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Abstract

We consider an agent who represents uncertainty about her environment via a possibly

misspecified model. Each period, the agent takes an action, observes a consequence,

and uses Bayes’ rule to update her belief about the environment. This framework has

become increasingly popular in economics to study behavior driven by incorrect or biased

beliefs. Current literature has either characterized asymptotic behavior in general settings

under the assumption that the agent’s action converges (which sometimes does not) or

has established convergence of the action in specific applications. By noting that the

key element to predict the agent’s behavior is the frequency of her past actions, we are

able to characterize asymptotic behavior in general settings in terms of the solutions of

a generalization of a differential equation that describes the evolution of the frequency

of actions. Among other results, we provide a new interpretation of mixing in terms of

convergence of the frequency of actions, and we also show that convergent frequencies of

actions are not necessarily captured by previous Nash-like equilibrium concepts.
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1 Introduction

Any model is an approximation to the truth. Not surprisingly, a large statistics and economet-
rics literature studies how to tackle model misspecification. A more recent literature studies
models where the agents themselves, not just the econometrician, have misspecified models
of their environments. The world is complex and it is natural for economic agents to repre-
sent uncertainty about the world with parsimonious models that are likely to be misspecified.
Examples include:

* Several firms compete by setting prices, and their sales depend randomly on their own
and their competitors’ prices. Prices are not observed in this industry, and one of the largest
firms decides to ignore other firms’ prices and estimate a demand model where sales depend
only on its own price. (Arrow and Green (1973), Kirman (1975)).

* An instructor observes the initial performance of a student, decides to either praise or
criticize her, and then observes the student’s final performance. The two performances are
independent, but the instructor does not understand regression to the mean and believes that
the student’s improvement from one performance to the other depends on the decision to praise
or criticize the student. (Tversky and Kahneman (1973), Esponda and Pouzo (2016)).

* A seller thinks that she faces a constant-elasticity demand function, but does not know
this elasticity. In reality, the elasticity is not constant but is high for low prices and low for
high prices. (Nyarko (1991), Esponda and Pouzo (2016), Fudenberg, Romanyuk and Strack
(2017)).

* A person faces a nonlinear tax schedule where the marginal tax rate is increasing in
income. The person, however, behaves as if she were in a simpler world where she faces a
linear tax schedule with a constant marginal tax. (Sobel (1984), Liebman and Zeckhauser
(2004), Esponda and Pouzo (2016)).

* Performance pay increases productivity due to an incentive effect and a sorting (or selec-
tion) effect (Lazear (2000)). The sorting effect occurs over time and is due to higher turnover
for less productive workers and higher productivity of new hires. A firm learns how its current
workers respond to incentives but fails to account for the sorting effect. (Esponda (2008))

* A worker must decide how much work to delegate to a teammate. The expected output
of the team depends on the worker’s own ability, her teammate’s ability, and the extent of
delegation. The worker learns about her teammate’s ability from observations of output, but
this learning is biased by overconfident beliefs about her own ability. (Heidhues, Kőszegi and
Strack (2018))
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* A person wishing to improve his health considers abstaining from a food he likes. In
reality, the person’s choice and health are independent, but each of them separately have some
influence on some chemical in the blood. The person, however, inverts the causal link and be-
lieves that his decision affects the chemical reading, which in turn affects his health. (Spiegler
(2016))

In all of these examples, the agent processes information through the lens of a simple
model that misses some aspect of reality. The main question in the literature is what happens
to the agent’s behavior as time goes by and she uses feedback to update her belief about the
model’s primitives.1 The agent will of course never learn the true primitives, but one would
like to know if behavior will remain suboptimal, and, if so, what is the direction of the bias. An
appealing feature of these examples is that the direction of the bias is not ex ante obvious. The
agent’s behavior affects the feedback she observes. This feedback is processed via the agent’s
misspecified model, which leads to updated beliefs and subsequent changes in behavior, which
in turn lead to changes in beliefs, and so on.

The literature has developed several approaches to study the agent’s asymptotic belief and
behavior in the kinds of examples described above. Typically, progress has been made one
example at a time, and the main contribution of this paper is to develop tools that can be used
to characterize asymptotic behavior for a large class of environments. Before describing our
main contributions in more detail, we first describe the environment, previous results, and
existing challenges.

Time is discrete and there is a single, infinitely-lived agent who discounts the future and
must take an action in each period. The agent’s action potentially affects the distribution
of an observable variable, which we call a consequence. Her per-period payoff depends on
the agent’s action and the realized consequence. The true distribution over consequences as a
function of an action x∈X is given by Q(· | x)∈∆(Y), where Y is the set of consequences. The
agent, however, does not know Q. She has a parametric model of it, given by (Qθ (· | x))x∈X,
where parameter values, such as θ , belong to a parameter space Θ. The agent is Bayesian,
so she has a prior over Θ and updates her prior in each period after observing the realized
consequence. The agent’s model is misspecified if the support of her prior does not include

1There are at least three reasons why focusing on asymptotic behavior is interesting. First, there are many
instances where it is not surprising that people initially make incorrect decisions; the more interesting question
is what types of biases persist with experience. Second, systematic patterns tend to arise as time goes by, while
initial behavior tends to be more dependent on random draws. Finally, there is a long tradition in statistic and
economics focusing on asymptotic or equilibrium behavior, and so we can use existing tools as well as compare
our results to existing results in these literatures.
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the true distribution Q, and she is correctly specified otherwise.2

The literature has examined this type of problem from two complementary perspectives.
The first perspective focuses on charactering steady states, also known as equilibria.3 Esponda
and Pouzo (2016; henceforth EP2016) define a Berk-Nash equilibrium to be a probability
distribution over actions, σ ∈ ∆(X), with the property that there exists a belief over Θ such
that (i) any action in the support of σ is myopically optimal given the belief, meaning that
it maximizes the perceived expected per-period payoff, and (ii) any parameter value θ in the
support of the belief minimizes the Kullback-Leibler divergence (henceforth, KLD) between
the true distribution over action-consequence pairs and the parameterized distribution, where
these distributions in turn depend on σ .

EP2016 show that, if the agent’s action converges, then it converges to a pure (i.e., de-
generate) Berk-Nash equilibrium distribution. There are cases where such pure equilibria do
not exist, and so the agent’s action does not converge. A mixed-strategy (i.e., nondegenerate)
equilibria, however, always exists. To see how behavior might converge to a mixed strategy,
EP2016 add random perturbations to the agent’s payoff (as in Harsanyi (1973) and Fudenberg
and Kreps (1993)). With payoff perturbations, the agent’s behavior may be characterized by a
non-degenerate distribution over actions in each time period. EP2016 show that if the distri-
bution of actions converges to a non-degenerate distribution, then the convergent distribution
must be a mixed-strategy Berk-Nash equilibrium.4

While payoff perturbations are natural in many instances, a remaining question is what
happens in the many cases where the action does not converge and we do not assume the
existence of payoff perturbations. Our first contribution is to answer this question and to show
that we can still characterize important regularities in behavior. As a byproduct, we gain
additional insights about the nature of the concept of equilibrium as it is commonly applied in
economics.

Our approach deviates from existing literature by considering the main object of interest
to be the frequency of actions, not the actions themselves. So, even if the agent’s action does
not converge, it might be that the frequency of actions converges, thus providing a predictable
picture regarding steady-state behavior. We show that, if the frequency of actions happens

2The correctly-specified version of this environment was originally studied by Easley and Kiefer (1988) and
Aghion, Bolton, Harris and Jullien (1991).

3There are many examples of boundedly-rational equilibrium concepts that abstract away from the question
of dynamics and convergence, including Jehiel (1995, 2005), Osborne and Rubinstein (1998), Eyster and Rabin
(2005), Esponda (2008), Jehiel and Koessler (2008), and Spiegler (2016, 2017). 2017).

4EP2016 define Berk-Nash equilibrium for an environment with multiple agents; the appropriate comparison
for us is with respect to the special case of a single agent.
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to converge to some σ ∈ ∆(X), then for each action x in the support of σ there is a belief
µx over Θ such that the following conditions are satisfied: (i) x is an optimal action in the
dynamic optimization problem where the agent maximizes discounted expected utility with
current belief state µx, and (ii) any θ in the support of µx minimizes KLD as described earlier.
We call any σ satisfying these conditions an equilibrium.5

This notion of equilibrium differs from others notions, such as Nash equilibrium or its
generalization, Berk-Nash equilibrium, in two regards. First, each action may be supported by
a different belief. Second, optimality is defined with respect to the agent’s dynamic problem,
where the belief is a state variable that may change in the next period. The reason for these
features is that, under model misspecification, beliefs may not converge. So, even though the
frequency of actions may converge, different actions might be taken at different times and
under different beliefs. Also, since the agent anticipates that her belief might change in the
future, she chooses an action that is dynamically optimal in the sense of taking the continuation
value, with a possibly different belief, into account.

We next investigate conditions such that the two convenient properties that are standard in
most equilibrium concepts (unique supporting belief and myopic, not dynamic, optimality) do
indeed hold in our environment. We show that these two properties hold if the agent’s model
is weakly identified, which roughly means that the agent’s belief is uniquely determined for
actions in the support of the convergent frequency, but leaves open the possibility of multiple
beliefs for off-the-path actions. In other words, under weak identification, the appropriate
equilibrium concept for frequencies of actions is Berk-Nash equilibrium.

The perspective of focusing on steady states is attractive because the results hold very
generally and equilibrium analysis has a long tradition in economics. But steady-state analysis
alone cannot tell us if if the actions, or even their frequency, will converge or not. The second
perspective in the literature is to study asymptotic behavior, and not just steady states, to
determine if behavior converges or not. Success in this regard has been achieved in a few
specific applications, and even in these specific cases the focus has been on convergence (or
not) of actions, not frequencies.

Nyarko (1991) studies the example of a monopolist learning its demand function. The
monopolist chooses one of two prices and updates between two possible demand models, nei-
ther of which is the true model. Nyarko shows that the monopolist’s price does not converge.
Fudenberg, Romanyuk and Strack (2017) consider a more general model where the agent
has a finite number of actions but still updates between two possible models (i.e., Θ has two

5In the paper, we consider the more general case where the agent follows a policy that may not be optimal.
We focus on optimal policies in the introduction in order to contrast our work with previous literature.
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elements). They provide a full characterization of asymptotic actions and beliefs, including
cases where the action converges and cases where it does not. Their model is in continuous
time and they exploit the fact that the belief over Θ follows a single-dimensional stochastic
differential equation. Heidhues, Kőszegi and Strack (2018) study a model of an agent whose
overconfidence biases his learning of a fundamental that is relevant for determining the opti-
mal action. They are able to establish convergence by exploiting the monotone structure of
their environment.

Our second main contribution is to propose a method to study asymptotic behavior that
holds generally across environments and does away with many specific assumptions. Our key
point of departure, once again, is the focus on the evolution of the frequency of actions rather
than on actions alone or on the agent’s belief. The frequency of actions at time t + 1 can be
written recursively as a function of the frequency at time t plus some innovation term that
depends on the agent’s action at time t + 1. The action at time t + 1, however, depends on
the agent’s belief at time t, and one challenge is to be able to write this belief as a function
of frequencies of actions so as to make this recursion depend exclusively on frequencies, not
beliefs.

Extending results by Berk (1966) and EP2016, we show that eventually the posterior at
time t roughly concentrates on the set of parameter values that minimize KLD given the fre-
quency of actions up to time t. This result allows us to write the evolution of frequencies of
actions recursively as a function of the past frequency alone, excluding the belief. We then
apply techniques from stochastic approximation developed by Benaïm, Hofbauer and Sorin
(2005) to show that the continuous-time approximation of the frequency of actions can be
essentially characterized as a solution to a generalization of a differential equation.6 This ap-
proach can be applied to a wide range of problems, and we illustrate its value by revisiting
existing applications in the literature.7

Misspecified learning has also been studied in other types of environments. Rabin and
Vayanos (2010) study an environment where shocks are i.i.d. but agents believe them to be

6The type of differential equation is called a differential inclusion in the literature. It differs from a differential
equation in that there may be multiple derivatives at certain points and therefore multiple trajectories that solve the
equation. Multiplicity arises in our environment because there are certain beliefs at which the agent is indifferent
between different actions, and we need to keep track of what would happen to beliefs and subsequent actions if
the agent were to follow any one of these.

7Tools from stochastic approximation have been previously applied in economics, including the literature on
learning in games (e.g., Fudenberg and Kreps (1993), Benaim and Hirsch (1999), and Hofbauer and Sandholm
(2002)) and learning in macroeconomics (e.g., Sargent (1993)). Our approach is inspired by Fudenberg and
Kreps’s (1993) model of stochastic fictitious play. In that environment, the frequency of past actions exactly
represents the agents’ beliefs about other agents’ strategies. In our environment, we characterize beliefs to be a
function of the frequency of actions.
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autoregressive. Esponda and Pouzo (2017b) extend Berk-Nash equilibrium to Markov deci-
sion problems, where a state variable other than a belief affects continuation values. Molavi
(2018) studies a general-equilibrium framework that nests a large class of macroeconomic
models where agents learn with misspecified models. Finally, Bohren and Hauser (2018), and
Frick, Iijima and Ishii (2019) characterize asymptotic behavior in social learning environments
with model misspecification.8 The results from this paper should also be useful in these other
settings.

We present the model in Section 2, characterize asymptotic beliefs in Section 3, carry
out the analysis of steady states in Section 4, and provide a characterization of asymptotic
behavior in Section 5. We conclude in Section 6 by discussing directions for further research.

2 The environment

Objective environment. There is a single agent facing the following infinitely repeated prob-
lem. Each period t = 1,2, ..., the agent must choose an action from a finite set X. She then
receives a consequence according to the consequence function Q : X→ ∆(Y), where Y is the
set of consequences and ∆(Y) is the set of all (Borel) probability measures over it. Finally, the
payoff function π : X×Y→ R determines the agent’s current payoff. In particular, if xt ∈ X
is the agent’s choice at time t, then yt ∈ Y is drawn according to the probability measure
Q(· | x) ∈ ∆(Y), and the agent’s payoff at time t is π(xt ,yt).

Assumption 1. Y is a compact subset of Euclidean space, and, for all x ∈ X, the support of

Q(· | x) is contained in Y; (ii) There exists a Borel probability measure ν ∈ ∆(Y) such that, for

all x ∈ X, Q(·|x)� ν , i.e., Q(·|x) is absolutely continuous with respect to ν (an implication

is the existence of densities q(· | x) ∈ L1(Y,R,ν) such that
´

A q(y | x)ν(dy) = Q(A|x) for any

A⊆ Y Borel); (iii) For all x ∈ X, π(x, ·) ∈ L1(Y,R,Q(· | x)).9

Assumption 1 collects some standard technical conditions. It includes both the case where
the consequence is a continuous variable ( ν is the Lebesgue measure and q(· | x) is the density
function) and the case where it is discrete ( ν is the counting measure and q(· | x) is the
probability mass function).

In the special case in which the agent knows the primitives and wishes to maximize dis-
counted expected utility, she chooses an action in each period from the set of actions that

8See also Eyster and Rabin (2010), Bohren (2016), and Gagnon-Bartsch and Rabin (2017).
9As usual, Lp(Y,R,ν) denotes the space of all functions f : Y→ R such that

´
| f (y)|p ν(dy)< ∞.
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maximizes ˆ
Y

π(x,y)Q(dy | x) =
ˆ
Y

π(x,y)q(y|x)ν(dy).

We will study the case where the agent does not know the consequence function Q.

Subjective model. The agent is endowed with a family of consequence functions, QΘ =

{Qθ : θ ∈Θ}, where each Qθ : X→ ∆(Y) is indexed by a parameter value θ ∈Θ. We refer to
QΘ as the subjective model and say that it is correctly specified if Q ∈QΘ and misspecified

otherwise.

Assumption 2. (i) For all θ ∈ Θ and x ∈ X, Qθ (·|x)� ν , where ν is defined in A1 (an

implication is the existence of densities qθ (· | x) ∈ L1(Y,R,ν) such that
´

A qθ (y | x)ν(dy) =

Qθ (A|x) for any A ⊆ Y Borel); (ii) Θ is a compact subset of an Euclidean space and, for

all x ∈ X, θ 7→ qθ (· | x) is continuous Q(· | x)-a.s.; ; (iii) For all x ∈ X, there exists gx ∈
L2(Y,R,Q(· | x)) such that, for all θ ∈Θ, |ln(q(Y | x)/qθ (Y | x))| ≤ gx(y) a.s.-Q(· | x).

Assumption 2(i) guarantees the existence of a density function, and 2(ii) is a standard
parametric assumption on the subjective model. Assumption 2(iii) will be used to establish a
uniform law of large numbers. This condition also implies that, for all θ and x, the support of
Qθ (· | x) contains the support of Q(· | x); in particular, every observation can be generated by
the agent’s model.

Bayesian learning. The agent is Bayesian and starts with a prior µ0 over the parameter
space Θ. She observes past actions and consequences and uses this information to update her
belief about Θ in every period. The timing is as follows: At each time t, the agent holds some
belief µt . Given µt , she chooses an action xt . Then the consequence yt is drawn according
to Q(· | xt). The agent observes yt , receives an immediate payoff of π(xt ,yt), and updates
her belief to µt+1 = B(xt ,yt ,µt), where B is the Bayesian operator.10 The next assumption
guarantees that the prior has full support.

Assumption 3. µ0(A)> 0 for any A open and non-empty.

Policy and probability distribution over histories. A policy f is a function f : ∆(Θ)→ X
specifying the action f (µ) ∈ X that the agent takes at any moment in time in which her belief
is µ . A history is a sequence h = (x0,y0, ...,xt ,yt , ...) ∈ H ≡ (X×Y)∞. Together with the

10The Bayesian operator B : X×Y×∆(Θ)→ ∆(Θ) satisfies, for all A ⊆ Θ Borel, for any x ∈ X, and a.s.-
Q(· | x), B(x,y,µ)(A) =

´
A qθ (y | x)µ(dθ)/

´
Θ

qθ (y | x)µ(dθ).
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primitives of the problem, a policy f induces a probability distribution over the set of histories,
which we will denote by PPP f .11

Policy correspondence. It will be convenient to characterize behavior for a family of poli-
cies, and not just for a single policy function. For this purpose, we define a policy correspon-

dence to be a mapping F : ∆(Θ) ⇒ X, where F(µ) ⊆ X denotes the set of actions that the
agent might choose any time her belief is µ ∈ ∆(Θ). Let Sel(F) denote the set of all policies f

that constitute a selection from the correspondence F , i.e., with the property that f (µ)∈ F(µ)

for all µ .
An important special case is one where the agent maximizes discounted expected utility

with discount factor β ∈ [0,1). This problem can be cast recursively as

W (µ) = max
x∈X

ˆ
Y

{
π(x,y)+βW (µ ′)

}
Q̄µ(dy|x) (1)

where W : ∆(Θ)→ R is the (unique) solution to the Bellman equation (1), µ ′ = B(x,y,µ)

is the Bayesian posterior, and Q̄µ ≡
´

Θ
Qθ µ(dθ). In this case, the optimal correspondence,

which we will denote by Fβ , is such that Fβ (µ) is the set of actions that solve the optimization
problem in (1) given belief µ and discount factor β . An important, property of the optimal
correspondence Fβ is that it is upper hemicontinuous (henceforth, uhc). We will be explicit
in the statement of our results about any restrictions to the agent’s policy. In particular, our
main results will only require policies to be a selection from some uhc correspondence, not
necessarily the optimal one.

The object of interest. Our main objective is to study regularities in asymptotic behavior.
Previous work has focused on the sequence of actions. In cases where actions converge, pre-
vious work attempts to characterize the limiting action. But there are cases where actions do
not converge (e.g., Nyarko (1991)), and in those cases previous work has not much else to say
about asymptotic behavior. We make progress by studying the frequency of actions. We do
so for two reasons. First, from a practical perspective, even if actions do not converge, it is
possible for the frequency of actions to converge. Thus, studying frequencies can help uncover
additional regularities in behavior, with important implications regarding, for example, aver-
age payoffs. Second, as we will show, asymptotic beliefs depend crucially on the frequency
of actions. Because actions in turn depend on beliefs, future actions depend crucially on the

11Our results also hold if we allow for mixed actions, i.e., f mapping into ∆(X) instead of X. Not allowing
the agent to mix simplifies the exposition and also highlights that a mixed distribution may describe asymptotic
behavior even if the agent does not explicitly mix.
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frequency of past actions.
For every t, we define the frequency of actions at time t to be a function σt : H→ ∆(X)

defined such that, for all h ∈H and x ∈ X,

σt(h)(x) =
1
t

t

∑
τ=1

1(x)(xτ(h))

is the fraction of times that action x occurs in history h by time period t.

3 Characterization of asymptotic beliefs

In this section, we take as given the sequence of frequencies of actions, (σt)t , and we charac-
terize the agent’s asymptotic beliefs. In subsequent sections, we will use the characterization
of beliefs to characterize the sequence (σt)t , which is ultimately an endogenous object. The
key object in our characterization is the notion of Kullback-Leibler divergence.12

Definition 1. The Kullback-Leibler divergence (KLD) is a function K : Θ×∆(X)→R such
that, for any σ ∈ ∆(X) and θ ∈Θ,

K(θ ,σ) = ∑
x∈X

EQ(·|x) ln
(

q(Y | x)
qθ (Y | x)

)
σ(x)

= ∑
x∈X

ˆ
Y

ln
(

q(y | x)
qθ (y | x)

)
q(y | x)ν(dy)σ(x).

The set of closest parameter values given σ is the set Θ(σ) ≡ argminθ∈Θ K(θ ,σ) and
the minimized KLD given σ is K∗(σ)≡minθ∈Θ K(θ ,σ).

Lemma 1. Under Assumptions 1-2: (i) (θ ,σ) 7→ K(θ ,σ)−K∗(σ) is continuous; (ii) Θ(·) is

upper hemicontinuous (uhc), nonempty-, and compact-valued.

Proof. See Appendix A.1.

If the actions were drawn from an i.i.d. distribution σ ∈ ∆(X), we could directly ap-
ply Berk’s (1966) result to conclude that limt→∞ µt(Θ(σ)) = 1, i.e., the posterior eventually

12Formally, what we call KLD is the Kullback-Leibler divergence between the distributions q ·σ and qθ ·σ
defined over the space X×Y.
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concentrates on the set of closest parameter values given σ .13 EP2016 showed that Berk’s
conclusion extends even if actions are not i.i.d., provided that the distribution over actions at
time t converges to a distribution σ . This type of result is useful to characterize behavior un-
der the assumption that it stabilizes, but it is insufficient to determine whether or not behavior
stabilizes.

In the current section, we provide a characterization of beliefs that does not rely on the
assumption that behavior stabilizes. Roughly speaking, we will show that the distance between
the agent’s belief at time t, µt , and the set of probability measures with support in Θ(σt) goes
to zero as time goes to infinity, irrespective of whether or not (σt)t converges. We will establish
this result in several steps, which we now discuss informally and then address formally in the
proofs. First, we note that for any Borel set A ⊆ Θ, the posterior belief over A can be written
as

µt+1(A) =

´
A ∏

t
τ=1 qθ (yτ | xτ)µ0(dθ)´

Θ ∏
t
τ=1 qθ (yτ | xτ)µ0(dθ)

=

´
A e−tLt(θ)µ0(dθ)´
Θ

e−tLt(θ)µ0(dθ)
, (2)

where Lt(θ) ≡ t−1
∑

t
τ=1 ln q(yτ |xτ )

qθ (yτ |xτ )
is the sample average of the log-likelihood ratios, and

where we have omitted the history for simplicity. Naturally, we might expect the sample
average to converge to its expectation for each θ . The next result strengthens this intuition
and establishes that the difference between Lt(·) and K(·,σt) converges uniformly to zero as
t→ ∞.

Lemma 2. Under Assumptions 1-2, for any policy f , limt→∞ supθ∈Θ |Lt(θ)−K(θ ,σt)| = 0
P f -a.s.

Proof. See Appendix A.2.

The next step is to replace Lt(·) in (2) with K(·,σt). By Lemma 2, for sufficiently large t,
we obtain

µt+1(A)≈
´

A e−tK(θ ,σt)µ0(dθ)´
Θ

e−tK(θ ,σt)µ0(dθ)
. (3)

As t → ∞, the posterior concentrates on parameter values where K(θ ,σt) is close to its min-
imized value, K∗(σt). This statement is seen most easily for the case where Θ has only two

13See also Bunke and Milhaud (1998).
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elements, θ1 and θ2. In this case, (3) becomes

µt+1(θ1)≈ 1/(1+
µ0(θ2)e−tK(θ2,σt)

µ0(θ1)e−tK(θ1,σt)
). (4)

Suppose, for example, that (σt)t converges to σ and that KLD is minimized at θ1 given σ .
Then there exists ε > 0 such that, for all sufficiently large t, K(θ2,σt)−K(θ1,σt) > ε . It
follows from (4) that µt+1(θ1) converges to 1, so the posterior concentrates on the parameter
value that minimizes KLD given σ . When (σt)t does not converge, however, we have to
account for the possibility that K(θ2,σt)−K(θ1,σt)> 0 for all t but K(θ2,σt)−K(θ1,σt)→ 0
as t → 0. In this case, we cannot say that the posterior eventually puts probability 1 on θ1,
even though θ1 always minimizes KLD. This is why the next result says that the posterior
concentrates on parameter values where K(θ ,σt) is close to its minimized value, K∗(σt), as
opposed to saying that the posterior asymptotically concentrates on the minimizers of KLD
given σt .14 We now state the result formally and provide a proof.

Theorem 1. Under Assumptions 1-3, for any policy f ,

lim
t→∞

ˆ
Θ

(K(θ ,σt)−K∗(σt))µt+1(dθ) = 0 P f -a.s. (5)

Proof. Fix a history h such that the condition of uniform convergence in Lemma 2 holds, and
note that the set of histories with this property has probability one (henceforth, we omit the
history from the notation). In particular, for all η > 0, there exists tη such that, for all t ≥ tη ,

|Lt(θ)−K(θ ,σt)|< η (6)

for all θ ∈Θ.
Let K̄(θ ,σ) ≡ K(θ ,σ)−K∗(σ). Fix any ε > 0. We can use (2) and the fact that 0 ≤

14Formally, what we are saying is that it is not generally true that limt→∞

´
Θ

infθ ′∈Θ(σt ) ‖θ −θ ′‖µt+1(dθ) = 0.
This type of statement is true in Berk’s iid setup and, as the previous discussion suggests, it is also true in our
environment under the additional assumption that (σt)t converges (see below for Corollary 1).
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K∗(σ)< ∞ for all σ (Lemma 1) to obtain

ˆ
K̄(θ ,σt)µt+1(dθ) =

´
Θ

K̄(θ ,σt)e−tLt(θ)µ0(dθ)´
Θ

e−tLt(θ)µ0(dθ)

=

´
Θ

K̄(θ ,σt)e−t(Lt(θ)−K∗(σt))µ0(dθ)´
Θ

e−t(Lt(θ)−K∗(σt))µ0(dθ)

≤ ε +

´
{θ :K̄(θ ,σt)≥ε} K̄(θ ,σt)e−t(Lt(θ)−K∗(σt))µ0(dθ)´
{θ :K̄(θ ,σt)≤ε/2} e−t(Lt(θ)−K∗(σt))µ0(dθ)

=: ε +
Aε

t
Bε

t
.

The proof concludes by showing that limt→∞ Aε
t /Bε

t = 0.
By (6), there exists tη such that, for all t ≥ tη ,

Aε
t

Bε
t
≤

´
{θ :K̄(θ ,σt)≥ε} K̄(θ ,σt)e−t(K̄(θ ,σt)−η)µ0(dθ)´
{θ :K̄(θ ,σt)≤ε/2} e−t(K̄(θ ,σt)+η)µ0(dθ)

= e2tη

´
{θ :K̄(θ ,σt)≥ε} K̄(θ ,σt)e−tK̄(θ ,σt)µ0(dθ)´
{θ :K̄(θ ,σt)≤ε/2} e−tK̄(θ ,σt)µ0(dθ)

.

Observe that the function x 7→ xexp{−tx} is decreasing for all x > 1/t. Thus, for any t ≥
max{tη ,1/ε} it follows that K̄(θ ,σt)e−tK̄(θ ,σt) ≤ εe−tε over {θ : K̄(θ ,σt)≥ ε}. Thus for all
t ≥max{tη ,1/ε},

Aε
t

Bε
t
≤ et2η e−tε/2

µ0 ({θ : K̄(θ ,σt)≤ ε/2})
. (7)

In Appendix A.3, we show that continuity of K̄ and compactness of ∆(X) imply that

κε ≡ inf
σ∈∆(X)

µ0 ({θ : K̄(θ ,σ)≤ ε/2})> 0 (8)

for all ε > 0. Thus, setting η = ε/8 > 0, (7) implies that, for all t ≥max{tη ,1/ε},

Aε
t

Bε
t
≤ e−tε/4

κε

,

which goes to zero as t→ ∞.

In Section 5, we use Theorem 1 to approximate the agent’s belief, µt , with the set of prob-
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ability measures with support in {θ ∈ Θ : K(θ ,σt)−K∗(σt)≤ δt}, where δt → 0. Therefore,
we will be able to study the asymptotic behavior of (σt)t via a stochastic difference equation
that only depends on σt and an approximation error, and not on µt .

We can also use Theorem 1 to obtain the following corollary, which says that Berk’s con-
clusion extends to the case where the frequency of actions converges. We will use this corol-
lary in the next section to characterize the set of steady states.

Corollary 1. Under Assumptions 1-3, for any policy f , if (σt)t converges to σ , then limk→∞ µt(Θ(σ))=

1 P f -a.s.

Proof. See Appendix A.4.

4 Analysis of steady states

In this section, we characterize limiting behavior under the assumption that the sequence of
frequencies of actions, (σt)t , converges to some probability distribution σ ∈ ∆(X). This type
of inquiry has a long tradition in economics, where the focus is often on characterizing steady-
state behavior (often referred to as equilibrium behavior), abstracting away from the dynamics
that may (or not) lead to such behavior.

The following theorem characterizes steady-state behavior.

Theorem 2. Suppose that Assumptions 1-3 hold and let F be an uhc policy correspondence.

For any policy f ∈ Sel(F), the following holds P f -a.s.: If (σt)t converges to σ , then

σ ∈ ΓF(σ), (9)

where ΓF(σ)≡ ∆
(
∪µ∈∆(Θ(σ))F(µ)

)
.

For concreteness, we refer to any distribution that satisfies expression (9) as an equilib-
rium for policy correspondence F . It is convenient to express the fixed-point property in (9)
in the following equivalent way (the proof is straightforward; hence, omitted).

Proposition 1. σ is an equilibrium if and only if for all x such that σ(x) > 0, there exists

µx ∈ ∆(Θ(σ)) such that x ∈ F(µx).

13



Proof of Theorem 2. We omit the history h in the notation. Suppose that x is such that
σ(x) > 0. Since σt converges to σ , then x occurs infinitely often along the history, and so
we can find a subsequence along which x occurs along the entire subsequence: xt( j) = x for
all j. By compactness of ∆(Θ), we can take a further subsequence t( j(k)) such that µx =

limk→∞µt( j(k)) exists. Corollary 1 and the assumption that (σt)t converges to σ imply that
µx ∈ ∆(Θ(σ)). By definition of policy f , the action x = f (µt( j(k))) ∈ F(µt( j(k))) for all k.
Finally, the assumption that F is uhc and the fact that µt( j(k)) → µx imply that x ∈ F(µx).
Therefore, we have established the claim that, for all x such that σ(x) > 0, there exists µx ∈
∆(Θ(σ)) such that x ∈ F(µx). By Proposition 1, this claim implies σ ∈ ∆

(
∪µ∈∆(Θ(σ))F(µ)

)
.

�

By showing that σ 7→ ΓF(σ) satisfies the conditions of Kakutani’s fixed-point theorem,
we can establish that equilibrium always exists for any uhc policy correspondence F .

Proposition 2. Under Assumptions 1-2, an equilibrium exists for any uhc policy correspon-

dence F.

Proof. See the Appendix A.5.

One feature of Theorem 2 that may appear surprising is that it allows each action in the
support of an equilibrium to be justified by a different belief. This feature is absent from
previous analyses of equilibrium in the types of environments that we study.15 Adopting
Fudenberg and Levine’s (1993) terminology from a different context, we call σ a unitary
equilibrium for policy correspondence F if there exists µ ∈ ∆(Θ(σ)) such that, for all x such
that σ(x)> 0, x ∈ F(µ). A unitary equilibrium is therefore an equilibrium where every action
in the support is justified by the same belief.

The next example shows why it is important to allow for non-unitary equilibria.

Example 1. Setup. The agent faces a matching problem. There are two states, A and
B, two actions, xA and xB, and the objective of the agent is to match the action with the
state. The payoff is 1 from a successful match (either xA in state A or xB in state B) and
zero from an unsuccessful match, and the agent does not know which state will realize before
making a choice. There is also safe action, xS, that yields a payoff of .55 irrespective of the
state. Importantly, the realized state is observed after the agent chooses xA or xB, but it is

15As formalized by Fudenberg and Levine (1993), this feature may be present in a type of environment,
different from the one in this paper, where there is a population of agents in the role of one player, and different
agents may have different experiences (hence, beliefs) about other players.
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not observed if the agent chooses xS. Thus, the set of actions is X = {xA,xB,xS} and the set
of (observable) consequences is Y = {A,B,♦}, where ♦ stands for the case where the agent
chooses xS and does not observe the state; i.e., Q(♦ | xS) = 1. Also, the payoffs that represent
this problem are π(xA,A) = π(xB,B) = 1, π(xA,B) = π(xB,A) = 0, and π(xS,♦) = .55.16

The agent knows the structure for the problem, except that she does not know the prob-
ability distribution over the states {A,B}. The agent believes that she has no control over
the state, and so her model is given by Qθ (B | xA) = Qθ (B | xB) = θ . We assume that
θ ∈ Θ = {1/4,3/4}, so that the agent believes that the probability of y = B is either 1/4
or 3/4. We will later consider the case with more than two models of the world. Let µ ∈ [0,1]
denote the agent’s subjective probability that θ = 3/4.

For simplicity, we assume that the agent follows a policy that is myopically optimal given
her model of the world. In his case, the agent’s policy is F0(µ) = {xA} if µ < .4, F0(µ) = {xS}
if µ ∈ (.4, .6), F0(µ) = {xB} if µ > .6, with the agent being indifferent between {xA,xS} at
µ = .4 and between {xS,xB} at µ = .6. The example easily extends to the case of a more
patient agent.

The reality is a bit more complicated, because, in fact, the agent does affect the state with
her action. In particular, we assume that Q(A | xB) = Q(B | xA) = 1, meaning that action xB

leads to y = A for sure and action xA leads to y = B for sure. If the agent were aware of these
facts, she would obviously prefer to choose xS.

Equilibrium. We use Theorem 2 to solve for the set of equilibria. The first step is to find
the set of closest parameter values Θ(σ) for all σ = (σ(xA),σ(xB),σ(xS)). The KLD function
is

K(θ ,σ) = σ(xA) ln
1
θ
+σ(xB) ln

1
1−θ

+σ(xS) ln
1
1
. (10)

Since K(1/4,σ)< (=)> K(3/4,σ) for σ(xA)< (=)> σ(xB), it follows that

Θ(σ) =


{1/4} if σ(xA)< σ(xB)

{1/4,3/4} if σ(xA) = σ(xB)

{3/4} if σ(xA)> σ(xB)

.

We now apply the characterization of equilibrium from Proposition 1. Consider first the
case σ(xA)< σ(xB). If this case occurred in equilibrium, then Proposition 1 says that, because
xB is in the support of σ , there must exist µxB ∈ ∆(Θ(σ)) such that xB ∈ F0(µxB). In this

16The payoffs π(xA,♦), π(xB,♦), π(xS,A), π(xS,B) do not need to be specified because we will shortly
assume that the agent believes that these action-consequence pairs have zero probability.
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case, Θ(σ) = {1/4}, and, therefore µ = 0 is the only belief in ∆(Θ(σ)); recall that µ is
the probability that θ = 3/4. Under the belief µ = 0, however, xB /∈ F0(0) = {xA}, and so
we cannot have σ(xA) < σ(xB) in equilibrium. A similar argument shows we cannot have
σ(xA)> σ(xB) in equilibrium, since then Θ(σ) = {3/4}, µ = 1, but xA /∈ F0(1) = {xB}.

Finally, consider the case σ(xA) = σ(xB). In this case, Θ(σ) = {1/4,3/4}, and so any
belief µ ∈ [0,1] is possible. In particular, there exists a belief (any in the interval [.4, .6])
that makes xS optimal, and so σ(xS) = 1 is an equilibrium. This equilibrium corresponds
to the case where the agent settles down for the safe alternative and stops (or never begins)
experimentation with the risky actions. If we restrict attention to unitary equilibria, then this
is the only one, because there is no belief that makes the agent indifferent between xA and xB,
and, therefore, we cannot have σ(xA) = σ(xB) > 0 in a unitary equilibrium. But there is in
fact a continuum of non-unitary equilibria with σ(xA) = σ(xB) ∈ (0,1): In particular, we can
choose µxA ≤ .4, µxB ≥ .6, and .4≤ µxS ≤ .6 to support actions xA, xB, and xS, respectively.

Dynamics. Let ρ be the ratio of priors for θ = 3/4 vs. θ = 1/4. Let Rt denote the ratio
of posteriors at time t. Bayes’ rule implies that Rt+1 = 3Rt if yt = 1, Rt+1 = (1/3)Rt if yt = 0,
and Rt+1 = Rt if yt = ♦. Also, using the fact that µt = Rt/(1+Rt), it follows that the agent
chooses xA if Rt < 2/3, xS if Rt ∈ (2/3,3/2), and xB if Rt > 3/2.

If the prior satisfies the case where 2/3 < ρ < 3/2, the agent chooses xS in the first period
and forever after. Suppose instead that ρ < 2/3 (we omit the analogous case ρ > 3/2). The
agent then chooses xA in the first period. Because feedback is deterministic, the agent observes
y1 = 1 for sure. Therefore, the ratio increases from R0 = ρ to R1 = 3R0. If R1 remains below
2/3, the situation repeats itself. The process continues until the ratio of posteriors surpasses
2/3. There are two possibilities: Either the ratio falls in the interval (2/3,3/2) and the agent
chooses xS forever after, or the ratio jumps above 3/2. The first case occurs if the ratio of
priors, ρ , is such that ρ3t̂ ∈ (2/3,3/2) for some t̂ and the second case occurs if no such t̂ exists.
Clearly, there are values of ρ such that the second case occurs.17 In this second case, the ratio
of posteriors jumps above 3/2. Subsequently, the agent takes action xB, observes y = 0, and
the ratio of posteriors goes back to the level of the previous period, before the jump, where it is
below 2/3 and the agent chooses xA. The situation repeats itself indefinitely, and so the actions
cycle deterministically and the frequency of actions converges to σ(xA) = σ(xB) = 1/2.

By the previous discussion, the frequency of actions either converges to σ(xS) = 1 or it
converges to σ(xA) = σ(xB) = 1/2; moreover, we can tell which is the case from knowledge
of the ratio of priors, ρ . The latter of these two equilibria, however, is not unitary. Thus, in

17To see this claim, note that if the ratio of posteriors is at the boundary 2/3 and the agent chooses x0, then the
ratio would jump to 3(2/3) = 2 > 3/2.
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this example, it is inappropriate to restrict attention to unitary equilibria if one cares about
characterizing steady states.18 �

4.1 Optimal policy and comparison to previous results

Theorem 2 differs from the typical characterization of equilibrium or steady state in the lit-
erature in three aspects. The first difference is technically trivial but expands the range of
applications in a way that is currently unexplored: We do not necessarily assume that the
agent follows an optimal policy, thus allowing for heuristics or other type of suboptimal be-
havior. Typically, however, equilibrium concepts require optimality, and so in this section we
study the special case of our environment where the agent is assumed to follow an optimal
policy (defined in Section 2 and denoted by Fβ , where β is the discount factor). Theorem 2 is
applicable to this special case because Fβ is uhc.

Even after restricting Theorem 2 to apply to optimal policies, there remain two important
differences with other equilibrium concepts. The first difference is that, in contrast to the
definitions of Nash and Berk-Nash equilibrium, non-unitary equilibria are not ruled out by
Theorem 2. The reason is that previous work has focused on environments where the unitary
restriction is indeed appropriate.

There are two known situations where the unitary restriction is appropriate. The first case
is one where the action itself converges. In this case, the equilibrium distribution is degener-
ate and, trivially, equilibrium is unitary. In other words, the unitary restriction only has bite
for mixed-strategy equilibria. As pointed out by Fudenberg and Kreps (1993) in the context
of Nash equilibria, play is unlikely to converge to mixed strategy equilibria in the standard
model, but such convergence is reasonable when the agents’ payoffs are randomly perturbed.
With perturbations, one can study the sequence of distributions over actions, and the limit of
this sequence may be interpreted as a mixed equilibrium; this approach is also followed by
EP2016 to justify mixed-strategy Berk-Nash equilibrium. The second case where the unitary
restriction is appropriate is one where payoffs are randomly perturbed and the resulting distri-
bution over actions converges to a mixed (i.e., nondegenerate) distribution. The reason is that,
far enough into the future, every action in the support of the convergent distribution is played

18Of course, the agent is being a bit too silly in this example. Because feedback is deterministic, she always
keeps getting bad outcomes, but perpetually expects to get good outcomes in the future, and, in addition, her
behavior cycles in a deterministic manner. We chose this extreme example with deterministic feedback to make
our point because it is straightforward to solve for the dynamics. The example generalizes to random realizations
of y, in which the cyclical behavior of the agent also becomes random. See Chapter 8 in Fudenberg and Levine
(1998) for further discussion about an agent’s ability to detect (or not) random or deterministic cycles in behavior.
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with positive probability at each point in time. Thus, there is a common belief that justifies all
these actions at each of these points in time.

In our environment, we allow for the possibility that the actions (or distributions over
actions if we were to include payoff perturbations) do not converge, and so we must allow
for non-unitary equilibria. The convenience and ubiquity of the unitary restriction, however,
raises the question of finding general conditions under which all equilibria are unitary in our
environment.

The other important difference is that, in order to apply Theorem 2, one needs to find the
optimal correspondence Fβ . When the agent is nonmyopic, i.e., β > 0, finding this correspon-
dence requires solving a dynamic optimization problem that is often nontrivial. In contrast,
equilibrium concepts in the literature, such as Nash or Berk-Nash, define optimality with re-
spect to a myopic problem; in our case, this would be the correspondence F0. The property of
myopic optimality is very convenient because it entails solving a simpler optimization prob-
lem. This issue raises the question of the existence of some general condition (other than
simply assuming that the agent is myopic, as is often done in the literature) under which we
can replace the optimality condition with the simpler condition of myopic optimality.

Our next result speaks to both of the previous issues. We establish that, under a specific
identification condition, equilibria corresponding to the optimal policy are unitary and can
also be conveniently characterized with respect to myopic optimality.

Definition 2. The subjective model is weakly identified given σ ∈ ∆(X) if θ ,θ ′ ∈ Θ(σ)

implies that Qθ (· | x) = Qθ ′(· | x) for all x such that σ(x)> 0.

The definition of weak identification was introduced by EP2016. It says that the belief is
uniquely determined along the equilibrium path, but leaves open the possibility of multiple
beliefs for actions that are not in the support of σ . Weak identification is immediately satisfied
if the agent’s model is correctly specified, but it is also satisfied in many of the applications of
misspecified learning in the literature; see EP2016 for further discussion.

Proposition 3. Let Fβ be the optimal policy correspondence with discount factor β ∈ [0,1)
and let σ be an equilibrium for policy correspondence Fβ , i.e., σ ∈ ∆

(
∪µ∈∆(Θ(σ))Fβ (µ)

)
. If

the subjective model is weakly identified given σ , then

σ ∈ ∪µ∈∆(Θ(σ))∆(F0(µ)), (11)
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i.e., there exists µ ∈ ∆(Θ(σ)) such that, for all x such that σ(x)> 0, x ∈ F0(µ).19

Proof. See the Appendix A.6.

EP2016 call a point satisfying equation (11) a Berk-Nash equilibrium. They show that, if
the sequence of distributions over actions converges, then it converges to a Berk-Nash equi-
librium. In our environment there is no motive for mixing, so convergence of the sequences of
distributions over actions implies that the sequence of actions must converge. Theorem 2 and
Proposition 3 strengthen their conclusion by showing that, under weak identification, even
though the sequence of actions may not converge, if the sequence of frequencies of actions
converges, then it converges to a Berk-Nash equilibrium.

The intuition behind Proposition 3 is as follows. First, weak identification implies that
actions in the support of a limit frequency σ do not provide any new information about the pa-
rameter space. By the convexity of the value function and the martingale property of Bayesian
beliefs, the value of experimenting with an off-equilibrium action is nonnegative. Therefore,
if an action x in the support of σ is better than an action x′ in the problem where β > 0 (so
that the value of experimentation provided by x′ is taken into account), then x must be better
than x′ in the myopic problem where β = 0 (so that the potential informational value of x′ is
not taken into account).20

Second, because optimization reduces to myopic optimization, the distribution over conse-
quences is sufficient to evaluate the optimality of an action. By weak identification, for every
action in the support of an equilibrium σ , the distribution over consequences conditional on
that action is the same for all beliefs in ∆(Θ(σ)). Therefore, we can take a single belief to
justify all actions in the support of σ .

Example 1, modified. The subjective model in this example is not weakly identified given
σ satisfying σ(xA) = σ(xB), since in this case Θ(σ) = {1/4,3/4}, and these two parameter
values imply different distributions over consequences: Q1/4(1 | x) = 1/4 6= 3/4 = Q3/4(1 | x)
for x ∈ {xA,xB}.

Consider next a modified example, where Θ= [1/4,3/4] now includes all parameter values
in between 1/4 and 3/4. The KLD function is the same as before (see equation (10)), but its

19Recall that, by definition, F0(µ) = argmaxx∈X EQ̄µ (·|x) [π(x,Y )].
20This argument was previously made in the online appendix of EP2016 for the case of nonmyopic agents.
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minimization now yields

Θ(σ) =


{1/4} if σ(xA)/(σ(xA)+σ(xB))≤ 1/4

{σ(xA)/(σ(xA)+σ(xB))} if σ(xA)/(σ(xA)+σ(xB))∈ (1/4,3/4)

{3/4} if σ(xA)/(σ(xA)+σ(xB))≥ 3/4

provided that σ(xA)+σ(xB)> 0, and Θ(σ) = Θ otherwise. In particular, the subjective model
is now weakly identified: There is a singleton minimizer in all cases except σ(xS) = 1, and,
in that case, all parameter values in Θ yield the same distribution over consequences given xS,
mainly the consequence that nothing is observed. Theorem 2 and Proposition 3 imply that we
can restrict attention to unitary equilibria.

Consider first the case σ(xA) + σ(xB) > 0. As shown above, the belief in this case is
degenerate, and we denote by δθ the Dirac measure on θ . Optimality implies that

F0(δθ ) =


{xA} ifθ < .45

{xS} if .45 < θ < .55.

{xB} ifθ > .55

We also have F0(δθ ) = {xA,xS} if θ = .45 and F0(δθ ) = {xS,xB} if θ = .55. In particular,
there is no belief under which both xA and xB are optimal, and so the only possible equilibria
are the two pure ones, σ(xA) = 1 and σ(xA) = 1. But we can rule out both of these cases: If
σ(xA) = 1, then Θ(σ) = {3/4}, but xA /∈ F0(δ3/4); similarly, we can rule out σ(xB) = 1 in
equilibrium.

Finally, consider the case σ(xS) = 1. In this case, Θ(σ) = Θ and, in particular, there exists
a belief with support in Θ (e.g., δθ , for any .45≤ θ ≤ .55) that makes xS optimal. Thus, there
is only one equilibrium and it satisfies σ(xS) = 1.

This analysis shows that, when the set of parameter values is enlarged to Θ = [1/3,3/4],
there is a unique equilibrium, and it involves always choosing the safe action. In particular,
there is no longer an equilibrium where actions xA and xB are taken. In addition, Proposition 3
implies that σ(xS) = 1 is also the unique equilibrium for any discount factor β > 0, a statement
that is not a priori obvious. �
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5 Characterization of asymptotic outcomes

In this section, we propose a method to study the asymptotic behavior of the frequencies of
actions, and not just steady states. Among other benefits, one can use the method to determine
if behavior converges or not. The key departure from previous approaches in the literature
is to focus on the evolution of frequencies of actions. Using the characterization of beliefs
in Theorem 1, we write this evolution as a stochastic difference equation expressed exclu-
sively in terms of the frequencies of actions. We then use tools from stochastic approximation
developed by Benaïm, Hofbauer and Sorin (2005) (henceforth, BHS2015) to characterize the
solutions of this difference equation in terms of the solution to a generalization of a differential
equation. In Section 5.2, we apply our method to two common environments in the literature.

5.1 Characterization of asymptotic frequencies

We first provide a heuristic description of our approach. The sequence of frequencies of
actions, (σt)t , can be written recursively as follows:

σt+1 = σt +
1

t +1
(1(xt+1)−σt) , (12)

where 1(xt+1) = (1x(xt+1))x∈X and 1x(xt+1) is the indicator function that takes the value 1 if
xt+1 = x and 0 otherwise.

By adding and subtracting the conditional expectation of 1(xt+1) (i.e., the probability that
each action is played at time t +1 given the belief at time t +1), we obtain

σt+1 = σt +
1

t +1
(E [1(xt+1) | µt+1]−σt)+

1
t +1

(1(xt+1)−E [1(xt+1) | µt+1]) . (13)

The last term in equation (13) is a Martingale difference sequence and essentially adds a
noise term to the equation that can be controlled asymptotically. This is true for the general
case where we allow the agent to play a mixed action for a given belief. In our case, we have
simplified matters and do not allow the agent to randomize among actions, and so this third
term is exactly equal to zero.

The reason it is hard to characterize (σt)t using (13) is that its evolution depends on the
agent’s belief. If we could somehow write the belief µt+1 as a function of σt , then we would
have a recursion where σt+1 depends only on σt . This is where Theorem 1 from Section 3 is
useful. This theorem will allow us to approximate µt+1 with a set of probability measures that
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depends on σt .
The ultimate objective is not really to approximate µt+1 but rather the conditional expec-

tation E [1(xt+1) | µt+1] in equation (13). The conditional expectation, however, is typically
discontinuous in the belief (this is particularly so for a belief under which the agent is in-
different between two actions). Thus, replacing µt+1 with a good approximation does not
necessarily yield a good approximation for the conditional expectation. There are two ways to
tackle this discontinuity issue. One way is to replace µ 7→ E [111(xt+1) | µ] with a smooth, con-
tinuous version, that is very close to the original conditional expectation. This approach comes
at the cost of having to approximate the agent’s behavior.21 An alternative approach, that we
follow in this paper, is to replace the function µ 7→ E [111(xt+1) | µ] with a correspondence that
contains this function and is well behaved.

To see how this approach works, note that E[111(xt+1) | µ] ∈ ∆(F(µ)) for all µ . Therefore,
we can view equation (13) as a particular case of the following stochastic difference inclusion:

σt+1 = σt +
1

t +1
(rt+1−σt)+

1
t +1

ξt+1, (14)

where rt+1 ∈ ∆(F(µt+1)) and Ert+1[ξt+1] = 0. It is called a difference inclusion because rt+1

can take multiple values.22 Importantly, we use Theorem 1 to approximate µt+1 with the set
of probability measures µ satisfying

´
Θ
(K(θ ,σt)−K∗(σt))µ(dθ) ≤ δt , where δt → 0 is a

vanishing approximation error. In particular, if the error were exactly zero, the set would be
equal to ∆(Θ(σt)). More generally, the difference equation (14) can be written entirely in
terms of (σt)t and approximation errors.

A key insight from the theory of stochastic approximation is that, in order to characterize
a discrete-time process such as (σt)t , it is is convenient to work with its continuous-time
interpolation. Because of the multiplicity inherent in equation (14), we apply the specific
methods developed by BHS2015, who extend Benaim’s (1996) ordinary-differential equation
method to the case of differential inclusions.23

Set τ0 = 0 and τt = ∑
t
i=1 1/i for t ≥ 1. The continuous-time interpolation of (σt)t is the

21The arguments below can be easily modified to handle this continuous case. The relevant object in the analog
of Theorem 3 would be a differential equation, and not a differential inclusion.

22As explained earlier, in the case where the agent is not allowed to mix, ξt+1 = 0 for all t.
23See Borkar (2009) for a textbook treatment of the ordinary-differential equation method in stochastic ap-

proximation.
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function w : R+→ ∆(X) defined as

w(τt + s) = σt + s
σt+1−σt

τt+1− τt
, s ∈ [0,

1
t +1

). (15)

Figure X illustrates this simple interpolation for a specific value of x ∈ X. A convenient
property of the interpolation is that it preserves the accumulation points of the discrete process.

Equations (14) and (14) can be combined to show that the derivate of w with respect to
(a re-indexing of) time, which we denote by ẇ, is approximately given by rt+1−σt . As ar-
gued earlier, rt+1 belongs to a set that depends on σt and an approximation error, and this set
is equal to ∆(F(Θ(σt))). Thus, the derivate is roughly equal to ΓF(σt) ≡ ∆(F(Θ(σt)))−σt .
The next step is to replace σt in this last expression by its interpolation w(t). This replacement
adds yet another vanishing approximation error, and we therefore obtain, ignoring the approx-
imation error, that ẇ(t) ∈ ∆(F(Θ(w(t))))−w(t). Thus, we can show that the continuous-time
interpolation of (σt)t is well approximated by solutions of the following differential inclusion:

σ̇σσ(t) ∈ ΓF(σσσ(t))−σσσ(t). (16)

Formally, a solution to the differential inclusion (16) over an interval [0,T ] with initial point
σ ∈ ∆(X) is an absolutely continuous mapping σσσ : [0,T ]→ ∆(X) such that σσσ(0) = σ and (16)
is satisfied for almost every t ∈ [0,T ]. Let ST

σ denote the set of solutions to (16) over [0,T ]
with initial point σ . The assumption that F is uhc implies that, for every initial point, there
exists a (possibly nonunique) solution to (16); see, e.g., Aubin and Cellina (2012).

We now state the main result.

Theorem 3. Suppose that Assumptions 1-3 hold and let F be an uhc policy correspondence.

For any policy f ∈ Sel(F), the following holds P f -a.s.: For all T > 0,

lim
t→∞

inf
σσσ∈ST

w(t)

sup
0≤s≤T

‖w(t + s)−σσσ(s)‖= 0. (17)

Proof. See Appendix A.7.

Theorem 3 says that, for any T > 0, the curve w(t + ·) : [0,T ]→ ∆(X) defined by the
continuous-time interpolation of (σt)t approximates some solution to the differential inclusion
(16) with initial condition w(t) over the interval [0,T ] with arbitrary accuracy for sufficiently
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large t. This result is convenient because it allows us to characterize asymptotic properties of
(σt)t by solving the differential inclusion in (16).

BHS2005 refer to a function w satisfying (17) as an asymptotic pseudotrajectory of the
differential inclusion. For many practical applications (including the examples we study in
this paper), Theorem 3 implies that we can find the limit points of (σt)t by studying the
limits of the trajectories that solve the differential inclusion (16). This is not true in all cases,
as originally explained by Benaim (1996). Indeed, BHS2005 show that the limit set of a
(bounded) asymptotic pseudotrajectory is internally chain transitive (this is an extension of
Benaim’s original result for the special case of differential equations). Thus, a corollary of
Theorem 3 is that the frequency of actions converges almost surely to an internally chain
transitive set of the differential inclusion. For many examples in economics, it is not necessary
to go to this further characterization, and so we refer the reader to BHS2005 for this more
refined characterization and the definition of an internally chain transitive set, as well as for
additional implications of Theorem 3.

5.2 Applications

Theorem 3 can be applied to any model of misspecified learning that fits our environment.
For concreteness, we now show how to apply this theorem to two classes of environments
considered in the literature. It is convenient to divide these environments into what we will
call environments with negative or positive reinforcement.

5.2.1 Negative reinforcement

In one class of problems, when the agent takes an action, then the agent’s resulting belief (as
computed by minimizing KLD conditional on the action taken) is such that the agent prefers
to take a different action. We say that such an action is negatively reinforcing. Nyarko (1991)
considers a monopolist who views one of two possible demand models to be true (i.e., Θ

contains two elements), but neither of these models is the correct model. He shows that prices
do not converge. Fudenberg, Romanyuk, and Strack (2017; henceforth FRS2017) study a
related problem and give the following story: A seller thinks that she faces a constant-elasticity
demand function, but does not know this elasticity. In reality, the elasticity is not constant but
is high for low prices and low for high prices. A seller who chooses low prices will estimate
a low elasticity. But then she will prefer to set a high price. Similarly, a seller who chooses
high prices will estimate a high elasticity, but the she will prefer to set a low price. Prices are
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therefore negatively reinforcing.
Formally, let xA and xB be two actions (say, low and high prices), and, let σ =(σ(xA),σ(xB))

denote a probability distribution over actions. Suppose that both actions are negatively rein-
forcing: for any belief with support in Θ((1,0)) the optimal action is xB and for any belief with
support in Θ((0,1)) the optimal action is xA. While Nyarko and FRS2017 restrict attention to
the case where Θ has two elements, the following discussion holds for an arbitrary number of
elements.

To apply Theorem 3, we first write down the differential inclusion (16) for this example.
The first step is to find the mapping σ 7→ ΓF(σ) ≡ ∆(∪µ∈∆(Θ(σ))F(µ)). By the assumption
that the actions are negatively reinforcing, it follows that never choosing xB leads the agent to
want to do xB, i.e., ΓF((1,0)) = δxB , and, similarly, ΓF((0,1)) = δxA , where δx stands for the
Dirac measure on action x.

Suppose that σ∗ is the unique equilibrium, i.e., σ∗ ∈ ΓF(σ
∗). Figure X provides an ex-

ample. The assumption of a unique equilibrium is satisfied in the examples studied in the
literature, so we will make it here, but it would be straightforward to extend the discussion to
the case of multiple equilibria.

The negatively reinforcing and unique equilibrium properties capture the above monopoly
story as well as others.24 If the agent chooses xA, then her belief will be such that she will be
less confident that xA is best. Eventually, once the frequency of xA is above σ∗(xA), she will
believe that xB is best and will start doing xB. But this will bring the frequency of xA back
towards σ∗(xA). At the threshold σ∗, the agent has a belief that makes her indifferent between
xA and xB.

According to equation (16) and Figure X, σ̇σσ(xA) > 0 for σσσ(x0) < σ∗(x0) and σ̇σσ(x0) < 0
for σσσ(x0)> σ∗(x0). At σ∗, the derivate can take multiple values, because ∪µ∈∆(Θ(σ∗))F(µ) =

{x0,x1} and so Γ(σ∗) = ∆({x0,x1}), but this multiplicity is irrelevant for determining the limit
of solutions to the differential inclusion: For any initial condition, a solution converges to σ∗.
Therefore, by Theorem 3, the underlying frequency of actions, (σt)t , converges to σ∗, even
though the action itself does not converge.

Ours is the first result in the literature that shows explicit convergence of the frequency of
actions in a misspecified-learning problem. EP2016 (Online Appendix) considered Nyarko’s
example and obtained convergence to a mixed strategy by adding payoff perturbations and
considering very specific assumptions (e.g., normal distribution, specific functional forms,

24Negative reinforcement is also present in some of the examples in Spiegler (2016) as well as in the vot-
ing environments of Esponda and Pouzo (2017, 2019) and Esponda and Vespa (2018) and in the investment
environment of Jehiel (2018).
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etc.). The current analysis does away with payoff perturbations and also holds under very
general conditions (only negative reinforcement is needed; the uniqueness of the fixed point
σ∗ is used just for convenience in the exposition).

We now turn to an extension of Nyarko’s model introduced by FRS2017. They make two
assumptions that lend considerable tractability: Time is continuous, with the flow payoff being
the sum of an unknown drift plus a Brownian option, and the agent considers the unknown
drift to be one of two possible kinds, i.e., Θ = {θL,θH} has two elements. They show that
the belief can be characterized as a solution to a single-dimensional stochastic differential
equation, and they can rely on existing mathematical results regarding such equations. Single-
dimensionality is important here, and it follows from the assumption that Θ only has two
elements.

While FRS2017 consider all possible cases of their model, we will focus on the case where
the agent continues to have two negatively reinforcing actions but now also has a third, un-
informative action, that does not allow her to distinguish between the two possible parameter
values in Θ. We denote this third action by xS. We will, however, work in discrete time, and
we will not make distributional assumptions.

With three actions, we abuse notation and let σ̃ = σ(x0)/(σ(x0)+σ(x1)) denote the fre-
quency of x0 relative to x0 and x1, excluding xS. For simplicity, we assume that this relative
frequency is a sufficient statistic for determining the minimizers of KLD and that there is a
threshold σ̃∗ such that one of the parameter values, say θL, minimizes KLD for σ̃ < σ̃∗ and
the other parameter value, θH , minimizes KLD for σ̃ > σ̃∗; at σ̃∗, both parameter values min-
imize KLD. Suppose also that x0 is optimal under θL and x1 is optimal under θH . Under these
assumptions, each of the actions x0 and x1 are negatively reinforcing (for example, if x1 is
chosen with probability one, then θL minimizes KLD, but then x0 is the optimal action).

Action xS, on the other hand, is completely uninformative, and the willingness to choose
this action depends on the agent’s discount factor. Consider first the case where the agent is
sufficiently patient in the sense that there is no belief under which she wants to choose the
uninformative action, xS. Figure X depicts the solutions to the differential inclusion corre-
sponding to this case. Consider a point in the upper triangle, such as A. At this point, σ̃ < σ̃∗,
and the parameter value that minimizes KLD is θL. It is then optimal for the agent to choose
x0, as shown by the direction of the arrows, pointing towards the point (1,0,0). The opposite
is true for points in the lower triangle. Along the diagonal, where σ is such that σ̃ = σ̃∗,
∪µ∈∆(Θ(σ))F(µ) = {x0,x1}, and so any convex combination between x0 and x1 is possible. No
matter which combination we pick, all trajectories converge to the point σ∗ = (σ̃∗,1− σ̃∗,0).
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FRS2017 show that the action does not converge if the agent is sufficiently patient. Our anal-
ysis corroborates this finding, but also shows that the frequency of actions does converge to
σ∗.

Consider next the case where the agent is not sufficiently patient, meaning that there are
intermediate beliefs for which xS is optimal. The dynamics starting from the upper or lower
triangle remain the same as in Figure X. Also as before, any belief is possible along the diag-
onal. The difference is that now action xS can be rationalized by one of these beliefs, and so
∪µ∈∆(Θ(σ))F(µ) = {x0,x1,xS} for any σ such that σ̃ = σ̃∗. Thus, any convex combination be-
tween x0, x1, and xS is possible along the diagonal. Figure X illustrates this new situation. The
limit set of the trajectories of the differential inclusion is now the entire segment connecting
the origin to the point (σ̃∗,1− σ̃∗,0). In particular, it is possible that the frequency converges
to (0,0,1), or to (σ̃∗,1− σ̃∗,0), or to any other point in between, or to even diverge (restricted
to the diagonal). This example illustrates a limitation of our approach. Theorem 3 only says
that the frequency eventually stays on the diagonal, but does not further specify where in the
diagonal.

To see why a result as general as Theorem 3 could not possibly provide a full answer in
this example, it helps to go back to Example 1 in Section 4, which is a special case of the
example we are now analyzing. In Example 1, we found that we could partition the set of
priors into two sets: For priors in one set, the frequency converges to (0,0,1) and for priors
in the other set, it converges to (σ̃∗,1− σ̃∗,0), where σ̃∗ = 1/2. A result such as Theorem
3 exploits properties of asymptotic beliefs and behavior, and, on its own, it can say nothing
about how different priors can lead to different outcomes.

Interestingly, FRS2017 find that convergence is always to (0,0,1) in their example. The
reason is that their example contains an infinite number of consequences, and there are values
for those consequences that result in an infinitesimal move of the posterior. Thus, the posterior
eventually enters into the attracting region where it is optimal to choose xS. But, more gener-
ally, in order to fully determine the asymptotic behavior, one would have to specifically study
the prior and relate it to the informativeness of the consequences, as we did when solving
Example 1.

Finally, let’s continue to assume that the agent is impatient, so that there is a set of beliefs
such that xS is optimal, but let’s now assume that Θ has more than two elements, a case which
cannot be tackled with the techniques of FRS2017. In particular, suppose that we convexify the
set of parameter values to be Θ = [θL,θH ]. A special case is our modified version of Example
1 in Section 4.1, where Θ = [1/4,3/4]. Figure X plots the trajectories of the corresponding
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differential inclusion. There are now three regions in the figure. The upper and lower regions
are exactly as before: Frequencies leads to extreme beliefs which in turn lead to actions in
the opposite direction. But, in the middle region, frequencies now lead to intermediate beliefs
under which xS is optimal. Along the boundaries of these two regions, there is multiplicity
in actions (between x0 and xS in one case and x1 and xS in the other). But, as shown in
Figure X, all trajectories converge to the origin, (0,0,1). Thus, Theorem 3 implies that the
action converges to the safe action, xS. Interestingly, irrespective of the informativeness of
consequences, we obtain FRS2017’s prediction for a richer parameter space.

5.2.2 Positive reinforcement

A different kind of environment studied in the literature is one where actions are positively
reinforcing. Esponda (2008) studies a class of adverse selection environments with two prop-
erties. The first property, which he calls the monotone selection property, says that lower ac-
tions result in a worse selection of outcomes. The second property postulates complementarity
between beliefs and actions, so that a worse selection of outcomes encourages lower actions.
An example is the acquire-the-company game, where a lower price offer by the buyer results
in a worse selection of companies, which in turn leads the buyer to believe that the company is
worth less and to consequently offer even lower prices. Esponda (2008) discusses additional
applications, including insurance markets, auctions, and performance pay. He focuses, how-
ever, on defining and characterizing equilibrium, except for one simple acquire-the-company
game where, under fairly restrictive parametric assumptions, he shows convergence to the
(unique) equilibrium.

More recently, Heidhues, Kőszegi, and Strack (2018; henceforth, HKS2018) study an en-
vironment where the agent’s performance is determined by his ability, his action (effort), and
an unknown state of the world. They assume that the agent is overconfident about his own
ability, leading to biased learning about the state of the world. Due to overconfidence, the
agent becomes pessimistic about the state as he obtains feedback about his performance. This
pessimism leads him to choose lower effort, which in turn makes him even more pessimistic,
inducing him to choose even lower effort, and so on. In contrast to Esponda (2008), HKS2018
completely characterize asymptotic behavior under fairly general conditions. In particular,
they show that the agent’s action converges to the (unique) equilibrium. The conditions they
assume include the uniqueness of the equilibrium as well as some additional parametric re-
strictions for the case where the agent is nonmyopic. They discuss applications to delegation,
control in organizations, and public policy choices.
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We will revisit these applications using the methods developed in this paper; as a side
product, we will illustrate that in many instances it is possible to reduce the dimensionality of
the differential inclusion in (16) to make the analysis more tractable. Suppose that Y = h(x)+ε

is the observed consequence, where ε is a random error term, x is the agent’s action, and
h(·) is a strictly positive function. The agent’s model is Y = θg(x) + ε , where θ ∈ Θ =

[minx h(x)/g(x),maxx h(x)/g(x)] ⊂ R is a single-dimensional parameter and g(·) is a strictly
positive function. In Esponda’s (2008) acquire-the-company example, x is the price offer and
Y is the value of the firm. The agent does not realize that the price affects the value, and so g(·)
is a constant function. In HKS2018’s overconfidence example, Y is production, and it depends
on an unknown state θ and the agent’s effort x, as mediated by a function g that may be the
wrong function (exhibiting, say, overconfidence). We assume for simplicity that ε is normally
distributed.25 In this case, there is a unique parameter value that minimizes KLD and it is a
convex combination of the parameter values that minimize KLD for the degenerate actions,

θ
∗(σ) = ∑

x∈X
θ
∗(δx)ρ(x,σ),

where ρ(x,σ) = g2(x)σ(x)/∑x̃ g2(x̃)σ(x̃) and θ ∗(δx) = h(x)/g(x). For the special case where
g(·) is constant, each action is weighted according to its frequency in the data, ρ(x,σ) = σ(x)

. For the more general case, the weights simply reflect the fact that actions that yield lower
variance receive higher weight.26

Taking the derivative of θθθ
∗(σσσ(t)) with respect to time and using (16), we obtain

θ̇θθ
∗
(σσσ(t)) = Dρ(σσσ(t))θ ∗(δ·) · σ̇σσ(t)

∈ Dρ(σσσ(t))θ ∗(δ·) ·∆(F(δθθθ
∗(σσσ(t)))), (18)

where Dρ(σ) ≡ (∂ρ(x,σ)/∂σ(x̃))x,x̃ is an |X| × |X| matrix, θ ∗
δ·
≡ (θ ∗(δx))x is an |X| × 1

vector, and where the last line uses the fact that Dρ(σ)θ ∗(δ·) ·σ = 000 for all σ , which follows
from homogeneity of degree 0 of ρ(x, ·).

Consider the case where the parameter value is such that there is a unique optimal action,

25The results can be extended to more general distributions and functional form assumptions.
26If we think of the observable as Y/g(x), then the mean of this random variable is θ and the variance depends

negatively on g(x), so that actions with higher values of g should have higher weight.
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say x̂, i.e., F(δθθθ
∗(σσσ(t))) = {x̂}. Using (18) and some algebra, it follows that

θ̇θθ
∗
(σσσ(t)) =

(g(x∗))2

∑x∈X(g(x))2σσσ(t)
(θ ∗(δx̂)−θθθ

∗(σσσ(t))) . (19)

We can track the evolution of θθθ
∗(σ(t)) using equation (19) in general, but, for concrete-

ness, we now introduce two additional assumptions that are key features of the types of envi-
ronments with positively reinforcing actions. To facilitate the definitions, suppose that there
is a complete order on the action space: x1 < ... < x|X|. First, we assume that the mapping
θ 7→ F(δθ ) is increasing, in the following sense. There is an increasing function θ 7→ x∗(θ)

and a set of at most |X| − 1 thresholds, Θ̄, such that, for all θ ∈ Θ\Θ̄, F(δθ ) = {x∗(θ)};
moreover, at each threshold θ̄ ∈ Θ̄, the agent is indifferent between the two adjacent actions,
lim

θ↑θ̄ x∗(θ) and lim
θ↓θ̄ x∗(θ). Figure X depicts an example of this standard property, which

simply says that higher beliefs lead to higher actions. The second assumption is that higher
actions in turn lead to higher beliefs: x 7→ θ ∗(δx) is an increasing function.

With the two assumptions above and the help of (19), we can characterize the evolution
of θθθ

∗(σσσ(t)) starting from any θ ∈ Θ\Θ̄. Since the uniquely optimal action is x∗(θ), equation
(19) implies that θθθ

∗(σσσ(t)) increases (decreases, stays the same) if θ ∗(δx∗(θ)) is higher (lower,
equal) than θ . Suppose, for example, that θ ∗(δx∗(θ)) > θ , so that θθθ(σσσ(t)) increases. If the
agent continued to choose x∗(θ) indefinitely, then the belief would converge to θ ∗(δx∗(θ)).
If the agent were to choose a different action, because the belief is increasing, then the new
action would be higher. So θ ∗(δx∗(θ)) is a lower bound to the agent’s eventual belief. On the
other hand, if θ ∗(δx∗(θ))< θ , then θθθ(σσσ(t)) decreases and θ ∗(δx∗(θ)) is an upper bound to the
agent’s eventual belief. Thus, we can track the evolution of θθθ(σσσ(t)) by studying the mapping
θ 7→ θ ∗(δx∗(θ)), which, given our assumptions, is always increasing.27

Figure X shows an example of the mapping θ 7→ θ ∗(δx∗(θ)). There are three equilibrium
beliefs in this example. Starting from any initial condition, we converge to either θ ∗1 or θ ∗3 ,
and so an implication of Theorem 3 is that there is almost sure convergence of the belief to
either θ ∗1 or θ ∗3 (which implies convergence of the action as well, because these are beliefs
where the optimal action is unique). In addition, there is zero probability of convergence to
θ ∗2 . Moreover, as Figure X illustrates (see also footnote 27), there can be no convergence to

27We are ignoring the cases starting from θ ∈ Θ̄. Here, there are two optimal actions, say x∗1(θ) and x∗2(θ),
and θ ∗(δx∗(θ)) should be replaced by a weighted average of θ ∗(δx∗1(θ)

) and θ ∗(δx∗2(θ)
). If both of these values

are lower (or higher) than θ , then the analysis proceeds as before. If θ ∗(δx∗1(θ)
)< θ < θ ∗(δx∗2(θ)

), then the agent
either chooses action x∗1(θ) and θθθ(σσσ(t)) decreases and stays below θ forever, or she chooses x∗2(θ) and θθθ(σσσ(t))
increases and stays above θ forever (recall that the agent is not allowed to explicitly mix). In particular, there can
be no convergence to a nondegenerate (i.e., mixed) equilibrium.
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a nondegenerate (i.e., mixed) equilibrium in this problem. These features do not rely on the
specifics of the figure: The analysis remains generally true due to the monotonicity of the
mapping θ 7→ θ ∗(δx∗(θ)), which captures the economic idea of positively reinforcing actions.

6 Conclusion

Settings where agents have a misspecified model of their environment are becoming increas-
ingly common in economics. One reason is the growing recognition that it is natural for people
to be uncertain of their environment and to represent this uncertainty via parsimonious mod-
els. Another reason is that this literature can explain how biases in beliefs and behavior arise
endogenously as a function of the agent’s model, as opposed to simply postulating that agents
have a specific, exogenous, incorrect belief. The literature, however, has mostly proceeded by
studying different examples or applications in isolation.

In this paper, we developed general techniques that can be used to characterize asymp-
totic beliefs and actions in a large class of settings. The starting insight is that beliefs can be
asymptotically characterized as a function of the frequency of actions. We can then use this
result to characterize asymptotic frequencies. Even if actions do not converge, it is possible
that frequencies converge, thus providing useful information about the regularity of asymp-
totic behavior. Our focus on frequencies also leads to new insights regarding the nature of
equilibrium analysis. Key features of previous equilibrium concepts, such as the existence of
a unique belief rationalizing behavior and the condition of myopic, not dynamic, optimiza-
tion, are well-justified provided that the subjective model is weakly identified. Finally, we
show that a differential inclusion can be used to study the asymptotic dynamics of behavior,
including whether or not the action or frequency of actions converges.

Following most of the literature, we have taken the agent’s misspecified model as a prim-
itive of the environment. But, ideally, one would want to know which misspecified models
people use in different circumstances. This is a question that could benefit from both theoreti-
cal and empirical analysis. We should explore how people choose which models or paradigms
to adopt and how these paradigms are updated.28 On the theory side, it seems important to
formalize why people use parsimonious models in the first place.29 On the experimental and
empirical sides, we can test to what extent different models explain behavior and we can ex-

28For example, Esponda (2008) further restricts the agent’s model to satisfy a payoff consistency requirement
and Cho and Kasa (2014) assume that the agent tries to detect misspecification by running certain tests.

29See, for example, Aragones, Gilboa, Postlewaite and Schmeidler (2005), Al-Najjar (2009), Al-Najjar and
Pai (2013), and Schwartzstein (2014).
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amine robustness to non-traditional identifying assumptions (such as relaxing rational expec-
tations) when estimating the primitives of an empirical model.30 Many of these advances are
already taking place. By developing tools that make environments with misspecified learning
more tractable and easier to analyze, we hope to encourage even further work.

30For experimental work where subjects must learn the primitives and different subjective models are evalu-
ated, see Esponda and Vespa (2018). For a review of empirical work relaxing the Nash identifying assumption
in industrial organization, see Aguirregabiria and Jeon (2018).
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A Appendix

In this appendix, we present the proofs omitted from the text. In some places, we use the fact
that θ 7→ log q(Y |x)

qθ (Y |x)
is finite and continuous Q(·|x)−a.s. for all x ∈ X. This fact follows from

Assumptions 1-2.
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A.1 Proof of Lemma 1

Continuity of K: For any (θ ,σ) ∈ Θ×∆(X) take a sequence (θn,σn)n in Θ×∆(X) that con-
verges to this point. By the triangle inequality and the fact that K is finite under Assumption
2(iii) it follows that

|K(θn,σn)−K(θ ,σ)| ≤ |K(θn,σ)−K(θ ,σ)|+ |K(θn,σn)−K(θn,σ)| .

It suffices to show that both terms on the RHS vanish as n→ ∞. Regarding the first term in
the RHS, observe that for any σ ∈ ∆(X), θ 7→ log q(Y |X)

qθ (Y |X) is finite and continuous Q ·σ −a.s.

Under Assumption 2(iii), by the DCT this implies that θ 7→ K(θ ,σ) is continuous for any
σ ∈ ∆(X). Thus limn→∞ |K(θn,σ)−K(θ ,σ)| = 0. Regarding the other term in the RHS of
the display, observe that under Assumption 2(iii)

|K(θn,σn)−K(θn,σ)| ≤ ∑
x∈X

ˆ
gx(y)Q(dy | x)|σn(x)−σ(x)|

and the RHS vanishes as
´

gx(y)Q(dy | x)< ∞ for all x ∈ X.
Finally, continuity of K, compactness of Θ (by Assumption 2(ii)) and the Theorem of the

Maximum imply that σ 7→Θ(σ) is compact-valued, uhc, and that σ 7→ K∗(σ) is continuous.

A.2 Proof of Lemma 2

Let (θ ,z) 7→ g(θ ,z)≡ log q(y|x)
qθ (y|x)

, where z = (y,x) ∈ Y×X. For any θ ∈ Θ and any ε > 0, let
O(θ ,ε)≡ {θ ′ : ||θ ′−θ ||< ε}.

STEP 1. Pointwise convergence. Fix any ε > 0 and any θ ∈ Θ. For any τ ≥ 0 and history
h, let

ζτ(h)≡ sup
θ ′∈O(θ ,ε)

g(θ ′,zτ(h))−EQ(·|xτ (h))

[
sup

θ ′∈O(θ ,ε)

g(θ ′,Y,xτ(h))

]
.

The process (ζt)t is a Martingale difference under P f and the filtration generated by
{ht ≡ (x0(h),y0(h),x1(h),y1(h), ...,xt(h)) : t ≥ 0}, because EP f (·|ht) [ζt(h)] = 0 for all t. De-
fine h 7→ ζ t(h) ≡ ∑

t
τ=0 (1+ τ)−1

ζτ(h) for any t ≥ 0. Since (ζt)t is a Martingale difference
sequence, then (ζ t)t is also a Martingale difference.

By the Martingale Convergence Theorem, there exist a H ⊆ H (potentially depending
on θ ∈ Θ) and ζ ∈ L2(H,R,P f ) such that P f (H ) = 1 and, for any h ∈H , ζ t(h)→ ζ (h),
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provided supt EP f

[
(ζ t)2

]
< ∞. This condition is satisfied because

EP f

[(
ζ

t)2
]
= EP f

[
t

∑
τ=0

(1+ τ)−2 (ζτ)
2

]
+2EP f

[
∑

τ>τ ′
(1+ τ)−1 (1+ τ

′)−1
ζτζτ ′

]

=
t

∑
τ=0

(1+ τ)−2 EP f

[
(ζτ)

2
]

≤
t

∑
τ=0

(1+ τ)−2 EPPP f

ˆ ( sup
θ ′∈O(θ ,ε)

g(θ ′,y,Xτ)

)2

Q(dy | Xτ)


≤C max

x∈X

ˆ
sup

θ ′∈O(θ ,ε)

(
g(θ ′,y,x)

)2 Q(dy | x) ,

where the second line follows from the fact that, for any τ > τ ′, EP f [ζτζτ ′] =EP f

[
EP f (·|hτ ) [ζτ ]ζτ ′

]
=

0, and where the last line follows from the fact that C ≡ limt→∞ ∑
t
τ=0 (1+ τ)−2 < ∞. By As-

sumption 2(iii), for any (x,y)∈X×Y, supθ ′∈O(θ ,ε) (g(θ
′,y,x))2≤ (gx(y))

2 with
´
(gx(y))

2 Q(dy |
x)< ∞. Thus, supt EP f

[
(ζ t)2

]
< ∞. By invoking Kronecker Lemma it follows that

lim
t→∞

(1+ t)−1
t

∑
τ=0

ζ
t = 0

PPP f -a.s. Therefore, we have established that, for all θ ∈Θ,

lim
t→∞

(1+ t)−1
t

∑
τ=0

(
sup

θ ′∈O(θ ,ε)

g(θ ′,zτ)−EQ(·|xτ )

[
sup

θ ′∈O(θ ,ε)

g(θ ′,Y,xτ)

])
= 0

PPP f -a.s.

STEP 2. Uniform convergence. Observe that, for any ε > 0 and any θ ∈ Θ, there exists
δ (θ ,ε) such that

EQ(·|x)

[
sup

θ ′∈O(θ ,δ (θ ,ε))

g(θ ′,Y,x)−g(θ ,Y,x)

]
< 0.25ε (20)

for all x ∈ X. To see this claim, note that, since θ 7→ g(θ ,Y,x) is continuous Q(·|x)−a.s. for
all x ∈ X, limδ→0 supθ ′∈O(θ ,δ ) |g(θ ′,Y,x)−g(θ ,Y,x)| = 0 a.s.−Q(· | x) for all x ∈ X. Also,
by Assumption 2(iii), supθ ′∈O(θ ,δ ) |g(θ ′,y,x)−g(θ ,y,x)| ≤ 2gx(y) and

´
gx(y)Q(dy|x) < ∞,
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Thus, by the DCT, limδ→0 EQ(·|x)

[
supθ ′∈O(θ ,δ ) |g(θ ′,Y,x)−g(θ ,Y,x)|

]
= 0 for all x ∈ X.

Observe that (O(θ ,δ (θ ,ε)))θ∈Θ is an open cover of Θ. By compactness of Θ, there exists
a finite sub-cover (O(θ j,δ (θ j,ε))) j=1,...J(ε). Thus, for all ε > 0,

sup
θ∈Θ

∣∣∣∣∣(1+ t)−1
t

∑
τ=0

(
g(θ ,zτ)−EQ(·|xτ ) [g(θ ,Y,xτ)]

)∣∣∣∣∣
≤max

j
sup

θ∈O(θ j,δ (θ j,ε))

∣∣∣∣∣(1+ t)−1
t

∑
τ=0

(
g(θ ,zτ)−EQ(·|xτ ) [g(θ ,Y,xτ)]

)∣∣∣∣∣
≤max

j
(1+ t)−1

t

∑
τ=0

(
sup

θ∈O(θ j,δ (θ j,ε))

∣∣g(θ ,zτ)−EQ(·|xτ ) [g(θ ,Y,xτ)]
∣∣)

≤max
j

(1+ t)−1
t

∑
τ=0

(∣∣∣∣∣ sup
θ∈O(θ j,δ (θ j,ε))

g(θ ,zτ)−EQ(·|xτ )

[
inf

θ∈O(θ j,δ (θ j,ε))
g(θ ,Y,xτ)

]∣∣∣∣∣
)

≤max
j

(1+ t)−1
t

∑
τ=0

(∣∣∣∣∣ sup
θ∈O(θ j,δ (θ j,ε))

g(θ ,zτ)−EQ(·|xτ )

[
sup

θ∈O(θ j,δ (θ j,ε))

g(θ ,Y,xτ)

]∣∣∣∣∣
)

+max
j

(1+ t)−1
t

∑
τ=0

(
EQ(·|xτ )

[
sup

θ∈O(θ j,δ (θ j,ε))

g(θ ,Y,xτ)− inf
θ∈O(θ j,δ (θ j,ε))

g(θ ,Y,xτ)

])
=I + II.

By Step 1 and the fact that we are adding over a finite number of θ j’s, the limit as t → ∞

of the term I is equal to zero PPP f -a.s. For the second term, note that (20) implies that

II ≤ 2max
x∈X

ˆ
sup

θ∈O(θ j,δ (θ j,ε))

∣∣g(θ ,y,x)−g(θ j,y,x)
∣∣Q(dy | x)≤ 0.5ε.

Since 0≤ II ≤ 0.5ε holds for all ε > 0, it follows that II = 0. Therefore, using the definition
of g, we have established that

lim
t→∞

sup
θ∈Θ

(1+ t)−1
t

∑
τ=0

(
log

q(yτ | xτ)

qθ (yτ | xτ)
−EQ(·|xτ )

[
log

q(Y | xτ)

qθ (Y | xτ)

])
= 0

PPP f -a.s. The statement in the lemma then follows by noting that

K(θ ,σt) = ∑
x∈X

EQ(·|x)

[
log

q(Y | x)
qθ (Y | x)

]
σt(x) = (1+ t)−1

t

∑
τ=0

EQ(·|xτ )

[
log

q(Y | xτ)

qθ (Y | xτ)

]
.
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A.3 Proof of equation (8) in Theorem 1

For simplicity, set k ≡ ε/2 > 0. Continuity of (θ ,σ) 7→ K̄(θ ,σ) ≡ K(θ ,σ)−K∗(σ) (see
Lemma 1(i)) and compactness of Θ×∆(X) imply that K̄ is uniformly continuous. For any
σ , take some θσ ∈ Θ(σ) (this is possible because Θ(σ) is nonempty; see Lemma 1(ii)). By
uniform continuity of K̄, there exists δk > 0 such that ‖θσ −θ ′‖ < δk and ‖σ −σ ′‖ < δk

imply K̄(θ ′,σ ′) < K̄(θσ ,σ)+ k = k, where the last equality follows because K̄(θσ ,σ) = 0.
This implies that for all σ , {θ ′ : ‖θσ −θ ′‖< δk} ⊆ {θ : K̄(θ ,σ ′)≤ k} for all σ ′ ∈ B(σ ,δk)≡
{σ ′ : ‖σ −σ ′‖< δk}. Thus, for all σ , µ0({θ : K̄(θ ,σ ′)≤ k})≥ µ0({θ ′ : ‖θσ −θ ′‖< δk}) for
all σ ′ ∈ B(σ ,δk). The balls {B(σ ,δk)}σ form an open cover for ∆(X). Since ∆(X) is compact,
there exists a finite subcover {B(σ i,δk)}n

i=1. Let r ≡ mini∈{1,...,n} µ0({θ ′ : ‖θσ −θ ′‖ < δk})
which is strictly positive by Assumption 3. Take any σ ′, there exists i such that σ ′ ∈ B(σ i,δk);
by the previous argument µ0({θ : K̄(θ ,σ ′)≤ k})≥ µ0({θ ′ : ‖θσ i−θ ′‖< δk})≥ r > 0.

A.4 Proof of Corollary 1

We will show that every (weakly) convergent subsequence (µt(k))k (converging to µ) has the
desired limiting property, which then implies, by compactness of ∆(Θ), that the sequence
has the desired limiting property. Observe that µ{(θ : K̄(θ ,σ) = 0}) = 1 is equivalent to
µ(Θ(σ)) = 1 where (θ ,σ) 7→ K̄(θ ,σ)≡ K(θ ,σ)−K∗(σ), so it suffices to show that µ{(θ :
K̄(θ ,σ) = 0}) = 1 or, equivalently,

´
K̄(θ ,σ)µ(dθ) = 0. To show this, observe that

ˆ
K̄(θ ,σ)µ(dθ)≤

∣∣∣∣ˆ K̄(θ ,σ)µ(dθ)−
ˆ

K̄(θ ,σ)µt(k)+1(dθ)

∣∣∣∣
+

∣∣∣∣ˆ K̄(θ ,σ)µt(k)+1(dθ)−
ˆ

K̄(θ ,σt(k))µt(k)+1(dθ)

∣∣∣∣+ˆ K̄(θ ,σt(k))µt(k)+1(dθ).

So it suffices to show that each term in the RHS vanishes as k→ ∞. The first term vanishes
because µt(k) converges to µ and θ 7→ K̄(θ ,σ) is continuous (see Lemma 1(i)). The second
term vanishes because continuity of K̄ (see Lemma 1(i)) and compactness of Θ×∆(X) imply
that (θ ,σ) 7→ K̄(θ ,σ) is uniformly continuous. Thus, for any ε > 0, there exists K such that
|K̄(θ ,σt(k))− K̄(θ ,σ)| < ε for all k ≥ K and all θ ∈ Θ. By the uniformity over θ , it follows
that

∣∣´ K̄(θ ,σ)µt(k)+1(dθ)−
´

K̄(θ ,σt(k))µt(k)+1(dθ)
∣∣< ε for all k≥K. Finally, the last term

vanishes by Theorem 1.
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A.5 Proof of Proposition 2

Since X is nonempty and finite, ∆(X) is a nonempty, compact and convex subset of an Eu-
clidean space. Moreover, it is immediate that ∆

(
∪µ∈∆(Θ(σ))F(µ)

)
is convex for all σ . Next,

we will establish the claim that σ 7→ ∆
(
∪µ∈∆(Θ(σ))F(µ)

)
is uhc: Let (yn,σn)n converge to

(y,σ) and suppose that yn ∈ ∆
(
∪µ∈∆(Θ(σn))F(µ)

)
for all n. Take any x ∈X such that y(x)> 0,

then, for all n sufficiently large, yn(x) > 0 and, therefore, there exists µx,n ∈ ∆(Θ(σn)) such
that x ∈ F(µx,n). By compactness of ∆(Θ), we can take a further subsequence n(k) such that
µx,n(k) converges to µx. By Lemma 1, σ 7→ Θ(σ) is uhc; hence σ 7→ ∆(Θ(σ)) is also UHC
(for a proof, see Aliprantis and Border (2006)). Therefore, µx ∈ ∆(Θ(σ)) and, by uhc of F ,
x∈ F(µx). Therefore, y∈ ∆

(
∪µ∈∆(Θ(σ))F(µ)

)
and the uhc claim is established. The existence

of a solution to (9) then follows from Kakutani’s fixed-point theorem.

A.6 Proof of Proposition 3

Fix any x such that σ(x) > 0. Since σ ∈ ∆
(
∪µ∈∆(Θ(σ))Fβ (µ)

)
, there exists µx ∈ ∆(Θ(σ))

such that x ∈ Fβ (µx). This means that, for any x′ ∈ X,

ˆ
(π(x,y)+βV (B(x,y,µx))Q̄µx(dy | x) =

ˆ
(π(x,y)Q̄µx(dy | x)+βV (µx)

≥
ˆ (

π(x′,y)+βV (B(x′,y,µx))
)

Q̄µx(dy | x′)

≥
ˆ
(π(x′,y)Q̄µx(dy | x′)+βV (µx),

where the first line follows from weak identification (which implies B(x,y,µx) = µx for all y in
the support of Q̄µx(· | x)), the second line follows from x ∈ Fβ (µx), and the third line follows
from the convexity of the value function and the martingale property of Bayesian updating
(which imply, using Jensen’s inequality,

´
V (B(x′,y,µx))Q̄µx(dy | x′)≥V (

´
B(x′,y,µx)Q̄µx(dy |

x′)) =V (µx)). Therefore, x is myopically the best action, i.e., x ∈ F0(µx).
Finally, we will show that any action in the support σ can be justified by the belief µx; thus,

there is single belief that rationalizes all actions in the support of σ . Let x′′ be an action in
the support of σ . Since σ ∈ ∆

(
∪µ∈∆(Θ(σ))Fβ (µ)

)
, we know, by repeating the argument of the

previous step for action x′′, that there exists µx′′ ∈ ∆(Θ(σ)) such that x′′ ∈ F0(µx′′). By weak
identification and the fact that µx′′ and µx both belong to ∆(Θ(σ)), Q̄µx′′ (· | x̃) = Q̄µx(· | x̃) for
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all x̃ in the support of σ . Therefore, for any x′ ∈ X,

ˆ
π(y,x′′)Q̄µx(dy|x′′) =

ˆ
π(y,x′′)Q̄µx′′ (dy|x′′)≥

ˆ
π(y,x′)Q̄µx′′ (dy|x′)

and so x′′ ∈ F0(µx).

A.7 Proof of Theorem 3

The proof of Theorem 3 consists of three parts. Part 1 defines an enlargement of the set of
actions that allows us to adopt the methods developed by BHS2005. Part 2 and 3 correspond
to the arguments in the proofs of Proposition 1.3 and Theorem 4.2 in BHS2005, respectively,
and we provide them here for completeness. Throughout the proof we fix a history from the
set of histories with probability 1 defined by the statement of Theorem 1; we omit the history
from the notation.

Part 1. Enlargement of the set ∆(F(µ)).
Let S = {a− b | a,b ∈ ∆(X)} and let Ξ : R+×∆(X) ⇒ S be defined such that, for all

(δ ,σ) ∈ R+×∆(X),

Ξ(δ ,σ) =

{
y ∈ S :

∃σ ′ ∈ ∆(X),µ ′ ∈ ∆(Θ) s.t. y ∈ ∆(F(µ ′))−σ ′,

µ ′ ∈M(δ ,σ ′),‖σ ′−σ‖ ≤ δ

}
,

where M : R+×∆(X)⇒ ∆(Θ) is defined such that, for all (δ ,σ ′) ∈ R+×∆(X),

M(δ ,σ ′)≡ {µ ′ ∈ ∆(Θ) :
ˆ

Θ

K̄(θ ,σ ′)µ ′(dθ)≤ δ},

where K̄(θ ,σ ′)≡K(θ ,σ ′)−K∗(σ ′). Note that Θ(0,σ)=Θ(σ) and so Ξ(0,σ)=∪µ∈∆(Θ(σ))∆(F(µ))−
σ .

Claim 1: (δ ,σ) 7→ Ξ(δ ,σ) is uhc.
Proof. Because S is compact, it suffices to show that Ξ has the closed graph property. For

this purpose, we will first show that (δ ,σ ′) 7→M(δ ,σ ′) is uhc. To establish this claim, note
that ∆(Θ) is compact because of the assumption that Θ is compact. Hence, we will show that
M has the closed graph property. Take (µ ′n)n converging to µ ′ (in the weak topology), (δn)n

converging to δ , and (σ ′n)n converging to σ ′. Suppose that µ ′n ∈M(δn,σ
′
n) for all n. We will

show that µ ′ ∈M(δ ,σ ′). Since (µ ′n)n converges (weakly) to µ ′ and K̄(θ , ·) is continuous (see
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Lemma 1), it follows that

lim
n

(ˆ
Θ

K̄(θ ,σ ′n)µ
′
n(dθ)−

ˆ
Θ

K̄(θ ,σ ′)µ ′(dθ)

)
= lim

n

(ˆ
Θ

K̄(θ ,σ ′n)µ
′
n(dθ)−

ˆ
Θ

K̄(θ ,σ ′)µ ′n(dθ)

)
+ lim

n

(ˆ
Θ

K̄(θ ,σ ′)µ ′n(dθ)−
ˆ

Θ

K̄(θ ,σ ′)µ ′(dθ)

)
= 0.

Also, since µ ′n ∈M(δn,σ
′
n), then

´
Θ

K̄(θ ,σ ′n)µ
′
n(dθ)≤ δn. Taking limits of this last expression

on both sides, we obtain
´

Θ
K̄(θ ,σ ′)µ ′(dθ)≤ δ , implying that µ ′ ∈M(δ ,σ ′).

Next, to show that Ξ has the closed graph property, take (yn)n converging to y, (δn)n

converging to δ , and (σn)n converging to σ . Suppose that yn ∈ Ξ(δn,σn) for all n. We will
show that y ∈ Ξ(δ ,σ). Since yn ∈ Ξ(δn,σn) for all n, there exists a sequence (µ ′n,σ

′
n)n such

that yn ∈ ∆(F(µ ′n))−σ ′n, ‖σ ′n−σn‖≤ δn, and µ ′n ∈M(δn,σ
′
n). Because the sequence (µn,σ

′
n)n

lives in a compact set, ∆(Θ)×∆(X), there exists a subsequence, (µ ′n(k),σ
′
n(k))k that converges

to (µ ′,σ ′). By uhc of M and of µ 7→ ∆(F(µ)) (due to the assumption that F is uhc), it follows
that y ∈ ∆(F(µ ′))−σ ′,‖σ ′−σ‖ ≤ δ , and µ ′ ∈M(δ ,σ ′). Thus, y ∈ Ξ(δ ,σ).

Claim 2: There exists a sequence (δt)t with limt→∞ δt = 0 such that, for all t, σt+1−σt ∈
1

t+1Ξ(δt ,σt).
Proof. By equation (14) in the text, σt+1−σt ∈ 1

t+1(∆(F(µt+1))−σt) for all t. By Theorem
1, there exists a sequence (δt)t with limt→∞ δt = 0 such that, for all t,

´
Θ

K̄(θ ,σt)µt+1(dθ)≤
δt . Thus, ∆(F(µt+1))−σt ⊆ Ξ(δt ,σt) for all t, and the claim follows.

Part 2. The interpolation of (σt)t is what BHS2005 call a perturbed solution of the differ-

ential inclusion.

Define m(t)≡ sup{k≥ 0 : t ≥ τk}, where τ0 = 0 and τk =∑
k
i=1 1/i. Let w be the continuous-

time interpolation of (σt)t , as defined in equation (15) in the text. By Claim 2, for any t,
w(t) ∈ σm(t)+(t− τm(t))Ξ(δm(t),σm(t)); hence, ẇ(t) ∈ Ξ(δm(t),σm(t)) for almost every t. Let
γγγ(t)≡ δm(t)+

∥∥w(t)−σm(t)
∥∥. Then ẇ(t) ∈ Ξ(γγγ(t),w(t)) for almost every t. In addition, note

that limt→∞ γγγ(t) = 0 because (δt)t goes to zero, m(t) goes to infinity, and www is the interpolation
of (σt)t .

Part 3. A perturbed solution is an asymptotic pseudotrajectory (i.e., it satisfies equation

(17) in the text).
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Let vvv(t)≡ ẇ(t) ∈ Ξ(γγγ(t),w(t)) for almost every t. Then

w(t + s)−w(t) =
ˆ s

0
v(t + τ)dτ. (21)

Since S is a bounded set, vvv is uniformly bounded; therefore, w is uniformly continuous. Hence,
the family St(w), defined as St(w)(s) = w(s+ t), is equicontinuous and, therefore, relatively
compact with respect to L∞(R,∆(X),Leb), where Leb is the Lebesgue measure; all Lp spaces
in the proof are with respect to Lebesgue, so we drop it from subsequent notation. Therefore,
there exists a subsequence (t(n))n and a www∗ ∈ L∞(R,∆(X)) such that w∗ = limt(n)→∞ St(w).
Set t = tn in (21) and define vn(s) = v(tn + s). Then

w∗(s)−w∗(0) = lim
n→∞

ˆ s

0
vn(τ)dτ.

Since vn ∈ L∞(R,S) for all n, then vn ∈ L2([0,T ],S). By the Banach-Alouglu Theorem, there
exists a subsequence, which we still denote as (t(n))n, and a v∗ ∈ L2([0,T ],S) such that (vn)n

converges in the weak topology to v∗; therefore,

lim
n→∞

ˆ s

0
vn(τ)dτ =

ˆ s

0
v∗(τ)dτ (22)

pointwise in s ∈ [0,T ]. Indeed, convergence is uniform because the family
´ s

0 vn(τ)dτ is
equicontinuous and [0,T ] is compact.

The proof concludes by showing the claim that v∗(τ) ∈ ΓF(w(τ))−w(τ) Lebesgue-a.s.
in τ ∈ [0,T ]. We will prove it by showing that v∗(τ) ∈Co(Ξ(0,w(τ))), where Co denotes the
convex hull; the desired claim then follows because the facts that ΓF(σ)−σ is a convex set
and contains Ξ(0,σ) and, by definition, Co(Ξ(0,σ)) is the smallest convex set that contains
Ξ(0,σ), imply that Co(Ξ(0,σ))⊆ ΓF(σ)−σ .

We will prove v∗(τ) ∈Co(Ξ(0,w(τ))) in several steps. First, we show that weak conver-
gence of (vn)n to v∗ implies almost sure convergence of a weighted average of (vn)n to v∗.
Formally, by Mazur’s Lemma, for each n ∈ N, there exists a N(n) ∈ N and a non-negative
vector, (αn, ...,αN(n)), such that ∑

N(n)
i=n αi = 1, and limn→∞ ‖v̄vvn− vvv∗‖L2([0,T ],S) = 0 where v̄vvn ≡

∑
N(n)
k=n αkvvvn. Therefore, as limn→∞ ‖v̄vvn− vvv∗‖L2([0,T ],S) = 0, it follows that lim j→∞ v̄vvn = vvv∗ a.s.-

Lebesgue.
Fix τ ∈ [0,T ] such that the previous claim holds; recall it holds Lebesgue-a.s. Define

γγγn(τ)≡ γ(tn + τ) and wn(τ)≡ w(tn + τ). By uhc of Ξ at (0,σ) for all σ (see Claim 1 in Part
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1) and the facts that γγγn(τ)→ 0 and wn(τ)→ www∗(τ), it follows that, for any ε > 0, there exists
Nε such that, for all n≥ Nε , Ξ(γγγn(τ),wn(τ))⊆ Ξε(0,w∗(τ)), where Ξε(0,w∗(τ))≡ {y′ ∈ S :
‖y′− y‖≤ ε,y∈Ξ(0,w∗(τ))}. Recall that vn(τ)∈Ξ(γn(τ),wn(τ)) for all n; therefore, v̄n(τ)∈
Co(Ξε(0,w∗(τ))) for all n≥ Nε . Since Co(Ξε(0,w∗(τ))) is closed and lim j→∞ v̄vvn(τ) = vvv∗(τ),
it follows that vvv∗(τ)∈Co(Ξε(0,w∗(τ))). Since this is true for all ε > 0, it follows that vvv∗(τ)∈
Co(Ξ(0,w∗(τ))).
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