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Abstract. Classically, risk aversion is equated with concavity of the utility function. In this work

we explore the conceptual foundations of this definition. In accordance with neo-classical econom-

ics, we seek an ordinal definition, based on the decisions maker’s preference order, independent of

numerical values. We present two such definitions, based on simple, conceptually appealing inter-

pretations of the notion of risk-aversion. We then show that when cast in quantitative form these

ordinal definitions coincide with the classical Arrow-Pratt definition once the latter is defined with

respect to the appropriate units, thus providing a conceptual foundation for the classical definition.

The implications of the theory are discussed, including, in particular, to risk aversion on non-liquid

goods, multi-commodity risk aversion, and the understanding of insurance. The entire study is

within the expected utility framework.
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1. Introduction

1.1. Risk Aversion - The Classical Approach. The concept of risk aversion is fundamental

in economic theory. Classically, it is defined as an attitude under which the certainty equivalent of

a gamble is less than the gamble’s expected value; e.g., if a decision maker prefers one unit with

certainty over a fair gamble between three units and none, then she is deemed risk averse. Thus,

the natural, or neutral, certainty equivalent of a gamble is presumed to be its expectation, and risk

aversion is defined with respect to this natural certainty equivalent.

In this work we ask “why?” – why is the gamble’s expected value presumed to be its natural

certainty equivalent? This presumption cannot rest on empirical evidence, as most people are

assumed to be risk averse. The justification must be conceptual. But what is the reasoning that

dictates that a fair gamble between $100 and $200 “should” be worth $150? why the arithmetic

mean, and not some other function (say, the geometric mean)? Indeed, perhaps there is no one

“natural” certainty equivalent for a gamble. Providing a conceptual justification for basing the

definition of risk aversion on the arithmetic mean is the main goal of this paper.
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In addition, there is the matter of units (or scale). Consider a decision maker having to choose

between lotteries on the temperature-level in her office room. If she prefers 40◦ F with certainty

over a fair gamble between 30◦and 60◦– should this be considered risk aversion? The Fahrenheit

scale seems rather arbitrary in this case, but it is not clear what other scale should or can be used.

In the seminal works of Arrow [2] and Pratt [22], risk aversion was defined with respect to money

and the market value of the goods. This, however, limits the notion to fully liquid goods. Also,

using the market value suggests that, if not for risk, the attitude towards money should in some

sense be linear in the money amount; but why?

The above two questions are related. Without a well-founded justification for using the arithmetic

mean, there can be no rational way to reason about the appropriate scale.

Finally, and perhaps most fundamentally, the classical definition of risk aversion is inherently

cardinal - both technically and conceptually. Technically, the definition is only invariant under

affine transformation of the underlying scale, but not under general monotone transformations

(e.g. if we measure the concavity of the utility function with respect to, say, the square root of the

money amount, instead of the amount itself, we will get a different definition). Conceptually, the

notion of expectation and the associated risk premium are only meaningful in a cardinal framework

in which quantities are meaningful. But from a neoclassical perspective, where the preference order

is the core object of interest, this is troubling, or unaesthetic at the least. Can such a fundamental

notion be defined only in cardinal terms? Does it have no ordinal underpinnings?

1.2. An Ordinal Foundation. In order to establish a conceptual foundation for the theory of

risk aversion, we start by providing two new definitions of the term, independent of any units, and

making no use of arithmetic notions such as mean or expectation. Rather, our definitions employ

conceptually appealing interpretations of the term, based solely on the internal structure of the

decision maker’s preferences. Having defined risk aversion in purely ordinal terms, we then show

that these definitions can also be cast in quantitative form, provided that the appropriate cardinal

scale exists. This quantitative form, we show, coincides with the Arrow-Pratt definition, once the

latter is defined with respect to this scale - which in general is not money. Thus, we provide

the missing conceptual justification for the use of the expectation as the baseline for defining risk

aversion, and determine the “appropriate” units.

Ordinal Definition I: Repeated Gambles. Consider a gamble L with certainty equivalent c. The

most extreme form of risk aversion would be displayed if, with probability 1, the gamble provides

a better outcome than its certainty equivalent; that is, the worst possible outcome of the gamble

is better than its certainty equivalent. If that is the case then the decision maker is willing to pay

a premium, with certainty, merely to avoid being in an uncertain situation. Such a preference,

however, is ruled out by the von Neumann-Morgenstern (NM) axioms; the utility of a lottery must

lie between the utilities of its possible outcomes. Interestingly, while such a preference is indeed

not possible for any single gamble, it is possible once we consider sequences of gambles, and risk
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aversion as a policy - consistently adhered to over multiple gambles. For some preference orders

(agreeing with the NM axioms), repeatedly choosing the certainty equivalent of a gamble over the

gamble itself can result in an outcome that is inferior to what would have been the outcome of the

gambles, with probability 1. This is thus our first definition of risk aversion: a preference order is

deemed risk-averse if adhering to this preference order over repeated gambles ultimately results in

an inferior outcome, with probability 1. Importantly, here “inferior” is according to the decision

maker’s own preference order, over sequences, not any external market-based criterion.

The above definition requires the consideration of repeated lotteries. The next definition consid-

ers the classical “one-shot” case.

Ordinal Definition II: Hedging. Our second ordinal definition of risk aversion is set in the context

of a multi-commodity space, and equates risk aversion with a preference for hedging bets, whenever

possible.1 Consider two commodities (e.g. oranges today and oranges tomorrow), and assume that

the (risk-free, certainty) preferences on each commodity separately are well defined (more oranges

today is better than less, regardless of the amount of oranges tomorrow, and vice versa). Then,

risk aversion is defined as follows:

Let a,A, be two states of one commodity (e.g. 1 orange today and 10 oranges

today), and b, B, two states of the other commodity (e.g. 2 oranges tomorrow and

15 oranges tomorrow), such that the decision maker is indifferent between (a,B)

and (A, b). Then, the decision maker is risk-averse if she prefers the fair gamble

between (A, b) and (a,B) - a gamble that is fully hedged - over the non-hedged fair

gamble between (a, b) and (A,B).

Thus, risk aversion is equated with a preference for hedging bets whenever possible. Note that

this definition is fully ordinal; it uses only the ordinal preferences on commodity bundles, with no

reference to any quantitative measure.2

The above definition considers a setting with two commodities. A similar definition also applies

to multi-commodity settings, wherein the commodities are partitioned into separate independent

factors3 and hedging takes place between two such factors. In this case it might seem that the

concept may depend on how the commodities are grouped: a person may, say, prefer hedging

between today and tomorrow, but dislike hedging between work and pleasure. We show that this is

not possible; regardless of how one chooses to partition the commodities into independent factors, a

1It is important to stress that here and throughout, the term “commodities” may refer to different types of goods

(e.g. apples and oranges), or to the same good at different times (e.g. oranges today and oranges tomorrow), or

to any combination thereof (apples and oranges today and tomorrow). However, “commodities” does not refer to

contingent commodities, as our use of the term specifically refers only to sure outcomes. Preferences over contingent

commodities are determined by the lottery preferences.
2The definition does require independence of the commodities, but not additive separability. So, a cardinal repre-

sentation is not assumed.
3The exact definition of independent factors is provided in Section 2.
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decision maker prefers hedging according to one partition if and only if she prefers hedging according

to any and all other partitions. Thus, this definition of risk aversion reflects an underlying attitude

of the decision maker, not a particularity of the specific partition.

A Quantitative Perspective. Having established the ordinal foundations for the theory of risk-

aversion, we show that these ordinal notions can also be cast in quantitative form, using an ap-

propriate scale - if and when it exists. Such a scale, we show, is provided by the multi-attribute

(additive) value function, pioneered by Debreu [5, 6], and commonly used in the theory of multi-

attribute decision theory (see [17]). Debreu proves that (under appropriate conditions) the pref-

erences on commodity bundles can be represented by the sum of appropriately defined functions

of the individual commodities. Importantly, these Debreu functions are defined solely on the basis

of the internal preferences amongst the commodity bundles. Thus, unlike market value - which is

determined by external market forces - the Debreu functions represent the decision maker’s own

preferences. Also, the functions are defined using the preferences on sure outcomes alone, with no

reference to gambles. Thus, they provide a natural, intrinsic yardstick with which risk-aversion can

be measured.

We show that our ordinal definitions of risk-aversion coincide with the Arrow-Pratt cardinal

definition, once the latter is defined with respect to the Debreu function. Essentially, we show that

the NM utility function is concave with respect to the associated Debreu function if and only if the

given preference order is risk averse, under either of the two ordinal definitions.

1.3. Implications. The approach we offer has several implication for the understanding of risk

aversion, both conceptual and technical.

Non-Liquid Goods. Our approach provides, for the first time, a way to define risk aversion for non-

liquid goods and goods with no natural scale, such as temperature, pain, and pleasure. Indeed, in

our definition externally defined scales (such as market value) do not play any role. Rather, the

only scale of interest is the intrinsic Debreu value, which reflects the decision maker’s own certainty

preferences.

Multi-commodity Risk Aversion. Ever since the publications of Arrow [2] and Pratt [22], researchers

have attempted to extend the definition and associated measures to the multi-commodity setting,

and various approaches have been suggested (see [18, 25, 21, 8, 15, 23, 16, 19] for some references

in the expected utility model). The basic problem is that in the multi-commodity setting each

commodity has its own scale, so it is not clear what scale should be used when measuring the

concavity of the utility function. Our approach here provides a simple and conceptually well-

founded solution. In our approach the “native” scales of the different commodities are immaterial.

Rather, we measure risk aversion with respect to the intrinsically defined Debreu value function.

This value function is shared across all commodities, so there is only one relevant scale. We show

that this approach extends the Arrow-Pratt framework to the multi-commodity setting, and even
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allows comparisons amongst decision makers who do not agree on the certainty preferences, under

certain conditions (see Section 8).

Financial Planning and Insurance. Perhaps the most fundamental implication of this work is that

it gives us a new approach, and language, for understanding behavior in areas such as financial

planning and insurance. Under classical economic language a person rejecting a fair gamble between

tripling her savings and going broke would be deemed “risk averse”. But rejecting such a gamble

seems to be common sense even without risk aversion; the upside of tripling the savings somehow

seems “much less” than the down-side of going broke (in an intuitive, perhaps not well defined,

sense). Classical economic language, however, lumps together all possible reasons for rejecting

the gamble, thus entangling the risk-attitude with the certainty preferences. Our approach here

allows disentangling the two.4 Under our definitions, rejecting the gamble may still be deemed risk

neutral, if the Debreu utility is concave with respect to money. Interestingly, under our approach,

insurance also need not be tied to risk aversion, as we argue in Section 9

1.4. Assumptions.

Independence. Independence is a key notion and assumption throughout this work. Simply put,

a commodity, or set of commodities, is independent if the preference order over bundles of this

set of commodities is independent of the state in other commodities.5 Arguably, independence is

a strong assumption; having eaten Chinese food today may affect one’s gastronomical preferences

tomorrow. Nonetheless, independence is a common assumption in economic literature, and in

particular with respect to time preferences; in particular, the standard (exponential) discounted-

utility model implicitly assumes independence of any time interval (indeed, any subset of the

time slots). We use the independence assumption not because we believe it is a 100% accurate

representation of reality, but rather because we believe it is a good enough approximation, which

allows us to concentrate on and formalize other key notions.

Expected Utility. This work is presented entirely within the expected-utility (EU) framework. The

key reason is that the classical definitions were provided within this framework, and we seek to

explore the conceptual foundations of these definitions. Additionally, while EU is perhaps not the

only possible model, it nonetheless is a possible model; and one that is frequently used in real-

world economic and financial applications. So, understanding the notion of risk aversion within

this framework is of interest. Extending these ideas to non-EU models is an interesting future

research direction.

4Disentangling diminishing marginal utility from risk aversion is one of the earliest motivations for the non-expected

utility literature, see Yaari [26]. In this work, however, we remain within the expected utility framework.
5A formal definition is provided in the next section.
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1.5. Plan of the Paper. The remainder of the paper is structured as follows. Immediately

following, in Section 2, we present the terminology and notation used throughout. The first ordinal

definition is presented in Section 3, and its quantitative form in Section 4. Section 5 presents the

second definition, with its equivalent quantitative form in Section 6. The relationship between the

two definitions in discussed in Section 7. The applications to multi-commodity risk aversion are

discussed in Section 8. We conclude the main body of the paper with a discussion in Section 9. All

proofs are deferred to an appendix.

2. Terminology and Notation

The Commodity Spaces. Preferences are defined over a product space S = C1 × · · · × Cm, where

each Ci is a real interval representing the consumption space of commodity i.

Lotteries. We consider finite support lotteries over S , and denote by ∆(S) the space of all such

lotteries. The fair lottery between s1 and s2 is denoted 〈s1, s2〉.

Preference Orders. For a space S , two preferences orders are considered:

• the certainty preferences: a preference order - on S ,6

• the lottery preferences: a continuous preference order -
∆

on ∆(S), which agrees with - on

the sure outcomes.

As customary, ≺ denotes the strict preference order induced by -, and ∼ the induced indifference

relation; similarly ≺∆ and ∼∆ denote the relations induced by -
∆

. Continuity of -
∆

means that for

any lottery L, the sets {s : s≺∆ L} and {s : s�∆ L} are open (in S). Since -
∆

and - agree on S , this

implies that - is also continuous (that is, the sets {s : s≺∆ s′} and {s : s�∆ s′} are open for all s′ ∈ S)

All commodity spaces Ci are assumed to be strictly essential [13]; that is, for each i and s−i ∈ C−i

(the remaining commodities), there exist si, s
′
i ∈ Ci with (si, s−i) 6∼ (s′i, s−i).

We assume throughout that the von Neumann-Morgenstern (NM) axioms hold for all preference

orders on lotteries.

Factors and Partitions. The term factor refers to a single Ci or a product of several Ci’s; i.e., a

factor is the product of one or more commodity spaces. A partition of S is a representation of S
as a product of factors S = T1 × · · · × Tn. An element of S (or of any factor) is called a bundle.

Throughout, ai, bi, ci represent elements of Ti. For i, j, we denote S−{i,j} =
∏
t6=i,j Tt. For

c ∈ S−{i,j}, by a slight abuse of notation we denote

(ai, aj , c) = (c1, . . . , ci−1, ai, ci+1, . . . , cj−1, aj , cj+1, . . . , cn).(1)

6A preference order is a complete, transitive and reflexive binary relation.
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Bundle Intervals. For s - s, we denote

[s, s] = {s : s - s - s}

That is, [s, s] is the closed interval of bundles between s and s. Hence, we call such an [s, s] a

bundle interval, or simply interval.

Utility Representations. A function f : S → R represents - if for any s, s′ ∈ S ,

s - s′ ⇐⇒ f(s) ≤ f(s′).

The function f : S → R is an NM utility of -
∆

if for any L1, L2 ∈ ∆(S),

L1-
∆

L2 ⇐⇒ EL1 [f(s)] ≤ EL2 [f(s)],

where ELj [f(s)] is the expectation of f(s) when s is distributed according to Lj . In that case we

also say that f represents -
∆

.

Independence. Independence is a key notion in our analysis. Simply put, a factor is independent if

the preferences on the factor are well defined; i.e., the preferences within the factor are independent

of the state in other factors. Formally, for a partition S = T1 × · · · × Tn, we say that factor Ti
is independent if there exists a preference order -Ti on Ti such that for any ai, bi ∈ Ti and any

c ∈ S−i (the remaining factors),

ai -
Ti bi ⇐⇒ (ai, c) - (bi, c).

It is important to stress that independence only refers to the certainty preferences; it does not state

or imply that the preferences on lotteries in one factor are independent of the state in other factors.

That would be a much stronger assumption, which we do not make.

When no confusion can result, we may write - instead of -T ; thus, when a, a′ ∈ T , we may

write a - a′ instead of a -T a′. It is worth noting that the product of independent factors need

not be independent.7

A partition S = T1 × · · · × Tn is an independent partition if the product of any subset of factors

is independent. By Gorman [13], for n ≥ 3, it suffices to assume that Ti × Ti+1 is independent for

all i, and the independence of all other products then follows.

Relative Convexity/Concavity. Let f, g : S → R, for some space S, with g(x) = g(y)⇒ f(x) = f(y),

for all x, y ∈ S. We say that f is concave with respect to g if there is a concave function h with

f = h ◦ g. Similarly for convexity, strict concavity, and strict convexity.

7A simple example is the preference on X ×Y ×Z = (R+)3 represented by the function v(x, y, z) = xy+ z. Here,

each commodity space is independent, but Y × Z is not independent.
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3. Ordinal Definition I: Repeated Lotteries

Our first ordinal definition of risk aversion is set in the context of repeated lotteries. Con-

ceptually, this definition says that risk aversion is a preference that when adhered to repeatedly,

ultimately leads to an inferior outcome. More specifically, with a risk averse preference, repeatedly

choosing the certainty equivalent of a lottery over the lottery itself ultimately leads to an inferior

outcome, with probability 1. To make this definition concrete, we must first define the associ-

ated notions, including: repeated lotteries, certainty equivalent of a repeated lottery, and ultimately

inferior outcome.

The Space. We consider an infinite sequence of factors T1, T2, . . ., where Ti represents the consump-

tion space at time i.8 We denote Hn = T1× · · · × Tn - the finite history space up to time n. In the

following, ai, bi, ci, will always be taken to be in Ti, and lottery Li will be over Ti.

Preference Orders. While the number of factors is infinite, we only need to consider the preferences

on the finite history spaces Hn. We denote by -n the preference order on Hn, and by -
∆ n

the

preference order on ∆(Hn). The superscript n is frequently omitted when clear from the context.

Each Ti is assumed to be independent (in the certainty preference orders -n), but not necessarily

utility independent (in preference orders -
∆ n

).

We call the sequence of preference orders -
∆

= (-
∆ 1
,-

∆ 2
, . . .) the risk policy.

Lottery Sequences. Let L1, L2, . . . , be a sequence of lotteries (with Li over Ti). We denote by

(L1, . . . , Ln) the lottery overHn obtained by the independent application of each Li on its associated

factor.

Certainty Equivalents. Suppose that at time t = 1 the decision maker is offered the choice between

lottery L1 and its certainty equivalent c1. Then, consistent with her risk policy, she may choose c1,

which suppose she indeed does. Now, at time t2, she is offered the choice between lottery L2 and

its certainty equivalent c2. Again, consistent with her risk policy, she chooses c2. Suppose that she

is thus offered, in each time period, the choice between a lottery Li and its certainty equivalent ci.

Then the decision maker can consistently choose ci, ending up with (c1, c2, . . .).

Accordingly, we say that c = (c1, c2, . . .) is the repeated certainty equivalent of L = (L1, L2, . . .)

if (c1, . . . , cn)∼∆ n(c1, . . . , cn−1, Ln) for all n.

Ultimate Inferiority. Consider a sequence c = (c1, c2, . . .) of sure states, and a sequence L =

(L1, L2, . . .) of lotteries. Let `i be the realization of Li. We say that c is ultimately inferior to L if

Pr[(c1, . . . , cn) ≺n (`1, . . . , `n) from some n on] = 1.9

8We do not assume that Ti = Tj , i.e. the state spaces need not be the same at different time periods. In particular,

we do not assume any form of stationarity (though it is possible). Similarly, discounting may or may not be applied

between consecutive factors. Our discussion here is independent of any such nominal matters.
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Figure 1. Illustration of [aj , bj ] v [a1, b1] (the factors of S−{1,j} are not depicted).

Notably, here ≺n denotes the preference over the sure states. Thus, if c is ultimately inferior to L,

then consistently choosing the sure state ci over the lottery Li, will, with probability 1, eventually

result in an inferior outcome, and continue doing so indefinitely.

Similarly, c is ultimately superior to L if

Pr[(c1, . . . , cn) �n (`1, . . . , `n) from some n on] = 1.

Bounded and Non-Vanishing Lottery Sequences. We now want to define risk aversion as a policy

for which the repeated certainty equivalent of a lottery sequence is always ultimately inferior to the

lottery sequence itself. However, as such, this definition cannot be a good one since in the case that

the “magnitude” of the lotteries rapidly diminishes the overall outcome will be dominated by that

of the first lotteries, and we could never obtain an inferior outcome with probability 1. Similarly,

if the “magnitude” of the lotteries can grow indefinitely, then for almost any risk policy one can

construct a lottery sequence that is ultimately inferior to its repeated certainty equivalent.10 Hence,

we now define the notions of a bounded lottery sequence and a non-vanishing lottery sequence.

For bundle intervals [a1, b1] and [aj , bj ], we denote [aj , bj ] v [a1, b1] if (a1, c, bj) - (b1, c, aj) for

all c ∈ S−{1,j} (see Figure 1). Similarly, [a1, b1] v [aj , bj ] if (a1, c, bj) % (b1, c, aj) for all c ∈ S−{1,j}.

A sequence of intervals [a1, b1], [a2, b2], . . ., is bounded if [ai, bi] v [a1, b1], for all i. The sequence

is vanishing if for any [ã1, b̃1], there exists a j0 such that [aj , bj ] v [ã1, b̃1] for all j > j0. That is,

the intervals in the tail of the sequence become infinitely small.

A lottery sequence L = (L1, L2, . . .) is bounded if its support is entirely within some bounded

interval sequence (that is, there exists a bounded sequence of intervals [a1, b1], [a2, b2], . . . , with

9differently put: Pr[∃N,∀n ≥ N : (c1, . . . , cn) ≺n (`1, . . . , `n)] = 1.
10See Appendix B.
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Li ∈ ∆([ai, bi]) for all i). The sequence is non-vanishing if it includes an infinite sub-sequence of

fair lotteries, the support thereof is not entirely within any vanishing interval sequence.

Risk Averse Policies. Equipped with these definitions, we can now define risk aversion:

Definition 1. We say that risk policy -
∆

is:

• Risk averse if for any bounded non-vanishing lottery sequence, the repeated certainty equiv-

alent of the sequence is ultimately inferior to the lottery sequence itself.

• Weakly risk averse if the repeated certainty equivalent of any bounded lottery sequence is

not ultimately superior to the lottery sequence itself.

Thus, the bias of the risk averse for certainty can never result in an ultimately superior outcome,

and on non-vanishing lotteries necessarily leads to an inferior outcome.

Note that the above definition is fully ordinal; it makes no reference to any numerical scale, and

indeed, no such scale need exist.

3.1. Risk Loving and Risk Neutrality. For readability, we deferred the definitions of risk loving

and risk neutrality. We now complete the picture by providing these definitions.

Definition 2. We say that risk policy -
∆

is:

• Risk loving if for any bounded non-vanishing lottery sequence, the repeated certainty equiv-

alent of the sequence is ultimately superior to the lottery sequence itself.

• Weakly risk loving if the repeated certainty equivalent of any bounded lottery sequence is

not ultimately inferior to the lottery sequence itself.

• Risk neutral if it is both weakly risk loving and weakly risk averse.

Thus, the risk loving require an ultimately superior certainty equivalent to forgo their love of

risk.

4. Repeated Lotteries: The Quantitative Perspective

The previous section provided a fully ordinal definition of risk aversion. We now show how

this ordinal definition can also be cast in quantitative form. Specifically, we show that (under

some assumptions) this ordinal definition of risk-aversion coincides with the Arrow-Pratt cardinal

definition, once the latter is defined with respect to the appropriate scale - if and when it exists.

This scale, we show, is provided by the Debreu value function, which we review next.

4.1. Debreu Value Functions. The theory of multi-attribute decision making considers certainty

preferences over a multi-factor space, and establishes that under certain independence assumptions

such preferences can be represented by quantitative functions, as follows. Consider the space

Hn = T1 × · · · × Tn (n ≥ 2), with preference order -n. Debreu [5] proves that, if the partition is
10



independent11 then -n is additively separable;12 that is, there exist functions vTi : Ti → R, such

that for any (a1, . . . , an), (a′1, . . . , a
′
n)

(a1, . . . , an) -n (a′1, . . . , a
′
n) ⇐⇒

n∑
i=1

vTi(ai) ≤
n∑
i=1

vTi(a′i).

It is important to note that the functions are defined solely on the basis of the certainty preferences.

Debreu’s theorem also establishes that the functions are unique up to similar positive affine

transformations (that is, multiplication by identical positive constants and addition of possibly

different constants).

We call the function vTi a (Debreu) value function for Ti, and the aggregate function vn =∑n
i=1 v

Ti a (Debreu) value function for Hn.13 We note that Debreu [5] called these functions utility

functions; but following Keeney and Raiffa [17], we use the term value functions, to distinguish

them from the NM utility function.

4.2. Risk Aversion and Concavity. We now show that our ordinal definition of risk aversion,

Definition 1, corresponds to concavity of the NM utility functions with respect to the associated

Debreu value functions, provided these value functions exist, and that some consistency properties

hold among the preference orders on the Hn’s. The exact conditions are now specified.

Certainty Preference. Consider the case where each consecutive pair of factors Ti×Ti+1 is indepen-

dent. Also, assume that the preference orders -n are consistent in the sense that for n′ > n, the

preference order induced on Hn by -n
′

is identical to -n. These assumptions yield the existence

of value functions, as follows:

Proposition 4.1. There exist Debreu value functions vTi : Ti → R, i = 1, 2, . . ., such that for all

n, vn =
∑n

i=1 v
Ti represents -n.

Lottery Preferences. Whereas the factors are assumed independent, the lottery preferences there-

upon need not be independent. That is, the preference order on ∆(Hn) induced by -
∆ n+1

may

depend on the state an+1 in Tn+1. We do assume, however, a form of weak consistency, whereby

there exists some φn+1 ∈ Tn+1 with

L-
∆ n
L′ ⇐⇒ (L, φn+1)-

∆ n+1
(L′, φn+1);

that is, the preferences on ∆(Hn) are consistent with some possible future. We call the sequence

(φ2, φ3, . . .) a presumed future, and assume that it is internal,14 in the following sense. The sequence

11see page 7.
12In the case of two factors (n = 2), the following Thomsen condition is also required: for all a1, B1, c1 ∈ T1, and

a2, b2, c3 ∈ T2, if (a1, b2) ∼ (b1, a2) and (b1, c3) ∼ (c1, b2) then (a1, c2) ∼ (c1, a2). For n > 2 the Thomsen condition

is implied by the independence of the pairs.
13This is a slight abuse of notation. More precisely, v is the function on Hn given by v(a1, . . . , an) =

∑n
i=1 v

Ti(ai).
14More precisely, we assume that there exists a presumed future that is internal.
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(φ2, φ3, . . .) is internal if there exists an s > 0 with vTi(φi) ± s ∈ vTi(Ti) for all i; that is, the

presumed future is bounded away from the boundaries of the Ti’s.

4.2.1. Weak Risk Aversion and (Weak) Concavity. For each n, let un be the NM utility function

representing -
∆ n

. The next theorem establishes the connection between weak risk aversion and

concavity of the un’s.

Theorem 4.2. -
∆

is weakly risk averse if and only if un is concave with respect to vn for all n.

Thus, Theorem 4.2 provides the missing conceptual justification for defining risk aversion by

concavity of the utility function. It also establishes the appropriate scale - the Debreu value

function.

Interestingly, the theorem provides that all NM utility functions must be concave, not only from

some n on.

4.2.2. (Strict) Risk Aversion and Strict Concavity. We would have now wanted to claim that (strict)

risk aversion corresponds to strict concavity of the NM utility functions (with respect to the value

function). However, strict concavity alone is not enough, as we are considering repeated lotteries,

and we cannot expect ultimate inferiority if the “level of concavity” rapidly diminishes. So, we need

a condition that ensures that the functions are also “uniformly” strictly concave in some sense. As

it turns out, the condition of interest is that the coefficient of absolute risk aversion of the NM

utility functions is bounded away from zero (when measured with respect to the value function).

The exact definitions follow.

For each n, let ûn be the function such that ûn(vn(a1, . . . , an)) = un(a1, . . . , an). This is well

defined, as -
∆ n

and -n agree on the certainty preferences. Conceptually, ûn is the function un once

the underlying scale is converted to the value function vn. Denote û = (û1, û2, . . .).

For a twice differentiable function f the coefficient of absolute risk aversion of f at x is:

Af (x) = −f
′′(x)

f ′(x)
.

Theorem 4.3. If Aûn(x) is bounded away from 0, uniformly for all n and x,15 then -
∆

is risk averse

(assuming ûn is twice differentiable for all n).

Theorem 4.3 establishes a sufficient condition for risk aversion. We now proceed to establish a

necessary condition, which is “close” to being tight. To do so we need to consider the behavior of

the functions ûi, and the definition of Aûi(·), in a little more detail.

Let risk-premûn(x,±ε) be the risk premium according to ûn of the of the lottery 〈x+ ε, x− ε〉;
that is

risk-premûn(x,±ε) = x− (ûn)−1

(
ûn(x+ ε) + ûn(x− ε)

2

)
.

15that is, there exists an constant α > 0 such that Aûn(x) ≥ α for all n and x.
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Now for any ε (sufficiently small) define

RPû(ε) = inf
n,x
{risk-premûn(x,±ε)}.

So, RPû(·) is a function. We will be interested in the rate at which RPû(ε) declines as ε→ 0. The

condition of interest, we show, is that RPû(ε) declines no faster than ε2.

Theorem 4.4.

(a) If RPû(ε) = Ω(ε2) as ε→ 0 then -
∆

is risk averse.16

(b) If RPû(ε) = O(ε2+β) as ε→ 0, for some β > 0, then -
∆

is not risk averse.

The sufficient condition of (a) and the necessary one of (b) are not identical, but are close.

Finally, we establish that the sufficient condition of Theorem 4.4-(a) and that of Theorem 4.3

are the same.

Proposition 4.5. RPû(ε) = Ω(ε2) as ε → 0, if and only if Aûn(x) is bounded away from 0,

uniformly for all n and x (assuming ûn is twice differentiable for all n).

4.3. Risk Loving and Risk Neutrality. In analogy to Theorems 4.2 and 4.4 we have:

Theorem 4.6. For vn, un, and û as in Theorems 4.2 and 4.4

(a) Weak risk loving: -
∆

is weakly risk loving if and only if un is convex with respect to vn for

all n.

(b) Risk loving

• If (−RPû(ε)) = Ω(ε2) as ε→ 0 then -
∆

is risk loving.

• If (−RPû(ε)) = O(ε2+β) as ε→ 0 (for some β > 0) then -
∆

is not risk loving.

(c) Risk Neutral: -
∆

is risk neutral if and only if un is a linear transformation of vn for all n.

5. Ordinal Definitions II: Hedging

5.1. The Definition. Consider a space S and an independent partition S = T1 × · · · × Tn.17

Recall the notation S−{i,j} =
∏
t6=i,j Tt, and for ai, aj , and c ∈ S−{i,j}, the slight abuse of notation

(ai, aj , c) for (c1, . . . , ci−1, ai, ci+1, . . . , cj−1, aj , cj+1, . . . , cn).

Definition 3. For ai ≺ bi, aj ≺ bj, say that (ai, bj), (bi, aj) are perfectly hedged if (ai, bj) ∼ (bi, aj)

(see Figure 2).18

We say that -
∆

is ordinally risk-averse (with respect to the partition T1×· · ·×Tn) if there exists

i 6= j, such that for any perfectly hedged (ai, bj), (bi, aj), and c ∈ S−{i,j}

〈(ai, aj , c), (bi, bj , c)〉≺∆ 〈(ai, bj , c), (bi, aj , c)〉 .(2)

16recall that g(y) = Ω(h(y)) as y → 0 if there exists a constant M and y0 such that g(y) > M ·h(y) for all y < y0.
17Here we use the notation S rather than Hn since we will be considering one fixed space S .
18The equivalence relation (ai, bj) ∼ (bi, aj) is well-defined as Ti × Tj is independent.
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Figure 2. Illustration of a perfectly hedged pair.

The preference order is weakly ordinally risk averse (with respect to the given partition) if (2)

holds with a weak preference (-
∆

).

Thus, a decision maker is ordinally risk-averse if she prefers to hedge her bets whenever possible.

5.2. Properties. Definition 3 deems a decision maker risk averse if she prefers all hedges among

some pair of factors Ti, Tj (i 6= j). The following proposition establishes that in this case she prefers

hedging among any pair of factors.

Proposition 5.1. If -
∆

is ordinally risk averse (by Definition 3) then (2) holds for all i 6= j (and

any fully hedged (a1, b2), (b1, a2), and c). Similarly for weak risk aversion.

Definition 3 considers a specific partition S = T1 × · · · × Tn. However, there could possibly

be more than one partition of the space into independent factors. In that case, it is conceivable

that the decision maker prefers a hedge provided by one partition, while disliking another hedge

provided by a different partition. In order for our definition of risk aversion to be coherent we must

guarantee that it does not depend on the specific partition. This is established by the following

proposition.

Proposition 5.2. If -
∆

is (weakly) ordinally risk averse with respect to some independent partition

S = T1 × · · · × Tn, then it is also so with respect to any independent partition.

By Proposition 5.2, we may call -
∆

ordinally risk averse if it is ordinally risk averse with respect

to some partition, and so for all partitions.

5.3. Ordinal Risk Aversion and Correlation Aversion. Richard [23] defined the following

notion of correlation aversion (see also [11, 7]):19 preference order -
∆

is correlation averse with

19Actually, Richard used the term multivariate risk aversion. The now common term correlation aversion was

later coined by Epstein and Tanny [11].
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respect to Ti, Tj, if for any ai ≺ bi, aj ≺ bj , and c ∈ S−{i,j}

〈(ai, aj , c), (bi, bj , c)〉≺∆ 〈(ai, bj , c), (bi, aj , c)〉 .

The difference between this definition of correlation aversion and our definition of risk aversion is

that correlation aversion does not require that (ai, bj) ∼ (bi, aj). Thus, correlation aversion requires

that the decision maker prefer any reduction in correlation between the factors, not only perfect

hedges. The following theorem establishes that ordinal risk aversion and correlation aversion are

in fact equivalent.

Theorem 5.3. -
∆

is ordinally risk-averse if and only if it is correlation averse with respect to any

and all Ti, Tj.

We note that the theorem holds even if there are only two factors, in which case - may fail to

be additively separable.

5.4. Risk Loving and Risk Neutrality.

Definition 4. We say that -
∆

is ordinally risk-loving if for any i 6= j, and any perfectly hedged

(ai, bj), (bi, aj), and any c ∈ S−{i,j}

〈(ai, aj , c), (bi, bj , c)〉�∆ 〈(ai, bj , c), (bi, aj , c)〉 .(3)

and weakly ordinally risk loving if the preference in (3) is a weak one.

Similarly, -
∆

is ordinally risk-neutral if for any i 6= j, and any perfectly hedged (ai, bj), (bi, aj),

and any c ∈ S−{i,j}

〈(ai, aj , c), (bi, bj , c)〉∼∆ 〈(ai, bj , c), (bi, aj , c)〉 .

Propositions 5.2 and 5.1 hold analogously for risk loving and risk neutrality.

6. Hedging Definition: The Quantitative Perspective

Again, the previous section provided a fully ordinal definition of risk aversion. We now show

how this ordinal definition, too, equates with concavity of the utility function with respect to the

value function, if and when the latter exists.

6.1. Uniqueness of the Aggregate Debreu Value Function. We will shortly establish the

relation between ordinal risk-aversion as in Definition 3, on the one hand, and the aggregate Debreu

value function, on the other. Before we can do so, however, we need to guarantee that the notion

of “the” aggregate Debreu value function is well defined. Debreu’s theorem relates to a specific

partition of the space, and asserts that the value functions are unique (up to similar positive affine

transformations) for the given partition. It does not assert that a different function may not arise

from a different partition. Thus, the notion of a single, unique value function for S may not be

well defined. The following simple theorem, which may be of independent interest, shows that this

is not the case; all disparate value functions that may arise from different partitions are identical.
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Theorem 6.1. For any S, all (aggregate) Debreu value functions for S are identical up to positive

affine transformations.

6.2. Risk Aversion and the Debreu Value Functions. Assume that the conditions guarantee-

ing the existence of a Debreu value function for S hold.20 We now show that in this case, the ordinal

Definition 3 coincides with concavity of the utility function with respect to the value function.

First, we show that, when measured in terms of the value function, the (sure) value of a perfectly

hedged lottery is exactly the expectation of the associated non-hedged lottery.

Theorem 6.2. Let v be a Debreu value function for S, and (ai, bj), (bi, aj) perfectly hedged. Then

for any c ∈ S−{i,j}.

v(ai, bj , c) = v(bi, aj , c) =
v(ai, aj , c) + v(bi, bj , c)

2
.

Thus, (ordinal) risk aversion indeed corresponds to a preference for the expectation of a lottery

over the lottery itself, once the expectation is taken in terms of the value function.

This, in turn, establishes that ordinal risk aversion coincides with concavity of the NM utility,

once the latter is defined with respect to the value function.

Theorem 6.3. For NM utility u and Debreu value function v,

• Risk aversion:

◦ u is strictly concave with respect to v if and only if -
∆

is ordinally risk averse.

◦ u is concave with respect to v if and only if -
∆

is weakly ordinally risk averse.

• Risk loving:

◦ u is strictly convex with respect to v if and only if -
∆

is ordinally risk loving.

◦ u is convex with respect to v if and only if -
∆

is weakly ordinally risk loving.

• Risk neutrality: u is linear with respect to v if and only if -
∆

is ordinally risk-neutral.

In all, we obtain that ordinal risk aversion coincides with Arrow-Pratt risk aversion, if and when

a Debreu value function exists and concavity is defined with respect to this function.

7. Relating the Two Ordinal Definitions

We provided two ordinal definitions of risk aversion: Definition 1, based on repeated lotteries,

and Definition 3, based on hedging. Technically, the two definitions relate to different mathematical

objects: the first relates to a risk policy, which is a sequence of preference orders, while the latter

relates to a single preference order. However, the two definitions are closely related, as established

by Theorems 4.4 and 6.3: both definitions correspond to concavity of the NM utility function with

respect to the Debreu value function (if and when such a value function exists). For weak risk

20If there are three or more factors in the partition, then the existence of a value function is provided by the

independence of the partition. If there are only two factors, the additional Thomsen condition is required (see

Footnote 12).
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aversion the concavity requirements in both theorem are identical – (weak) concavity. So, when a

Debreu value exist, a risk policy is weakly risk averse, according to Definition 1, if and only if each

of the preferences orders therein is weakly risk averse, according to the Definition 3. For (strict) risk

aversion, the requirement in Theorem 4.4 is a coefficient of absolute risk aversion bounded away

from zero, whereas Theorem 6.3 requires only strict concavity. So, if the risk policy is (strictly) risk

averse then so are all of the preference orders therein, but the opposite does not always hold. The

reason is that since we are considering the behavior on recurring gambles we need a “recurring”

bound on the strict concavity in all the gambles.

8. Multi-Commodity Risk Aversion

The seminal works of Arrow [2] and Pratt [22] defined risk aversion with respect to a single

commodity – money. Ever since, researchers have attempted to extend the definition, and associated

measures, to the multi-commodity setting (see [18, 25, 21, 8, 15, 23, 16, 19] for some references

in the expected utility model). It is out of the scope of this paper to review this extensive body

of research, but the underlying problem addressed in these works is that in the multi-commodity

setting each commodity has its own scale so the question is which scale should be used when

measuring the concavity of the utility function. Indeed, the solution in several of these works was

to keep the multiple scales - in which case the measures of risk aversion become vectors and matrices

(see e.g. [8]).

Our approach here takes a different direction, which, in a way is the reverse. We do not start from

the single commodity definition and try to extend it to multi-commodities, but rather start from

the multi-commodity setting, and then derive the uni-scale case as a quantitative representation of

the former. Also, the “native” scales of the different commodities are immaterial in our approach.

Rather, the only scale of interest is the intrinsically defined Debreu value function, which is shared

across all commodities. This, we believe, gives a simple and well founded definition of multi-

commodity risk aversion.

We note, again, that our hedging based ordinal definition - Definition 3 - is very close in spirit to

Richard’s definition of multivariate risk aversion [23] (see Section 5.3). Richard, however, viewed

his definition as “a new type of risk aversion unique to multivariate utility functions” [23], and did

not make the connection back to the classical definition (using the Debreu value function). Indeed,

Scarsini, in a paper based on Richard’s definition, writes “[Richard’s definition] has nothing to do

with what is generally known as risk aversion” [24]. We have shown that these two definitions are

one and the same, once the appropriate scale is used.

We now show how, using our definition, the Arrow-Pratt framework carries over to the multi-

commodity setting.

8.1. CARA Preferences. A (uni-scale) preference order is CARA (constant absolute risk aver-

sion) if the coefficient of absolute risk aversion of its associated NM utility is constant. Arrow [2]
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showed that a preference is CARA if and only if the preferences on lotteries are independent of the

wealth level. Specifically, for wealth level x and lottery L denote by (L, x) the lottery that gives the

random outcome L in addition to the sure outcome x. Then, Arrow shows that preference order

-
∆

is CARA if and only if for all lotteries L,L′ and wealth levels x, y

(L, x)-
∆

(L′, x) ⇐⇒ (L, y)-
∆

(L′, y).

Now, in the multi-commodity setting, a natural interpretation of the phrase “the preferences on

lotteries are independent of the wealth level” is that the preferences on lotteries in one commodity

are independent of the wealth level in other commodities. Using our definition of multi-commodity

risk aversion, we get the same correspondence as in the uni-scale case:

Theorem 8.1. In the multi-commodity setting (with S = T1×· · ·×Tn an independent partition), the

NM utility function u has constant coefficient of absolute risk aversion when measured with respect

to the Debreu value function v if and only if for any i, lotteries L,L′ over Ti, and x,y ∈ Ω−{i}

(L,x)-
∆

(L′,x) ⇐⇒ (L,y)-
∆

(L′,y).

Furthermore, the following proposition establishes that our definition, in a way, is the only

definition that preserves this correspondence.

In the literature, the condition that

(L,x)-
∆

(L′,x) ⇐⇒ (L,y)-
∆

(L′,y).

for any L,L′ ∈ ∆(Ti), and x,y ∈ S−{i} is termed utility independence of Ti [17].

Proposition 8.2. Let - be an (additively separable) preference order on S = T1 × · · · × Tn, and

g a real valued function on S. Suppose that for any -
∆

the corresponding NM utility function u

has constant coefficient of absolute risk aversion when measured with respect to g if and only if all

factors Ti are utility independent. Then g is a Debreu value function.

8.2. Comparative Multi-Commodity Risk Aversion. One of the greatest benefits of the

Arrow-Pratt framework is that it provides a tool for comparing risk attitudes among different

decision makers, and establishes a concrete measure for doing so (the coefficient of absolute risk

aversion). In the uni-scale setting if decision maker 1 rejects a lottery accepted by decision maker

2, then it is natural to say that 1 is more risk averse than 2 (on this lottery). When moving to

the multi-commodity setting this no longer holds, as observed by Kihlstrom and Mirman [18]. In

the multi-commodity setting the differences between 1 and 2 may stem from differences in their

certainty preferences, whereby the lottery outcomes are superior in the eyes of 2 and inferior in

the eyes of 1. So, risk attitude comparisons in the multi-commodity setting must also take the

certainty preferences into account.

Some works have thus limited risk aversion comparisons to individuals agreeing on the certainty

preferences (see [18, 21]). Such comparisons are also natural in our approach, as our definition of
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risk aversion is always with respect to the certainty preferences. For individuals agreeing on the

certainty preferences, using our approach the entire Arrow-Pratt framework carries over as is, once

the underlying scale is converted to the associated (joint) Debreu value function. In particular,

we have the following. Let v be the joint Debreu value function and û1 and û2 be the NM utility

functions of players 1 and 2 - when measured with respect to v. For a lottery L let cej(L) be the

certainty equivalent of L by ûj (j = 1, 2). Then

ce1(L) - ce2(L)

for all lotteries L if and only if

Aû1(x) ≥ Aû2(x)

for all x (where Aûi(x) is the coefficient of absolute risk aversion of ûi at x). This follows directly

from Arrow-Pratt as their theorems do not specify the scale, and thus also apply when using the

value function scale.

Non-identical Certainty Preferences. Interestingly, measuring risk aversion with respect to the De-

breu value function also allows comparisons among individuals who do not fully agree on the

certainty preferences, under some conditions.

Consider a space S , and for j = 1, 2, consider

• -j - a preference order on S ,

• -∆ j - a preference order on ∆(S) agreeing with -j on S ,

Consider an independent factor upon which -1 and -2 agree. For such a factor, it is possible to

define the notion that one preference order is more risk averse than the other.

Definition 5. Let I be an independent factor upon which -
∆

1 and -
∆

2 agree. We say that -
∆

2 is

more risk averse than -
∆

1 on I if for any lottery L over I and any b ∈ S−I (the remaining factor)

ce2(L, b) - ce1(L, b)

where cej(L, b) is a certainty equivalent of (L, b) according to -
∆

j wherein the state in S−I is b,

and - denotes the preference agreed by both -1 and -2.

The factor I could be a single commodity, or any other independent factor.

We now wish to establish conditions, in terms of the value and utility functions, that provide

that -
∆

2 is more risk averse than -
∆

1 on I .

By way of example, suppose that S = A × B is an independent partition (by both preference

orders), and that the orders agree on the preferences on both A and B. However, the two preference

orders do not agree on the preferences on the entire space A× B. Suppose that the preference -1

is represented by the value function v1(a, b) = a+ 2b, and -2 is represented by v2(a, b) = ln(a) + b.

Finally, suppose that the NM utility functions are u1(a, b) = (v1(a, b))
1
2 and u2(a, b) = (v2(a, b))

1
3 .

Now, based on these value and utility functions, we would like to determine on which factors is

-
∆

2 more risk averse than -
∆

1 (if such a factor exists). Note that with respect to the value function,
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u2 is more concave than u1. However, this does necessarily guarantee that -
∆

2 is more risk averse (in

the sense of Definition 5) as the value functions are different. So, we want to establish a condition,

considering both the utility and the value functions, that does guarantee “more risk aversion”. The

condition we will provide establishes that -
∆

2 is more risk averse on A but not necessarily so on B.

For j = 1, 2 consider

• vj - an aggregate value function representing -j ,

• uj - an NM utility representing -
∆

j ,

• ûj - the NM utility uj when the scale is converted to uj (that is ûj = uj ◦ v−1
j ).

Note that û1 and û2 operate on (conceptually) different domains; û1 operates on the image of v1,

while û2 operates on the image of v2. So, for any given x, û1(x) and û2(x) may give the utility

corresponding to totally different points of S .

Let S = T1 × · · · × Tn be an independent, additively separable partition according to both -1

and -2. Let vij be a Debreu value function for Ti under -j (i = 1, . . . , n, j = 1, 2). We say that vi2

is a concave expansion of vi1 if for any ai, bi, ci ∈ Ti (with vi1(ai) < vi1(bi) < vi1(ci))

1 ≤ vi2(ci)− vi2(ai)

vi1(ci)− vi1(ai)
≤ vi2(bi)− vi2(ai)

vi1(bi)− vi1(ai)
.(4)

The first inequality says that it is an expansion, and the second that it is concave. In the above

example, vA2 is a concave expansion of vA1 , but vB2 is a not so of vB1 ,

The following theorem says that on factors for which vi2 is a concave expansion of vi1, we can use

the coefficient of absolute risk aversion to obtain that -
∆

2 is more risk averse than -
∆

1.

Theorem 8.3. If Aû2(x) ≥ Aû1(y) ≥ 0, for all x, y, then the following holds. Let I =
∏
i∈I Ti, for

some I ⊆ {1, . . . , n}, be such that

• -1 and -2 agree on the I, and

• vi2 is a concave expansion of vi1 for all i ∈ I.

Then, -
∆

2 is more risk averse than -
∆

1 on I.

9. Discussion

We presented fully ordinal definitions of risk aversion, based entirely on the internal structure of

preferences of the decision maker; independent of money or any other units. Our definitions rest

on two intuitively appealing interpretations of risk aversion. The first equates risk aversion with

a policy that, in the long run, necessarily leads to an inferior outcome. The second equates risk

aversion with a preference for hedging bets. We then show that when cast in numerical terms,

these ordinal definitions coincide with the Arrow-Pratt definition, once the latter is defined with

respect to the Debreu value function associated with the decision maker’s preferences over the

sure outcomes. In particular, this provides the missing conceptual justification for the use of the

arithmetic mean as the basis for defining risk aversion, and, at the same time, establishes the

appropriate scale to use.
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Under the classical definition, risk aversion is synonymous with concavity of the utility function

with respect to money. This has been the established definition of risk aversion for over half a

century; but it frequently fails to accord with the plain meaning of the term. Consider, for example,

a person offered the choice between a half-pound steak with certainty, and a fair gamble between a

two pound steak and no steak at all. Clearly, she may prefer the certainty option not because of any

dislike of risk, but rather because she has little taste for more than half a pound of beef.21 Similarly,

a person may prefer 1 billion dollars with certainty over a fair gamble between 10 billion dollars and

bankruptcy, not because she dislikes risk, but rather because the extra 9 billion dollars provide her

with little additional benefit (in some - perhaps not well defined - intuitive sense). Thus, equating

risk aversion with concavity of the utility function frequently fails to convey the plain meaning of

the term. We believe that our ordinal definitions (and their numerical equivalents) better accord

with this plain, everyday meaning.

This new notion of risk aversion may have important implications for our understanding and

interpretation of key economic behavior. Consider, for example, an aging, retired individual, com-

fortably living off her savings, who is offered a 50-50 gamble between tripling her savings and losing

them all. Common sense has it that rejecting the gamble is a perfectly rational choice for all but the

most risk loving individuals. Classical economic language, however, would deem such a rejection

“risk aversion”. Our notion of ordinal risk aversion allows for a more convincing interpretation of

the behavior. When measured in terms of the Debreu value function, which reflects the relative

benefits provided by each of the possible outcomes, the 50-50 gamble is (most likely) actuarially

inferior to the existing state. So, it should be rejected even by risk neutral, as well as some risk

loving, individuals.

Interestingly, the same holds for insurance, as we show next.

9.1. Insurance. Buying insurance is a prime example of behavior classically and universally at-

tributed to risk aversion.22 Indeed, the entire insurance industry is based on the fact that, in total,

insurers pay back less than what they collect.23 Thus, in expectation, the insured pay more than

they get, which, under the classical definition, equates with risk aversion. This, however, only

holds when measured in dollar terms; once payments are measured in other units, the picture may

change.

21For the sake of discussion we assume free disposal ; that is, the decision maker can discard, at no additional cost,

any surplus steak she may have.
22Arrow writes: “The risk aversion hypothesis owes its durability . . . to its success in giving a qualitative expla-

nation of otherwise puzzling examples of economic behavior. The most obvious is insurance, which hardly needs

elaboration”[2].
23For simplicity, we ignore investment income (e.g. interest, dividends, capital gains) in our discussion here. In

reality, investment income is an important component of the insurers’ revenues, but its inclusion would significantly

complicate the discussion, without altering the core reasoning.
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As an example, consider disability insurance. For this insurance, the industry’s typical loss-ratio

is in the 70%-90% range; that is, on average, the insured get back only an expected 70%-90% of

their investment. Classically, this would be interpreted as a clear indication of risk aversion. But

this need not be so under our ordinal definition. In order to analyze the situation from an ordinal

perspective, we must consider the payments, of both the insured and the insurers, in terms of the

Debreu value function, rather than money.

The value function may vary from one individual to another, and its determination requires

knowing the individual’s preferences across multiple commodity bundles. Thus, it is impossible to

provide a simple universal analysis using the value function. However, the following provides an

illustrative analysis of insurance in terms of these units.

By way of example suppose that an individual earns $40k a year; there is a 2% chance of disability,

which would lower her salary to $10k a year; insurance would bring the salary back to $40k; and

the premium is $800 a year.24 Then in dollar terms, the expected return is:

2% · $30, 000 = $600,

which represents an expected return rate of 75% on the investment of $800. Thus in dollar terms,

such insurance provides an investment with a negative expected return.

Now, consider the situation is terms of the value function. Suppose that the value function of

money is logarithmic in the dollar amount.25 Then the $800 paid as premium are worth

ln(40, 000)− ln(39, 200) ≈ 0.02

24For simplicity, the presentation here considers each year separately. In practice, disability indemnification, as

well as premiums, are paid over many years.
25An illustrative example of how such a logarithmic value function may emerge is as follows. Suppose that an

employee’s compensation package is composed of: (i) an annual salary, and (ii) an annual number of vacation days.

Thus, the compensation is a pair (x, y), where $x is the annual salary and y is the number of vacation days. Naturally,

an individual prefers a higher salary and more vacation days. Suppose that, starting from a base salary of $x and

no vacation days, the employee is willing to forgo some fraction of the salary in return for getting some vacation

days; e.g. she is willing to settle for 90% of the salary if the compensation includes one week of vacation, 85% of

the salary if it includes 2 weeks of vacation, and so forth. (The assumption here is that the “value” of a vacation

day is determined as a fraction of the salary, independent of the salary itself. This simplifies the analysis and, we

believe, offers a reasonable first approximation. Other functions, which do take into account the associated salary,

can also be used. These would change the details of the analysis, but not the essence of the argument.) Let g(y) be

the fraction of salary that the decision maker is willing to settle for, if given y days of vacation; in the above example

g(one week) = 90% and g(2 weeks) = 85%. So the individual is indifferent between the bundles (x, 0) and (g(y)x, y).

Hence, the function

f(x, y) =
x

g(y)
,

represents the preferences on the pairs (x, y). Hence, so does the function

v(x, y) = ln(x)− ln(g(y)).

So, ln(x) and − ln(g(y)) are Debreu value functions for this preference order.
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Debreu value units (DVU). The insurance’s indemnification of the salary from $10k back to $40k

is worth

ln(40, 000)− ln(10, 000) ≈ 1.39

DVU’s. Thus in terms of DVUs, the expected return is

2% · 1.39 ≈ 0.028,

which represents an expected 140% return rate on the 0.02 DVUs invested as premium. So, the

negative expectation in dollar terms translates into a positive expectation in terms of the Debreu

value function. Thus, under the above assumptions, buying disability insurance is a perfectly

rational choice even for (ordinally) risk loving individuals.

Indeed, the entire consideration of insurance primarily in terms of risk aversion seems misguided.

A more instructive view of insurance, we suggest, is as a means for transferring funds from the well-

off state of the individual to the less-well-off or poor state of the same individual - in which the

funds are worth much more (in terms of the value function). If the poor state were sure to occur,

this transfer of funds would simply take the form of a savings plan (e.g. a pension plan). Insurance

comes into play when there is a probability that the poor state may not materialize, in which case

it is wasteful to put aside the entire amount. Instead, insurance provides a mechanism by which

only a fraction of the funds need to be set aside, in return for getting the full amount if the poor

state occurs and getting nothing if it does not. Using this mechanism, i.e. buying insurance, costs

money, so that the deal may not be actuarially favorable in terms of money. Still it may well be

favorable in terms of the subjective benefits provided thereby (e.g. in terms of value function). So,

buying insurance may very well be a perfectly rational choice for (ordinally) risk neutral and even

some (ordinally) risk loving individuals.

9.2. CARA and CRRA. Arrow and Pratt defined concrete measures of risk aversion, namely the

coefficient of absolute risk aversion at x, and the coefficient of relative risk aversion at x (defined

as −x·u′′(x)
u′(x) ). The measure of absolute risk aversion can naturally be converted to our definition of

risk aversion, by simply considering the utility function with respect to the Debreu value function,

as discussed in Section 8. The notion of relative-risk-aversion w.r.t. the value function, however,

is not well defined, as the definition of relative risk aversion requires a well-defined zero point, and

the value function is only defined up to an additive constant.26

In Section 8 we proved that once considered w.r.t. the value function, constant-absolute-risk-

aversion (CARA) has a simple and intuitive meaning. A preference order is CARA w.r.t. the value

function if and only if the preferences over lotteries in each individual factor are well defined and

independent of the state in the other factors; preferences over apple lotteries are independent of the

26Indeed, we would argue that determining the zero point is a big problem, mostly overlooked, also when defining

relative risk aversion w.r.t. money. What is the right zero point? no money in the bank? no material possessions

(no house, no clothes, no food)? no money left after selling a kidney? Choosing any of these zero points results in

very different relative risk aversion coefficients.
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available amount of oranges and preferences over orange lotteries are independent of the available

amount of apples (this is termed utility independence in [23, 3, 17]).

In the economic literature, CRRA (constant relative risk aversion) rather than CARA, is the

more prevalent model. CRRA, however, is assumed w.r.t. money. Once considered in terms of

the value function, the observed CRRA w.r.t. money may actually reflect a combination of an

underlying CARA ordinal risk attitude superimposed on a value function that is logarithmic w.r.t.

money. This combination yields exactly the known CRRA family of functions:

• ordinal risk aversion: u(x) = −e−γ ln(x) = −x−γ (γ > 0),

• ordinal risk neutrality: u(x) = ln(x),

• ordinal risk loving: u(x) = eγ ln(x) = xγ (γ > 0).

Interestingly, this means that the utility functions ln(x) and xγ actually correspond to ordinal risk

neutrality and risk loving, not risk aversion.

9.3. Strength of Preference and Relative Risk Aversion. Dyer and Sarin [10] and Bell and

Raiffa [3] have suggested measuring risk aversion with respect to the strength of preference function,

rather than money. It is out of the scope of this paper to review the strength-of-preference theory,

but generally speaking this theory assumes that not only do decision makers have a well defined

preference order over sure states and lotteries, but also that they have a preference order over

differences between states; that is, the decision maker can state that she prefers the transition

x1 7−→ x2 over the the transition y1 7−→ y2 (where x1, x2, y1, y2 are states). Assuming such

preferences exist (and some additional technical conditions), the theory establishes that there exists

a function f (termed measurable value function [9]) that represents these preferences, in the sense

that f(x2) − f(x1) > f(y2) − f(y1) if and only if the transition x1 7−→ x2 is preferred over the

transition y1 7−→ y2. Given such a function, Dyer and Sarin [10] define the notion of relative risk

aversion27 as the concavity of the NM utility function u with respect to the measurable value

function f . Bell and Raiffa [3] similarly define the notion of intrinsic risk aversion.

Bell and Raiffa [3] also show how the strength-of-preference function (assuming it exists) can

be deduced and identified with a multi-attribute (Debreu) value function (see also [10, Theorem

1]). Thus, technically our ordinal notion of risk aversion coincides with the Dyer and Sarin notion

of relative risk aversion, if a Debreu value function exists and relative risk aversion is computed

with respect to this function. Conceptually, however, our approach is totally different from that

of [10] and [3]. First, we do not suppose, technically or conceptually, any form of preferences over

differences. Rather, we only use the standard preferences on bundles and lotteries thereof. Second,

conceptually [10] and [3] follow the Arrow-Pratt framework, taking it as given that the “natural

value” of a gamble “should be” its expectation. They differ from Arrow-Pratt only in using a

different scale. Thus, at its core, their approach is also cardinal - attributing significance to cardinal

amounts, not only to ordinal preferences. Our approach is the opposite. Our starting point, and

27not to be confused with the Arrow-Pratt coefficient of relative risk aversion
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all core definitions, are fully ordinal. The numerical representation is then mathematically derived

from this ordinal theory.
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Appendix A. Proofs

For readability, all theorems and propositions are restated in this appendix.

Proofs for Section 4. The proofs in this section follow certain conventions that simplify the

presentation:

• x, y, are real number, α, β, δ - with or without indices or primes - are positive reals.

• ai, bi, and ci are points in Ti.
• Li is a lottery over Ti and `i is the realization of Li.

• Variables not explicitly quantified are taken to be universally quantified, it being understood

that the expressions in which they appear are defined.

Proposition 4.1. There exist Debreu value functions vTi : Ti → R, i = 1, 2, . . ., such that for all

n, vn =
∑n

i=1 v
Ti represents -n.

Proof. Consider Hn for n ≥ 3. By assumption, any product of the Ti’s is independent. Hence,

there exist value functions vT1n , . . . , v
Tn
n , with

∑n
i=1 v

Ti
n representing -n. We now show that there is

actually a single function vTi , for each i, that works for all the Hn’s.

For i = 1, 2, 3, set vTi := vTi3 . Suppose vTi has been defined for all i < n; we inductively define

vTn . By the induction hypothesis,
∑n−1

i=1 v
Ti represents -n−1. By independence of Hn−1 in -n,

the function
∑n−1

i=1 v
Ti
n also represents -n−1. So, by uniqueness of the value functions, there exist

constants β > 0, ξi, such that vTi = βvTin + ξi, for i = 1, . . . , n− 1. So, setting vTn = βvTnn , we have

that
n∑
i=1

vTi =
n−1∑
i=1

(βvTin + ξi) + βvTnn = β
n∑
i=1

vin + constant,

which represents -n, as required. �

From now on we assume w.l.o.g. that the factors are already represented in units of the respective

value functions; that is, vTi(ai) = ai for all i and ai ∈ Ti. Then un, the NM utility function

representing -
∆ n

, is actually only a function of the sum of its arguments; i.e. un(a1, . . . , an) =

un(b1, . . . , bn) whenever a1 + · · · + an = b1 + · · · + bn. Recall that ûn is the function such that

un(a1, . . . , an) = ûn(a1 + · · ·+ an). Note that ûn = un ◦ (vn)−1. Thus, un is concave with respect

to vn if and only if ûn is concave.

Let (φ2, φ3, . . .) be the presumed future. By assumption (φ2, φ3, . . .) is internal.28 So, there exists

s > 0 with φi ± s ∈ Ti, for all i.

28More precisely, (φ2, φ3, . . .) is a presumed future that is internal, if there are several presumed futures.
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Proofs for Section 4.2.1.

Lemma A.1. Let X1, X2, . . . be an infinite sequence of independent uniformly bounded random

variables,29 with E(Xi) = 0 for all i. Set Sn =
∑n

i=1Xi. Then

Pr[Sn ≥ 0 infinitely often] > 0.(5)

Proof. Denote vi = Var(Xi), and Vn =
∑n

i=1 vi. The Xi’s are independent, so Vn = Var(Sn). Now,

either Vn →∞ or not. We consider each case separately.

If Vn → ∞, applying the central limit theorem for uniformly bounded random variables (e.g.

[14], Theorem 9.5) we obtain that

lim
n→∞

Pr[
Sn√
Vn
≥ 0] =

1√
2π

∫ ∞
0

e−x
2/2dx =

1

2
.

In particular, Pr[Sn ≥ 0 infinitely often] > 0.

Next, suppose that Vn does not go to infinity. Each vi is non-negative. Hence, the Vi’s form

a monotonically non-decreasing and bounded sequence, and hence converge. Thus, for any δ > 0

there exists an Nδ with
∑∞

i=Nδ
vi < δ. If all the Xi are identically 0 there is nothing to prove.

Otherwise, w.l.o.g. X1 is not identically 0. Thus there exists an x > 0 with Pr(X1 ≥ x) = qx > 0.

Choose δ < x2. Then by the Chebyshev inequality, for all n > Nδ,

Pr[
n∑

i=Nδ

Xi < −x] <
Var(

∑n
i=Nδ

Xi)

x2
≤ δ

x2
< 1.

Clearly, there is some probability p+ for which Pr[maxn=2,...,Nδ{Sn −X1} ≥ 0] ≥ p+. So for all n,

Pr[Sn ≥ 0] ≥ Pr[X1 ≥ x] · Pr[ max
n=2,...,Nδ

(Sn −X1) ≥ 0] · Pr[

n∑
i=Nδ

Xi ≥ −x] ≥

qx · p+ · (1− δ

x2
) > 0.

So, again, in particular, Pr[Sn ≥ 0 infinitely often] > 0. �

Theorem 4.2. -
∆

is weakly risk averse if and only if un is concave with respect to vn for all n.

Proof. -
∆

is weakly risk averse ⇒ all ûn are concave: Contrariwise, suppose that ûk is not concave,

for some k. So, ûk is not concave on some interval of size ≤ s. So, there exist x, ε ≤ s and 0 < β < ε

with

ûk(x+ β) =
1

2
(ûk(x− ε) + ûk(x+ ε)) .

So, by definition of the presumed future also for any m > k,

ûm(x+ φk+1 + · · ·+ φm + β) =

=
1

2
(ûm(x+ φk+1 + · · ·+ φm − ε) + ûm(x+ φk+1 + · · ·+ φm + ε)) .

(6)

29that is, the support of all the random variables is included in a real interval [b, b], with b, b finite.
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We construct a recurring lottery sequence L that is ultimately inferior to its repeated certainty

equivalent. By definition, x = b1 + · · · + bk, for some (b1, . . . , bk) ∈ Hk. The sequence L =

(L1, L2, . . .) is defined as follows:

• for i = 1, . . . , k: Li = bi;

• for j odd: Lk+j = 〈(φk+j − ε), (φk+j + ε)〉;
• for j even: Lk+j = φk+j − β.

We now inductively determine the repeated certainty equivalent of L = (L1, L2, . . .), which we

denote (c1, c2, . . .). For i = 1, . . . , k, ci = bi. Consider the lottery at time k + 1. The (degenerate)

lotteries in the previous times have brought us to the point x = b1 + · · ·+bk, and the lottery at time

k+ 1 is Lk+1 = 〈(φk+1 − ε), (φk+1 + ε)〉. So, by (6), its certainty equivalent is β above the average;

that is, ck+1 = φk+1 +β. The next lottery, at time k+2, is the degenerate lottery Lk+2 = φk+2−β,

with certainty equivalent ck+2 = φk+2 − β. Hence, having chosen the certainty equivalent at all

times, after time k + 2 we are at point x + ck+1 + ck+2 = x + φk+1 + φk+2. So again (6) applies

to the lottery at time k + 3, which is Lk+3 = 〈(φk+1 − ε), (φk+1 + ε)〉. So ck+3 = φk+3 + β. This

process repeats again and again. So, ck+j = φk+j + β for j odd and ck+j = φk+j − β for j even.

Now, assume w.l.o.g. that E(Li) = 0 for all i. Then, for j odd, Lk+j is a ±ε lottery and ck+j = β.

For all other i’s, `i is a degenerate lottery and ci = 0. Let `i be the realization of Li. Then,

Pr[(c1, . . . , cn) � (`1, . . . , `n) from some n on] = Pr[
n− k

2
β >

n∑
i=1

`i from some n on] = 1,

where the last equality is by the law of large numbers. So, (c1, c2, . . .) is ultimately superior to

(L1, L2, . . .) .

All ûn are concave ⇒ -∆ is weakly risk averse: Consider a lottery sequence L = (L1, L2, . . .). W.l.o.g.

E(Li) = 0 for all i. Denote by c = (c1, c2, . . .) the repeated certainty equivalent of L. Since all ûn’s

are concave, also all the functions un are concave in each of their arguments. So, ci ≤ 0 for all i.

So, for any n,

Pr[(`1, . . . , `n) ≺n (c1, . . . , cn)] ≤ Pr[
n∑
i=1

`i < 0].

So,

Pr[(`1, . . . , `n) ≺n (c1, . . . , cn) from some n on] ≤ (1− Pr[
n∑
i=1

`i ≥ 0 infinitely often]) < 1.

where the last inequality is by Lemma A.1. So, (c1, c2, . . .) is not ultimately superior to (L1, L2, . . .).

�
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Proofs for Section 4.2.2. Theorem 4.3 follows directly from Theorem 4.4 (a) and Proposition 4.5.

So, proceed to prove this theorem and proposition.

For α > 0 let caraα be the function caraα(x) = −e−αx. It is well known that Acaraα(x) = α for

all x. For a real-valued lottery L and NM utility function f let risk-premf (x, L) be the risk-premium

according to f of the lottery L applied at wealth x.

Lemma A.2. RPû(ε) = Ω(ε2) as ε→ 0 if and only if there exists an α such that

risk-premûn(x, L) ≥ risk-premcaraα(x, L)(7)

for all n, x and L.

Proof. Suppose that RPû(ε) = Ω(ε2). Then there exists ε0 and α > 0 with

risk-premûn(x,±ε) ≥ αε2(8)

for all n, x and ε ≤ ε0.

For the function caraα, using the Taylor expansion of eε around 0,

caraα(ε) + caraα(−ε)
2

=
−e−α·ε − eα·ε

2

= −1

2
(1− αε+

α2ε2

2
+ 1 + αε+

α2ε2

2
+O(ε3))(9)

= −(1 +
α2ε2

2
+O(ε3))

So, for ε sufficiently small

caraα(ε) + caraα(−ε)
2

> −(1 +
2α2ε2

3
) > −e−α(−2αε2/3) = caraα(−2αε2/3).

So,

risk-premcaraα(0,±ε) < 2

3
αε2.

For the function caraα the risk premium is independent of x, and hence,

risk-premcaraα(x,±ε) < 2

3
αε2,(10)

for all x.

So, combining (8) and (10)

risk-premûn(x,±ε) > risk-premcaraα(x,±ε),(11)

for ε sufficiently small. But then, by Pratt [22], (11) holds for any lottery L.

Conversely, if risk-premûn(x,±ε) ≥ risk-premcaraα(x,±ε) then by (9)

risk-premûn(x,±ε) ≥ αε2

2
+O(ε3),

so RPû(ε) = Ω(ε2). �
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The following simple lemma establishes that any risk premium exhibited by ûk, for some k, is

(re)exhibited by all subsequent ûm, for m > k.

Lemma A.3. For any m > k,

risk-premûm(x+ φk+1 + . . . , φm,±ε) = risk-premûk
(x,±ε).

Proof. Set β = risk-premûk
(x,±ε). By definition

ûk(x− β) =
1

2
(ûk(x− ε) + ûk(x+ ε)).

Let a+ε,a−ε,a−β ∈ Hk be such that vk(a+ε) = x+ ε, vk(a−ε) = x− ε, and vk(a−β) = x− β. So,

(a−β)∼∆ k 〈a−ε,a+ε〉 .

By assumption, -
∆ k

and -
∆ m

agree on the preferences over ∆(Hk) when fixing the state in Tk+1 ×
· · · × Tm to the presumed future (φk+1, . . . , φm). So,

(a−β, φk+1, . . . , φm)∼∆ m 〈(a−ε, φk+1, . . . , φm), (a+ε, φk+1, . . . , φm)〉 .

Hence,

ûm(x− β + φk+1 + · · ·+ φm) =

1

2
(ûm(x− ε+ φk+1 + · · ·+ φm) + ûm(x+ ε+ φk+1 + · · ·+ φm)).

�

The following lemma establishes that if ûk exhibits some risk premium, at some point x, then

not only is this risk premium re-exhibited by all subsequent utility functions ûm, but also that it

is “reachable” from any state y, of any period K.

Lemma A.4. For any k,K, x, y, with x in the domain of ûk and y in the domain of ûK , there

exist m ≥ max{k,K} and bK+1, . . . , bm, bi ∈ Ti, with

risk-premûm(y + bK+1 + · · ·+ bm,±ε) = risk-premûk
(x,±ε).

Proof. Set K ′ = max{k,K}. If K < k then for i = K + 1, . . . , k, let bi be any point in Ti and set

y′ = y + bK+1 + · · ·+ bk. Otherwise (K ≥ k) set y′ = y.

Let δ = y′ − x, j = dδ/se, and m = K ′ + j. For i = K ′ + 1, . . . ,m, set bi = φi + δ/j. Then,

m > max{k,K}, and x + φk+1 + · · · + φm = y + bK+1 + · · · + bm. The result then follows from

Lemma A.3 . �
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The following Theorem is from Alon and Spencer [1].

Theorem A.5 ([1], Theorem A.1.19). For every C > 0 and γ > 0 there exists a δ > 0 so that the

following holds: Let Xi, 1 ≤ i ≤ n, n arbitrary, be independent random variables with E[Xi] = 0,

|Xi| ≤ C, and Var(Xi) = σ2
i . Set Sn =

∑n
i=1Xi and Σ2

n =
∑n

i=1 σ
2
i , so that Var(Sn) = Σ2

n. Then,

for 0 < a ≤ δ · Σn

Pr[Sn > aΣn] < e−
a2

2
(1−γ).(12)

Lemma A.6. Let X1, X2, . . ., be independent random variables with E[Xi] = 0, |Xi| ≤ C, and

Var(Xi) = σ2
i . Set Sn, σ

2
i and Σ2

n as above. If Σn →∞, then for any α > 0

Pr[Sn > αΣ2
n infinitely often] = 0.

Proof. Denote by n(i) the least n such that Σ2
n ≥ i. Since Σn →∞, for any i there exists an n(i).

Since |Xi| ≤ C, i ≤ Σ2
n(i) ≤ i+ C2.

Denote by Ak the event that there exists i, n(k) < i ≤ n(k+ 1), for which Si > αΣ2
i . We bound

Pr[Ak].

Set γ = 0.5, and let δ be that provided by Theorem A.5. Set β = min{δ, α/2}. Then, considering

n(k), by Theorem A.5, setting a = βΣn(k)

Pr[Sn(k) > βΣn(k) · Σn(k)] < e−
β2Σ2

n(k)
2

(1−γ) ≤ e−
β2k

4(13)

Now consider the random variables Xi for i = n(k) + 1, . . . , n(k + 1). Set Dj =
∑j

i=n(k)+1Xi.

Then,

Var((Dn(k+1)) = Σ2
n(k+1) − Σ2

n(k) ≤ (k + 1 + C2)− k = 1 + C2.

So, by the Kolmogorov inequality

Pr[ max
n(k)<j≤n(k+1)

{Dj} ≥ βΣ2
n(k)] ≤

Var(Dn(k+1))

(βΣ2
n(k))

2
≤ 1 + C2

β2k2
.(14)

Combining (13)-(14), for any k

Pr[Ak] = Pr[∃i, n(k) < i ≤ n(k + 1), Si > αΣ2
i ]

≤ Pr[Sn(k) ≥ βΣ2
n(k)] + Pr[ max

n(k)<j≤n(k+1)
{Dj} ≥ βΣ2

n(k)]

≤ e−
β2k

4 +
1 + C2

β2k2
.

So,
∑∞

k=1 Pr[Ak] <∞. So, by the Borel Cantelli lemma

Pr[Ak occurs infinitely often] = 0.

For any k there is only a finite number of i’s with n(k) < i ≤ n(k + 1). So, Si > αΣ2
i infinitely

often only if Ak occurs infinitely often, and the result follows. �
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Theorem 4.4.

(a) If RPû(ε) = Ω(ε2) as ε→ 0 then -
∆

is risk averse.30

(b) If RPû(ε) = O(ε2+β) as ε→ 0, for some β > 0, then -
∆

is not risk averse.

Proof. (a): Suppose that RPû(ε) = Ω(ε2) as ε→ 0.

Let L = (L1, L2, . . .) be a bounded, non-vanishing lottery sequence. W.l.o.g. E(Li) = 0 for all i.

Set σ2
i = Var(Li), Sn =

∑n
i=1 Li and Σ2

n = Var(Sn) =
∑n

i=1 σ
2
i . Since L is non-vanishing Σn →∞.

Since L is bounded, there exists a C such that |Li| ≤ C for all i.

By the Taylor expansion,

caraα(ε) = −e−αε = −1 + αε− α2ε2

2
+O(α3ε3).(15)

Let α1 be such that the O(α3ε3) term in (15) is small for |ε| ≤ C; that is,

caraα1(ε) ≈ −1 + α1ε−
α2

1ε
2

2
,(16)

for |ε| ≤ C.

Let (c1, c2, . . .) be the repeated certainty equivalent of L. Let α0 be that provided by Lemma

A.2. Then, for any α < α0

ci < −risk-premcaraα(0, Li).

Set α = min{α0, α1}. Suppose that Li gets values xi1, . . . , x
i
m with probabilities p1, . . . , pm, respec-

tively. Then,

ci < −risk-premcaraα(0, Li) =cara−1
α

 m∑
j=1

caraα(xij)pj


≈cara−1

α

 m∑
j=1

(−1 + αxij −
α2(xij)

2

2
)pj


=cara−1

α

 m∑
j=1

(−1)pj + α

m∑
j=1

xijpj −
m∑
j=1

α2(xij)
2

2
pj


=cara−1

α

(
−1 + 0− α2σ2

i

2

)
≈cara−1

α

(
−e−α(−ασ2

i /2)
)
< −ασ2

i .

So,

[
−α · (Σn)2 < Sn

]
⇒

[
n∑
i=1

ci < Sn

]
⇒ [(c1, . . . , cn) ≺ (`1, . . . , `n)] .(17)

30recall that g(y) = Ω(h(y)) as y → 0 if there exists a constant M and y0 such that g(y) > M ·h(y) for all y < y0.
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So, it is sufficient to prove that

Pr[Sn > −α(Σn)2 from some n on] = 1.

which is equivalent to saying that

Pr[Sn < −α(Σn)2 infinitely often] = 0,(18)

which is provided by Lemma A.6 (by symmetry).

(b): Suppose that RPû(ε) = O(ε2+β) as ε→ 0, with β > 0. So, there exists α and ε0 such that for

any ε < ε0, there exists an i and x with

risk-premûi(x,±ε) ≤ α · ε
2+β.(19)

Set ε1 = min{ε20, s2}. For j = 1, 2, . . ., set aj as follows:

aj =

{ √
ε1 if j = 3k

2
for some integral k

√
ε1

1√
j

otherwise

So, by (19), for any j there exists ij and xj with

risk-premûij
(xj ,±aj) ≤ α · a2+β

j .(20)

We construct a bounded, non-vanishing lottery sequence L = (L1, L2, . . .) that is not ultimately

superior to its repeated certainty equivalent, which we denote by (c1, c2, . . .). The construction of

L is inductive, wherein the lotteries are defined in chunks. For each j, the j-th chunk consists of

a sequence of degenerate lotteries, followed by a single ±aj lottery, with which the chunk ends.

We denote by n(j) the index of the last lottery in the j-th chunk. The chunks are constructed as

follows. Set n(0) = 0. Suppose L1, . . . , Ln(j−1) have been defined, and that their repeated certainty

equivalent is c1, . . . , cn(j−1). Let ij , xj be as in (20). Set yn(j−1) = c1 + · · · + cn(j−1). By Lemma

A.4 and (20), there exists m > max{n(j − 1), ij} and bn(j−1)+1, . . . , bm, with

risk-premûm(yn(j−1) + bn(j−1)+1 + · · ·+ bm,±aj) ≤ αa2+β
j .

Hence also (moving to m+ 1)31,

risk-premûm+1
(yn(j−1) + bn(j−1)+1 + · · ·+ bm + φm+1,±aj) ≤ αa2+β

j ,

which means that

ûm+1(yn(j−1) + bn(j−1)+1 + · · ·+ bm + φm+1 − (αa2+β
j )) ≤

≤1

2
(ûm+1(yn(j−1) + bn(j−1)+1 + · · ·+ bm + φm+1 − aj) + ûm+1(yn(j−1) + bn(j−1)+1 + · · ·+ bm + φm+1 + aj)).

31We move to m+ 1 with φm+1 to guarantee sufficient distance from the boundaries to allow a ±aj lottery.
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Accordingly, set Li = bi, for i = n(j − 1) + 1, . . . ,m and Lm+1 = 〈(φm+1 − aj), (φm+1 + aj)〉. By

construction, ci = bi for i = n(j − 1) + 1, . . . ,m, and

cm+1 ≥ φm+1 − αa2+β
j .(21)

Denote n(j) = m+ 1; that is, n(j) is the index of the ±aj lottery.

We now show that (c1, c2, . . .), is not ultimately inferior to (L1, L2, . . .). W.l.o.g. E(Li) = 0 for

all i. So, we have that Li = 〈(−σi), (σi)〉 with

σi =


√
ε1 if i = n(j) with j = 3k

2
for some integral k

√
ε1

1√
j

if i = n(j) for other j’s

0 otherwise

and

ci ≥


−α(ε1)1+β/2 if i = n(j) with j = 3k

2
for some integral k

−α(ε1)1+β/2 · 1
j1+β/2 if i = n(j) for other j’s

0 otherwise

Let Sn =
∑n

i=1 Li. So, Var(Sn) =
∑n

i=1 σ
2
i . So, for n = n(3k

2
),

Var(S
n(3k2 )

) ≥
3k

2∑
j=1

ε1
j
>

ek
2∑

j=1

ε1
j
> ε1 · k2.

On the other hand,

n(3k
2
)∑

i=1

ci ≥ −α(ε1)1+β/2

 3k
2∑

j=1

1

j1+β/2
+ k

 > −α(ε1)1+β/2 (D + k) ,

for D =
∑∞

j=1
1

j1+β/2 <∞.
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Set γ = α(ε1)1+β/2. Then, for k sufficiently large

Pr[(`1, . . . , `n(3k2 )
) - (c1, . . . , cn(3k2 )

)] = Pr

Sn(3k2 )
≤

n(3k
2
)∑

i=1

ci

 ≥
≥Pr

[
S
n(3k2 )

≤ −γ (D + k)
]

=

= Pr

[
S
n(3k2 )

Var(S
n(3k2 )

)1/2
≤ −γ (D + k)

Var(S
n(3k2 )

)1/2

]
≥

≥Pr

[
S
n(3k2 )

Var(S
n(3k2 )

)1/2
≤ −γ (D + k)

√
ε1 · k

]
≥

≥Pr

[
S
n(3k2 )

Var(S
n(ek2 )

)1/2
≤ −γ · 2

√
ε1

]
≈

≈ 1√
2π

∫ −2γε
−1/2
1

−∞
e−x

2/2dx = p > 0,

for some constant p. In particular, (`1, . . . , `n(3k2 )
) - (c1, . . . , cn(3k2 )

) for infinitely many k’s (with

probability 1). �

Proposition 4.5. RPû(ε) = Ω(ε2) as ε → 0, if and only if Aûn(x) is bounded away from 0,

uniformly for all n and x (assuming ûn is twice differentiable for all n).

Proof. Follows directly from Lemma A.2 and the fact that Acaraα(x) = α for all x. �

Theorem 4.6. For vn, un, and û as in Theorems 4.2 and 4.4

(a) Weak risk loving: -
∆

is weakly risk loving if and only if un is convex with respect to vn for

all n.

(b) Risk loving

• If (−RPû(ε)) = Ω(ε2) as ε→ 0 then -
∆

is risk loving.

• If (−RPû(ε)) = O(ε2+β) as ε→ 0 (for some β > 0) then -
∆

is not risk loving.

(c) Risk Neutral: -
∆

is risk neutral if and only if un is a linear transformation of vn for all n.

Proof. The proofs of (a) and (b) are analogous to those of Theorems 4.4 and 4.2. (c) follows from

combining Theorems 4.4 and 4.6. �

Proofs for Sections 5 and 6. Many of the claims of Section 5 become easier to analyze and

prove with the aid of the value function introduced in Section 6. Hence, we first provide the proofs

for Section 6 and then come back and prove those of Section 5.

Throughout, the following notation is used:

• v denotes a Debreu value function on S , and vTi a Debreu value function on the factor Ti.
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• u denotes an NM utility function on S . An NM utility for S necessarily exists since the

NM axioms are assumed to hold, and we consider only lotteries with finite support (see

Fishburn [12, Theorem 8.2]).

Preliminaries

Lemma A.7. u is continuous.

Proof. It suffices to prove that the pre-images of the open rays (−∞, r) and (r,∞) are open, for all r

(these open rays constitute a subbase for the standard topology on the line). Consider (−∞, r) (the

other case is analogous). If u(s) ≥ r for all s ∈ S then u−1(−∞, r) = ∅, which is open. Similarly,

if u(s) < r for all s ∈ S then u−1(−∞, r) = S , which is open. Otherwise, there exist s1 < r ≤ s2

and ŝ1, ŝ2 ∈ S , with u(ŝ1) = s1, u(ŝ2) = s2. Set p̂ = (r − s1)/(s2 − s1). Then, r = p̂s1 + (1− p̂)s2.

Since -
∆

is continuous the set

u−1(−∞, r) = {s : u(s) < r} = {s : s≺∆ 〈ŝ1, ŝ2 : p̂, (1− p̂)〉}

is open, by definition (where 〈ŝ1, ŝ2 : p̂, (1− p̂)〉 is the lottery with value ŝ1 with probability p̂ and

ŝ2 with probability 1− p̂). �

Proofs for Section 6.

Each factor T = Ti is a product of some set of commodity spaces, that is T =
∏
j∈T Ci, for some

index set T . For factors T =
∏
j∈T Cj and R =

∏
j∈R Cj , by a slight abuse of notation, we write

T ∩R for
∏
j∈T∩R Cj , T −R for

∏
j∈T−R Cj , and T ⊆ R if T ⊆ R. We say that T and R overlap

if T ∩R 6= ∅ and neither is contained in the other; the factor T is non-degenerate if T 6= ∅.

Lemma A.8. If there exist two non-identical independent partitions S = A × B and S = C × D,

then there exist value functions vA, vB, vC , and vD (for A,B, C,D), such that

(1) vA + vB and vC + vD both represent -,

(2) vA + vB = vC + vD,

(3) if v̂A, v̂B are value functions for A,B, and v̂C , v̂D, are value functions for C,D, then v̂A+ v̂B

is a positive affine transformation of v̂C + v̂D.

Proof. Gorman [13, Theorem 1] proves that if two independent factors E and F overlap then

E ∪ F , E ∩ F , E − F ,F − E , and E4F = (E − F) ∪ (F − E) are all independent.

Set W = A ∩ C,X = A ∩ D,Y = B ∩ C, and Z = B ∩ D. Then, by Gorman’s theorem,

W ,X ,Y ,Z are independent, as is any product thereof. Since the partitions are not identical, at

least three out of W ,X ,Y ,Z are non-degenerate. So, S = W × X × Y × Z is an independent

partition with at least 3 factors. So, by Debreu [5], there are value functions vW , vX , vY , and vZ ,

with vW + vX + vY + vZ representing -. So, the pair of functions vA = vW + vX and vB = vY + vZ

are value functions for the independent partition S = A×B. Similarly, the functions vC = vW+vY ,

and vD = vX + vZ are value functions for the independent partition S = C × D, proving (1) and

(2). Finally, (3) follows from (2) by the uniqueness of value functions. �
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Theorem 6.1. For any S, all (aggregate) Debreu value functions for S are identical up to positive

affine transformations.

Proof. Suppose S has two different independent partitions S = A1 × · · · ×An and S = C1 × · · · ×
Cm, with value functions vA1 , . . . , vAn and vC1 , . . . , vCm , respectively. Since the two partitions are

different, there must be some Ai for which there is no j with Cj = Ai. W.l.o.g. this is A1. Set

B = A2× · · · ×An and vB =
∑n

i=2 v
Ai . Similarly, set D = C2× · · · × Cj and vD =

∑j
i=2 v

Ci . Then,

vA1 + vB represents -, as does vC1 + vD. So, by Lemma A.8-(3),
∑n

i=1 v
Ai = vA1 + vB is an affine

transformation of
∑m

i=1 v
Ci = vC1 + vD. �

Theorem 6.2. Let v be a Debreu value function for S, and (ai, bj), (bi, aj) perfectly hedged. Then

for any c ∈ S−{i,j}.

v(ai, bj , c) = v(bi, aj , c) =
v(ai, aj , c) + v(bi, bj , c)

2
.

Proof. Since there exists a value function for S , by definition, there exists an independent partition

of S . Hence, by Lemma A.8 there exist value functions for any independent partition. In particular,

there exist value functions vTi for all i. Set v−{i,j}(c) =
∑

t6=i,j v
Tt(ct). Since (ai, bj) ∼ (bj , ai),

vTi(ai) + vTj (bj) + v−{i,j}(c) = v(ai, bj , c) = v(bi, aj , c) = vTi(bi) + vTj (aj) + v−{i,j}(c)

So,

v(ai, aj , c) + v(bj , bi, c)

2
=
vTi(ai) + vTj (aj) + vTi(bi) + vTj (bj) + 2v−{i,j}(c)

2
=

= v(ai, bj , c) = v(bi, aj , c). �

The following Lemma is essentially the “if” direction of Theorem 6.3, but with a weaker require-

ment.

Lemma A.9. Let u be an NM utility and v a Debreu value function for S . Let S = T1× · · · × Tn
be an independent partition. Suppose that for any a1 ≺ b1, a2 ≺ b2, with (a1, b2) ∼ (b1, a2), and

any c ∈
∏n
t=3 Tt,

〈(a1, a2, c), (b1, b2, c)〉 ≺ 〈(a1, b2, c), (b1, a2, c)〉 .(22)

Then, u is strictly concave with respect to v. If (22) holds with a weak preference then u is concave

with respect to v; if it holds with indifference then u is linear with respect to v; if it holds with the

preference reversed then u is strictly convex with respect to v.

Proof. We prove for the case that (22) holds as is. The other cases are analogous.

Since there exists a value function v representing - (based on some independent partition), by

Lemma A.8, there exist value functions vTi for the Ti’s, with v =
∑n

t=1 v
Tt .

Set I = v(S), I1 = vT1(T1), and I2 = vT2(T2). Let ε be such that both I1 and I2 are of size at

least 2ε. We prove that u ◦ v−1 is strictly concave on any interval of size 2ε, and hence strictly

concave throughout.
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Consider x ∈ I. Then x = v(ĉ1, ĉ2, ĉ) for some ĉ1, ĉ2, ĉ. Set x1 = vT1(ĉ1) and x2 = vT2(ĉ2).

Assume that (x1 + ε, x2 + ε) ∈ I1× I2 (the other cases are similar). We prove that u◦ v−1 is strictly

concave on [x, x+ 2ε].

Consider y, z ∈ [x, x+ 2ε] with y < z. Then, y = x+ δy, z = x+ δz, with 0 ≤ δy < δz ≤ 2ε. Then

there exist a1, b1, a2, b2, with vT1(a1) = x1 +δy/2, v
T2(a2) = x2 +δy/2, v

T1(b1) = x1 +δz/2, v
T2(b2) =

x2 + δz/2. Then, (a1, b2) ∼ (b1, a2). So, by assumption

〈(a1, a2, ĉ), (b1, b2, ĉ)〉 ≺ 〈(a1, b2, ĉ), (b1, a2, ĉ)〉 .

So,
1

2
(u(a1, a2, ĉ) + u(b1, b2, ĉ)) <

1

2
(u(a1, b2, ĉ) + u(b1, a2, ĉ)) ,

so,
1

2

(
u(v−1(y)) + u(v−1(z))

)
<

1

2

(
u(v−1(

y + z

2
)) + u(v−1(

y + z

2
))

)
= u(v−1(

y + z

2
)).

So, u ◦ v−1 is mid-point strictly concave and hence strictly concave. �

Lemma A.10. If u is strictly concave with respect to v then for any independent partition, S =

T1 × · · · × Tn, any i 6= j, perfectly hedged (ai, bj), (bi, aj), and c ∈ S−{i,j}

〈(ai, aj , c), (bi, bj , c)〉≺∆ 〈(ai, bj , c), (bi, aj , c)〉 .(23)

Proof. W.l.o.g. i = 1, j = 2. By definition v(a1, a2, c) 6= v(b1, b2, c), and by Theorem 6.2

v(b1, a2, c) = v(a1, b2, c) = 1
2(v(a1, a2, c) + v(b1, b2, c)). Hence, since u is strictly concave with

respect to v,
1

2
(u(a1, a2, c) + u(b1, b2, c)) <

1

2
(u(a1, b2, c) + u(b1, a2, c)).

Hence (since u is a representation of -
∆

)

〈(a1, a2, c), (b1, b2, c)〉≺∆ 〈(a1, b2, c), (b1, a2, c)〉 . �

Theorem 6.3. For NM utility u and Debreu value function v,

• Risk aversion:

◦ u is strictly concave with respect to v if and only if -
∆

is ordinally risk averse.

◦ u is concave with respect to v if and only if -
∆

is weakly ordinally risk averse.

• Risk loving:

◦ u is strictly convex with respect to v if and only if -
∆

is ordinally risk loving.

◦ u is convex with respect to v if and only if -
∆

is weakly ordinally risk loving.

• Risk neutrality: u is linear with respect to v if and only if -
∆

is ordinally risk-neutral.

Proof. We prove the theorem for risk aversion and strict concavity. The proofs for the other cases

are analogous.

(only if :) Lemma A.10.

(if :) Lemma A.9. �
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Proofs for Sections 5.

Proposition 5.1. If -
∆

is ordinally risk averse (by Definition 3) then (2) holds for all i 6= j (and

any fully hedged (a1, b2), (b1, a2), and c). Similarly for weak risk aversion.

Proof. Consider an independent partition S = T1 × · · · × Tn. If n = 2 there is nothing to prove. If

n ≥ 3, there necessarily is a Debreu value function v representing -. By Lemma A.9 u is concave

with respect to v. So, the result is established by Lemma A.10. �

Proposition 5.2. If -
∆

is (weakly) ordinally risk averse with respect to some independent partition

S = T1 × · · · × Tn, then it is also so with respect to any independent partition.

Proof. This follows from Lemmas A.8, A.9 and Theorem 6.3. Suppose there are two non-identical

independent partitions S = T1 × · · · × Tn and S = R1 × · · · × Rm, and that -
∆

is ordinally risk

averse with respect to the former. Then, by Lemma A.8 there exists a value function v representing

-. So, by Lemma A.9, u is strictly concave with respect to v. Hence, by the “only if” direction of

Theorem 6.3, -
∆

is ordinally risk averse with respect to any partition, in particular with respect to

R1 × · · · ×Rm. A similar argument holds for weak ordinal risk aversion. �

Proof of Theorem 5.3.

As it turns out, the proof of Theorem 5.3 is the most involved in the section. The challenge

arises in the case that the partition is with only two factors, in which case a Debreu value function

need not exist, and the tools of Section 6 do not apply.

When considering a partition into two factors, we adopt the following notation, which is some-

what different from that used in the rest of the paper. The independent partition is denoted

S = A × B. We use a,A, with or without subscripts or superscripts, for points in A, and b, B for

points in B. By convention, a ≺ A and b ≺ B.

Let wA : A → R be a continuous real function representing -A, and similarly wB a continuous

real function representing -B (such function are exist by Debreu [4] since -A and -B are contin-

uous). Define w : A × B → R2 as w(a, b) = (wA(a), wB(b)). Let IA × IB ⊆ R2 be the image of

A × B under w.

Lemma A.11. u◦w−1 : IA×IB → R is well defined, increasing in each coordinate, and continuous.

Proof. If w(a, b) = w(a′, b′) then (a, b) ∼ (a′, b′), and hence u(a, b) = u(a′, b′). Thus, u ◦ w−1 is

well defined. It is increasing is each coordinate as u and wA, wB agree on the certainty preference.

Denote û = u ◦w−1, and for x ∈ IA define ûBx : IB :→ R, by ûBx (y) = û(x, y). Then, the ûBx is

monotone. Also, ûBx (IB) = u((wA(x)−1,B) is an interval (since B is a finite product of connected

spaces and u continuous). So, ûBx is continuous for any x. Similarly, the function ûAy : IA :→ R,

defined by ûBy (x) = û(x, y) is continuous for any y.

To prove continuity of û, we prove that the pre-images of the open rays (−∞, r) and (r,∞) are

open, for all r. Consider (−∞, r) (the other case is analogous). Set Er = {(x, y) : û(x, y) < r}.
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If Er = ∅ or Er = IA × IB then there is nothing to prove. Otherwise, consider (x∗, y∗) with

û(x∗, y∗) < r − ε, for some ε > 0. We show that there is a neighborhood of (x∗, y∗) fully contained

in Er. Suppose that x∗ is not maximal in IA and y∗ not maximal in IB (the proof for the case that

one of them is maximal is similar). The function ûBx∗ is continuous. So, there exists some y′ with

0 < ûBx∗(y
′)− ûBx∗(y∗) <

1

2
ε.(24)

Similarly, the function ûAy′ is continuous. Thus, there exists x′ with

0 < ûAy′(x
′)− ûAy′(x∗) <

1

2
ε.(25)

Combining (24) and (25), we obtain

û(x∗, y∗) < û(x′, y′) + ε < r.

Set δ = min{x′− x∗, y′− y∗}. Then, for any (x, y) if ‖(x, y)− (x∗, y∗)‖ < δ then x < x′ and y < y′.

So, by monotonicity of û, û(x, y) < û(x′, y′) < r. So, the entire ball of size δ around (x∗, y∗) is

contained in Er, as required. �

Lemma A.12. Let A × B be an independent partition and a ≺ A, b ≺ B. Set a0 = a, and while

(ai, B) - (A, b) let ai+1 be such that (ai+1, b) ∼ (ai, B) (such an ai+1 exists by continuity). Then,

there exists an ī such that (aī, B) % (A, b) (that is, the sequence a0, a1, . . . is finite).

Proof. Contrariwise, suppose there is no such ī. Then, for i = 1, 2, . . ., (ai, B) ≺ (A, b), and hence

ai ≺ A. Clearly, ai - ai+1. Thus, the sequence a1, a2, . . . , is an infinite monotone and bounded

sequence, and hence converges to a limit â. By definition, for each i

(ai, B) ∼ (ai+1, b).

Thus, by continuity,

(â, B) ∼ (â, b),

which is impossible since b ≺B B and - is strictly monotone in each factor. �

Theorem 5.3. -
∆

is ordinally risk-averse if and only if it is correlation averse with respect to any

and all Ti, Tj.

Proof. (if:) Suppose -
∆

is correlation averse with respect to T1, T2. Consider a perfectly hedged pair

(a1, b2), (b1, a2). By definition (a1, b2) 6∼ (b1, a2). So, either a1 6∼ b1 or a2 6∼ b2. W.l.o.g. a1 ≺ b1.

But (a1, b2) ∼ (b2, a1). So, a2 ≺ b2. Hence, by definition of correlation aversion

〈(a1, a2, c), (b1, b2, c)〉≺∆ 〈(a1, b2, c), (b1, a2, c)〉

for all c. Hence, by Lemma A.9 -
∆

is ordinally risk averse.

(only if:) Suppose that -
∆

is ordinally risk averse. First, consider the case that the independent

partition is with three or more factors. That is, suppose that S = T1 × · · · × Tn, n ≥ 3. Then,

there are Debreu value functions for the partition. Let vTi be the value function of Ti. By Theorem
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6.3 u is concave with respect to v =
∑n

i=1 v
Ti . Consider a1 ≺ b1, a2 ≺ b2, and c ∈ S−{1,2}. Set

xi = vTi(ai), yi = vTi(bi) and z =
∑n

i=2 v
Ti(ci). W.l.o.g. x1 = x2 = z = 0. Set λ = y1

y1+y2
. Then,

since u is concave with respect to v

λ · u(a1, a2, c) + (1− λ)u(b1, b2, c) =λ · (u ◦ v−1)(0) + (1− λ)(u ◦ v−1)(y1 + y2) <

(26)

(u ◦ v−1)(λ · 0 + (1− λ)(y1 + y2)) = (u ◦ v−1)(y2) = u(a1, b2, c).(27)

Similarly,

(1− λ)u(a1, a2, c) + λ · u(b1, b2, c) < u(b1, a2, c).(28)

Combining (26) and (28)

u(a1, a2, c) + u(b1, b2, c) < u(a1, b2, c) + u(b1, a2, c),

and -
∆

is correlation averse.

Next, suppose that the partition has only two factors: S = A× B. Let a,A ∈ A, b, B ∈ B, with

a ≺ A and b ≺ B. We need to show that

〈(a, b), (A,B)〉≺∆ 〈(A, b), (a,B)〉 .(29)

If (a,B) ∼ (A, b) then they are perfectly hedged and (29) holds by the definition of ordinal risk

aversion.

Otherwise, let u be an NM utility for -
∆

. set

diff = u(a, b) + u(A,B)− u(a,B)− u(A, b).

We show that diff < 0, which establishes (29).

Let wA be a continuous function representing -A and wB a continuous function representing

-B (the certainty preferences). In order to prove that diff < 0, we start out by proving that there

exists a 1
2
, A 1

2
, b 1

2
, B 1

2
, with

a - a 1
2
≺ A 1

2
- A, and b - b 1

2
≺ B 1

2
- B,

such that

wA(A 1
2
)− wA(a 1

2
) ≤ 1

2
(wA(A)− wA(a)) or

wB(B 1
2
)− wB(b 1

2
) ≤ 1

2
(wB(B)− wB(b))

(30)

and

diff < u(a 1
2
, b 1

2
) + u(A 1

2
, B 1

2
)− u(a 1

2
, B 1

2
)− u(A 1

2
, b 1

2
).(31)

W.l.o.g. we may assume that (a,B) ≺ (A, b); so (a, b) ≺ (a,B) ≺ (A, b). Thus, since -A is

continuous and A connected, there exists a ≺ a1 ≺ A with

(a1, b) ∼ (a,B).(32)
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Figure 3. Illustration of the proof of Theorem 5.3. The values ai are calculated

left-to-right, starting at a = a0. Here ī = 2 and the point a2 is such that wA(a2) ≥
1
2(wA(A) + wA(a)) (assuming the picture is scaled according to wA).

Figure 3 illustrates the following argument. Set a0 = a. Given ai, let ai+1 be such that (ai+1, b) ∼
(ai, B). Let ī be the first index with (aī, B) % (A, b); such an ī exists by Lemma A.12. Then,

(a,B) ≺ (A, b) - (aī, B). Thus, there exists A1, a ≺ A1 - aī, such that (A1, B) ∼ (A, b). Clearly,

aī - A. Thus, either

wA(A1) ≤ 1

2
(wA(a) + wA(A)),(33)

or

wA(aī) ≥ 1

2
(wA(a) + wA(A)).(34)

We consider each of these cases separately.

First, suppose that (33) holds. Then, by construction (A1, B) ∼ (A, b), and they are perfectly

hedged. Hence, by assumption,〈
(A1, b), (A,B)

〉
≺∆
〈
(A1, B), (A, b)

〉
.

So,

u(A1, b) + u(A,B)− u(A1, B)− u(A, b) < 0.

Hence,

u(a, b) + u(A,B)− u(A, b)− u(a,B) =

u(a, b) + u(A1, B)− u(A1, b)− u(a,B) + u(A1, b) + u(A,B)− u(A1, B)− u(A, b) <

u(a, b) + u(A1, B)− u(A1, b)− u(a,B).(35)

Setting a 1
2

= a, A 1
2

= A1, b 1
2

= b and B 1
2

= B, by (33) and (35) we get (30) and (31).
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Next, suppose that (34) holds. Then, by construction, for i = 1, . . . , ī, (ai−1, B) ∼ (ai, b), and

each such pair is perfectly hedged. Since -
∆

is ordinally risk averse,〈
(ai−1, b), (ai, B)

〉
≺∆
〈
(ai−1, B), (ai, b)

〉
,

for all i. So,

1

2̄i

ī∑
i=1

(
u(ai−1, b) + u(ai, B)

)
<

1

2̄i

ī∑
i=1

(
u(ai−1, B) + u(ai, b)

)
;(36)

and

u(a0, b) + u(aī, B) < u(aī, b) + u(a0, B);

so (as a0 = a)

u(a, b) + u(aī, B)− u(aī, b)− u(a,B) < 0 .

Hence,

u(a, b) + u(A,B)− u(A, b)− u(a,B) =

u(a, b) + u(aī, B)− u(aī, b)− u(a,B) + u(aī, b) + u(A,B)− u(aī, B)− u(A, b) <

u(aī, b) + u(A,B)− u(aī, B)− u(A, b).(37)

Setting a 1
2

= aī, A 1
2

= A, b 1
2

= b and B 1
2

= B, by (34) and (37) we get (30) and (31).

Thus, we have established (30) and (31), and we now return to complete the proof that diff < 0.

Set

diff 1
2

= u(a 1
2
, b 1

2
) + u(A 1

2
, B 1

2
)− u(a 1

2
, B 1

2
)− u(A 1

2
, b 1

2
).

Then,

diff < diff 1
2
.

Applying the above halving procedure repeatedly, we obtain that for any δ > 0 there exists

(aδ, bδ), (Aδ, Bδ), such that

wA(Aδ)− wA(aδ) ≤δ or(38)

wB(Bδ)− wB(bδ) ≤δ(39)

and

diff 1
2
<u(aδ, bδ) + u(Aδ, Bδ)− u(aδ, Bδ)− u(Aδ, bδ) =

(u(Aδ, Bδ)− u(aδ, Bδ)) + (u(aδ, bδ)− u(Aδ, bδ)) =(40)

(u(Aδ, Bδ)− u(Aδ, bδ)) + (u(aδ, bδ)− u(aδ, Bδ)) .(41)

By Lemma A.11 the function u ◦ (wA, wB)−1 is continuous. So it is uniformly continuous on the

rectangle [wA(a), wA(A)]× [wB(b), wB(B)]. That is, for any ε > 0, there exists a δ such that if

‖(wA(a′), wB(b′))− (wA(a′′), wB(b′′))‖ < δ
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then

|u(a′, b′)− u(a′′, b′′)| < ε.

In particular, if (38) holds then (40) is ≤ 2ε, and if (39) holds then (41) is ≤ 2ε. Thus, diff 1
2
≤ 0,

so diff < 0. �

Proofs for Section 8.

Proofs for Section 8.1.

Theorem 8.1. In the multi-commodity setting (with S = T1×· · ·×Tn an independent partition), the

NM utility function u has constant coefficient of absolute risk aversion when measured with respect

to the Debreu value function v if and only if for any i, lotteries L,L′ over Ti, and x,y ∈ Ω−{i}

(L,x)-
∆

(L′,x) ⇐⇒ (L,y)-
∆

(L′,y).

Proof. Let u be an NM utility representing -
∆

. Meyer [20] (quoted in [23]) showed that all Ti’s are

utility independent if and only if there exist functions ui : Ti → R, β > 0 and α, such that one of

the following holds:

u(a1, . . . , an) =

n∑
i=1

ui(ai)(42)

u(a1, . . . , an) = α+ β
n∏
i=1

ui(ai) , with ui(ai) > 0(43)

u(a1, . . . , an) = α− β
n∏
i=1

(−ui(ai)) , with ui(ai) < 0.(44)

If (42) holds than the ui’s are Debreu value functions (since -
∆

agrees with -). So u is linear

with respect to v, and, in particular CARA.

If (43) holds than setting vi = ln(ui) we have that

v(a1, . . . , an) =
n∑
i=1

vi(ai) = ln(
n∏
i=1

ui(ai)),

is a Debreu value function representing -. So,

u(a1, . . . , an) = α+ βev(a1,...,an),

is CARA w.r.t. v.

If (44) holds than setting vi = − ln(−ui) we have that

v(a1, . . . , an) = −
n∑
i=1

vi(ai) = − ln(
n∏
i=1

−ui(ai))

is a Debreu value function, and

u(a1, . . . , an) = α− βe−v(a1,...,an),

is CARA w.r.t. v. �
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Proposition 8.2. Let - be an (additively separable) preference order on S = T1 × · · · × Tn, and

g a real valued function on S. Suppose that for any -
∆

the corresponding NM utility function u

has constant coefficient of absolute risk aversion when measured with respect to g if and only if all

factors Ti are utility independent. Then g is a Debreu value function.

Proof. By assumption there exists a Debreu value function v for S with v =
∑n

i=1 v
Ti . So, for the

NM utility function u = v, it holds that each Ti is utility independent. So, by assumption this u is

CARA in g. So, v is CARA in g. If it is linear there is nothing to prove. Otherwise,

v = α+ βeγg,(45)

for some α, β, γ.

Now consider another NM utility u = ev. By Theorem 8.1 under this utility function each Ti
is utility independent. Hence, by assumption, this u must also be CARA in g. But, by (45),

u = ev = eα+βeγg , which is not CARA in g. �

Proofs for Section 8.2.

Denote 〈x1, . . . , xk : p1, . . . , pk〉 the lottery obtaining value xi with probability pi, i = 1, . . . , k.

Recall that caraα is the function with Acaraα(x) = α for all x. For a function û over a real interval,

denote ĉeû(L) the certainty equivalent of the lottery L under the utility function û. We will be

using ĉeû(L) when considering the certainty equivalent in terms of the value function.

Lemma A.13. For α ≥ 0, x ≥ 0, β ≥ 1, p and q = 1− p,

ĉecaraα 〈0, βx : p, q〉 ≤ β · ĉecaraα 〈0, x : p, q〉

Proof. For α = 0, cara0 is a linear function, so

ĉecaraα 〈0, βx : p, q〉 = q · βx = β · ĉecaraα 〈0, x : p, q〉

For α > 0, caraα(x) = −e−α·x. Let γ be such that ĉecaraα 〈0, x : p, q〉 = γ · x; that is

p+ q · (−e−α·x) = −e−α·γx.

So,

p+ q · (−e−(α/β)·βx) = −e−(α/β)·γβx.

So,

ĉecaraα/β 〈0, βx : p, q〉 = γβx = β · ĉecaraα 〈0, x : p, q〉 .

But caraα is more risk averse than caraα/β (since β > 1). So

ĉecaraα 〈0, βx : p, q〉 < ĉecaraα/β 〈0, βx : p, q〉 = β · ĉecaraα 〈0, x : p, q〉 . �
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Theorem 8.3. If Aû2(x) ≥ Aû1(y) ≥ 0, for all x, y, then the following holds. Let I =
∏
i∈I Ti, for

some I ⊆ {1, . . . , n}, be such that

• -1 and -2 agree on the I, and

• vi2 is a concave expansion of vi1 for all i ∈ I.

Then, -
∆

2 is more risk averse than -
∆

1 on I.

Proof. Denote vIj =
∑

i∈I v
i
j , and v−Ij =

∑
i 6∈I v

i
j (j = 1, 2). Then, vI2 is a concave expansion of vI1 .

Let Lx = 〈x1, . . . , xk : p1, . . . , pk〉, Ly = 〈x1, . . . , xk−1, yk : p1, . . . , pk−1, pk〉 be two lotteries (over

I), with x1 ≺ x2 ≺ · · · ≺ xk and x1 ≺ yk - xk. We prove that for any b ∈ S−I

ce2(Ly, b) - ce1(Lx, b).(46)

The result then follows when setting Ly = Lx = L.

Let α be such that

Aû2(x) ≥ α ≥ Aû1(y)

for all x, y. By assumption such an α exists and α ≥ 0.

W.l.o.g. assume that v−I1 (b) = v−I2 (b) = 0. Then, for any z

v1(z, b) = vI1 (z),

and

v2(z, b) = vI2 (z).

The proof of (46) is by induction on k (the number of points in the support of L). For k = 1

there is nothing to prove. For k = 2, assume, w.l.o.g. that vI1 (x1) = vI2 (x1) = 0, and consider the

lotteries L = 〈x1, x : p, q〉 and Ly = 〈x1, y : p, q〉, x1 ≺ x and x1 - y - x.

Let β = vI2 (x)/vI1 (x). Since vI2 is an expansion, β ≥ 1. Then,

v2(ce2(Ly, b)) =ĉeû2

〈
0, vI2 (y) : p, q

〉
≤

ĉeû2

〈
0, vI2 (x) : p, q

〉
=

ĉeû2

〈
0, βvI1 (x) : p, q

〉
≤(47)

ĉecaraα

〈
0, βvI1 (x) : p, q

〉
≤

β · ĉecaraα

〈
0, vI1 (x) : p, q

〉
≤

β · ĉeû1

〈
0, vI1 (x) : p, q

〉
= β · v1(ce1(Lx, b)).

Since vI2 a concave with respect to vI1 :

v2(ce1(Lx, b))

v1(ce1(Lx, b))
≥ vI2 (x)

vI1 (x)
= β.

So, from (47),

v2(ce2(Ly, b)) ≤ β · v1(ce1(Lx, b)) ≤ v2(ce1(Lx, b)).
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So, since v2 and v1 agree on I ,

ce2(Ly, b) - ce1(Lx, b).

Now, for k > 2, let L+
x = 〈x2, . . . , xk : p′2, . . . , p

′
k〉, L+

y =
〈
x2, . . . , xk−1, yk : p′1, . . . , p

′
k−1, p

′
k

〉
, with

p′i = pi/(1− p1). Then, by the inductive hypothesis,

ce2(L+
y , b) - ce1(L+

x b).

Also,

(Lx, b)∼∆ 1(
〈
x1, ce1(L+

x ) : p1, (1− p1)
〉
, b).

and

(Ly, b)∼∆ 2(
〈
x1, ce2(L+

y ) : p1, (1− p1)
〉
, b).

So, again by the case k = 2,

ce2(Ly, b) - ce1(Lxb). �

Appendix B. Unbounded Lottery Sequences

Here we show why in Definition 1 one needs to require that the lottery sequence be bounded.

Suppose that the conditions of Section 4 hold. We show that if we allow for unbounded lottery se-

quences, then for any risk policy -
∆

= (-
∆ 1
,-

∆ 2
, . . .), there exists a lottery sequence that is ultimately

inferior to its repeated certainty equivalent.

Let vTi be the value function of Ti. W.l.o.g. suppose that Ti is already represented in terms of

vTi , that is vTi(ai) = ai for all ai ∈ Ti. Then, the certainty preferences -n are simply determined

by the sum of the coordinates.

Let un be a NM utility representing -
∆ n

. For each n, let bn be such that

2−n · un(0, . . . , 0, bn) +
(
1− 2−n

)
un(0, . . . , 0,−1) = un(0, . . . , 0).

Let Ln be the lottery obtaining the value bn with probability 2−n and the value −1 with probability

1− 2−n. Then, c1, c2, . . . , the repeated certainty equivalent of the lottery sequence L1, L2, . . ., has

cn = 0 for all n. However,
∞∑
n=1

Pr[`n > −1] =

∞∑
n=1

2−n <∞.

So, by the Borel Cantelli lemma

Pr[`n > −1 infinitely often] = 0.

So,

Pr[

n∑
i=1

`i < 0 from some n on] = 1,

and hence

Pr[

n∑
i=1

`i < 0 =

n∑
i=1

ci from some n on] = 1.
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So, L1, L2, . . . is ultimately inferior to c1, c2, . . ..
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