be superconsistently estimated by estimating the model
twice, once whereβ1 is fixed at−1, and once whereβ1 is fixed at 1. The final estimates for all parameters correspond to the sign ofβ1
with the highest objective function value.

21Such an argument would not work if the objective function involved minimizing the number of incorrect predictions timesa “penalty
term” (other than the current 1s and 0s) reflecting the difference between the production levels of the matches in the dataand some
counterfactual matches, when evaluated at a hypotheticalf .
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weak conditions on equilibria is important for games with externalities and complementarities between the

characteristics of agents on the same side of the market. However, some games, such as Becker’s marriage

model, produce equilibria that are in the core of the game. A core outcome is robust to deviations by coalitions

of agents. As the entire market is one such coalition, an outcome in the core must maximize the sum of match

productions for all matches in the assignment supporting the outcome.

The robustness of the core to deviation by coalitions of agents means that identification can include exchanges

of two or more downstream firms per upstream firm. Compared to Assumption 2, it is now possible to con-

sider global identification of production functions, meaning production functions in the identifiable set can now

disagree about any arbitrary exchange of downstream firms. While in the discussion of Assumption 2 I empha-

sized that global nonparametric identification is not likely to be empirically relevant in most applications, it is

of interest from the viewpoint of econometric theory.

When programming the estimator, a researcher can include exchanges of more than two downstream firms per

upstream firm, as the core is robust to any deviation by a coalition of agents. In some instances, including more

inequalities in estimation may increase the finite-sample precision of the estimator.

An assignment supporting the core is unique with probability 1 if the production levels have full support on

the real line, as two arbitrary combinations of real numberswill sum to the same value with probability 0.

This means that a matching probability is well-defined without the need to specify an unobserved equilibrium

assignment selection rule. Therefore, this section uses the assumption that the observed assignment supports a

core outcome to investigate sufficient conditions on within-nest error terms to satisfy Assumption 3, the rank

order property. This section concludes with a Monte Carlo study that examines whether the estimator has a

large finite-sample bias under model assumptions that are not enough for consistency. This discussion can be

skipped by those readers willing to understand Assumption 3as an intuitive assumption that can be motivated

by several more primitive conditions, or an assumption thatis of second-order importance in practice because

most of the residual variation in the assignment data is captured with agent-specific nest fixed effects.

5.1 The Core

This section presents an alternative derivation of local production maximization using a cooperative game the-

ory and general equilibrium solution concept: the core. Thecore can be used for games without externalities

as well as for games with externalities that allow for side payments between unmatched partners. Most appli-

cations with externalities do not allow side payments, so for readability I drop externalities in this section.

Firms receive monetary payments that are their profits. If downstream firmsi and j and upstream firma all

match,i receives profitpd
i , j receives profitpd

j , anda receives profitpu
a. All firms prefer to receive higher profits.

As firms only want to maximize profits, firms have transferableutility.

A matching game with endogenous prices produces as an outcome a set of physical pairings between firms in

the market (an assignment) and a vector of profits, one for each firm. I will define the core of a matching game

to be the set of profits that are both feasible and satisfy the property that no group of firms would prefer to

deviate and match outside of the mechanism.

Definition 6. 1. Let anoutcome
{

{pu
a}a∈U ,

{

pd
i

}

i∈D ,{Ma}a∈U

}

be a vector of profits for all firms and an

assignment.
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2. Let a feasible outcome be an outcome that includes a vector of profits that isphysically possible to

produce given the assignment, or where

∑
a∈U

pu
a + ∑

i∈D
pd

i ≤ ∑
a∈U

f (a,Ma) .

3. Let acontained coalition be a set
{

Cu ⊆U,Cd ⊆ D
}

of upstream firmsCu and downstream firmsCd, where

all matches of upstream firms inCu are with downstream firms inCd, and all matches of downstream firms

in Cd are with upstream firms inCu.

4. Let ana contained coalition with a feasible internal arrangement, C =
{

Cu ⊆U,Cd ⊆ D,
{

MC
a
}

a∈Cu

}

, be

a contained coalition with a given set of matches of downstream to upstream firms for the firms in the

coalition, where feasible means
∣

∣MC
a

∣

∣≤ qu
a∀a∈U and

∣

∣

∣
MC,d

i

∣

∣

∣
≤ qd

i ∀ i ∈D, whereMC,d
i is the set of upstream

firms matching with downstream firmi in the contained coalition.

5. Let a feasiblecore outcome be a feasible outcome where each contained coalition with a feasible internal

arrangementC =
{

Cu ⊆U,Cd ⊆ D,
{

MC
a
}

a∈Cu

}

receive greater profits than its production, or

∑
a∈Cu

pu
a + ∑

i∈Cd

pd
i ≥ ∑

a∈Cu
f
(

a,MC
a

)

,

and that each firm receives nonnegative profits, or

pu
a ≥ 0∀a∈U andpd

i ≥ 0∀ i ∈ D.

Agents in a match split the production from the match. In many-to-many matching, splitting output general-

izes to the notion that any contained coalition splits the production from the set of matches in the coalition.

Therefore, adding side payments to a game without externalities does not change the outcome.

Lemma 1. For an outcomes
{

{pu
a}a∈U ,

{

pd
i

}

i∈D ,{Ma}a∈U

}

in the feasible core, the profits and the assignment

generating production satisfy, for any contained coalition with a feasible internal arrangementC that is part

of the outcome,

∑
a∈Cu

pu
a + ∑

i∈Cd

pd
i = ∑

a∈Cu
f
(

a,MC
a

)

.

Proof. Assume to the contrary for some contained coalitionC that is part of the core outcome. If∑a∈Cu pu
a +

∑i∈Cd pd
i < ∑a∈Cu f

(

a,MC
a
)

, then the coalitionC would be better off by deviating from the core assignment,

as all members could be paid more than their current profits. If ∑a∈Cu pu
a + ∑i∈Cd pd

i > ∑a∈Cu f
(

a,MC
a
)

, then

feasibility means that the level of profits that the coalition C earns is not all produced by the membersC, and

must come from some other contained coalition. Therefore, there exists at least one other contained coalition

with a feasible internal arrangementC̃, C∩C̃ = /0, such that∑a∈C̃u pu
a +∑i∈C̃d pd

i < ∑a∈C̃u f
(

a,MC̃
a

)

, which means

that the contained coalitioñC would want to deviate from the core outcome. The deviation ofC̃ violates the

definition of the core, and is a contradiction.

If the contained coalitionC is the entire market, then∑a∈Cu pu
a + ∑i∈Cd pd

i > ∑a∈Cu f
(

a,MC
a
)

implies that the

outcome is not feasible.
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The key property for estimation of transferable utility two-sided matching games is that any outcome in the

core must maximize the total marketwide output,∑a∈U f (a,Ma).

Lemma 2. Let the outcome
{

{pu
a}a∈U ,

{

pd
i

}

i∈D ,{Ma}a∈U

}

be in the feasible core. Then the assignment in the

outcome maximizes total marketwide output∑a∈U f (a,Ma).

Proof. Output maximization follows from the definition of the core,as the entire market is a contained coalition

with a feasible internal arrangement that maximizes total output. If output is not being maximized, the coalition

of the entire market would deviate.

In a competitive economy with homogeneous goods for sale, the first welfare theorem states that any compet-

itive equilibrium is Pareto optimal. With transferable utility, Pareto optimality is strengthened to production

maximization in the sense that the decentralized equilibrium maximizes total marketwide production. Like-

wise, Lemma 2 states that any decentralized core outcome maximizes a social planning problem for the case

of matching.22

5.2 Global Identification

The solution to the social planner’s problem implies many restrictions for two upstream and two downstream

firms at a time, in two-sided matching. Consider a hypothetical solution to the marketwide social planning

problem with matchesai andb j but nota j andbi. If the local production maximization inequality condition,

Definition 2, is not satisfied, having matchesa j andbi would improve total production from the quartet, without

disturbing the matches of firms outside of the quartet. In a market where only one-to-one matching is allowed,

itemizing over all possible quartets (a, b, i and j) produces the definition of production maximization for the

entire market, as long as remaining unmatched is considereda potential matching partner, where appropriate.

For many-to-one and many-to-many two-sided matching as well as coalition formation, the global production

maximization property of the core allows estimation to include inequalities with exchanges of two or more

downstream firms per upstream firm or coalition, for four or more firms being exchanged in total. Any deviation

from global production maximization provides a valid set ofinequalities unless the deviation violates quotas.

Including inequalities with exchanges of more than two downstream firms per upstream firm may not dra-

matically change the finite sample estimates, especially ifa tight parametric specification for the classΘ of

production functions is being used. In the multiple-unit auction application of Bajari and Fox (2005), we found

that the magnitudes and signs of parameters were similar when we estimated using mainly exchanges of two

items per bidder.

22The definition of the core involves group decision making. Itis more traditional in two-sided matching theory (even without exter-
nalities) to define another solution concept. An example of adifferent solution concept is a stable match, which considers deviations by
pairs of upstream and downstream firms. A theorist then proves that the other solution concept is equivalent to the core. Unfortunately, in
many-to-one and many-to-many matching with general production functions that allow for complementarities across multiple downstream
firms matching with the same upstream firm, the core is not equivalent to pairwise deviations.
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Nevertheless, extending the discussion of local identification to global identification may be of some theoreti-

cal interest. In Section 3.5, Assumption 2 states that the local production maximization inequality allows the

identification of production functions within a classΘ where local identification is sufficient for point identifica-

tion. The single-agent best response motivation for local production maximization requires weak assumptions

about the equilibrium of the matching game. By contrast, assuming the equilibrium is in the core is a strong

assumption, but it will allow global identification.

Consider two production functionsf and f̃ in some class. It may be the case thatf and f̃ disagree only over

exchanges of two downstream firms per upstream firm, as in

f (a, i, j)+ f (b,k, l) > f (a,k, l)+ f (b, i, j) andf̃ (a, i, j)+ f̃ (b,k, l) ≤ f̃ (a,k, l)+ f̃ (b, i, j) .

If the equilibrium to a game is in the core, these inequalities can be used for identification and estimation. The

version of the previous Assumption 2 for games where the equilibrium is in the core follows.

Assumption 9. Let f ∈ Θ, whereΘ is a set of match production functions satisfying the following properties.

1. For eachf ∈ Θ, there is nof̃ ∈ Θ such that for all two vectors of characteristics for upstream firmsxu
a and

xu
b,

f (xu
a,~x1 | E)+ f (xu

b,~x2 | E)≥ f
(

xu
a,~x3 | Ẽ

)

+ f
(

xu
b,~x4 | Ẽ

)

⇐⇒ f̃ (xu
a,~x1 | E)+ f̃ (xu

b,~x2 | E)≥ f̃
(

xu
a,~x3 | Ẽ

)

+ f̃
(

xu
b,~x4 | Ẽ

)

,

where for feasible groups of downstream firms~x1, ~x2, ~x3, and~x4, ~x3 is formed from~x1 by exchangingN

partners from~x2, and~x4 is formed from~x2 by exchangingN partners with~x1. For games with externalities,

E is an assignment where matches ofa with the downstream firms with characteristics~x1 andb with the

firms in~x2 form, andẼ is the same assignment except that matches ofa with the firms represented by~x3

andb with the firms represented by~x4 form.

2. For eachf ∈ Θ, f is continuous in all of its arguments.

3. Θ is compact.

The difference from the case where equilibria are not in the core is that now exchanges ofN ≥ 1 downstream

firms per upstream firm are allowed. Assumption 3, the within-nest rank order property, needs to be extended

to allow for exchanges ofN ≥ 1 downstream firms per upstream firm as well. For conciseness, Ido not repeat

the assumption with this slight change in notation and wording.

With Assumption 9 and the above revision to Assumption 3, an analogous theorem to Theorem 1 can be easily

be proved with a very similar argument. The maximum score estimator, equation (8), can be extended to allow

for exchanges ofN or less downstream firms per upstream firm. Finally, consistency, Theorem 2, can be proved

with almost the same argument.

5.3 Assortative Matching and the Supermodularity of Production

Lemma 2 shows that any core solution to a marriage market mustmaximize total marketwide output. Consider

first the case where the production from a marriage is equal tothe sum of the schooling of the mana, xu
a, and the
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schooling of the womani, xd
i , with estimable weightsβu andβd: f

(

xu
a,x

d
i

)

= βuxu
a +βdxd

i . Here, marriages with

partners who have more schooling produce more output. However, in a market with at least one partner for

every participant, it should be clear that any assignment ofmarriages where all agents marry produces the total

marketwide output∑a∈U βuxu
a + ∑d∈D βdxd

i . Because output is purely linear in characteristics, any exhaustive

assignment will maximize total social surplus, and therefore any assignment can underly a core outcome.

The assignment, the set of physical matchings, only affectsthe total marketwide production if the character-

istics of men and women interact in production. A condition that guarantees that the market will produce an

assortative matching of highly-schooled men to women is supermodularity of production in schooling levels.

Supermodularity means the cross-derivative of productionwith respect to male and female characteristics is

positive, or∂ f(xu
a,xd

i )
∂xu

a∂xd
i

> 0.

Becker (1973) uses these predictions about univariate production functions to explain stylized facts about the

labor market. Becker’s analysis is incomplete ifxu
a andxd

i are vectors. For example, some of the inputs of men

and women may be complements, and others may be substitutes,and these characteristics may be correlated in

the cross section of men and the cross section of women. When the level of a dependent variable such as output

is observed in data, controlling for multiple inputs, and particularly the correlation of inputs, lets multivariate

ordinary least squares produce different coefficients thanunivariate least squares run for each input separately.23

When one extends the set of models considered to include one-to-many and many-to-many two-sided matching

as well as coalition formation, researchers are not only interested in whether the inputs of agents on opposite

sides of the market are complements or substitutes. With multiple partners, agents on the same side of the

market may be complements or substitutes. For example, Bajari and Fox (2005) use the estimator in this paper

on data from spectrum auctions to estimate whether geographically adjacent markets for mobile phone service

are complements or substitutes.

To clarify, Becker’s analysis and many of these follow-up points do not apply if the model’s equilibrium is not

in the core. Formal estimation is the only valid approach foranalysis in a model with multiple equilibrium

assignments and/or externalities.

5.4 Assignment Match Probabilities

All of the sufficient conditions for Assumption 3 rely on specifying some solution to the overall matching

market as a function of the error terms, and then integratingout the errorsψh to create a market assignment

probability. Recall that an assignment is a set of physical pairings, but not the endogenous price vector. The

following definition more formally defines the simultaneousmatch probabilities that appear in the statement of

Assumption 3.

Definition 7. In a matching marketh with a matrix of characteristicsXh, consider the assignmentE.

P(E | Xh, f ) = Probψh1[Emarketassignment| X, f ] , (9)

23In linear regression, multivariate least squares applied produces the same slope coefficients as univariate least squares applied to each
covariate separately when the covariance between the included characteristics is 0.
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whereψh is a vector of error terms unobserved to the econometrician.This definition is well-defined if there is

a unique assignment supporting the core with probability 1.

Typically, there will be a unique assignment with probability 1 when the error terms and production functions

take values on the real line. A core outcome must solve a social planning problem. The probability that any

two combinations of an arbitrary collection of real numberssum to the same value is 0.

5.5 The Social Planning Problem as a Single-Agent Discrete Choice Problem

In a matching game where Lemma 2 states that core outcomes arein part solutions to social planning problems,

the “single agent” from the random utility model literatureis the social planner. The social planner acts like

a single agent making a discrete choice from the large but finite number of marketwide assignments. Let the

massive set of all feasible assignments beZh. The unique socially optimal assignmentEh satisfies,

∑
a∈U

f
(

a,MEh
a

)

+ψEh ≥ ∑
a∈U

f
(

a,MZh
a

)

+ψZh ∀ allocationsZh 6= Eh, Zh ∈ Zh, (10)

whereψZh is a composite error term reflecting the sum of the unobservedportions of production in the as-

signmentZh. The above single-agent decision rule states that the sum ofthe payoffs of a socially optimal

assignment is greater than other feasible assignments, where feasible assignments enforce the quotas of agents.

The inequality in equation (10) transforms the computationof the social optimum into a single-agent discrete

choice problem with extra additive errors.

A sufficient condition for the rank order property involves placing the error terms at the marketwide assignment

level. The final perceived marketwide payoff of assignmentE is ∑a∈U f
(

a,ME
a
)

+ ψE, whereψE is an error

term corresponding to the marketwide assignmentE. This transforms a complex matching market estimation

problem into a single-agent discrete choice problem. A social planner considers the sum of deterministic

payoffs generated by any marketwide matching assignment,∑a∈U f
(

a,ME
a

)

, and adds a random error term to

the final payoff.

The interpretation is that the social planner tries to maximize total output, but is unable to do so because of

random disturbances. Equivalently, these marketwide errors represent inefficiencies in finding a core outcome

in the decentralized market. Marketwide errors are similarto the quantal response equilibrium concept in

Goeree, Holt and Palfrey (2004). In a quantal response equilibrium, agents choose a best response subject to

some noise. Here, the “agent” is the social planner, or the unmodelled decentralized process of finding a core

outcome.

Manski (1975) proves that if a single agent decides betweenJ choices, with each choicej giving payoffu
(

x j
)

+

ε j , then the probability of picking choicej exceeds the probability of picking an alternativek if and only if

u
(

x j
)

> u(xk) when the error termsε j are i.i.d or exchangeable. In words, the choice probabilities are rank-

ordered by the deterministic payoffsu
(

x j
)

. The multinomial maximum score estimators of Manski (1975),

Matzkin (1993) and Fox (2005) allow the estimation of single-agent discrete choice models without imposing

a particular parametric functional form for the disturbance term. An important assumption is, however, that the

34



joint density of the error terms is exchangeable, for a givenagent.24

Assumption 10. For all marketwide physical assignmentsE of upstream to downstream firms in marketh, and

including the option of remaining unmatched where appropriate, let there be random variableψEh. Let the

joint density ofψEh beω(ψh | Xh), whereψh is the vector of allψEh’s.

1. Let ω(ψh | Xh) be exchangeable across assignmentsE, and statistically independent across marketsh,

conditional on the matrix of potentially observable exogenous market characteristicsXh.

2. Letω(ψh | Xh) have full support onRNh, whereNh = dimψh.

The density function of the error terms can vary across markets with potential market observablesXh. While

exchangeable stochastic error terms is a restrictive assumption if the observable covariates have low explanatory

power for predicting matches, Section 3.7 discusses how to relax Assumption 10 by allowing for firm-specific

fixed effects over pre-specified nests of match partners.

The following lemma indicates that Assumption 10 is a sufficient for the rank-order property, Assumption 3.

Lemma 3. Under Assumption 10, the rank order property, Assumption 3,holds.

The proof of the result is in Appendix A.25

An exchangeable density is not the only condition under which the rank order property will hold. For quantal

response equilibria and single-agent discrete models, Haile, Hortaçsu and Kosenok (2004) show that any set of

choice probabilities can be generated by a member of the class of joint distributions for random variables that

are independent but do not have identical marginal distributions, and, alternatively, a member of the class of

joint distributions for random variables with identical marginal distributions but that are not independent across

choices. As there are many realizations of matching probabilities consistent with the rank order property, there

are many joint distribution for the social planner’s errorsthat are consistent with the rank order property for a

production function and a given realization of the potentially observable characteristicsXh of a market.26

5.6 Match-Specific Errors

The most natural extension of the single-agent discrete choice random utility model formulation is to assume

that the total production from upstream firma matching with the set of downstream firmsMa is (ignoring fixed

effects)f
(

a,MEh
a

)

+∑i∈Ma ψai, whereψai reflects the idiosyncratic production of upstream firma matching with

downstream firmi. The total marketwide production from an assignmentEh of downstream firms to upstream

firms is (again ignoring fixed effects)

∑
a∈U

f
(

a,MEh
a

)

+ψEh = ∑
a∈U

f
(

a,MEh
a

)

+ ∑
a∈U

∑
i∈Ma

ψai.

24The functional form for the disturbances can be completely different across observationally distinguishable agents,so that agents from
Texas might have Laplace errors, and agents from Illinois might have multimodal, mixed normal errors with much smaller variances.

25I prove that Assumption 3 holds as written, rather than any extension to exchanges ofN ≥ 1 downstream firms per upstream firm,
although the same argument will establish theN ≥ 1 case.

26Consistency of the maximum score estimator requires the rank order property to hold for all markets. It does not require that the same
distribution of errors generate the rank order property in each market.
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It is not a theorem that Assumption 3 holds if theψai are independent and identically distributed with full

support. The fact that a match appears in multiple assignmentsEh makes the assignment-level composite error

terms statistically correlated. Eliminating non-exchangeable correlation across market outcomes is critical for

the single-agent rank order property of Manski (1975) to hold for all possible deterministic payoffs and func-

tional forms for the error terms. Of course, for any given market the error terms could have a joint distribution

such that the rank order property holds. In this case, the rank order condition is a primitive assumption based

upon economic intuition.

One approach to arguing for some notion of asymptotic good behavior in the number of agents in a market is

to have the error terms die out as the market gets bigger.27 A literature in empirical industrial organization,

such as Ackerberg and Rysman (2006) and Bajari and Benkard (2003), argues that the variance of error terms

should be decreased as the number of products increases, as each new product adds another error term and in

a sense is an agent-specific product characteristic. In a matching game, each agent in a market adds as many

new match-specific errors as the number of other agents, so the total number of match-specific characteristics

quickly explodes.

If the number of agents in a market isU +D, then one way of modeling error terms (inspired by Ackerbergand

Rysman (2006)) is to writeψai = ηai
U+D , whereηai in some base error term that has its magnitude decreased as

the number of agents,U +D, goes to infinity. Then as the number of agents increases, themodel converges to

a matching game in only observable characteristics. Note that, in matching theory, adding i.i.d. match-specific

errors to the true payoff of each match removes any role for the observed characteristics (types in theory)

in theoretically computing the optimal assignment. Arbitrary match production levels are used in matching

games with finite numbers of agents, for example Koopmans andBeckmann (1957). On the other hand and for

good practical reasons, matching games with a continuum of agents almost always restrict the final production

function to be a function of only agents’ types, and not match-specific error terms. For example, see Shimer and

Smith (2000). So the Ackerberg and Rysman suggestion of reducing the importance error terms as the number

of agents increases corresponds to moving from the flexible production specifications used in the literature

on games with finite numbers of agents to the type-specific production levels used in games with continua of

agents.

I explore the robustness of the estimator to the presence of match-specific i.i.d. errors in a finite sample in a

Monte Carlo study below.

5.7 Search Costs

Many matching markets have a large number of agents. In such markets, not all agents may be aware of all

other agents. For example, in a marriage market, a man may meet only some subset of women in his dating life.

Let the random variable “error term”ψaih for marketh be equal to 1 if upstream firma is aware of downstreami

and, mutually, downstreami is aware of upstream firma, and 0 otherwise. Let search be costless and undirected,

so that each pair of firms is mutually aware of the other with equal probability.

27I will not formally argue that this type of argument will giveconsistency in the size of a market, as the set of matches for all agents
will change as new potential match partners are added to the market, and this makes proving uniform convergence of the maximum score
objective function nonstandard.
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One can redefine the matching jargon terms in Definition 6 so that an assignment is only physically possible

if, in addition to satisfying quotas, all matched pairs of anupstream and an downstream firm are aware of

each other. Let̃Zh be the set of physically possible assignments given a realization of random error termsψaih.

Lemma 2, the equivalence of the decentralized core outcome with a social planning problem, naturally extends,

except that production maximization and the core are definedto consider only set the set of assignmentsZ̃h,

and deviations of coalitions of mutually aware agents.

For one-to-one matching with costless and undirected search, it can be shown that Assumption 3 holds when

there is only one characteristic (say schooling) for each man and women entering production functions, and

those production functions are either submodular or supermodular at all characteristic levels. Under supermod-

ularity, core outcomes give an assortative ordering of matches. If the most highly schooled man is not aware of

the most highly schooled woman, in a core assignment the man will match with the next most highly schooled

woman. The assortative matching logic rules out a counterexample to Assumption 3 that can hold with non-sub

or supermodular production. In the counterexample, mena andb match with womenj andi respectively when

b is not aware ofj, but whenb becomes aware ofj, b matches withj anda matches with some other woman

k, instead ofi, and even if the sum of production from mana marrying womani and manb marrying woman

j exceeds the production from mana marrying j andb marryingi, which is the hypothesis from Assumption

3. The counterexample arises because production is not assortative: apparentlybi is a productive match, but

ai is not so productive, asa does not match withi when the very attractive option ofb j becomes possible and

frees upi. Under assortative matching,a would always match withi whenb is aware ofj if revealed preference

shows the production ofb j is very high, anda was the match partner ofj whenb j was not possible.

The supermodularity result can be embedded in a search modelwith forward-looking agents. In a search model

with explicit search costs, Atakan (2004) shows that supermodularity of production drives assortative matching.

In a search model where costs are driven by time discounting,Shimer and Smith (2000) show that supermod-

ularity plus some other conditions are sufficient for assortative matching. In these models, supermodularity

plays two roles. First, supermodularity implies that the perfect information competitive benchmark involves

assortative matching, which was shown by Becker (1973). Second, supermodularity ensures that all agents

on one side of the market agree on the ordering of agents on theother side of the market, so that agents will

predictably pick the best available partner from the rankedlist of mutually aware partners.

Using only a univariate characteristic for each agent and assuming that the production function is either super-

modular or submodular in the characteristic does not make for a rich empirical investigation. The matching esti-

mator in this paper is most useful when there are multiple characteristics entering production and the economist

does not make a priori assumptions about super or submodularity. Unfortunately, an i.i.d. search technology is

not sufficient to generate the rank order property when thereis not assortative matching in univariate inputs.

5.8 Theε-Core: Switching Costs for Deviating

Some games have empty cores, so theorists have introduced related solution concepts that are more likely

to be nonempty. Kovalenkov and Wooders (2003) discuss one such solution concept, theε-core. In anε-core

equilibrium, a coalition that wants to deviate must pay a switching cost, equal toBε, whereε > 0 is the switching

cost andB is the number of firms in the coalition.
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In a more general formulation, the switching cost might be coalition specific. Will match-specific switching

costs provide a sufficient condition for the rank order property? There are two points to consider. First, the

introduction of switching costs implies that there may be multiple equilibrium assignments. Therefore, the rank

order property will be based on the unmodelled equilibrium assignment selection rule, and a formal analysis of

sufficient conditions for the rank order property will not bepractical. Second, match-specific switching costs

induce correlation in the total switching costs for counterfactual assignments, just as match-specific production

shocks induce correlation in the total unobservable production for assignments.

5.9 Monte Carlo Evidence on the Maximum Score Estimator

This section presents brief evidence that the maximum scoreestimator works well in finite samples. The goal

is not to document the asymptotic argument of increasing thenumber of markets to infinity, but to consider

variation that might be common in practice. I am especially concerned with several aspects of data that do

not match the precise asymptotic consistency arguments: having data on a large number of agents in a single

market, and having data that was generated with match-specific error terms.

Most commonly, researchers will use the semiparametric version of the estimator where production functions

are parameterized by a finite-dimensional parameter vectorβ. For simplicity, the Monte Carlo study examines

games of one-to-one two-sided matching when each agent is distinguished by two observables characteristics,

for men,x1,m andx2,m, and for women,x1,w andx2,w. This game’s equilibrium is in the core, as shown by

Shapley and Shubik (1972), among others. The Monte Carlo study uses the parametric production function

f (xm,ww | β1,β2) = β1×x1,m×x1,w +β2×x2,m×x2,w.

As is standard in semiparametric discrete choice models, I impose the scale normalization thatβ1 = ±1. The

sign ofβ1 is superconsistently estimable, so I set it to the true valueof +1 throughout the study. For each gender

and men as an example,




x1,m

x2,m



∼ N









10

10



 ,





1 1/2

1/2 1







 .

I choose high means to ensure that the values of the characteristics are almost always positive. The positive co-

variance between the observables suggests that using a multivariate estimator might be important for inference.

I setβ2 = 1.5, so that the second observable characteristic is more important in sorting.28

I investigate two different specifications for the true model’s error terms. The first specification is when the

social planner has i.i.d. errors over marketwide assignments. In this case, each assignmentEh has total produc-

tion

∑
m

f (xm,wm
w | β1,β2)+ψEh,

whereψEh has a normal distribution with a standard deviation that is either 1 or 5. The rank order property

holds under this specification. The main trouble with implementing the Monte Carlo study is that there are so

many errors,m! for each market, that generating the fake data is computationally much more burdensome than

estimating the model.

28Also, I am concerned that 1.0 might be a default starting value in numerical optimization routines.
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The second specification uses match-specific errors, as in Section 5.6. I sample match specific errors and solve

for the optimal assignment using the linear programming problem that defines the social planner’s problem.

The linear programming formulation makes it much faster to generate the fake data. Like the market-specific

errors case, the distribution of the errors is normal with a standard deviation of either 1 or 5.29

For all specifications, the maximum score objective function is numerically maximized using the global opti-

mization routine known as differential optimization (Storn and Price, 1997).30

Table 1 reports estimates of the bias and root mean-squared error (RMSE) of the matching maximum score

estimates under both specifications. The first two rows consider the specification with match-specific errors.

For these specifications, generating fake data is problematic, so I consider twenty-five markets, each one with

low numbers of agents. Both the bias and RMSE decrease when the number of agents per market increases.

The third through fifth rows consider estimation when there match-specific errors. The third and fourth rows

consider a single market with a large number of agents. Again, the bias and RMSE decrease as the number of

agents increases, which suggests that the matching estimator may perform well with data from a single, large

market. The fifth row considers ten markets with thirty men and thirty women each, for a total of30·30·10=

9000possible matches. This compares to the third row, with100·100= 10,000 possible matches. The bias and

RMSE using ten smaller markets is smaller than using one larger market, even though the number of inequalities

involving two men and two women is larger in the single, larger market. Even though both estimators are

misspecified, it appears averaging across markets improvesthe finite-sample performance of the estimator.

The last five rows repeat the earlier Monte Carlo studies witha larger standard deviation of the error term

(5), to see how sensitive the above conclusions are to the relative explanatory power of the signal (observed

covariates) and noise (the error terms). The RMSE’s are indeed larger than the case with a standard deviation

of 1, but the biases and RMSE’s still decrease with the samplesize. On the other hand, the benefit of having

ten smaller markets seems to evaporate when the variance of the error term increases.

In these examples, the estimator does not have a large amountof bias when the precise conditions of the

available consistency results are violated. The estimatorseems reasonable to apply without making strong

assumptions about the underlying model.

6 Subsampling and Smoothing for Inference

Aside from the original work of Manski (1975) and a few otherssuch as Matzkin (1993) and Fox (2005), the

single-agent maximum score literature has focused on the binary-choice estimator. Kim and Pollard (1990)

show that the binary-choice maximum score estimator converges at the rate of3
√

n (instead of the more typical

29In the first specification, for programming simplicity, I ignore the complication that individuals can remain unmatched. In the second
specification, the linear programming formulation ensuresthat all consummated matches must provide nonzero surplus.Given the high
means of both characteristics, very few of the agents are single in the fake data.

30For a finite sample, the objective function is a step function, and there is a continuum of global maxima, even if the parameter β2 is
point identified asymptotically. For each replication, theMonte Carlo study reports the maximum provided by the optimization routine,
which is a consistent estimator under the conditions in thispaper. If the maximum reported by the optimization package tends to always be
near the lower bound of the set of finite-sample maxima, it could create an apparent downward, finite-sample bias. In practice, the presence
of multiple global maxima in a finite sample often pales in importance when compared to the more serious concerns of inconsistency due
to model misspecification.
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Table 1: Monte Carlo Results, True Valueβ2 = 1.5

Errors # Men # Women # Markets Error Bias RMSE
Std. Dev.

Assignment 5 5 25 1 0.170 0.560
Assignment 8 8 25 1 0.073 0.302

Match 100 100 1 1 0.105 0.316
Match 200 200 1 1 0.044 0.116
Match 30 30 10 1 0.039 0.193

Assignment 5 5 25 5 0.194 1.51
Assignment 8 8 25 5 0.114 0.807

Match 100 100 1 5 0.234 1.09
Match 200 200 1 5 0.173 0.662
Match 30 30 10 5 0.252 0.990

√
n) and that its limiting distribution is too complex for use ininference. However, there are several constructive

suggestions for conducting asymptotic inference.

Delgado, Rodríguez-Poo and Wolf (2001) show that a resampling procedure, subsampling, consistently esti-

mates the asymptotic distribution of test statistics (including the usual 95% confidence intervals) for the class

of 3
√

n-consistent estimators studied by Kim and Pollard. Subsampling was developed by Politis and Romano

(1994), and is a procedure that, in contrast to the bootstrap, does not rely on the smoothness of an objective

function. The book Politis, Romano and Wolf (1999) providesa detailed overview of subsampling.

An alternative procedure to subsampling is to estimate a smoothed version of the maximum score estimator.

Smoothing makes the objective function differential inβ for finite samples. For the single-agent binary-choice

maximum score estimator, Horowitz (1992) proves that, under additional smoothness assumptions about the

underlying model, a smoothed version converges at a rate close to
√

n (the exact rate depends on the smoothing

parameter and model assumptions) and, more importantly, isasymptotically normal with a variance-covariance

matrix than can be estimated and used for inference. Unfortunately, Monte Carlo studies show the finite-

sample performance of the asymptotic distribution is poor,and Horowitz (2002) proves the applicability of the

bootstrap to refine the estimates of individual components of the variance formula. Horowitz (2002) presents

Monte Carlo evidence that the coverage of the bootstrap-refined asymptotic distribution approximates the finite-

sample distribution’s coverage well. I conjecture Horowitz’s results could be extended to the current matching

estimators.31

7 Calibrating Using Profit and Transfer Data?

In some cases, researchers have data on the transfers (tai) between firms or the profits (pu
a) firms receive. Many

researchers have the intuition that price data can be used tocalibrate the scale (cardinality) of production, as

well as to estimate non-interacted production terms such asβuxu
a+βdxd

i that do not contribute (if no agents can be

31Smoothing the maximum score step function does not solve themain issue in the computational cost of numerically maximizing the
objective function: the presence of local hills providing tempting regions for a greedy optimization routine to converge to.
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single) to the assignments in the data. Further, transfer and profit data hold out the possibility of distinguishing

the payoffs of upstream and downstream firms.

Unfortunately, error term assumptions become critical when working with price data. The Monte Carlo study

shows that the maximum score estimator often performs reasonably even if the error term assumption does

not fit precisely into a case where we have a consistency theorem. The reason is that consistency requires

Assumption 3 to hold within a nest, and even if the rank order property is violated, the property is quite

intuitive and in many cases is not likely to be violated by a large amount.

The same is not true of price data. Let the true model be match specific errors, as in Section 5.6. A selec-

tion problem will arise: the matches where we have observed profit or transfer data will tend to have attrac-

tive observables and error terms, so those matches with unattractive observables are likely to have especially

high unobservable error terms. This negative correlation of x’s and errors for the selected sample of observed

matches will make most estimates from including transfer and profit data as regressors or dependent variables

inconsistent, and the finite-sample bias may be large.

For an example, say in a one-to-one matching market a researcher has data on the profits of upstream and

downstream firms. The profits of upstream firma are pu
a and the profits of downstream firmi are pd

i . A

researcher first uses the discrete assignment data and the maximum score estimator and estimates a linear-in-

parameters production functionf
(

xu
a,x

d
i

)

= βudxu
a ⋆ xd

i , where here⋆ means that the researcher forms all cross

products of inputs. The researcher must make a scale normalization in the maximum score stage, and wants

to use the profit data to identify the production function’s scaleγ in monetary units, as well as the parameters

βu andβd on the uninteracted terms. Assume that there are no agent-specific nest fixed effects. Then the agent

runs a profit regression to estimateγ, βu, βd and the constantα in the model

pu
a + pd

i = α+βuxu
a +βdxd

i + γβudxu
a ⋆xd

i +ψai.

If ψai is just measurement error in profits, or a expectational error in profits, thenψai is likely uncorrelated with

the included characteristics of the firmsa andi. Indeed, ifψai is measurement error, one should just estimate

the parameters from this regression and forget the matchingdata.

On the other hand, ifψai is a match-specific error observed to the firms during the matching process,ψai

will likely be correlated with thex’s, even if in the population of the matching game all hypothetical match-

specific errors are uncorrelated with agent characteristics. The reason is that this regression is being run on

only observed matches: the matches that are part of an equilibrium. Asβudxu
a ⋆xd

i andψai are substitutes in the

profitability of a match, they are likely to be negatively correlated. Fixing this selection problem may require

joint estimation of the profit and matching problems, and is outside the scope of this paper.32

8 Conclusions

This paper’s main purpose is to prove the identification of and introduce a new nonparametric maximum score

estimator for generalized versions of the matching games first studied by Koopmans and Beckmann (1957),

32Sørensen (2004) implements a parametric version of joint estimation for selection correction in a Gale and Shapley (1962) matching
game without endogenous transfers.
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Shapley and Shubik (1972) and Becker (1973), and extended byKelso and Crawford (1982), Leonard (1983),

Demange, Gale and Sotomayor (1986), Sotomayor (1992), Kovalenkov and Wooders (2003) and Ostrovsky

(2004), among others. The main assumptions for these matching games are the presence of endogenous prices

and additive separability between transfers and other parts of payoffs. If price-taking agents make single-

agent best responses, productions functions must satisfy inequalities I call local production maximization: if an

exchange of partners produces a higher production level, than it cannot be individually rational for some agent.

The matching maximum score estimator has many practical advantages over possible alternative estimation

methods. First, the maximum score estimator is nonparametric, meaning that functional forms for the pro-

duction function and a parametric distribution for the errors do not need to specified. Second, the matching

maximum score estimator uses data on only observed matches and agent characteristics. It does not require

the often unavailable data on endogenous prices, quotas andproduction levels. Third, the estimator allows

externalities based upon the matches of other agents. Fourth, the estimator can handle multiple equilibrium as-

signments without exclusion restrictions, estimating equilibrium selection rules, or computing all equilibrium

assignments as part of estimation.

Fifth and finally, the matching maximum score estimator is reasonably easy to compute. Evaluating the objec-

tive function involves only calculating match production levels and checking the local production maximization

inequality. No nested matching mechanism needs to be solved. Also, first stage estimates of match probabilities

are not needed. Most importantly, the maximum score estimator does not suffer from a curse of dimensionality

in the number of agents in a market, as the estimator is consistent when a subset of matching inequalities are

entered into the objective function.

A Proofs

A.1 Theorem 1 (Identification)

We want to show that the identified setF ⊆ Θ is a singleton production functionf 0, using the data on the

observed match probabilitiesP
(

E | X, f 0
)

for different markets characterized by the matrixX. Assume to the

contrary. Then there is ãf ∈ Θ such thatf̃ 6= f 0, whereP
(

E | X, f 0
)

= P
(

E | X, f̃
)

for all markets, except possibly

for a set of markets with zero measure.

As f̃ is a different function thanf 0, by Assumption 2 there exist markets where, focusing on the firmsa, b, i

and j mentioned in the statement of the theorem, as well as the definition of Ẽ,

f 0 (a,Ma | E)+ f 0 (b,Mb | E) > f 0(a,(Ma\{i})∪{ j} | Ẽ
)

+ f 0(b,(Mb\{ j})∪{i} | Ẽ
)

f̃ (a,Ma | E)+ f̃ (b,Mb | E) < f̃
(

a,(Ma\{i})∪{ j} | Ẽ
)

+ f̃
(

b,(Mb\{ j})∪{i} | Ẽ
)

,

or the reverse inequalities (< and then>). Part 1 of Assumption 2 rules out that evaluating a local social

maximization inequality at different sets of firms always produces the same value forf 0 and f̃ .

The inequalities are strict because of the continuous covariate, Assumption 4, and the continuity of production

functions, Assumption 2. Focus on the direction of the inequalities in the displayed equations. By Assumption
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3, the rank order property, at this market, the production function f 0 predicts that

P
(

E | X, f 0
)

> P
(

Ẽ | X, f 0
)

while f̃ predicts that

P
(

E | X, f̃
)

< P
(

Ẽ | Xh, f̃
)

.

This is a contradiction if there exists a positive measure ofsuch markets. This is immediate because Assump-

tion 2 states that production functions are continuous, andAssumption 4 states that at least one covariate for

upstream firms has full support and is continuously varying.

A.2 Theorem 2 (Consistency)

The proof of the theorem is based upon the standard consistency theorem in the econometrics literature, Theo-

rem 2.1 in Newey and McFadden (1994). The theorem applies to general maximization problems and does not

require that an element of the parameter space be a finite vector. Optimization over function space is allowed.

The theorem has four conditions:

1. The probability limit of the subset maximum score objective function,Q∞ ( f ), has a unique global maxi-

mum at the true production function,f 0 (constructive identification).

2. The parameter spaceΘ is compact.

3. The probability limit of the objective function,Q∞ ( f ), is continuous inf .

4. The objective function converges uniformly in probability to its limit.

Condition 2, compactness, is satisfied by Assumption 2.

A.2.1 Constructive Identification

The economically interesting condition to verify is Condition 1, which is a constructive identification condition.

As the number of markets,H, goes to infinity, we observe infinitely many markets with thesame number of

agents and identical characteristics, all captured byXh. By a law of large numbers and the law of iterated

expectations,

plimH→∞

(

1
H

H

∑
h=1

1[E inh]

)

= EX,ψ{1[E]} = EXEψ {1[E] | X} = EX

{

P
(

E | X, f 0
)}

,

whereψh is the vector of all stochastic terms in the market, and the true production functionf 0 has been added

to the notation for matching probabilities in order to emphasize that the probability limit is calculated using

the sampling rule of the true data generating process. A similar argument shows that the limit ofQH ( f ) as the
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number of markets,H, goes to infinity is

Q∞ ( f )= EX ∑
z∈Bsub(X)

P
(

E | X, f 0
)

×1
[

f (a,Ma | E)+ f (b,Mb | E) > f
(

a,(Ma\{i})∪{ j} | Ẽ
)

+ f
(

b,(Mb\{ j})∪{i} | Ẽ
)]

+P
(

Ẽ | X, f 0
)

×1
[

f (a,Ma | E)+ f (b,Mb | E) < f
(

a,(Ma\{i})∪{ j} | Ẽ
)

+ f
(

b,(Mb\{ j})∪{i} | Ẽ
)]

,

where the derivation uses a law of large numbers and the law ofiterated expectations as well as the fact that

the local production maximization inequality does not depend onψ and can be factored out of the expectation

with respect toψ, conditional onX.

I prove thatQ∞ ( f ) has a global maximum at the true production functionf 0 by first proving the integrand

evaluated at particular set of the characteristics of all agents in a market,X, is globally maximized atf 0. If the

integrand is indeed maximized for allX, except for a set with probability 0, then whenQ∞ ( f ) is computed by

integrating outX, the value of the integral will be maximized atf 0.

Therefore, fixX. For eachz∈ Bsub(X), two additively separable terms appear inQ∞ ( f ): once whereP
(

E | X, f 0
)

multiplies an inequality involving production functions,and once whereP
(

Ẽ | X, f 0
)

multiplies the opposite

inequality. First, under the covariate Assumption 4,

f (a,Ma | E)+ f (b,Mb | E) = f
(

a,(Ma\{i})∪{ j} | Ẽ
)

+ f
(

b,(Mb\{ j})∪{i} | Ẽ
)

with probability 0, as each match upstream firm’s characteristics has a freely varying characteristic conditional

on the characteristics of the other firms. As the inequalities in Q∞ ( f ) are strict, such points do not contribute to

the objective function, but as they occur with probability 0, choosing an alternative parameter vectorf̃ to make

one or the other arrangement fori and j have a greater sum of production levels will not increase thevalue of

Q∞ ( f ).

I can restrict attention to the cases where one of the sums of production levels is strictly greater than the sum of

production levels with the exchange of partners for downstream firmsi and j. Notice that the two inequalities

involving sums of production levels are mutually exclusive, so one of the two indicator functions has value 1

and the other has value 0. An assignment where the value of 1 multiplies the higher of the two probabilities

for all z∈ Bsub(X) is a global maximum of the integrand evaluated atX. By Assumption 3, the rank order

property, the true production functionf 0 implements this assignment. AsX is arbitrary, the integrand for a

givenz∈ Bsub(X) is globally maximized at all points, other than a set of measure 0, by f 0. As z is arbitrary,

Q∞ ( f ) is globally maximized atf 0.

Note that there is an strong inequality in the indicator function in the objective function, so thatf = 0 for all

possible matches is a global minimum and not a global maximum.

The next step of the proof is to show that the global maximum ofQ∞ ( f ), f 0, is unique. This argument is the

same as the proof of Theorem 1, identification. For some possible other global maximum,̃f ∈ Θ, the proof of

Theorem 1 shows that there is a set of markets wheref̃ gives inconsistent predictions according to the rank

order property, Assumption 3. By Assumption 4, this set has positive measure. Sõf implements a sub-optimal

series of match probabilities to enterQ∞ ( f ), and thus cannot be a global maximum ofQ∞ ( f ).
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A.2.2 Continuity of the Limiting Objective Function and Uni form Convergence

The two-sided matching maximum score objective function isnot continuous inf . Condition 3 is that the

probability limit of the objective function,Q∞ ( f ), is continuous inf . Lemma 2.4 from Newey and McFadden

(1994) can be used to prove continuity ofQ∞ ( f ) as well as uniform in probability convergence ofQH ( f ) to

Q∞ ( f ), which is Condition 4. Remember that the asymptotics are in the number of markets. The conditions of

Lemma 2.4 are that the data (across markets) are i.i.d., which can hold even if we view the number of upstream

and downstream firms as random; that the parameter spaceΘ is compact (part of Assumption 2), that the

terms for each market are continuous with probability 1 inf ; and that the terms for each market are bounded

by a function whose mean is not infinite. While the terms for each market are not continuous inf because

of the indicator functions, they are continuous with probability 1 by the support condition on the covariates,

Assumption 4. As the continuous covariatexu
1,a is freely varying conditional on the other covariates ties in the

inequalities in the objective function happen with probability 0.

The other condition we need to verify to apply Lemma 2.4 is that the market-specific inequalities are bounded

by a function with a non-infinite mean. The score of correct predictions for a market can be at most the number

of inequalities included inBsub(Xh), which itself can be no larger than the number of combinations of sets of

agents and two members from those sets, which is large but finite if the number of agents in a market is finite.

Assumption 6 states that the mean number of such inequalities is not infinite.

A.3 Lemma 3 (Exchangeability Sufficient for the Rank Order Property)

I first derive an explicit formulation for choice probabilities in terms of the density function for the exchange-

able errors. Letψ be the vector of error terms for all marketwide physical assignments. The condition for an

assignmentEh to be optimal is seen in equation (10). Writing equation (10)out in more detail gives

P(Eh | Xh) =
Z ∞

−∞
∏

Z6=Eh

Z ∑a∈U f
(

a,M
Eh
a

)

+ψEh
−∑a∈U f

(

a,M
Zh
a

)

−∞
f (ψ | X)dψ,

or an integral with as many dimensions as marketwide assignments. The upper limit of the integrals is strictly

increasing in the deterministic payoff for choosing marketwide assignmentEh, ∑a∈U f
(

a,MEh
a

)

, and one upper

limit is strictly decreasing in the marketwide assignment for all Z 6= Eh. Because the joint densityf (ψ | X) is

exchangeable, the functionP(E1 | Xh) is the same asP(E2 | Xh) for two different assignmentsE1 andE2, except

where the payoffs ofE1 andE2 enter. If two functions are the same, except for components in the first function

resulting in a larger value, the first function will have a larger value. The strictness of the inequalities come

from the full support portion of Assumption 10, which statesthat the support of the error terms will always be

larger than the support of the data, so that one does not “run out” of error terms.

The above argument is the same with agent-specific nest fixed effects included, because the only difference

betweenẼ andE is the matchesai andb j in E are reversed iñE, anda andb are in the same nest, andi and j

are in the same nest. The fixed effects are the same for the assignmentsE andẼ.

The “only if” part of Assumption 3 follows easily by reversing the above arguments: if two functions are the

same, except that the first function value is larger, the firstfunction must have a larger argument if the functions
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are increasing in their arguments.

References

Abeledo, Hernán and Garth Isaak, “A characterization of graphs that ensure the existence ofstable matches,”

Mathematical Social Sciences, August 1991,22 (1), 93–96.

Ackerberg, Danial and Marc Rysman, “Unobserved Product Differentiation in Discrete Choice Models:

Estimating Price Elasticities and Welfare Effects,”RAND Journal of Economics, 2006.

Atakan, Alp E. , “Assortative matching with explicit search costs,” October 2004. working paper.

Bajari, Patrick and C. Lanier Benkard , “Discrete Choice Models as Structural Models of Demand: Some

Economic Implications of Common Approache,” 2003. workingpaper.

and Jeremy T. Fox, “Collusion and Complementarities in an FCC Spectrum Auction,” April 2005.

, Han Hong, and Stephen Ryan, “Estimation of Discrete Games of Complete Information,” 2004. working

paper.

Bayer, Patrick, Robert McMillan, and Kim Reuben , “An Equilibrium Model of Sorting in an Urban Housing

Market,” June 2004. working paper.

Becker, Gary S., “A Theory of Marriage: Part I,”Journal of Political Economy, July-August 1973,81 (4),

813–846.

Berry, Steven T., James Levinsohn, and Ariel Pakes, “Automobile Prices in Market Equilibrium,”Econo-

metrica, July 1995,63 (4), 841–890.

Boyd, Donald, Hamilton Lankford, Susanna Loeb, and James Wyckoff, “Analyzing Determinants of the

Matching of Public School Teachers to Jobs: Estimating Compensating Differentials in Imperfect Labor

Markets,” 2003.

Choo, Eugene and Aloysius Siow, “Who Marries Whom and Why,” November 2003. working paper.

Ciliberto, Federico and Elie Tamer, “Market Structure and Multiple Equilibria in Airline Markets,” Decem-

ber 2003. working paper.

Delgado, Miguel A., Juan M. Rodríguez-Poo, and Michael Wolf, “Subsampling inference in cube root

asymptotics with an application to Manski’s maximum score estimator,”Economics Letters, 2001,73, 241–

250.

Demange, Gabrielle, David Gale, and Marilda A. Oliveira Sotomayor, “Multi-Item Auctions,” The Journal

of Political Economy, August 1986,94 (4), 863–872.

Fox, Jeremy T., “Semi and Nonparametric Estimation of Multinomial Discrete Choice Models Using a Subset

of Choices,” 2005.

46



Gale, David and Lloyd Shapley, “College Admissions and the Stability of Marriage,”American Mathematical

Monthly, 1962,69.

Goeree, Jacob K., Charles A. Holt, and Thomas R. Palfrey, “Regular Quantal Response Equilibrium,” 2004.

working paper.

Haile, Phillip, Ali Hortaçsu, and Grigory Kosenok , “On the Empirical Content of Quantal Response Equi-

librium,” December 2004. working paper.

Hatfield, John William and Paul R. Milgrom , “Matching with Contracts,”The American Economic Review,

September 2005,95 (4), 913–935.

Hitsch, Günter, Ali Hortaçsu, and Dan Ariely , “What Makes You Click? An Empirical Analysis of Online

Dating,” 2005. working paper.

Horowitz, Joel L., “A Smoothed Maximum Score Estimator for the Binary Response Model,”Econometrica,

May 1992,60 (3), 505–551.

, Semiparametric Methods in Econometrics, Vol. 131 ofLecture Notes in Statistics, Springer, 1998.

, “Bootstrap critical values for tests based on the smoothedmaximum score estimator,”Journal of Econo-

metrics, 2002,111, 141–167.

Kelso, Alexander S. and Vincent P. Crawford, “Job Matching, Coalition Formation, and Gross Substitutes,”

Econometrica, November 1982,50 (6), 1483–1504.

Kim, Jeankyung and David Pollard, “Cube Root Asymptotics,”The Annals of Statistics, 1990,18 (1), 191–

219.

Koopmans, Tjalling C. and Martin Beckmann, “Assignment Problems and the Location of Economic Ac-

tivities,” Econometrica, January 1957,25 (1), 53–76.

Kovalenkov, Alexander and Myrna Holtz Wooders, “Advances in the Theory of Large Cooperative Games

and Application to Club Theory: the Side Payments Case,” in Carlo Carraro, ed.,The Endogenous Formation

of Economic Coalitions, Edward Elgar: Chelenham, 2003.

Leonard, Herman B., “Elicitation of Honest Preferences for the Assignment of Individuals to Positions,”The

Journal of Political Economy, June 1983,91 (3), 461–479.

Lewbel, Arthur , “Semiparametric qualitative response model estimation with unknown heteroskedasticity or

instrumental variables,”Journal of Econometrics, 2000,97, 145–177.

Lucas, William F., “Core Theory for Multiple-Sided Assignment Games,”Duke Mathematical Journal, 1995,

81 (18), 55–65.

Manski, Charles F., “Maximum Score Estimation of the Stochastic Utility Modelof Choice,” Journal of

Econometrics, 1975,3, 205–228.

, “Identification of Binary Response Models,”Journal of the American Statistical Association, September

1988,83 (403), 729–738.

47



Matzkin, Rosa L., “Least Concavity and the Distribution-Free Estimation ofNonparametric Concave Func-

tions,” September 1990. Cowles Foundation Discussion Paper 958.

, “Semiparametric Estimation of Monotone and Concave Utility Functions for Polychotomous Choice Mod-

els,” Econometrica, September 1991,59 (5), 1315–1327.

, “Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice

Models,”Econometrica, March 1992,60 (2), 239–270.

, “Nonparametric identification and estimation of polychotomous choice models,”Journal of Econometrics,

1993,58, 137–168.

Newey, Whitney K. and Daniel McFadden, “Large Sample Estimation and Hypothesis Testing,” in “Hand-

book of Econometrics,” Vol. IV, Elsevier, 1994, chapter 36,pp. 2111–2245.

Ostrovsky, Michael, “Stability in Supply Chain Networks,” December 2004.

Pakes, Ariel, Jack Porter, Katherine Ho, and Joy Ishii, “Moment Inequalities and Their Application,” April

2005. working paper.

Politis, Dimitris N. and Joseph P. Romano, “Large Sample Confidence Regions Based on Subsamples under

Minimal Assumptions,”The Annals of Statistics, December 1994,22 (4), 2031–2050.

, , and Michael Wolf, Subsampling, Springer, 1999.

Shapley, Lloyd S. and Martin Shubik, “The assignment game I: the core,”International Journal of Game

Theory, 1972,1, 111–130.

Shimer, Robert and Lones Smith, “Assortative Matching and Search,”Econometrica, 2000,68 (2), 343–369.

Sørensen, Morten, “How Smart is Smart Money? An Empirical Two-Sided MatchingModel of Venture

Capital,” December 2004. working paper.

Sotomayor, Marilda, “The multiple partners game,” in Mukul Majumdar, ed.,Equilibrium and dynamics:

essays in honour of David Gale, Macmillan, 1992, chapter 17, pp. 322–336.

, “The lattice structure of the set of the stable outcomes of the multiple partners assignment game,”Interna-

tional Journal of Game Theory, November 1999,28 (4), 567–583.

Storn, Rainer and Kenneth Price, “Differential Evolution - A Simple and Efficient Heuristicfor Global

Optimization over Continuous Spaces,”Journal of Global Optimization, 1997,115, 341–359.

48


