
A GAME WITH NO BAYESIAN APPROXIMATE EQUILIBRIA

ZIV HELLMAN

ABSTRACT. Simon (2003) presented an example of a 3-player Bayesian
game over a continuum of states with no Bayesian equilibria but left open
the question of whether it is possible to approximate Bayesian equilib-
ria in such games. We present an example of a Bayesian game with two
players, two actions and a continuum of states that possesses no Bayesian
approximate equilibria, thus resolving the question. As a side benefit we
also have for the first time an an example of a 2-player Bayesian game
with no Bayesian equilibria and an example of a strategic-form game
with no approximate Nash equilibria. To achieve this we show a close
relationship between strategic considerations in overlapping generations
games and certain Bayesian games and then make use of an example by
Y. Levy of an overlapping generations game with no stationary equilib-
ria.

1. INTRODUCTION

It is safe to say that it is impossible to imagine modern economic mod-
elling and game theory without the theory of Bayesian games. This would
not be the case without one of the seminal contributions of Harsányi (1967),
namely the analysis of Bayesian games for studying games of incomplete
information, which included showing that every finite Bayesian game (finite
number of players, finite actions, finite states of the world) has a Bayes-
Nash, or Bayesian, equilibrium. The fact that modellers could safely as-
sume the existence of at least one equilibrium was undoubtedly an element
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in the widespread acceptance of Bayesian games in modelling a wide range
of economic situations.

Limiting attention to finite games alone, however, is not sufficient for
capturing the full range of possible economic models. A large number of
such models must make use of uncountably many states to represent quan-
tities. Examples include models in which prices (as in models of auctions
or bargaining, such as that of Chatterjee and Samuelson (1983) for exam-
ple) are the main state variables, or in which the main variables are prof-
its and outputs in market models (for example Radner (1980)), continuous
time points, accumulated wealth or stocks, population percentages, share
percentages and so forth.

The question of the existence or non-existence1 of Bayesian equilibria
in games with uncountably many states is therefore a significant matter.
It remained, however, an open question for many years, until Simon (2003)
gave a negative answer by presenting an example of a three-player Bayesian
game over a continuum of states with no neasurable Bayesian equilibrium.

That important result left in its wake (at least) two open questions: (1)
are there examples2 of games that have no Bayesian ε-equilibria?; (2) are
there examples of two-player games that have no Bayesian equilibria? In
particular, a negative answer to the first question would imply that mod-
ellers could always assume that Bayesian equilibria can be approximated as
closely as desired in games with uncountably many states, thus significantly
weakening Simon (2003)’s result,

We resolving these open questions here by showing that the answers to
both are ‘yes’ via the construction of a two-player Bayesian3 game with
no Bayesian ε-equilibria. As a side-benefit, the example also shows that
there there exist strategic-form games with a continuum of players and no

1 By the existence of an equilibrium we mean the existence of a measurable equilibrium.
There are several reasons for restricting attention to measurable strategies (and hence mea-
surable equilibria); to consider just two reasons, if a strategy is not measurable it cannot
be constructed explicitly, and the payoffs of non-measurable strategies haven’t got well-
defined expected values. Measurability has in fact been included as a basic requirement in
the definition of an equilibrium over uncountable spaces since the earliest literature on the
subject (see Schmeidler (1973) for one such example). We therefore throughout this paper
use the term ‘existence of an equilibrium’ as synonymous with ‘existence of a measurable
equilibrium’ without further qualification.

2 In private communication, Robert Simon has indicated that the example he presented
in Simon (2003) does admit ε-equilibria for every ε > 0.

3 The game constructed here is not only a Bayesian game, it is an ergodic game as
defined in Simon (2003).
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Nash ε-equilibria4 and that there exist two-player Bayesian games with no
Harsányi equilibria (meaning ex ante Nash equilibria over the common prior
of a Bayesian game), which had also been open questions.

To achieve this, we make use of a result that is interesting in its own
right. In Theorem 1 we relate stationary equilibria of overlapping gener-
ations games, which form a subclass of the class of stochastic games, to
Bayesian equilibria of certain Bayesian games. We thus have a bridge be-
tween strategic considerations in these very different classes of games, even
though on one end of this bridge we have a dynamic time-dependent game
with complete information and on the other end there is a static game with
incomplete information.

We then achieve our goal of identifying a Bayesian game with no Bayesian
approximate equilibria because we using the result in Theorem 1 to con-
struct a Bayesian game based on an overlapping generations game with no
stationary spproximate equilibria presented in Levy (2012).

The significance of counter-examples to the existence of equilibria and
approximate equilibria such as the example here (and those in Simon (2003)
and Levy (2012)) is that they serve as a sharp warning signal to modellers:
although you routinely assume the existence of equilibria when you work
with finite games, you cannot automatically do so in games with an un-
countable number of states. Matters are not so simple.

Consider, for one example, an extensively-used approach to dealing with
a Bayesian game with a finite but large number of states is to analyse instead
a similar game with a continuum of states. Myerson (1997), for example,
informs readers of Chapter 2 of his textbook on game theory, when referring
to Bayesian games, that “it is often easier to analyze examples with infinite
type sets than those with large finite type sets.” Given this, it is important for
modellers working with Bayesian games with uncountably many states to
keep in mind that they cannot blindly rely on the well-known results in finite
games guaranteeing the existence of equilibria and approximate equilibria.

4 This result does not contradict the result in Schmeidler (1973), which assumes that no
deviation from equilibrium undertaken by a finite number (or even a measure zero set) of
players can affect payoffs; we do not assume that here. Sion and Wolfe (1957) presents an
example of a finite-player game with no equilibrium, but the example there assumes each
player has a continuum of actions while we assume that each player has a finite action
space.
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2. PRELIMINARIES AND NOTATION

2.1. Knowledge Spaces.
A space of states is a pair (Ω,B) composed of a set of states Ω and a

σ-field B of measurable subsets (events) of Ω.
Sets of players will be denoted here by I . Each player i ∈ I will usually

have an associated finite set of actions labelled Ai. Furthermore, denote
A :=

∏
i∈I Ai for the set of action profiles.

If we suppose that each player i has an associated partition Πi of Ω,
where for each state ω ∈ Ω the element in Πi that contains ω, Πi(ω), is a
measurable set, then (Ω,B, (Πi)i∈I) is a knowledge space. Denote by Γi the
sub-σ-algebra of B generated by Πi.

The meet of the partition profile (Πi)i∈I of the players is the finest par-
tition that is coarser than the partition of each player. Each element of the
meet is called a common knowledge component. For ω ∈ Ω, denote by
C(ω) the common knowledge component containing ω.

2.2. Types and Priors.
Given a knowledge space (Ω,B, (Πi)i∈I), a type function ti of player

i ∈ I is a function ti : Ω→ ∆(Ω) from states to probability measures over
(Ω,B) such that the mapping ti(·) satisfies:

(1) ti(ω)(E) is measurable for any fixed event E,
(2) ti(ω)(Πi(ω)) = 1,
(3) ti(ω) = ti(ω

′) for all ω′ ∈ Πi(ω).

For each ω, ti(ω) is called player i’s type at ω. Therefore, a quintuple
(Ω,B, I, (Πi)i∈I , (ti)i∈I), where each ti is a type function, is a type space.

A probability measure µi over (Ω,B) is a prior for a type function ti if
for each event V

µi(V ) =

∫
Ω

ti(ω)(V ) dµi(ω). (2.1)

When µi is a prior for ti we also say that ti is induced by µ and Γi, the sub-
σ-algebra Γi of B generated by the partition elements of ti. In addition, ti
satisfies the condition of being a regular conditional probability of µi given
Γi, meaning that for each A ∈ Γi and B ∈ B,

µi(A ∩B) =

∫
A

ti(x)(B)dµi(x) (2.2)

A probability measure µ that is a prior for each of the players’ type func-
tion in a type space is a common prior.
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2.3. Games.

2.3.1. Stochastic Games. A stochastic game is given by

(Ω,B, I, (Ai)i∈I , r, β, q),
where Ω is space of states along with a given σ-field B, I is a set of players,
each player i ∈ I has a finite set of actions Ai, r is a bounded measurable
payoff function r : Ω × A → RI , β is a discount factor β ∈ (0, 1) and q is
a measurable transition function q : Ω× A→ ∆Ω.

The game is played in discrete time. If z ∈ Ω is a state at some stage of
the game and the players select an a ∈ A, then q(z, a) is the probability dis-
tribution of the next state of the game. A behavioural strategy for a player is
a measurable mapping that associates each given history with a probability
distribution on the set of actions available to him. A stationary strategy for
a player i is a behavioural strategy that depends only on the current state;
equivalently, it is a measurable mapping that associates each state s ∈ Ω
with a probability distribution on the set Ai.

Let Σi denote the set of stationary strategies of player i, and further de-
note Σ :=

∏
i∈I Σi. An element σ ∈ Σ is a profile of stationary strategies.

For each initial state z ∈ Ω, a profile of stationary strategies σ determines
an expected payoff γiσ(z) for each player in a standard manner. A profile
σ ∈ Σ is then called a a stationary ε-equilibrium, for ε ≥ 0, if for all i ∈ I ,
all z ∈ Ω and all τ ∈ Σi,

γiσ(z) ≥ γiτ,σ−i(z)− ε.

A stationary 0-equilibrium is usually simply called a stationary equilib-
rium, and when we use the term stationary equilibrium without further qual-
ification we will mean a stationary 0-equilibrium.

2.3.2. Overlapping Generations Games. A Levy overlapping generations
game (which we will simply call an overlapping generations game, or OGG,
for short) is a stochastic game satisfying the following description. The set
of players is countable; we will identify it with the set of integers N. Let
(Y,D, µ1) be a standard Borel space; it follows without loss of generality
that we can assume (Y,D, µ1) is Borel isomorphic to the interval [0,1],
with µ1 the push-forward of the Lebesgue measure under that isomorphism.
The state space of the overlapping generations game will be N × Y . We
will furthermore assume the existence of a µ1 measure-preserving5 mapping
f : Y → Y .

5 The measure-preserving assumption can be weakened but at the cost of less readable
proofs in the paper.
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Each player n has a finite action set An. In addition, there is a subset
Qn ⊂ An such that if player n chooses an action q ∈ Qn then this effects a
transition to a ‘quitting state’ 0. Alternatively, if player n chooses an action
a ∈ An\Qn then the transition from state (n, y) is deterministically effected
to state (n+ 1, f(y)), independently of the specific action a that is chosen.

In a state (n, ∗), only player n’s action has any effect on the payoffs;
we think of him as the only ‘active’ player. Player n receives payoffs both
when he is active, in state (n, y), and in the subsequent state (n + 1, f(y)).
Choosing to transition to the quitting state is akin to ‘blowing up the world’;
if the quitting state 0 is ever attained following the actions of a player n then
the payoffs to all players k for k > n are zero.

This is an overlapping generations model because each player can be
imagined as being alive for two generations. In the first generation, he is
‘young’ and takes an action, thus receiving some resulting payoff. In the
second generation, he is ‘old’; he does not take any action but he does
receive a payoff as a result of the ‘young’ player’s action.

The class of Levy overlapping generations games will be denoted by L.

2.3.3. Bayesian Games. A Bayesian game is given by

(Ω,B, I, (Πi)i∈I , (ti)i∈I , (Ai)i∈I , (ri)i∈I),

where (Ω,B, I, (Πi)i∈I , (ti)i∈I) is a type space, and for each i, Ai is player
i’s action set and ri is a bounded measurable payoff function ri : Ω× A→
R.

A Bayesian ε-equilibrium, for ε ≥ 0, is a profile of strategies σ = (σi)i∈I ,
where a strategy for player i is a mapping Ω→ ∆(Ai) that is Γi-measurable,
such that for each i ∈ I , each atom V of Γi, and each x ∈ ∆(Ai),∫

V

ri(ω, σ(ω))dti(ω) ≥
∫
V

ri(ω, x, σ
−i(ω))dti(ω)− ε

2.3.4. Agents Games.
Recall the definition of the agents game K associated with a Bayesian

game B: K is a strategic-form game whose set of players, which is a mea-
surable space, has a (measurable) bijection η with the the set of all the types
of all the players in B. The action set of each player θ in K is equal to the
action set of the player j in B associated with η(θ), and the payoff to player
θ for an action profile is the corresponding expected payoff of j at η(θ).
Every strategy ψ̂ of B is naturally associated in this way with a strategy ψ
in K.

The analysis of the equilibria of a Bayesian game B can be accomplished
by analysing the associated strategic-form game K in the sense that, for any
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ε ≥ 0, if the strategy ψ̂ is a (measurable) Bayesian ε-equilibria in B then ψ
in K is a (measurable) Nash ε-equilibria.

3. OVERLAPPING GENERATIONS GAMES AND BAYESIAN GAMES

3.1. Main Theorems.

Theorem 1. Let L ∈ L be an overlapping generations game. Then there
exists a Bayesian game B such that there is an injective mapping from the
the set of Bayesian ε-equilibria of B to the set of stationary ε-equilibria of
L, for all ε ≥ 0.

The proof of Theorem 1 is in the appendix.

Theorem 2. There exists a two-player Bayesian game with a continuum of
states that admits no Bayesian ε-equilibria.

Proof. Levy (2012) presents an overlapping generations game L ∈ L that
admits no stationary ε-equilibria. Theorem 1 then implies that the corre-
sponding Bayesian game B, as constructed in the proof of that theorem,
admits no Bayesian ε-equilibria.

Corollary 3.1. There is a two-player Bayesian game that admits no Bayesian
equilibria.

Proof. This follows by setting ε = 0 in Theorem 2.

Corollary 3.2. There is a strategic-form game with a continuum number of
players that admits no Nash ε-equilibrium.

Proof. This follows by constructing the agents game associated with the
Bayesian game of Theorem 2.

3.2. An Example of a Game with no Approximate Bayesian Equilib-
ria.

For completeness, we present here an explicit construction of a game B̃
with no approximate Bayesian equilibria, as guaranteed by Theorem 2. For
ε, fix the value 0 < ε < 1

100
. Let Y := {−1, 1}Z≥0 . The state space Ω of B̃

is N× Y , with Y endowed with the standard Lebesgue measure.
The measure-preserving mapping is the Bernoulli shift S : Y → Y ,

which maps each sequence (x0, x1, x2, . . .) ∈ Y to (x1, x2, x3, . . .), hence
the mapping h : Ω→ Ω of the proof of Theorem 1 is in this case

h(n, x0, x1, x2, . . .) = (n+ 1, x1, x2, x3, . . .)

In addition, we have an operator ι : Y → Y that is defined by ι(n, x0, x1, x2, . . .) =
(n,−1 · x0, x1, x2, . . .)
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There are two players, Player E and Player O. The action sets of the
players are identical, namely the set {U,D}. The partitions of the players
are as detailed in the proof of Theorem 1: if ω = (m, y) is an even state
then

ΠE(ω) = {ω} ∪ h−1(ω)

ΠO(ω) = {ω, ι(ω), (m+ 1, S(y))}.
If ω = (n, y) is an odd state with n > 1 then

ΠO(ω) = {ω} ∪ h−1(ω)

ΠE(ω) = {ω, ι(ω), (n+ 1, S(y))}.
If ω = (1, y) then

ΠO(ω) = {ω}
ΠE(ω) = {ω, ι(ω), (2, S(y))}.

The type functions tE and tO are simple: for any pair of states ω and ω′

such that ω′ ∈ ΠE(ω), tE(ω)({ω′}) = 1/3 and similarly for any pair of
states ω and ω′ such that ω′ ∈ ΠO(ω), tO(ω)({ω′}) = 1/3.

The payoff functions rE and rO are as follows. rE(ω, ·, ·) = 0 for all odd
states ω, and rO(ω, ·, ·) = 0 for all even states. If ω is an even state, then
rE(ω, a1, a2) is given by Table 1 with Player E the row player and Player O
the column player. If ω is an odd state, then rO(ω, a1, a2) is given by Table
1 with Player O the row player and Player E the column player.

If x0 = 1:
U D

U 1 0
D 0.3 0.3

If x0 = −1:
U D

U 0.7 0.7
D 1 0

TABLE 1. The payoff matrix.

This completes the description of a Bayesian game with no Bayesian ε-
equilibrium.

3.3. Existence of Non-Measurable Equilibrium.
Throughout this paper, we have used the phrase ‘there is no equilibrium’

to mean ‘there is no measurable equilibrium’. We present here an explicit
construction of a Bayesian equilibrium in the game B̃ of Section 3.2; this
equilibrium must, of course, be non-measurable 6 given the previous results
here.

6 The example in Simon (2003) also admits a non-measurable equilibrium, but that
paper does not include an explicit construction of such an equilibrium.
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Definition 3.1. Let M ⊂ Ω be a non-empty subset of the set of states Ω :=

N × Y of the game B̃ of Section 3.2. Then an element ω is an immediate
neighbour of M if (i) ω /∈ M and (ii) for some ω′ ∈ M , ω = h(ω′) or
ω ∈ h−1(ω′).

Proposition 3.1. For each state ω ∈ Ω in the game B̃, there exists a
Bayesian equilibrium ψω = (ψE, ψO) in the game restricted to C(ω), the
common knowledge component of ω.

The proof of Proposition 3.1 is in the appendix.

Corollary 3.3. Let ψω be defined simultaneously over all common knowl-
edge components of B̃ as in Proposition 3.1. Then ψω is a non-measurable
Bayesian equilibrium of B̃.

4. ROBUSTNESS TO PERTURBATIONS

For δ > 0, an δ-perturbation of a Bayesian game B is a Bayesian game
B′ over the same type space and action sets, with a set of payoff functions
vωi satisfying ‖vωi − uωi ‖∞ < δ for all i ∈ I . The example in Levy (2012)
is robust to perturbations of the payoff functions of the overlapping genera-
tions game. It then follows immediately from Theorem 1 that the Bayesian
game example presented in Section 3 is also robust to sufficiently small
perturbations.

A similar result holds for sufficiently small perturbations of the posterior
probabilities defining the types tE and tO.

5. HARSÁNYI ε-EQUILIBRIA

An Harsányi ε-equilibrium of a Bayesian game with a common prior µ
is a profile of mixed strategies Ψ = (Ψi)i∈I such that for each player i and
any unilateral deviation strategy Ψ̂i,∫

Ω

uωi (Ψ(ω)) dµ(ω) ≥
∫

Ω

uωi (Ψ̂i(ω),Ψ−i(ω)) dµ(ω)− ε.

Simon (2003) shows that the existence of a measurable 0-Harsányi equi-
librium implies the existence of a measurable 0-Bayesian equilibrium. How-
ever, this result is known not to hold for ε > 0. The example in this paper
does not, therefore, imply that there is no Harsányi ε-equilibrium. We leave
the open question of whether or not there are examples of games that have
no measurable Harsányi ε-equilibria for future research.
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Furthermore, in the example in Section 3 there is incomplete information
on both sides: if we define the parity of the state and the value of x0 to
comprise the state of nature at a state of the world ω then neither player
knows the true state of nature. Because of this ignorance of the state of
nature and the way the payoff matrices are defined in Table 1, neither player
ever knows the true payoffs.

This contrasts with the example in Simon (2003), where there is incom-
plete information on one and a half sides (that is, one player always knows
the true payoff relevant data but not always what the other players might
know) and by construction players know their own payoffs at each state. It
is presently unknown whether an example can be constructed of a game in
which players know their payoffs at each state but the game has no Bayesian
ε-equilibrium.

6. APPENDIX: PROOFS

Proof of Theorem 1. The proof first uses the properties of L to construct an agents
game K and then uses that to construct the desired Bayesian game B.

Step 1. Denote Ω := N × Y for the set of states of L and let h : Ω → Ω be
defined as h(n, y) := (n + 1, f(y)). For each state ω = (n, y), define α(ω) = n,
and we will call player n the active player at state ω.

Recall that by definition in an OGG at each individual time only the actions of
the active player n has any effect on the payoffs. However, in coming to choose his
action, the active player n must also consider the action of player n + 1, because
that too can influence his payoff.

More explicitly, let ω = (n, y) be a state with active player α(ω) = n. Let a =
(a1, a2, . . .) ∈ A be an action profile. Then the payoff function rk(ω, a) = 0 if k 6=
n, n+ 1. Furthermore, rn(ω, a) depends only on y, an−1, an and an+1 (it depends
on an−1 because if the previous player chooses a transition to quitting state 0 then
player n receives a zero payoff). If the state is not 0 then when it is player n’s turn
to be active, rn(ω, a) can be considered as being composed of two components:
pn(y, an), which depends only on y and an ∈ An, and pn+(f(y), an, an+1), which
depends only on f(y), the action an+1 ∈ An+1 chosen by player n+ 1 and an (if
player n chooses to quit).

The total payoff to player n is thus

rn(ω, a) = pn(y, an) + pn+(f(y), an, an+1).

In other words, player n strategically is playing a strategic-form game against
player n + 1, which can be represented as a matrix Mω, with player n the row
player and player n+ 1 the column player:

Mω(an, an+1) =

{
pn(y, an) if an ∈ Qn
pn(y, an) + pn+(f(y), an, an+1) if an ∈ An \Qn.
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In these terms, if σ(ω) (where σ : ω 7→ ∆(Aα(ω)) is a measurable function)
is an ε-best response, from the perspective of the row player, in the strategic-form
game given by Mω for every ω ∈ Ω then σ is a stationary ε-equilibrium of L.

Step 2. We next use the matrices Mω to construct an agents game K. As K is
a strategic-form game, we need to specify the set of agents, their action sets and
their payoff functions.

The set of agents of K is Ω, the set of states of L. The action set of agent ω ∈ Ω
is Aα(ω), that is, the action set of the active player at ω in the game L.

In K all the agents simultaneously choose an action from their action sets. A
(pure) action profile is therefore given by an element of the set

∏
ω∈ΩAα(i). Given

an action profile a in this set, the payoff to agent ω = (n, y) is determined solely by
the action that he has chosen and the action chosen by agent h(ω) = (n+ 1, f(y))
and is explicitly given by the matrix Mω with agent ω the row player and agent
h(ω) the column player.

A measurable function ψ : ω 7→ ∆(Aα(ω)) is a Nash ε-equilibrium of K if and
only if ψ(ω) is an ε-best response, from the perspective of the row player in Mω,
for every ω ∈ Ω. It then immediately follows by construction that if ψ is a Nash
ε-equilibrium of K then ψ is at the same time also a stationary ε-equilibrium of L.

Step 3. What remains is constructing a Bayesian game B whose agents game is
K. The state space of B is Ω. States of the form (n, ∗) for n odd will be called odd
states, and states of the form (m, ∗) for m even will be called even states. There
are two players in B, labelled Player O (for odd) and Player E (for even).

Recall that Y is endowed with a probability measure µ1. Let µ2 be the proba-
bility measure over N that assigns probability 1/2n to each n ∈ N. We will use
µ := µ1 × µ2 as a probability measure over Ω, which will serve as the common
prior of B.

We next define the partitions ΠO and ΠE of the players. If ω = (m, y) is an
even state then

ΠE(ω) = {ω} ∪ h−1(ω)

ΠO(ω) = {ω} ∪ h(ω) ∪ h−1(h(ω))

Note that if ω is an even state then ΠE(ω) contains only one even state (because
all the states in h−1(ω) are odd) but ΠO(ω) may contain many even states (in
h−1(h(ω))) but only one odd state, h(ω).

If ω = (n, y) is an odd state with n > 1 then

ΠO(ω) = {ω} ∪ h−1(ω)

ΠE(ω) = {ω} ∪ h(ω) ∪ h−1(h(ω))

In a manner similar to the above, in this case ΠO(ω) contains only one odd state
(because all the states in h−1(ω) are even) but ΠE(ω) may contain many odd states
(in h−1(h(ω))) but only one even state, h(ω).
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The odd states of the form (1, ∗) are treated separately only because h−1 is not
defined over them: if ω = (1, y) then

ΠO(ω) = {ω}

ΠE(ω) = {ω} ∪ h(ω) ∪ h−1(h(ω)).

The type function tE for B is the function assigning probability 1/3 to the sole
even element of every partition element of ΠE and uniformly assigning probabil-
ity 2/3 over the set of the odd elements of ΠE . Similarly, the type function tO is
the function assigning probability 1/3 to the sole odd element of every partition
element of ΠO and uniformly assigning probability 2/3 over the set of the even el-
ements of ΠE . Lemma 6.1 shows that these functions are indeed the type functions
induced by µ and the σ-algebras generated by ΠE and ΠO.

Finally, we define the payoff functions. Let ρO be Player O’s payoff function
and ρE be Player E’s payoff function.

• For all even states ω, ρO(ω, ·) = 0 and similarly for all odd states ω,
ρE(ω, ·) = 0.

In words, at even (respectively, odd) states, Player O (respectively,
Player E) gets payoff 0 no matter what actions are played by him or the
other player; strategically, PlayerE (respectively, PlayerO) can ignore the
odd (respectively, even) states.
• For all odd states ω, ρO(ω, ·) is determined by the matrix 3Mω, where

Player O is row and Player E is column. This means that Player O cannot
strategically ignore the odd states.
• For all even states ω, ρE(ω, ·) is also determined by the matrix 3Mω, but

now Player E is row and Player O is column. As above, Player E cannot
strategically ignore the even states.

This completes the construction of the Bayesian game B.
All that remains is showing that K is the agents game corresponding to B. A

type of Player E always contains only one even state while a type of Player O con-
tains only one odd state. We can therefore uniquely identify each type of Player E
by the even state it contains and each type of Player O by the odd state it contains.
Hence we can consider Player E’s agents to be the set of even states and by the
same reasoning Player O’s agents are the set of odd states.

Formally, there is a bijection η between Ω and the collection of types {ΠE(ω)}ω∈Ω∪
{ΠO(ω)}ω∈Ω as follows:

η(ω) =

{
ΠE(ω) if ω is even
ΠO(ω) if ω is odd.

The payoff functions of these agents under this bijection are precisely given by
the matrices Mω. To see this, consider for example Player E’s perspective when
the true state of the world is any state in ΠE(ω), where ω is an even state. By
construction, ω is the only even state state in ΠE(ω). Since Player E’s action
choice can lead to a non-zero payoff for him only at ω, for calculating his expected
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payoff at ΠE(ω) he needs only to plan a best reply to Player O’s actions at ω.
Furthermore, since tE(ω) = 1/3, Player E’s payoff is determined by the matrix
1/3 · 3Mω = Mω. However, from Player O’s perception, if the true state is ω then
the only state in ΠO(ω) that is payoff-relevant to her is h(ω). Hence in the agents
game corresponding to B agent ω is playing the matrix Mω against agent h(ω);
this is exactly the description of K.

It is here that we see explicitly the connection between the strategic reasoning
in B and K. In the dynamic game K, at time 1 player 1 is informed that the state
is (1, y) and he best replies to the perceived action of player 2 at state (2, f(y)),
who in turn best replies to the perceived action of player 3 at state (3, f2(y)) and
so on. In the static Bayesian game B, if the true state is (1, y) Player O knows this
and best replies to the perceived actions of Player E at state (2, f(y)), who in turn
best replies to the perceived action of Player O at state (3, f2(y)) and so on.

Letting ψ̂ = (ψ̂1, ψ̂2) be a strategy profile ψ̂ in B, define a strategy profile ψ in
K by

ψ(ω) =

{
ψ̂1(ω) if ω is odd
ψ̂2(ω) if ω is even.

The proof is now complete: if ψ̂ is a Bayesian ε-equilibrium of B then ψ is a
Nash ε-equilibrium of K and therefore ψ is also a stationary ε-equilibrium of L.

Lemma 6.1. The functions tE and tO as defined in the proof of Theorem 1 satisfy
the conditions for being type functions with µ as their common prior.

Proof of Lemma 6.1. By construction, for i ∈ {O,E}, ti(ω)(Πi(ω)) = 1 for all
ω and ti(ω) = ti(ω

′) for ω′ ∈ Πi(ω). Two more items need to be checked: that for
each event A, ti(ω)(A) is measurable and that µ(A) =

∫
Ω ti(ω)(A) dµ(ω). We

will prove these for i = E, with the proof for i = O conducted similarly.
For the rest of this proof, denote by 1A(ω) the indicator function that returns 1

if ω ∈ A and 0 if ω /∈ A. Furthermore, ‘even’ will refer to the set of even states of
Ω and ‘odd’ will refer to the set of odd states of Ω. Fix an event A. Then:

tE(ω)(A) =

{
2
3

∫
h−1(h(ω)) 1A(ω′)dµ1(ω′) + 1

31A(h(ω)) if ω ∈ odd
2
3

∫
h−1(ω) 1A(ω′)dµ1(ω′) + 1

31A(ω) if ω ∈ even.

Note there is no problem integrating here only with respect to µ1 rather than µ,
since for any ω = (n, y), h−1(h(ω)) ⊂ n × Y and h−1(ω) ⊂ (n − 1) × Y . We
conclude that tE(ω)(A) is measurable.
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Next, let B ⊆ Ω be saturated. If A ⊆ even then:∫
Ω

1B(ω)tE(ω)(A)dµ(ω)

=

∫
even

1B(ω)

(
1

3
1A(ω)

)
dµ(ω) + 2

∫
odd

1B(h(ω))

(
1

3
1A(h(ω))

)
dµ(ω)

(6.1)

=
1

3

∫
Ω

1B(ω)1A(ω)dµ(ω) +
2

3

∫
Ω

1B(h(ω))1A(h(ω))dµ(ω) (6.2)

=

∫
Ω

1B(ω)1A(ω)dµ(ω) (6.3)

= µ(A ∩B).

Note that 1B(ω) = 1B(h(ω)) because B is saturated, hence the equality be-
tween Equations (6.2) and (6.3). The integration in the right term in Equation (6.1)
is multiplied by 2 because µ assigns half as much measure to the image of a set
under the mapping h than it does to the original set. Furthermore, since A ⊆ even,
1A(ω) = 0 for ω ∈ odd and 1A(h(ω)) = 0 for ω ∈ even, justifying the move to
integrating both terms of Equation 6.2 over Ω.

If A ⊆ odd then:∫
Ω

1B(ω)tE(ω)(A)dµ(ω)

=

∫
odd

1B(ω)

(
2

3
1A(ω)

)
dµ(ω) +

∫
even

1B(ω)

(∫
h−1(ω)

2

3
1A(ω′)dµ(ω′)

)
dµ(ω)

=
2

3

∫
odd

1B(ω)1A(ω)dµ(ω) +
1

2

2

3

∫
odd

1B(ω)1A(ω)dµ(ω) (6.4)

=
2

3

∫
Ω

1B(ω)1A(ω)dµ(ω) +
1

3

∫
Ω

1B(ω)1A(ω)dµ(ω) (6.5)

=

∫
Ω

1B(ω)1A(ω)dµ(ω) (6.6)

= µ(A ∩B).

This is sufficient for completing the proof.
Proof of Proposition 3.1. In this proof, we will call action U the opposite of

action D and D the opposite of action U .

Note that, given the construction of B̃ in Section 3.2, C(ω) is either finite or
countably infinite for any ω, and for almost all ω it is countably infinite. Fur-
thermore, it is straightforward inductively to build an enumeration ω1, ω2, . . . of
C(ω) (such that C(ω) =

⋃
ωn) by setting ω1 = ω, M1 = ω, then given Mn

for all n ≥ 1 letting ωn+1 be an immediate neighbour of Mn and finally setting
Mn+1 = Mn ∪ ωn+1.
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Define an equilibrium by induction along this enumeration of Ω, as follows.
Without loss of generality suppose that ω1 is an odd state. Let ψO(ω1) ∈ {U,D}
be selected arbitrarily.

Suppose inductively that ψO has been defined for all odd states in the sequence
ω1, ω2, . . . , ωn and ψE has been defined for all even states in ω1, ω2, . . . , ωn. ωn+1

is an immediate neighbour of Mn = ω1 ∪ ω2 . . . ∪ ωn. By definition, there is an
ω′ = (k, x0, x1, x2, . . .) ∈Mn such that either ω = h(ω′) or ω ∈ h−1(ω′).

Suppose that k is odd (the same reasoning would hold if it is even). If ωn+1 =
h(ω′), then ωn+1 = (k + 1, x1, x2, x3, . . .). If x1 = 1, then set ψE(ωn+1) =
ψO(ω′). If x1 = −1, then set ψE(ωn+1) to be the opposite of ψO(ω′).

If ωn+1 ∈ h−1(ω′), then ωn+1 = (k − 1, x−1, x0, x1, x2, x3, . . .). If x−1 = 1,
then set ψE(ωn+1) = ψO(ω′). If x−1 = −1, then set ψE(ωn+1) to be the opposite
of ψO(ω′). This completes the definition of ψE and ψO over all of C(ω).

The matrices in Table 1 indicate that for any state ω′ = (k, x0, x1, x2, . . .), if
x0 = 1 the best reply of the active player at ω′ is to match the action of the player
at h(ω′), while if x0 = −1 the best reply of the active player at ω′ is to mis-match
the action of the player at h(ω′). By construction, ψE and ψO ensure that each
player in the game restricted to C(ω) is best-replying in this way. Hence they form
a Bayesian equilibrium.
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