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Abstract

This paper asks whether the rapid innovation in Central Processing Units (CPU) results in inefficient
elimination of basic Personal Computer (PC) configurations. I estimate a model in which PC makers
choose first which CPU options to offer with their products, and then set prices. I contribute to the
literature on vertical product choices by relaxing assumptions which guarantee a unique equilibrium
outcome, by allowing for a large product space, and by developing techniques which alleviate the
burden associated with predicting counterfactual outcomes. My estimates imply that the demand for
PCs is highly segmented. Using the model in counterfactual analysis, I find that Intel’s Pentium M
chip boosted notebook sales by 10.9%-18.9% and raised the average notebook price by �32 to �44 in
2004Q2. It also increased total consumer surplus by 3.3%-5.1%. This innovation led to a significant
re-alignment of PC makers’ product offerings, and, in particular, crowded out notebooks with Intel’s
older Pentium III chips. A traditional model with fixed product offerings does not capture this effect
and, as a consequence, significantly understates the impact of the Pentium M on the market share of
the Pentium III. I find that the elimination of the Pentium III was socially inefficient, although the
magnitude of the lost welfare appears modest. Moreover, the impact of the innovation on the welfare
of all segments of consumer demand was positive.
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1 Introduction

Innovation in Personal Computer (PC) technology plays a key role in fostering growth in many

economic sectors. A salient feature of this process is a rapid elimination of existing products.1

The goal of this paper is to ask whether this process results in inefficient product elimination. This

question is motivated by consumer heterogeneity: while some consumers have a high willingness

to pay for the most advanced technology available, others primarily perform basic tasks (e.g.

Web browsing) which require modest computing power. This latter group of consumers could be

hurt when basic PC configurations exit the market.

To address this question, I estimate a model of supply and demand in which the set of PC

configurations offered to consumers is endogenously determined. I then perform counterfactual

analysis to determine the impact of innovation on the portfolio of technologies offered to con-

sumers, to determine whether products are inefficiently eliminated, and to quantify the impact

of innovation on various consumer types. The answers to these questions depend on primitives:

the distribution of consumer preferences, the variable and fixed costs incurred by PC makers,

and the nature of the supply-side game.

I focus on innovation in the Central Processing Unit (CPU), a crucial PC component which

is responsible for all calculations. CPU innovation plays a central role in the PC industry: in

addition to directly improving PC performance, faster chips also increase the marginal value of

complementary innovations in both software and hardware. The CPU market is controlled by two

main vendors: Intel, and its smaller competitor Advanced Micro Devices (AMD). Downstream

PC makers (e.g. Dell, Hewlett-Packard (HP), Gateway) purchase these chips and install them

in their various PC products.

I model a two-stage game played by PC makers: in the first stage, they face a discrete menu of

vertically differentiated CPUs, and simultaneously choose which CPU options to offer with their

PC products. While consumer heterogeneity provides incentives to offer vertically differentiated

PC configurations, offering each such configuration results in fixed costs. In the second stage,

1Pakes [2003] cites an average annual attrition rate of 85 percent.
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the chosen configurations are sold to consumers in a simultaneous price-setting game. CPU

innovation expands the menu of CPU options, and I use the model to predict the impact of this

expansion on both product choices and prices in the PC market.

I use data on PC prices, characteristics and sales to estimate demand and marginal costs

for PC products. These estimates reveal producers’ variable-profit benefits from offering PC

configurations. I also use the observed variation in product offerings to make inference on fixed

cost parameters. For example, an observed decision to offer a certain PC configuration implies

an upper bound on the fixed costs associated with it. Having estimated both the benefits and

the costs which accrue to PC makers from offering PC configurations, I simulate equilibria of the

two-stage game to study the impact of innovation.

My estimates imply that the demand for PCs is highly segmented. In particular, strong

consumer heterogeneity is detected in price sensitivity, as well as in the degree to which consumer

utility from any fixed bundle of PC characteristics falls over time. I find that the average

willingness to pay for a fixed product falls by �257 every year. I interpret this as evidence

that innovation in software drives the average consumer toward being more of an “advanced

PC user” over time.2 Consumers also display a considerable willingness to pay for PC brands,

suggesting that product choices by some PC makers can have an important impact on the map

from upstream CPU innovation to consumer welfare.

I use the estimated model in counterfactual analysis to study the impact of Intel’s introduction

of its Pentium M chip, which is considered a landmark in mobile computing. I find that, in the

second quarter of 2004, the presence of the Pentium M contributed significantly to the growth of

the mobile segment of the PC market. In particular, it boosted notebook sales by 10.9%-18.9%

and increased the average notebook price by �32 to �44.

The presence of the Pentium M also led to a significant re-alignment of PC makers’ product

offerings; while PC configurations based on Intel’s Pentium III (and some very fast Pentium 4

chips) were crowded out, other configurations (mostly based on Intel’s Celeron and slow Pentium

2As discussed below, my sample period was not characterized by significant hardware upgrades driven by a new operating system
from Microsoft, so other innovation (e.g. Web applications) is likely to have been the driving force behind this process.

3



4 chips) were added. The presence of the Pentium M decreased the market share of the Pentium

III in the notebook segment from 13.6%-17.6% to merely 2%. Since the bulk of this decrease

was due to product elimination, a restricted model which treats only prices (and not product

choices) as endogenous significantly understates this effect, underscoring the value of a model

with endogenous product choices.

I find that a social planner could improve welfare by adding Pentium III-based configurations

to the market, in the sense that the added fixed costs would have been outweighed by the contri-

butions to consumer surplus and to PC makers’ variable profit. This suggests that the elimination

of the Pentium III was inefficient. On the other hand, the magnitude of this inefficiency appears

to be modest, and should be viewed in perspective; the overall effect of the Pentium M was

clearly welfare-enhancing, and, in particular, it increased total consumer surplus by 3.3%-5.1%.

Moreover, even though it crowded out certain technologies, the impact of the Pentium M on all

segments of consumer demand was positive. As explained below, certain robustness checks for

these results are necessary

An important caveat: complementary innovation. While my estimates capture the process

by which consumers’ utility from a fixed bundle of hardware characteristics falls over time,

my framework does not account for the crucial role played by CPU innovation in fostering

complementary innovation in software, which fuels this shift in consumer preferences.3

My analysis, therefore, does not account for some long-term contributions of CPU innovation to

welfare. For example, some basic users may not benefit from the introduction of an advanced chip

in 2004. If, however, this innovation facilitates the emergence of new software applications, these

basic users may become more advanced users, and benefit substantially from that CPU innovation

by, say, 2006. This motivates future quantitative research of dynamic complementarities in

innovative activities.4

3Gawer and Cusumano [2002] describe the manner by which Intel acts to coordinate standards used by hardware and software
developers in order to foster complementary innovation, which, in turn, increases the demand for new chips.

4See Rosenberg [1979] for a seminal discussion of this issue.
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Multiple equilibria, partial identification, and sample selection. The paper offers a

couple of methodological contributions. First, in contrast to previous work with vertical dif-

ferentiation (e.g. Mazzeo [2002]), I relax assumptions which guarantee a unique equilibrium

outcome. This results in partial identification of fixed costs. Following recent literature, I exploit

necessary equilibrium conditions to estimate bounds on the partially-identified parameters.

Second, I allow for a large, discrete product space, which provides a detailed picture of PC

product variety. This exacerbates the computational burden associated with simulating sets of

counterfactual equilibria, as allowing for n product choices yields 2n feasible vectors of prod-

uct offerings.5 I develop techniques which alleviate this burden. The intuition behind these

techniques is that, if a firm can profitably deviate by offering an additional product at a given

situation, it would have the same profitable deviation when facing fewer competing products.

A difficult challenge tackled in this paper is sample selection, which arises since firms are

explicitly assumed to have chosen the set of products observed in the data. This may bias familiar

estimators of parameters governing variable profits. I impose a point-identifying assumption,

according to which firms commit to product choices before they observe realizations of cost

and demand shocks. In an appendix, I consider relaxing this assumption, and show that the

selection mechanism itself can be used to generate moment inequalities which provide partially-

identifying information on variable profit parameters. Since I have not yet implemented this

alternative approach in practical estimation, its discussion should be viewed as preliminary.

Related literature. Spence [1976] argues that fixed costs restrict the number and variety of

products offered in equilibrium, and that the set of products offered by firms may fail to be

socially optimal. The potential for such market failures depends on market-specific parameters,

motivating empirical research on the determinants of product variety in specific industries.

Song [2006, 2007], Gordon [2008], and Goettler and Gordon [2008] study the upstream CPU

market. These papers assume that the CPU serves as a perfect proxy for the PC. The current

5As explained in Section 6, the partial identification implies that I cannot compute the actual set of counterfactual equilibria.
Instead, I compute a set of outcomes that cannot be ruled out as equilibria of the game.
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paper addresses a different set of questions (i.e., PC product variety), and, as a consequence,

develops a very different framework.

A vast industrial organization literature considers estimation of partially-identified models (e.g.

Haile and Tamer [2003], Pakes, Porter, Ho and Ishii [2006], Berry and Tamer [2006], Ciliberto and

Tamer [2007]). Ishii [2006] estimates a model in which banks choose an integer number of ATM

locations. The discreteness of this choice leads to multiple equilibria and partial identification,

similarly as in my framework. My focus on product variety, however, implies that I am interested

not only in the total number of PC configurations offered by a firm, but also in their type. As a

consequence, I consider a vector of product-choice binary indicators for each firm.

Trajtenberg [1989] and Petrin [2002] study the welfare benefits associated with new goods. My

work adds to this literature by explicitly modeling the impact of innovation on the entire portfolio

of products offered, thus taking into account the lost welfare from eliminated technologies.

The rest of the paper is organized as follows: Section 2 describes the industry and the data

used. Section 3 presents the model, and Section 4 discusses identification and estimation. Section

5 reports structural estimation results, while Section 6 addresses the economic question of interest

via counterfactual analysis. Concluding remarks are offered in Section 7.

2 Data and Industry

The data used in this research come from a number of sources. PC market data is from IDC’s

Quarterly PC Tracker database. I observe three years of quarterly data (2001Q3-2004Q2) from

the U.S. market, including the number of units sold and total dollar value by quarter (e.g.

2002Q3), segment (e.g. Home), vendor (e.g. Dell), brand (e.g. Inspiron), form factor (e.g.

Portables), CPU vendor (e.g. Intel), CPU brand (e.g. Pentium 4) and CPU speed range (e.g.,

1.0-1.49 GHz) combinations.

As discussed below, the demand model employed in this work assumes that a consumer buys at

most one unit of some PC product in a quarter. This is a reasonable assumption for households,
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but not for commercial PC consumers.6 I therefore use only the portion of the data which

pertains to the Home segment of the market, and, following previous work (e.g. Goeree [2008]),

define the size of the market as the number of U.S. households in a quarter, as reported by the

U.S. Census Bureau.7 Since PC makers typically target the Home and Commercial segments with

different product lines, it is reasonable to study product choices in the Home market separately.8

For each observation, I compute the average price by dividing total value by total sales. I

convert values to constant dollars using the Consumer Price Index (CPI), reported by the Bureau

of Labor Statistics (BLS). I define a product as a unique combination of observed characteristics.9

After removing observations with negligible market shares (defined as selling less than 100 units

in the quarter), I obtain 2,287 observations, each of which is a quarter-product pair.

The Home PC market. The sample period corresponds to the early years of Microsoft’s

Windows XP operating system. Due to modest system requirements, the launch of Windows

XP did not prompt widespread hardware upgrades by consumers. This makes the sample period

appropriate for the estimation of a model in which the distribution of consumers’ willingness to

pay for computing power plays an important role.

Sales in the Home segment accounted for about 38% of total U.S. PC sales during the studied

period. While many firms operate in this competitive market, some vendors (most notably Dell

and HP) enjoy sizable market shares, as reported in Table 1 (see appendix C for all tables and

figures). The top 5 vendors together accounted for a 60%-70% share of the market. A similar

concentration level is reported by Goeree [2008] for the late 1990s.

The upstream market for CPUs is, by contrast, significantly more concentrated. Table 2 shows

that more than 70% of the PCs sold in the Home market had an Intel CPU installed, while slightly

over 20% had a CPU from AMD. IBM had a small market share by virtue of making the CPUs

6Purchases of the latter were studied by Hendel [1999].
7I interpolate linearly between the 2000 and 2004 household totals to obtain quarter-by-quarter figures.
8Some overlap exists between these markets, since some “Home” consumers purchase PC products designed for commercial users.

I discuss below the steps I take to insulate the analysis of the Home market from such spillover effects.
9These definitions follow Goeree [2008]. The data used in that paper has a somewhat similar structure to that used in this paper,

in that it also consists of 12 quarters, and has similar observed product characteristics.
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used in Apple’s computers. I exclude Apple products from the empirical analysis since I do

not have processor speed information for them (Apple’s market share during the sample period

hovered about 3%).

Evidence for the rapid innovation in CPU technology is offered in Figure 1, which depicts the

share of various CPU clock speed ranges in the three years of the sample. The market share of

CPUs with clock speeds in the 2-2.99 GHz range jumped from merely 5% in the first year of the

sample to almost 60% by the second year. In parallel, the share of slower CPUs fell sharply over

time.10 A fundamental force behind CPU innovation has been the ability of manufacturers to

double the number of transistors on an integrated circuit every 18-24 months, a regularity known

as “Moore’s law”.11 As a consequence, chips become smaller, faster, less power-consuming, and

cheaper to produce. Lower levels of power consumption played a key role in the growth of the

mobile PC segment, while lower CPU production costs contributed (among other forces) to a

rapid decline in average PC prices. Both these PC market trends are underscored in Figure 2.

PC product lines and CPU technologies. This paper is interested in the portfolio of

CPU options offered with PC product lines. I define PC product lines as combinations of PC

vendor, brand and form factor (e.g. “Dell-Inspiron-Portables”). I define a CPU technology as a

combination of CPU brand and speed range (e.g., Intel’s Pentium 4 1.5-1.99 GHz). Typically,

multiple configurations of each product line are observed in the data, each with a different CPU

technology installed.

Table 3a reports the rate of adoption of Intel’s CPU technologies in Desktop PC product

lines.12 The columns of the table correspond to CPU technologies, and the entries report the

fraction of PC product lines in which these technologies were offered. The first column, for

10Note, however, that clock speed alone is a poor indicator of CPU performance. CPUs of advanced generations (e.g. Intel’s
Pentium 4) are differentiated from their predecessors along dimensions other than raw clock speed: they may have more cache
memory on board the chip, have better designs, or use more sophisticated algorithms. It is, therefore, important to control for both
CPU brand and clock speed to adequately capture CPU performance, and I do so in the empirical application.

11The prediction by Intel’s Gordon Moore was that the number of transistors on a chip would double and costs would fall by 50%
every 18 months (Walters [2001], p.22).

12The analysis in this paper is restricted to PC makers’ decisions to install Intel’s CPUs. An analysis of the variety of AMD chips
offered in PCs would be an interesting extension, but would require some careful attention given the asymmetry between the two
chip makers.
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example, reports the fraction of product lines to adopt Celeron processors with CPU speed in

the 0.5-0.99 GHz range. These CPUs were utilized in 89% of product lines in the first quarter,

but were rapidly phased out, in parallel to increased adoption of new CPU technologies. Table

3b reports such information for portable PC product lines.

Tables 3a and 3b convey significant variation, in that most CPU technologies are only adopted

in a subset of product lines at a given point in time. A substantial amount of this variation,

however, is somewhat artificial; first, certain CPUs could not be installed in certain PC product

lines due to technical constraints. Second, some PCs with obsolete CPU technologies may be sold

in a given quarter, in small amounts, simply because some firm still has them in stock. I describe

below how I take such issues into account when defining the feasible set of CPU technologies.

3 Model

The primitives of the model are consumer demand for PCs, PC makers’ marginal and fixed costs,

and the Subgame Perfect Nash Equilibrium (SPNE) concept of a game played by the oligopoly

of PC makers. I now describe the model in detail.

3.1 Household Demand

Following Berry, Levinsohn, and Pakes [1995] (BLP), and Goeree [2008], the demand for PCs

is modeled by a random-coefficient-logit specification. A set Jt of PC products is available for

purchase in quarter t. Each household chooses at most one of the products in Jt, or chooses

the outside option of not purchasing any of the PCs offered. The latter option may include

buying a used PC, or buying an Apple computer.13 The household makes the discrete choice

that maximizes the following indirect utility function, describing the utility derived by household

i from PC product j at time t:

13Gordon [2008] models the consumer replacement cycle with respect to CPU products. In order to keep the analysis of product
variety tractable, my framework abstracts from durable good aspects of the PC. Incorporating such aspects is an important extension.
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uijt(ζit, xj, pjt, ξjt; θ
d) = xjβ + ξjt︸ ︷︷ ︸

δjt

+ [−αi × pjt] +
K∑

k=1

σkxk
j v

k
i︸ ︷︷ ︸

µijt

+εijt (1)

The following notation is used: xj is a K-vector of PC product characteristics observed by the

econometrician. In the empirical application, these include a constant term, a laptop dummy

variable, and dummy variables for PC brands, CPU brands, and CPU speed ranges. I also

include a time trend, which captures the degree to which the utility from fixed PC character-

istics changes (falls) over time. ξjt is a quarter-specific demand shock which is unobserved by

the econometrician. The product’s price is pjt, and ζit ≡ (vi, {εijt}j∈Jt) are household-specific

variables: vi is a (K +1)-vector of standard-normal variables (assumed IID across households, as

well as across the (K + 1) product characteristics, one of which is price), and εijt are IID (across

households and products) Type-I Extreme Value taste shifters.

I define αi ≡ exp(α+σpvp
i ), so that the price sensitivity is log-normal with parameters (α, σp).

The demand parameters are θd = (β′, α, σ′)′. Note that utility is separated into a mean-utility

component δjt, and a household-specific deviation µijt + εijt. I further define θ2 ≡ (α, σ′)′, and,

conditioning on δ, I can write the utility function as uijt(ζit, xj, pjt, δjt; θ2).

This specification allows households’ taste toward a characteristic k ∈ {1, 2, ..., K} to shift

about its mean, βk, with the heterogeneous term σkvk
i . For computational reasons, I restrict

many of the σk to equal zero in the empirical application. I do allow for heterogeneity in price

sensitivity, in the taste for portability, in the taste for the outside option, and in the degree

to which that taste changes over time. Heterogeneity along these dimensions governs firms’

incentives to provide product variety. I define the utility from the outside option by:

ui0t = εi0t (2)

The model-predicted market share of product j ∈ Jt is given by:
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sjt(x, p, δ, v; θ2) =

∫
exp[δjt + µijt(xj, pjt, vi; θ2)]

1 +
∑

m∈Jt
exp[δmt + µimt(xm, pmt, vi; θ2)]

dPv(vi) (3)

Where Pv(·) is the joint distribution of the taste shifters vi.

3.2 Supply

I assume that, in each quarter, each PC maker is endowed with a pre-determined set of PC

product lines. This assumption is justified by the fact that product lines (e.g. “Dell Inspiron

Notebook”) are typically well-established brands that do not frequently enter or exit the market.

PC makers also face a menu of CPU technologies which they can offer with their various product

lines. The timeline for a two-stage game, played by PC makers in each quarter, is:

1. PC makers simultaneously choose which CPU technologies to offer with each product line;

they incur fixed costs for each such offered configuration.

2. For each PC configuration chosen in Stage 1, PC makers observe realizations of demand and

marginal cost shocks that are unobserved by the econometrician; they then simultaneously

set PC prices for these configurations.

As discussed below, the assumption that firms learn the realizations of the error terms only after

committing to product choices is key to overcoming a sample selection problem. Since I control

for brand-specific intercepts (for most brands), these errors should not capture any systematic

brand effects that the firms are likely to know prior to committing to their configuration choices.

I now turn to a formal description of the game, beginning with some notation. Denote by D

the set of active PC vendors (quarter indices suppressed), and define Sd as the set of product

lines for firm d ∈ D. Let H represent the menu of feasible CPU technologies (defined in Section

2 above). Denote by Ldm ⊆ H the set of CPU technologies that firm d chooses to offer with

product line m.14

14For instance, if d = “Dell′′, m ∈ Sd is Dell’s “Inspiron” notebook product line, and Ldm ={
Pentium 4 1-1.49 GHz, Pentium 4 1.5-1.99 GHz

}
, then Dell has chosen to sell two Inspiron configurations, based on Intel’s

Pentium 4 CPUs with the specified speed ranges.
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Stage 1: In this stage, each firm d ∈ D determines the sets Ldm for each product line

m ∈ Sd. These decisions are made simultaneously. Collecting all these sets yields the set

J = {Ldm}d∈D, m∈Sd
of all PC products that would be offered to consumers in the quarter.

Firm d incurs a fixed cost for each offered configuration. These costs may include the fixed costs

associated with the physical production of product configurations, the inventory management

costs necessary to ensure that the product configuration is in stock, as well as administrative,

sales and marketing costs. I assume that the total fixed costs incurred by firm d are given by:

Fd = Vdλ×
∑

m∈Sd

|Ldm| (4)

where Vd is a vector of firm characteristics, and λ is a parameter vector to be estimated. This

assumption implies that firm d incurs a constant fixed cost of magnitude Vdλ for each config-

uration, such that its total fixed costs are proportional to the total number of configurations

offered. This assumption could be relaxed to capture economies (or diseconomies) of scope. V

may include a constant and PC maker dummies (which capture systematic firm heterogeneity in

fixed costs). The results reported in this paper are based on a simple specification for V which

includes a constant, and a dummy variable which receives the value 1 for major producers.

Stage 2. I let the log of marginal costs for a PC product j ∈ J depend linearly on observed cost

shifters, wj, and on an additive error term ωj:
15

log(mcj) = wjγ + ωj (5)

In the beginning of Stage 2, firms observe realizations of ej = (ξj, ωj)
′ for each j ∈ J , i.e., for

each configuration chosen for production in Stage 1 (to re-iterate, these are demand and marginal

cost shocks that are unobserved by the econometrician, and appear in (1) and (5) above).

15In the empirical application I set wj = xj , i.e., I let the same observed characteristics shift both utility and marginal cost. Note
that the CPU price, charged by Intel or AMD, is a component of PC marginal costs. As a consequence, the γ coefficients on CPU
brand and speed provide reduced-form evidence with respect to the manner in which CPU prices vary with such attributes.
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After observing these shocks, firms simultaneously set prices for products j ∈ J to maximize

profits. Firm d’s profits are given by:

πd =
∑

m∈Sd

∑
`∈Ldm

[pm` −mcm`]sm`(p)×M − Fd (6)

where pm`, sm`, and mcm` are the price, market share and the (assumed constant) marginal cost

associated with configuration ` of product line m ∈ Sd. M is market size, p is a |J |-vector of

prices, and Fd is firm d’s total fixed cost, specified in (4) above.

I assume that, given any Stage 1 history (and any parameter values), Stage 2 prices are

uniquely determined in a pure-strategy, interior Nash-Bertrand price equilibrium.16 Arranging

products in a |J |-dimensional vector, equilibrium prices satisfy a vector of first-order conditions:

p−mc = (T ∗∆(p; θ2))
−1s(p) (7)

where T is a |J | × |J | PC product ownership matrix (i.e., Ti,j=1 if i, j are produced by the same

PC vendor, and is equal to zero otherwise), ∆i,j is the derivative of the market share of product

j with respect to the price of product i, and * represents element-by-element multiplication. It

is easy to show that the share derivatives depend on the non-linear demand parameters θ2.

Solution Concept and Multiple Equilibria. A Subgame Perfect Nash Equilibrium consists

of product choices and prices (J, p(J)) which constitute a Nash equilibrium in every subgame. As

explained above, I assume that Stage 2 prices p(J) are set in a unique Nash-Bertrand equilibrium.

In addition, I assume the existence of a pure-strategy SPNE for the two-stage game. I do not,

however, assume uniqueness of the SPNE.

To gain intuition regarding the potential for multiple equilibria, consider the following simple

example: suppose we have only two heterogeneous PC makers, each with a single product line.

We may have one equilibrium in which only firm A caters to the value segment of the market by

16This is a standard assumption (e.g. Nevo [2001]). The results of Caplin and Nalebuff [1991] guarantee a unique price equilibrium
under stronger restrictions than those imposed here.
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offering a PC configuration with a slow CPU installed, and a second equilibrium, in which only

firm B chooses to do so.

Finally, recall that even though period indices were suppressed for convenience, the two-stage

game is assumed to be played in every quarter. This frequency is justified by the rapid entry

and exit of products in the PC market.

4 Identification and Estimation

The parameters to be estimated are the demand parameters θd = (β′, α, σ′)′, the marginal cost

parameters γ, and the fixed cost parameters λ.

Let θ = (θ′d, γ
′)′. The estimation strategy employed obtains an estimate of θ first, revealing

information on variable profits associated with product configurations. Given the estimate θ̂,

necessary equilibrium conditions are used to estimate bounds on the fixed cost parameters λ.

These tasks are taken in turn in sub-sections 4.1 and 4.2 below.

4.1 Identification and Estimation of θ = (β′, α, σ′, γ′)′

Intuitively, the demand parameters are identified from the joint distribution of prices, sales, and

observed PC characteristics. Marginal cost parameters γ are identified as follows: the pricing

FOCs in (7) identify markups, allowing us to identify marginal costs as the difference between

observed prices and these markups. The co-movement of these identified marginal costs with PC

characteristics identifies γ.

Identification of θ is jeopardized, however, by sample selection, as the set J of product con-

figurations offered to consumers was selected by firms. The econometrician, therefore, does not

observe a random sample from the underlying distribution of product characteristics. In this

section, I describe a standard approach which allows point-identification of θ. It also allows me

to consistently estimate θ following the BLP method, and these estimates are reported in Section

5 below. In Appendix B I describe an alternative approach which relaxes the point-identifying

assumptions for θ.
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The intuition for the point-identification approach is that, under the assumption that firms

do not observe the error terms ej = (ξj, ωj)
′ until after they have selected their products, the

selection does not depend on unobservables, and is therefore “ignorable”.17 Stating the point-

identifying conditions requires a bit more notation. Let us collect all firms’ product lines in the

set P = {Sd}d∈D. Denote by J the set of all |H| × |P | potential product configurations. It is

from this set that firms pick, in Stage 1, the subset J ⊆ J actually offered to consumers. Let X

denote a |J| ×K matrix of product characteristics for all potential products, and let F denote

the fixed costs of all PC makers. I make the following assumption:

Assumption 1. E[ej|X, F ] = 0 for each j ∈ J

Assumption 1 is very similar to the mean-independence assumption made by BLP, except

that the relevant population here is that of all potential PC configurations, rather than the

sub-population of products actually offered to consumers.

For each potential product configuration j ∈ J, I define a selection indicator, qj(X, F ), equal

to 1 if j was chosen for production, and equal to zero otherwise. This indicator does not depend

on the error terms ej because firms do not know these values when making their Stage 1 product

choices. This allows for a standard identification approach: let zj(X) be a 1 × L vector of

instrument functions pertaining to product j, where L ≥ dim(θ). By application of the Law of

Iterated Expectations, and using Assumption 1, we obtain:

E
[
qj(X, F )ejzj`(X)

]
= 0 for ` = 1, ..., L (8)

BLP show that a generic value for the parameter θ implies a unique solution ej(θ) for each

observed product j ∈ J . As a consequence, as long as Pr[qj = 1] > 0, condition (8) implies:

E
[
ej(θ0)zj`(X)

∣∣qj = 1
]

= 0 for ` = 1, ..., L (9)

where θ0 is the true parameter value. Equation (9) defines L moment conditions that provide

17See Wooldridge [2000], ch. 17, for a general discussion of the implications of selection mechanisms which depend on variables
observed by the econometrician.
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point identification of θ.18 Notice that we overcome the selection problem by obtaining a moment

condition that is defined over observed products only. GMM estimation of θ using the moment

conditions (9) follows the BLP method. Additional details regarding this estimation procedure

are provided in Appendix A.1.

Since firms observe the errors e before setting prices, it is necessary to account for price

endogeneity. In choosing the instruments zj(X), I follow Berry [1994] and BLP by using variables

that should be correlated with markups, and, therefore, with prices. In addition to the xj vector

of PC characteristics, I use the number of product lines for both the vendor and competitors

in various data cells (e.g., formfactor-speed cells), the number of competitors’ Celeron-based

configurations, the squared time trend, and the ratio of average rivals’ speed to vendor’s average

speed.19 I also use interactions of observed PC characteristics (laptop, Pentium and Celeron

dummy variables) with a time trend to obtain additional instruments. These terms can be

viewed as cost shifters excluded from the demand side, since they capture the decrease in the

marginal costs of providing these PC characteristics over time.

Finally, note that this identification strategy for θ relies heavily on the assumption that firms

observe the errors ej only after committing to product choices. In the absence of this assumption,

the selection indicator qj(·) would depend on these errors, and, as a consequence, condition (8)

could fail. Appendix B offers the details of an alternative identification strategy which relaxes

this assumption. I show that, given a parameter value θ, bounds can be placed on the ej error

terms associated with products that firms chose not to offer. This allows me to construct moment

inequalities that are defined over the entire set J of potential products. This alternative strategy

should be viewed as preliminary as I have not implemented it yet in practical estimation.

4.2 Identification and Estimation of the Fixed Cost Parameters λ

Given the point estimate θ̂ obtained in section 4.1, a set estimate can be obtained for λ. I assume

that the product choices and prices observed in the data constitute an SPNE of the two-stage

18Additional regularity conditions are necessary for a formal identification argument.
19For the purpose of constructing this instrument I compute speed as the middle of the relevant speed range.
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game. A necessary equilibrium condition is, then, that no firm could increase its expected profit

by unilaterally altering its first-stage product choices, taking into account the impact of that

deviation on second-stage prices (the simultaneous-move nature of the first stage implies that

the firm need not consider an impact of its deviation on rivals’ product choices). Such conditions

imply bounds on expressions involving fixed cost parameters.20 For example, to ensure that a

deviation which eliminates a product is not profitable, the firm’s savings of fixed costs must not

exceed its expected losses of variable profit.

I let the vector Ad denote firm d’s observed product choices. Each entry in this vector is

a binary variable, which takes the value 1 if the relevant product configuration is chosen for

production. Since firm d may have more than one product line (i.e. the set Sd may not be a

singleton), the typical form of this vector is:

Ad =

{
0 1 1 0 1︸ ︷︷ ︸

Product Line 1

, 1 1 0 1 1︸ ︷︷ ︸
Product Line 2

, ...

}

I define the sets A1
d = {k : Ad(k) = 1} and A0

d = {k : Ad(k) = 0}, which collect the indices in

Ad corresponding to products offered and not offered in the observed sample, respectively.

Upper and lower bounds on Vdλ. Recalling that firm d’s per-configuration fixed costs are

given by Vdλ, upper bounds can be placed on this quantity at the true parameter values:

Vdλ0 ≤ E(e|θ0)

[
V Pd(Ad; e, θ0)− V Pd(Ad − 1k

d; e, θ0)

]
≡ Ud,k(θ0), ∀k ∈ A1

d (10)

where 1k
d denotes a vector of the same length as Ad which kth entry is equal to 1, and all its other

entries are equal to zero. V Pd(·) denotes the variable profit firm d garners as a consequence

of choosing various product portfolios (taking into account the impact of such portfolios on

second-stage prices). E(e|θ0) denotes the firm’s expectation over the true joint distribution of the

error terms associated with all products. This notation reflects the fact that this distribution is

20See cf. Berry and Tamer for a discussion of the use of necessary equilibrium conditions in the context of partially-identified entry
models.
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indexed by the parameter θ (see Appendix A.2).

In words, condition (10) states that a deviation by firm d which eliminates one of its observed

products must not be profitable. To ensure that, firm d’s savings in fixed costs cannot exceed

the expected drop in its variable profit.

An analogous argument generates lower bounds by considering deviations in which the firm

adds a product configuration. In this case, the necessary equilibrium condition requires that the

added fixed costs must exceed the expected variable profit gains:

Vdλ0 ≥ E(e|θ0)

[
V Pd(Ad + 1j

d; e, θ0)− V Pd(Ad; e, θ0)

]
≡ Ld,j(θ0), ∀j ∈ A0

d (11)

Using the bounds on Vdλ to estimate λ. Following Haile and Tamer [2003], it is possible

to apply the techniques of Manski and Tamer [2002] and estimate the fixed cost parameters λ

by means of minimizing a random criterion function which penalizes violations of the bounds on

Vdλ generated in (10) and (11):

Q|J|(λ) =
∑
d∈D

[ ∑
k∈A1

d

(Vdλ− Ûd,k(θ̂))
21{Vdλ > Ûd,k(θ̂)}

+
∑
j∈A0

d

(L̂d,j(θ̂)− Vdλ)21{L̂d,j(θ̂) > Vdλ}
]

(12)

where 1 is the indicator function, and L̂d,j(θ̂) and Ûd,k(θ̂) are estimates of the bounds Ld,j(θ0) and

Ud,k(θ0). The computational details associated with estimating these quantities are provided in

Appendix A.2 (this estimation requires simulating the expectations which appear in (10) and

(11) by drawing from an empirical distribution of e given θ̂, and, at each such draw, computing

price equilibria which would prevail under the observed action, and under the deviation). As

explained in cf. Haile and Tamer, to improve the finite-sample properties of this procedure, one

should obtain a set estimate of λ by considering all values of these parameters which minimize
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Q|J|(λ) up to a tuning parameter which converges to zero as the sample size increases.21

Finally, note that the estimation results for λ currently reported in Section 5 below were not

obtained by minimizing the objective in (12) but by following a simple, heuristic approach: I

searched for the values of λ which made the condition Vdλ ≤ Ûd,k(θ̂) hold on average across all

d ∈ D, k ∈ A1
d, and at the same time made the condition Vdλ ≥ L̂d,j(θ̂) hold on average across

all d ∈ D, j ∈ A0
d. In words, the estimated set for λ consists of the parameter values which make

Vdλ respect both the upper bounds and the lower bounds on average.

Additional restrictions implied by the model. Necessary equilibrium conditions could be

used to obtain additional information on the model’s parameters. The results reported in Section

5 below do not make use of such additional information. First, additional bounds on Vdλ can

be generated by considering more complex deviations. For example, a deviation in which two

observed products are eliminated, and one unobserved product is introduced would provide an

upper bound on Vdλ.

Second, additional information on θ (on top of the point-identifying information described in

sub-section 4.1 above) can be obtained by considering a deviation in which the firm eliminates

an observed product located at k and launches an unobserved product located at j instead. This

deviation does not alter total fixed costs (see (4) above). Requiring that such deviations are not

profitable yields the following conditions:22

E(e|θ0)

[
V Pd(Ad; e, θ0)− V Pd(Ad + 1j

d − 1k
d; e, θ0)

]
≥ 0, ∀d ∈ D, j ∈ A0

d, k ∈ A1
d (13)

21Working out the properties of this estimator in the current context is a work-in-progress.
22In Appendix B I show that a similar condition to (13) facilitates partial identification of θ even if we relax the assumption that

firms observe the shocks e only after committing to product choices.
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5 Estimation Results

Section 5.1 below reports estimation results for θ, beginning with descriptive results based on

the simple logit demand model, and continuing with BLP estimation results for the full model

described in Section 3. Section 5.2 provides estimated bounds on fixed cost parameters.23

5.1 Estimation Results: Demand and Marginal Cost Parameters θ

It is instructive to begin with a simple, descriptive outlook on the demand system. Table 4

reports demand estimation results based on the simple logit model, which is obtained from the

demand model described in Section 3.1 by setting all the σ coefficients to zero, so that consumer

heterogeneity is only allowed via the additive IID εijt term. Estimation is performed via linear

regressions following Berry [1994]. The first column provides OLS estimates of the mean utility

parameters β, while the second column employs 2SLS to account for the endogeneity of price

using the instruments described in Section 4.1 above.

These results demonstrate the importance of correcting for price endogeneity. While demand

is downward-sloping in both specifications, the price sensitivity coefficient is much larger (in

absolute value) in the IV case. The results suggest that households value CPU speed as well

as high-end CPU brands (the omitted CPU brand is Intel’s Celeron). The taste for portability

appears negative and insignificant, a point to which I return below. The negative sign on the

time trend reflects the fact that a fixed bundle of characteristics becomes obsolete over time, most

likely due to the emergence of advanced software applications which require better hardware.

BLP estimation results for θ. By contrast to the simple logit model, the random-coefficient

demand model described in Section 3 allows for more realistic substitution patterns (see the

discussion in BLP), and captures consumer heterogeneity along important dimensions. Tables

5a and 5b provide estimation results for θ obtained by following the BLP estimation procedure.

23Some robustness checks are still needed with respect to the results reported. First, somewhat (but not dramatically) different
estimates obtain for different starting values. Second, potential measurement error could stem from the fact that, in some cases,
observations pertaining to the same PC vendor and quarter report identical unit sales.
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Table 5a reports the estimated coefficients on main PC characteristics, while Table 5b reports

estimated coefficients on a large number of dummy variables for PC vendors and brands. Eco-

nomic implications of these estimates are offered in Table 6. The estimated parameters include

mean utility parameters (β), parameters which capture heterogeneity in household tastes (σ),

marginal cost parameters (γ), and the parameters of the distribution of price sensitivity.

The results in Table 5a reveal precise estimates of both the mean (α) and the variance (σp)

parameters of the log-normal price sensitivity. As in the simple logit results, households value

CPU speed, as well as CPU brands, and these effects are very precisely estimated. The mean taste

for laptop products is negative and imprecisely estimated, but significant heterogeneity in this

taste is captured by the precisely-estimated σ coefficient on the laptop dummy. Heterogeneity

along this dimension is to be expected.

As in the simple logit results, the negative β coefficient on the time trend implies that a fixed

bundle of characteristics is becoming obsolete over time. The random-coefficient model allows

me to precisely estimate, in addition, the degree of household heterogeneity in this important

effect. I return to this issue below in the discussion of the quantitative economic implications of

the estimated coefficients.

The marginal cost coefficients γ are all very precisely estimated and economically reasonable.

Producing a laptop is found to be 31.2% more expensive than producing a Desktop. Installing an

Intel Pentium 4 instead of a Celeron CPU drives PC marginal costs up by a similar magnitude

of 30.5%. The negative coefficient on the time trend implies that PC marginal costs fell at a rate

of 9% per quarter. This is consistent with the sharp decline in PC prices depicted in Figure 2.

Table 5b reports a large number of estimated coefficients on dummy variables for PC vendors

(e.g. Dell) and their various brands (e.g. Inspiron). Importantly, the coefficient on a given

vendor dummy captures the effect of brands of that vendor which were not included, and not an

“overall” vendor effect. Most of the effects are very precisely estimated. Controlling for brand

and vendor information is useful, as these should be strongly correlated with unobserved quality.

Moreover, had I not controlled for these brand effects, they would have showed up in the error

21



terms ej. This would have made it less reasonable to assume that firms do not observe these

errors until after they have committed to their configuration choices.24

Table 6 offers an insight into some important economic implications of the estimated coeffi-

cients. Panel A of this table reports the willingness of the average household to pay for various

product characteristics. The average household is willing to pay up to �150.1 to upgrade from

CPU speed in the 2-2.99 GHz range to the next speed range, 3-3.99 GHz. It is also willing to

pay up to �171.5 for an upgrade from the Intel Celeron to the Intel Pentium 4 brand, and up to

�447.3 for an upgrade to Intel’s Pentium M.

These are considerable amounts, suggesting that CPU characteristics are important to the

average PC consumer. Recall also that an entire distribution of these figures was actually esti-

mated. One would expect some consumers (e.g. gamers, engineers) to be willing to pay much

more than the average consumer for a better CPU. Figure 3 plots the estimated distribution of

households’ willingness to pay for an upgrade from Intel’s Celeron to its Pentium M brand and

reveals significant heterogeneity along this dimension.

Households are also willing to pay considerable amounts for a familiar PC brand name. The

average household is willing to pay �107.8 to upgrade from a non-branded notebook computer

to Dell’s Inspiron brand, and �462.1 for IBM’s ThinkPad A series. These results indicate that

downstream PC makers possess powerful brand names, suggesting that their product choices

may have an important impact on welfare.

An important aspect of PC demand is the pace at which households’ utility from a fixed bundle

of PC characteristics drops over time, as captured by the taste parameters associated with the

time trend. Table 6 reports that the average household is “willing to pay” a negative amount

of �(-257) for a passing of one year. This means that, holding everything else equal, the average

household’s willingness to pay for fixed hardware drops by this amount every year, presumably

since new software applications require better hardware over time. A sizable household hetero-

geneity along this dimension is displayed in Figure 4. Such heterogeneity is to be expected (for

24I do not, however, control for every brand, but rather for a large number of them.

22



example, a gamer’s utility from a fixed PC product may drop much faster than that of a basic

user).

To summarize, a key finding stemming from the estimated demand parameters is that house-

holds display strong heterogeneity in price sensitivity, as well as in the rate at which products

become obsolete from their point of view. This heterogeneity affects both PC makers’ incentives

to offer vertically-differentiated product configurations, and the welfare implications of such

product choices.

Panel B provides some additional economic implications of the BLP estimates for θ. The

median markup for a PC manufacturer is �76.4, and the median price-cost margin (markup as

a percentage of price) is 7.8%. As expected, markups are positively and strongly correlated with

prices. Another intuitive finding is the positive correlation between the estimated demand and

cost-side errors, ξj(θ̂) and ωj(θ̂).

5.2 Estimation Results: Fixed Cost Parameters λ

Bounds on fixed cost parameters were estimated as explained in section 4.2 above.25 The results

below are based on constructing bounds on fixed costs associated with offering product configu-

rations of portable product lines in the last quarter of my sample (2004Q2). The estimated fixed

costs should, therefore, be interpreted as associated with offering notebook PC configurations in

that quarter.26

As a first step, it is necessary to determine the set H of CPU technologies available in 2004Q2.

As reported in Table 3b, many CPU technologies were installed in PCs sold in this quarter.

Some of these, however, were highly obsolete technologies that accounted for very modest sales.

Such technologies probably recorded positive sales due to dynamic inventory issues (e.g., some

retailer clearing a small stock of obsolete PCs). While data limitations prohibit me from directly

addressing such issues, I do not want my fixed cost estimates to be biased by such scenarios, and

I therefore include in the set H only CPU technologies that appear to have been installed in a

25Recall from that discussion that the results reported are based, at this point, on the heuristic approach which requires the various
upper and lower bounds on the per-configuration fixed costs to hold on average.

26As explained in Section 6 below, the counterfactual analysis focuses on notebook product offerings in the same quarter.
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significant number of PC products, and have generated significant sales:27

H =

{
C 1.5−1.99, C 2−2.99, P4 1.5−1.99, P4 2−2.99, P4 3−3.99, Pm 1−1.49, Pm 1.5−1.99

}

where C, P4 and Pm stand for Intel’s Celeron, Pentium 4 and Pentium M brands, respectively,

and the number ranges pertain to clock speed (e.g., C 1.5-1.99 are Celeron chips with clock

speed between 1.5-1.99 GHz). I also applied some refinements to the set of portable product

lines considered for generating bounds on fixed costs. I excluded some product lines that either

primarily targeted the commercial PC market, or could not install certain CPU technologies due

to technical constraints, in cases where I was aware of such issues.28

I report the estimation results for λ in Table 7. Specification (a) includes only a constant

term, and specification (b) allows for both a constant, and a dummy variable for manufacturers

which produce a large volume of notebooks. Including only a constant in V amounts to assuming

that the per-configuration fixed costs are the same for all firms, and the estimated set for these

costs is the interval [1, 165, 999, 1, 506, 040] (�). Specification (b) implies that this cost is in the

[1, 170, 000, 2, 270, 000] interval for major notebook producers and in the [980, 000, 1, 500, 000]

interval for other notebook producers.

6 Using the Estimated Model: Counterfactual Analysis

In this section I analyze the impact of Intel’s introduction of its Pentium M processor, which is

considered a major innovation in mobile computing. Sub-section 6.1 provides some background

and a description of the counterfactual experiment, while sub-section 6.2 provides the empirical

results. Some important robustness checks for these results are needed.29

27Robustness checks and further refinement of these judgment calls are necessary.
28The judgment calls I made in this respect require some additional refinement. An additional issue is that, as explained above, I

exclude products which sold less than 100 units in a quarter from the sample due to computational reasons, and I also consider such
a product as “not offered” for the purpose of constructing bounds.

29In particular, updating the heuristic estimation results for the fixed cost parameters by minimizing the objective function in (12)
is likely to impact the results of the counterfactual analysis.
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6.1 The Impact of Intel’s Pentium M: Background and Explanation of the

Counterfactual Analysis

Rather than offering a further increase in clock speed, Intel’s Pentium M chip introduced major

improvements in chip design that allowed chips to achieve top performance at modest clock

speeds. This resulted in a substantial reduction in power consumption and in longer notebook

battery life.30 Pentium M-based notebooks appear in the sample for the first time in the first

quarter of 2003 (see Table 3b). The goal of my analysis is to answer the following questions: (1)

what was the impact of the Pentium M’s presence on product choices and prices in the notebook

segment? (2) what was the impact of this innovation on various consumer types? and (3) did

the Pentium M crowd out PC configurations based on older technologies, and, if so, was the

elimination of such technologies socially efficient?

Looking at the data, one can observe that the introduction of the Pentium M was accompanied

by a gradual exit of older Intel mobile CPUs such as the Pentium III. In the last sample period,

i.e., the second quarter of 2004, only 2% of notebooks sold were Pentium III-based.31 Among the

five top-selling notebook product lines (i.e., notebook brands) in that quarter, only one recorded

positive sales of a Pentium III-based configuration.32 In the quarter immediately preceding

the Pentium M’s introduction, however, Pentium-III based notebooks enjoyed a market share of

14.1%, and were offered by the two top-selling brands. While this could suggest that the Pentium

M played a key role in the elimination of the Pentium III, a more careful analysis is required in

order to isolate the effect of the Pentium M’s presence from the many other forces that operated

in the market between 2003Q1 and 2004Q2.

To identify the effect of the Pentium M on product offerings and prices in the PC market, I

perform the following counterfactual analysis for the 2004Q2 period: I remove the Pentium M

chips from the set H of CPU technologies available for installation. Then, I use the estimated

model to compute the set of PC configurations, and PC prices, that would have prevailed in the

30“Bigger Notebooks Still Using Older Mobile Chips”, Tom Krazit, IDG News Service September 28, 2004.
31Excluding Apple products, PCs with CPUs not made by Intel or AMD, and products with negligible sales.
32That configuration had very small sales, and it is possible that it recorded positive sales simply because a small remaining stock

was cleared.
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market in the absence of the Pentium M. Comparing these predictions to the observed outcomes

provides a measure of the Pentium M’s effect. Since I am especially interested in the effect of

the Pentium M on the Pentium III, I include in the set H a Pentium III option with speed in

the 1.5-1.99 GHz range.33 This allows me to ask how many Pentium III-based PC configurations

would have been offered in the absence of the Pentium M.

For computational reasons, I focus my analysis on configuration choices by the five top-selling

notebook brands in 2004Q2. This means that I only allow product configuration choices that

pertain to these notebook brands to vary in the experiment. At the same time, all PC prod-

ucts (notebooks and desktops) are included in the experiment and their prices are treated as

endogenous.34

Importantly, the Pentium M’s market share in the notebook segment reached 31.8% by 2004Q2.

This makes its analysis interesting at that point in time; an earlier analysis, at a point when this

chip was making more modest sales, would have been of limited interest.

Computing “potential equilibria”. We are interested in the set of SPNE outcomes of the

two-stage game under the “no Pentium M” scenario. No equilibrium selection mechanism is

imposed. Instead, I would like to compute the set of counterfactual equilibria, and use this set to

place bounds on welfare predictions. What I actually compute, however, is the set of outcomes

that cannot be ruled out as equilibria of the game. The reason for this approach is the partial

identification of the fixed costs, which implies that it is not always possible to unambiguously

rule out a particular outcome as an equilibrium.

Recall that Ad was used to denote a vector of binary indicators describing the observed product

choices of firm d ∈ D. I will now use this notation more generally to describe product choices by

firm d (not necessarily the observed ones). Let A = {Ad}d∈D be a long vector which describes

product choices by all firms, and let A be the set of all such vectors. The set A has 2|A| elements.

33This is the fastest Pentium III chip observed in a mobile PC in the sample. It was actually offered in a handful of PC product
lines only. To clarify: the set H in this experiment is obtained from that described in Section 5.2 above by removing the Pentium M
technologies and adding the Pentium III 1.5-1.99 GHz technology.

34The brands with respect to which I allow configuration choices to vary accounted for 73% of notebook sales in the quarter.

26



I define the subset Ae ⊆ A as the collection of product choice vectors that can be supported in

an SPNE of the two-stage game.

In order for a vector A to be an element of Ae, it must be the case that no firm has a

unilateral, profitable deviation from A. Fixed costs, however, are only partially-identified, and

so is the profitability of deviations. As a consequence, it may not be possible to unambiguously

determine whether A ∈ Ae. To deal with this issue, I define a set Ape ⊇ Ae which contains all

elements A ∈ A that cannot be unambiguously ruled out as elements of Ae. Once the set Ape is

computed, I can compute welfare measures at each of its elements, and use this information to

place bounds on the counterfactual welfare predictions.

Computation of the set Ape, which I refer to as the set of “potential equilibria,” is a very

difficult computational task: in principle, one has to check for profitable deviations from each of

the 2|A| vectors in A. I allow for six CPU options and five PC product lines, and so |A| = 30. I

reduce this number to 24 by requiring that a firm which owns two of the five brands makes the

same configuration portfolio choice on both. This leaves me with the task of evaluating 224 vectors

(with each such evaluation requiring computation of the price equilibria that prevail under the

various product-choice deviations). I was able to significantly reduce the computational burden

by application of the following conjecture:

Conjecture 1. (Strategic Substitutes): The increase in firm d’s variable profit from adding a

product configuration at A = (Ad, A−d) is at least as large as at (Ad, A
∗
−d) where A∗

−d ≥ A−d

where A−d denotes product choices by firm d’s competitors, and A∗
−d ≥ A−d implies element-

by-element inequality. Conjecture 1 is very intuitive: it suggests that the benefit from adding a

product configuration is lower when the firm faces more competing products.35 The usefulness of

this conjecture is in that, once a certain element of A is ruled out as a “potential equilibrium,”

many other vectors can be automatically ruled out as well. This allowed me, in practice, to

evaluate 16, 384 vectors rather than 224 = 16, 777, 216, resulting in an immense reduction in

35This conjecture is difficult to prove. I did, however, test it directly in more than 20,000 simulations, and found that it was
validated in each of them.
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computation time.36

The results reported below were obtained by setting the shocks to mean utilities and marginal

costs ej at their mean of zero when evaluating the profitability of deviations. In fact, to be

consistent with the model, I should have simulated firms’ expected variable profits by drawing

from the distribution of the error terms, as I did in the estimation of the fixed costs. The results

reported below should, therefore, be viewed as preliminary and I plan to improve on this in

future versions.

6.2 Counterfactual results

I now report the results obtained from the counterfactual experiment which, as explained in sub-

section 6.1 above, evaluates the impact of the presence of the Pentium M in 2004Q2 by removing

it from the market, computing the counterfactual market outcomes, and then comparing these

to the observed outcomes. I answer, in turn, the three questions stated above: what was the

Pentium M’s impact on product choices and prices? What was its impact on various consumer

types? and finally, did it prompt an inefficient elimination of products?

1. The Pentium M’s impact on product offerings and prices. Table 8 reports that the

presence of the Pentium M boosted total notebook sales by 10.9% to 18.9%. Some of this growth

came at the expense of Desktop sales, which were depressed by 1.6% to 2.6%. This high-quality

chip also increased the sales-weighted average notebook price by �32 to �44. These findings

reveal that the Pentium M made a significant contribution to the growth of the mobile market

segment.

Table 8 continues to report the impact of the presence of the Pentium M on the product

configurations offered by the five top-selling notebook product lines. The Pentium M “crowded

out” between 2 and 4 such configurations based on Intel’s Pentium III with speed in the 1.5-1.99

GHz range, and between 1 and 3 configurations based on Intel’s Pentium 4 in the 3-3.99 GHz

36Total run time for the Matlab code was about 13 hours on a Desktop PC with an Intel Quad Core processor.
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range. The latter technology was a rather direct competitor for the Pentium M in the high-end

notebook market. This product elimination was also accompanied by more intense offerings of

PC configurations based on Intel’s Celeron and slower Pentium 4 chips. The presence of the

Pentium M, therefore, has led to a major re-alignment of PC makers’ product offerings.

The presence of the Pentium M decreased the total market share of Pentium III chips in the

notebook segment from 13.6%-17.6% to merely 2%.37 The bottom panel of Table 8, therefore,

reports that the Pentium M decreased the Pentium III’s share by 11.6 to 15.6 percentage points.

The analysis, therefore, reveals that the Pentium M played a key role in the elimination of the

Pentium III technology.

Since most of the effect of the Pentium M on the Pentium III’s share was due to product

elimination, a more traditional model which treats only prices - and not product choices - as

endogenous would have significantly understated this effect. To see this, I predicted the coun-

terfactual share of the Pentium III using a restricted analysis, which simply removes Pentium

M-based PCs from the sample, and calculates a counterfactual price equilibrium. This restricted

analysis finds that, in the absence of the Pentium M, the Pentium III’s share would have been

only 3.3%, which would imply that the Pentium M’s effect on the Pentium III’s share was only

(-1.2) percentage points - a much more modest prediction than the (-11.6) to (-15.6) percent-

age points reported by the full model. This stark difference in predictions demonstrates the

importance of accounting for endogenous product choices.

2. The Pentium M’s impact on various consumer types. Table 9 reports that the Pentium

M made a significant contribution to total consumer surplus, boosting it by 3.3% to 5.1%. These

benefits were not evenly distributed among different consumer types: the vast majority of the

benefits were garnered by the 20% least price sensitive consumers.

Since some basic PC configurations were crowded out by the Pentium M, we may wonder if

some consumers were actually hurt by this innovation. The table reveals, however, that no such

37This includes all Pentium III chips, and not just those at the 1.5-1.99 GHz range.
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effect is observed: the effect of the Pentium M on the surplus garnered by households in each

of the quantiles of price sensitivity was positive. This could be explained by the fact that the

new technology induced a competitive pressure that acted to decrease the prices of notebooks

carrying other technologies (as well as by the finding that the Pentium M actually “crowded

in” some basic notebook configurations, e.g. those with slow Pentium 4 chips, as explained

above). Moreover, recall from the introduction that some long-run benefits to consumers from

CPU innovations, namely, those associated with complementary software innovations, are not

taken into account in the analysis provided.

3. Was the elimination of the Pentium III efficient? Having established that the Pentium

M played a key role in the crowding out of the Pentium III, we may ask if it was actually efficient

for the latter technology to leave the market. To investigate whether the absence of the Pentium

III from the product lines of the major notebook producers in 2004Q2 reflected a market failure,

I consider a hypothetical action by a social planner: adding to the market Pentium III-based

configurations (with 1.5-1.99 GHz) of the five top-selling notebook brands.

The results of this analysis are presented in Table 10. Adding the Pentium III-based notebooks

to the market would have increased total consumer surplus by �8.68 million, or by 1%. It would

have also increased total producer variable profit by �2.36 million. On the other hand, producers

(and hence society) would have also incurred additional fixed costs ranging between �5.66 million

and �10.58 million. Defining welfare as the sum of consumer and producer surplus, the total

welfare impact is positive, and bounded between �0.46 million and �5.38 million.38 This suggests

that a social planner could improve upon the market outcome by adding the older technology to

the market, although the magnitude of the improvement appears somewhat modest.

These results provide an intuitive interpretation for the suggested wedge between the incentives

of the social planner and those of the oligopoly of PC makers. Offering the Pentium III-based

notebooks would increase the industry’s total fixed costs by more than it would increase its

38It is worth noting that a more complete welfare analysis would also take into account the impact on the profits of upstream firms
such as Intel and Microsoft.
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variable profit. So, at least in this aggregate sense, it is unprofitable for the oligopoly of PC

makers to offer such products. The social planner, in contrast, takes into account not only the

implications for industry profits, but also the contribution to consumer welfare. Since the benefit

to consumers outweighs the decrease in industry profits, the social planner would choose to add

these products to the market.

Summary: what was the impact of the Pentium M? To summarize the findings of this

section, I find that the Pentium M contributed significantly to the growth of the mobile segment

of the market, as well as to consumer welfare. It also led to a major re-alignment of product

offerings in this segment, crowding certain technologies out of the market while helping other

technologies. Even though notebooks with the older Pentium III technology were crowded out

by the Pentium M, the effect of this innovation on households belonging to all quantiles of price

sensitivity was positive (with the least price sensitive consumers enjoying the lion’s share of the

benefits). Finally, some evidence was provided that the absence of the Pentium III from the

product lines of top notebook manufacturers reflected a market failure, although the welfare loss

appears modest.

As mentioned above, the results reported here are preliminary at this point as some important

robustness checks are necessary. An important robustness analysis would involve altering coun-

terfactual marginal costs; in the absence of the Pentium M, Intel might have charged a higher

price for its other chips, which would have increased the marginal costs associated with some PC

configurations. Adjusting the analysis to account for that is a work-in-progress. The reduced-

form evidence on systematic differences in CPU prices available from the estimated marginal

costs of PC makers provide a useful source of information in this context.
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7 Concluding Remarks

This paper asks whether CPU innovation leads to an inefficient elimination of existing PC prod-

ucts. To address this question, I estimate a model in which PC makers endogenously choose

which CPU options to offer with their PC product lines. I relax strong assumptions which guar-

antee a unique equilibrium outcome, and exploit necessary equilibrium conditions to tackle the

resulting partial identification of fixed costs.

I provide a rich analysis of PC product variety by allowing for a large product space, which

requires me to develop computational techniques which alleviate the burden associated with

predicting counterfactual outcomes. I overcome a sample selection problem by imposing a point-

identifying assumption, and provide the details of an alternative approach, which would allow

one to relax this assumption and obtain partial identification of variable profit parameters.

I find that the demand for PCs is highly segmented, such that households differ considerably

in their price sensitivity, and in the pace at which their utility from a fixed bundle of hardware

characteristics falls over time. I find that the average household’s willingness to pay for fixed

hardware falls substantially over time, consistent with a scenario according to which software

innovations create incentives for hardware upgrades.

I use the estimated model to evaluate the impact of Intel’s introduction of the Pentium M

chip. I find that this technology had a major impact on the notebook segment of the PC market.

In addition to boosting sales and average prices, this innovation also led to a significant re-

alignment of PC makers’ product offerings. In particular, it crowded out Pentium III-based

notebook configurations. A traditional model with fixed product choices fails to account for this

product elimination, and, as a consequence, substantially understates the effect of the Pentium

M on the market share of the Pentium III.

I also find that the introduction of the Pentium M contributed significantly to consumer

surplus. The vast majority of these benefits were enjoyed by the least price sensitive segment of

consumer demand. At the same time, even though some technologies were crowded out by the

Pentium M, all segments of demand were positively affected by this innovation.
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The Pentium M, therefore, made a substantial contribution to the growth of the mobile PC

segment, as well as to consumer welfare. At the same time, some evidence was provided that

the elimination of the Pentium III technology (in which the Pentium M’s presence played a key

role) was inefficient, in the sense that a social planner could have increased total welfare by

adding to the market Pentium III-based notebooks. This happens since the additional fixed

costs are outweighed by the increases to consumer surplus and to PC makers’ variable profits.

The magnitude of the lost welfare associated with the absence of the Pentium III, however, does

not appear to be large. Moreover, as explained above, some important robustness checks are

required with respect to the results reported.

A couple of interesting issues are left for future research. While I do not impose an equilib-

rium selection mechanism, my framework could be used to investigate it. Ciliberto and Tamer

[2007] test (and reject) the hypothesis that firms coordinate on the equilibrium outcome which

maximizes total industry profits in their study of the airline industry. An interesting exercise in

the current framework could be to compute the set of potential equilibria in a given quarter, and

then ask what was special about the equilibrium that was actually played by firms.

An important aspect of CPU innovation is that it fosters complementary innovation in soft-

ware and hardware. Such complementary innovation prompts households to use more advanced

applications, which, in turn, increases the demand for advanced CPUs. A quantitative, dynamic

analysis of this “positive feedback loop” is likely to improve our understanding of the singular

contribution of CPU innovations to growth in the 21st century economy.
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A Details Concerning the Estimation Procedure

A.1 Estimation of θ: Computational Details

Estimating θ following the BLP method requires one to compute the errors ej(θ) = (ξj(θ), ωj(θ))
′

for any generic value of the parameter θ. The integral in (3) is approximated via simulation;

I draw the vi household-specific taste shifters for ns = 3000 households. To reduce the error

induced by simulation, I use antithetic draws.39 I then obtain the market share predicted by the

model for product j (quarter indices suppressed) as follows:

sj(x, p, δ, Pns; θ2) =
1

ns

ns∑
i=1

exp(δj + µij)

1 +
∑

m∈J exp(δm + µim)
(14)

where Pns is the distribution of the simulation draws. The market share equation, which should

hold exactly at θ0, is given in vector form:

s(x, p, δ, Pns; θ2) = S (15)

where S denotes observed market shares. Given a fixed value for θ2, we invert this equation to

retrieve a vector of mean utility levels, δ(θ2), using the BLP contraction mapping:

δh+1 = δh + ln(S)− ln[s(x, p, δh, Pns; θ2)] (16)

The vector of demand-side unobservables ξ can now be computed by:

ξ(θd) = δ(θ2)− xβ (17)

where x is a covariate matrix for the products observed in the sample. Marginal cost unobserv-

ables are computed from (7):

ω(θ) = log[p− (T ∗∆(θ2))
−1s]− xγ (18)

Next, I define the GMM objective function. Recall that zj(X) is a 1× L vector, and define:

Zj =

[
zj 0

0 zj

]
2×2L

, gj(θ) = Z ′
jej(θ)

Letting N denote the total number of products in the sample, the objective function is given by:

39See Train [2003]. Antithetic draws are used in Goeree’s [2008] analysis.
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QN(θ) =

[ N∑
j=1

gj(θ)

]′
Φ−1

[ N∑
j=1

gj(θ)

]
(19)

where Φ−1 is a 2L × 2L PD weight matrix. The initial choice for this matrix is [
∑N

j=1 Z ′
jZj]

−1.

With an initial estimate for θ at hand, denoted θ̂1, I estimate the optimal weight matrix by

[
∑N

j=1 gj(θ̂
1)gj(θ̂

1)′]−1. Re-estimating θ using the updated matrix yields the estimates reported

in Tables 5a-5b.

A.2 Set Estimation of Fixed Cost Parameters λ: Computational Details

Estimation of the quantities Ud,k(θ0) and Ld,j(θ0) which appear on the RHS of (10) and (11),

respectively, is performed as follows. The BLP estimate θ̂ implies empirical values ej(θ̂) for all

products observed in the sample (a total of 2,287) using equations (17) and (18) above. From

this empirical distribution, I draw 500 vectors of error terms e for all products that need to be

considered (in the current case, observed and potential products in 2004Q2). Note that we draw

from the joint distribution of (ξ, ω).

At each such error vector, I simulate price equilibria under (Ad) and (Ad−1k
d), and compute the

variable profit figures which appear in (10). Averaging over the variable profit differences yields

the estimate of Ud,k(θ0). An analogous procedure yields estimates for Ld,j(θ0). Price equilibria

are simulated by iterating on the first-order conditions (7) until convergence, which typically

takes a few seconds of computation time.

B Relaxing Point Identifying Assumptions for Variable Profit

Parameters θ

Relaxing the assumption that firms only observe the error terms e after making their product

choices implies that the selection indicator would now depend on unobservables, i.e., it would be

written as qj(X, F, e). Correcting the resulting selection bias with traditional, point-identifying

approaches (such as those in Heckman [1976]) is not possible, since that would require specifying

a simple model for qj(·), whereas this object actually depends in a very complex fashion on

the observed and unobserved features of all products, and is not even uniquely determined in

equilibrium.

I describe here an alternative approach that seeks partial identification of θ. I have not

pursued actual estimation of θ following this strategy, and it is likely to involve a substantial

computational burden.

Under the assumptions specified below, I show that given a generic value for θ, necessary
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equilibrium conditions can be used to obtain upper (lower) bounds on the ξ (ω) error terms

associated with products that are unobserved by the econometrician. In addition, equations (17)

and (18) above show how to compute exact values for these errors for observed products. The

resulting partial information on the distribution of these error terms is translated into a partial

identification argument for θ via moment inequalities. These inequalities would reduce to BLP’s

moment equalities if all products were observed.

I now provide the details of the identification argument. A formal proof of identification is

outside the scope of this paper. I maintain Assumption 1, which stated the mean-independence

of e from X in the population of all potential products J (see Section 4.1). I also add the following

assumption:

Assumption 2. The support of the marginal distribution of ω has an upper bound, ωU . The

support of the marginal distribution of ξ has a lower bound, ξL.

I now show that Assumptions 1 and 2 yield moment inequalities involving θ if the support

bounds ωU , ξL are known. Since they are not likely to be known to the econometrician, I return

below to the issue of identifying these support bounds. This latter task would require additional

assumptions.

For observed products j ∈ J , equations (17)-(18) imply an exact value ej(θ) = (ξj(θ), ωj(θ))
′.

For unobserved products j ∈ J\J , I compute, for each guess of θ, an upper bound ξj(θ) and a

lower bound ωj(θ).

Without loss of generality, assume that the unobserved product j ∈ J\J belongs to firm d,

and, with a slight abuse of notation, let j ∈ A0
d. Consider any k ∈ A1

d, i.e., any observed product

offered by this firm (I assume that this set is not empty, i.e., the firm offers at least one product).

Using necessary equilibrium conditions, the bounds ξj(θ) and ωj(θ) are defined as the implicit

solutions to the following equations:

V Pd(Ad + 1j
d − 1k

d; θ, ωj = ωU , ξj = ξj)− V Pd(Ad; θ) = 0 (20)

V Pd(Ad + 1j
d − 1k

d; θ, ξj = ξL, ωj = ωj)− V Pd(Ad; θ) = 0 (21)

In words, we consider a deviation in which the firm eliminates the observed product located

at k and introduces product j instead. This deviation does not alter total fixed costs, and so

its profitability hinges entirely on its variable profit implications. The idea underlying (20) is

that, all else equal, the higher is the demand shifter ξj, the more profitable is the deviation. An

upper bound on ξj, therefore, is the value at which the firm is indifferent about performing this

deviation. The profitability of the deviation also depends on the unknown ωj value, but fixing
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it at the upper bound of its support yields a valid upper bound on ξj. An analogous argument,

specified in (21), places a lower bound on the ωj value.

I now set up moment inequalities as follows: define |J|-vectors ξ̃ and ξ̂, which jth elements are

given by:

ξ̃j(θ) =

ξj(θ) j ∈ J

ξj(θ) j ∈ J\J
ξ̂j(θ) =

ξj(θ) j ∈ J

ξL j ∈ J\J

At the true parameter value θ0, we have ξ̂j(θ0) ≤ ξj ≤ ξ̃j(θ0) for each j ∈ J. For each product

j, let zj : R|J|×K → RL
+ be a nonnegative vector-valued function of instruments. We get:

E[ξ̂j(θ0)zj(X)|j ∈ J] ≤ E[ξjzj(X)|j ∈ J] ≤ E[ξ̃j(θ0)zj(X)|j ∈ J] (22)

By Assumption 1 and the Law of iterated expectations, E[ξjzj(X)|j ∈ J] = 0, implying a set

of moment inequality conditions involving θ:

E[ξ̂j(θ0)zj(X)|j ∈ J] ≤ 0 ≤ E[ξ̃j(θ0)zj(X)|j ∈ J] (23)

Note that, if all products are observed, i.e., J = J, the selection problem disappears, and (23)

is reduced to the BLP moment equalities. Intuitively, the more severe is the selection problem,

the further away from point identification we get. Sets of “supply-side” moment inequality

conditions can be analogously obtained. Define the |J|-vectors ω̃, ω̂ by their jth elements:

ω̃j(θ) =

ωj(θ) j ∈ J

ωj(θ) j ∈ J\J
ω̂j(θ) =

ωj(θ) j ∈ J

ωU j ∈ J\J

Which yields:

E[ω̃j(θ0)zj(X)|j ∈ J] ≤ 0 ≤ E[ω̂j(θ0)zj(X)|j ∈ J] (24)

Identifying the support bounds. Throughout the discussion above I made reference to the

support bounds ξL and ωU without specifying how one may learn their values. One possible

avenue to do that is to define a subset of products which introduction is assumed to be predeter-

mined to the game. Observe in Table 3a that, at each point in time, at least one CPU option was

offered in the vast majority of product lines (e.g. P3 0.5-0.99 in 2001Q3). Such a CPU option

may be viewed as an “industry standard” option, offered by most firms (and virtually all major

firms). This motivates the following assumption:
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Assumption 3. A subset JP ⊂ J of the potential products is offered in a manner that is pre-

determined to the two-stage game. In addition, E[ej|X, j ∈ JP ] = 0 holds, and the distributions

of ξj and ωj conditional on j ∈ JP have the same support bounds as those of the unconditional

distributions.

The idea behind this assumption is that, since the products in Jp are not selected on ac-

count of unobservables, the mean-independence condition should not be violated within this

sub-population. Assumption 3 yields moment equalities : since Jp ⊂ J , i.e., all the pre-determined

products are observed, a generic value for θ implies exact values ej(θ) for each j ∈ Jp using (17)

and (18) above, and we get:

E[ej(θ0)zj(X)|j ∈ Jp] = 0 (25)

These moment conditions point-identify a subset of the elements of θ, denoted θP , while

providing no information on other elements. In addition, exact values ej(θ
P ) are implied for

each j ∈ JP by using (17)-(18) once again. The support bounds are then identified by ξL =

infj∈Jp ξj(θ
P ), ωU = supj∈Jp ωj(θ

P ).

Discussion. An unattractive feature of the identification strategy above is that it relied on

the assumption of a pre-determined set of products. This may be more reasonable in some

applications than in others. Coming up with an alternative approach for pinning down the

support bounds, therefore, would be desirable.

Finally, actual estimation of θ following this approach would require constructing the sample

analogs of the moments in (23)-(25). While efficient estimation would use all these conditions

simultaneously, the computational burden would be significantly alleviated if one uses (25) first

to obtain a point estimate of θP ⊂ θ, and then obtains set estimates of the remaining parameters

using (23)-(24), holding the point estimates fixed. This is still likely to be computationally ex-

pensive, so that a parsimonious specification for utility and marginal cost is likely to be necessary.
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C Tables

Table 1: Top Vendors’ Market Shares, US Home PC Market

Year 1 Year 2 Year 3

Vendor Market Share Vendor Market Share Vendor Market Share

Dell 0.190 Dell 0.263 Dell 0.279

HP∗ 0.185 HP 0.234 HP 0.258

Compaq∗ 0.092 eMachines 0.076 eMachines∗ 0.070

Gateway 0.091 Gateway 0.070 Gateway∗ 0.053

eMachines 0.060 Toshiba 0.042 Toshiba 0.043

Top 5 vendors 0.618 Top 5 vendors 0.685 Top 5 vendors 0.704

Years: 01Q3-02Q2, 02Q3-03Q2, 03Q3-04Q2. *Compaq and HP merge in Year 1, eMachines and

Gateway merge in Year 3.

Table 2: CPU Vendor Shares

Vendor Market Shares

Year 1 Year 2 Year 3

Intel 0.71843 0.72246 0.74496

AMD 0.24429 0.23643 0.22032

IBM 0.03230 0.03450 0.03048

Others 0.00477 0.00524 0.00323

Transmeta 0.00022 0.00135 0.00097

Via 0.00000 0.00002 0.00005

Years: 01Q3-02Q2, 02Q3-03Q2, 03Q3-04Q2, U.S.

Home market.
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Table 3a: Fraction of Desktop Product
Lines to Install Intel’s CPUs

Quarter C 0.5-0.99 C 1-1.49 C 1.5-1.99 C 2-2.99 P3 0.5-0.99 P3 1-1.49

2001Q3 0.89 0.00 0.00 0.00 0.93 0.67

2001Q4 0.46 0.42 0.00 0.00 0.46 0.50

2002Q1 0.35 0.58 0.00 0.00 0.31 0.31

2002Q2 0.13 0.57 0.00 0.00 0.17 0.13

2002Q3 0.09 0.39 0.48 0.13 0.13 0.13

2002Q4 0.07 0.04 0.44 0.41 0.11 0.04

2003Q1 0.04 0.04 0.41 0.41 0.04 0.00

2003Q2 0.04 0.04 0.37 0.41 0.04 0.00

2003Q3 0.04 0.04 0.24 0.48 0.04 0.00

2003Q4 0.04 0.04 0.20 0.52 0.04 0.00

2004Q1 0.00 0.04 0.15 0.54 0.00 0.00

2004Q2 0.00 0.00 0.17 0.54 0.00 0.00

Quarter P4 1-1.49 P4 1.5-1.99 P4 2-2.99 P4 3-3.99

2001Q3 0.48 0.26 0.00 0.00

2001Q4 0.65 0.65 0.12 0.00

2002Q1 0.58 0.73 0.50 0.00

2002Q2 0.43 0.70 0.65 0.00

2002Q3 0.26 0.74 0.70 0.00

2002Q4 0.11 0.37 0.81 0.00

2003Q1 0.11 0.44 0.81 0.15

2003Q2 0.11 0.44 0.81 0.15

2003Q3 0.08 0.28 0.92 0.60

2003Q4 0.12 0.28 0.92 0.60

2004Q1 0.08 0.19 0.92 0.65

2004Q2 0.08 0.17 0.92 0.63

Calculations pertain to the Home market and exclude vendors identified as “Others”, Apple

products, and PC products which sold under 100 units in a quarter. C,P3, and P4 stand

for Intel’s Celeron, Pentium III and the Pentium 4 brands, repsectively. P3 0.5-0.99

implies Pentium III with clock speed range between 0.5 and 0.99 GHz.

43



Table 3b: Fraction of Portable Product
Lines to Install Intel’s CPUs

Quarter C 0.5-0.99 C 1-1.49 C 1.5-1.99 C 2-2.99 P3 0.5-0.99 P3 1-1.49

2001Q3 0.81 0.00 0.00 0.00 1.00 0.15

2001Q4 0.59 0.21 0.00 0.00 0.79 0.72

2002Q1 0.36 0.25 0.00 0.00 0.64 0.86

2002Q2 0.12 0.31 0.00 0.00 0.54 0.62

2002Q3 0.11 0.21 0.07 0.00 0.18 0.64

2002Q4 0.10 0.03 0.23 0.10 0.16 0.42

2003Q1 0.03 0.06 0.26 0.13 0.19 0.39

2003Q2 0.03 0.03 0.21 0.12 0.15 0.42

2003Q3 0.03 0.00 0.25 0.13 0.16 0.34

2003Q4 0.03 0.03 0.22 0.13 0.13 0.28

2004Q1 0.00 0.03 0.18 0.18 0.03 0.18

2004Q2 0.00 0.03 0.19 0.19 0.03 0.19

Quarter P4 1-1.49 P4 1.5-1.99 P4 2-2.99 P4 3-3.99 Pm 1-1.49 Pm 1.5-1.99

2001Q3 0.00 0.00 0.00 0.00 0.00 0.00

2001Q4 0.00 0.00 0.00 0.00 0.00 0.00

2002Q1 0.07 0.18 0.00 0.00 0.00 0.00

2002Q2 0.19 0.38 0.00 0.00 0.00 0.00

2002Q3 0.14 0.46 0.32 0.00 0.00 0.00

2002Q4 0.10 0.52 0.58 0.00 0.00 0.00

2003Q1 0.13 0.52 0.58 0.00 0.10 0.06

2003Q2 0.12 0.48 0.55 0.00 0.09 0.09

2003Q3 0.09 0.53 0.59 0.06 0.22 0.19

2003Q4 0.13 0.50 0.50 0.09 0.31 0.25

2004Q1 0.12 0.42 0.52 0.12 0.21 0.48

2004Q2 0.06 0.44 0.50 0.13 0.28 0.56

See notes for Table 3a. Pm stands for Intel’s Pentium M brand. CPU technologies with

very small installation rates excluded.
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Table 4: Descriptive Results, logit Demand

β Logit OLS Logit IV

Price (00$) -0.0395*** -0.157**

(0.0135) (0.0649)

Laptop dummy -0.616*** -0.298

(0.0999) (0.199)

Trend -0.0398** -0.138**

(0.0171) (0.0567)

CPU Speed Range Dummies

1-1.49 GHz 0.200* 0.385**

(0.107) (0.152)

1.5-1.99 GHz 0.383*** 0.660***

(0.138) (0.208)

2-2.99 GHz 0.752*** 1.223***

(0.156) (0.303)

3-3.99 GHz 0.779*** 1.586***

(0.253) (0.508)

CPU Brand Dummies

AMD Duron 0.694*** 0.544**

(0.208) (0.254)

AMD Athlon 0.691*** 0.695***

(0.115) (0.133)

Intel Pentium III 0.227** 0.507***

(0.116) (0.189)

Intel Pentium 4 0.359*** 0.629***

(0.103) (0.176)

Intel Pentium M 0.724*** 1.554***

(0.215) (0.489)

Constant -10.66*** -9.441***

(0.183) (0.699)

Observations 2287 2287

R-squared 0.491 0.473

Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1

Dummy variables for PC vendors and brands included, not reported
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Table 5a: BLP Estimates for θ, Main PC Characteristics
β SE σ SE γ SE

Constant 4.479 3.108 1.546 1.933 6.759 0.020

Laptop Dummy -0.690 1.158 3.785 0.518 0.312 0.013

Trend -1.444 0.263 0.430 0.081 -0.090 0.002

CPU Speed Range Dummies

1-1.49 GHz 2.390 0.386 0.156 0.013

1.5-1.99 GHz 3.621 0.521 0.232 0.016

2-2.99 GHz 6.212 0.809 0.412 0.017

3-3.99 GHz 9.584 1.374 0.709 0.030

CPU Brand Dummies

AMD Duron -0.915 0.443 -0.120 0.023

AMD Athlon 0.912 0.217 0.031 0.013

Intel Pentium III 3.517 0.484 0.272 0.014

Intel Pentium 4 3.855 0.487 0.305 0.010

Intel Pentium M 10.051 1.361 0.741 0.032

Price sensitivity α SE σp SE

0.810 0.179 0.301 0.060

Obs: 2287. Dummies for PC vendor, brands included, reported in 5b. Standard errors do not take into account

simulation error, which is mitigated via antithetic draws.
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Table 5b: BLP Estimates for θ, PC Vendor & Brand Dummies

β SE γ SE β SE γ SE

Dell 12.332 2.603 0.774 0.062 Toshiba 7.933 1.684 0.479 0.050

dimension -10.426 2.813 -0.915 0.065 portege 0.593 1.018 0.093 0.059

inspiron -9.908 2.732 -0.838 0.064 port tablet 2.855 1.303 0.218 0.085

Latitude -7.529 2.137 -0.488 0.071 satellite -5.405 1.752 -0.517 0.055

OptiPlex -13.509 2.819 -0.903 0.064 satpro -2.628 1.141 -0.132 0.053

HP -0.976 0.334 -0.049 0.021 Sony 5.684 0.821 0.306 0.037

evoipaq -1.651 0.519 -0.174 0.030 VAIO DS -3.909 0.871 -0.265 0.043

media 7.568 0.870 0.424 0.029 VAIO R 0.500 0.824 0.205 0.052

pavilion 2.625 0.385 -0.015 0.024 VAIO W 3.163 0.979 0.283 0.059

presario 2.593 0.355 0.026 0.020 VAIO 505 1.288 0.963 -0.007 0.061

cmpq ntbk 1.841 0.653 0.175 0.033 VAIO FX 0.951 0.734 0.053 0.053

cmpq ultprtbl 10.945 2.221 0.741 0.080 IBM 2.037 1.217 0.208 0.083

Gateway 0.309 0.399 0.068 0.025 IBM netvista -3.868 1.307 -0.244 0.087

Gateway3 -2.619 0.730 -0.408 0.035 IBM thinkCentre 0.419 1.301 0.040 0.095

Gateway5 1.755 0.865 -0.030 0.048 IBM thinkpadA 8.348 2.084 0.452 0.097

Gateway7 2.159 0.690 0.077 0.035 IBM thinkpadT 1.253 1.366 -0.016 0.092

essential 2.124 0.458 -0.098 0.030 IBM thinkpadR -3.304 1.291 -0.233 0.085

performance 1.751 0.530 0.039 0.034 Acer veriton -2.120 0.382 -0.120 0.016

media 4.960 0.828 0.365 0.035 Averatec 1.131 0.688 -0.034 0.048

Gateway4 -1.320 0.510 -0.139 0.031 Fujitsu -1.090 0.354 -0.018 0.023

Gateway6 4.725 1.077 0.173 0.051 MicroElectronics -1.585 0.236 -0.009 0.017

solo 0.185 0.868 -0.106 0.050

eMachines 0.389 0.602 -0.325 0.050

See notes for Table 5a. The coefficients on vendors (e.g. Dell) do not capture an “overall” vendor effect,

but rather the effect of omitted brands of that vendor (see text).
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Table 6: Economic Implications of BLP Estimates

A. Willingness to pay

Average Consumer WTP (�)

1-1.49 GHz → 1.5-1.99 GHz 54.8

1.5-1.99 GHz → 2-2.99 GHz 115.3

2-2.99 GHz → 3-3.99 GHz 150.1

Celeron → Pentium III 156.5

Celeron → Pentium 4 171.5

Celeron → Pentium M 447.3

HP (Compaq) Presario 71.9

Dell Inspiron 107.8

Sony VAIO R 275.2

IBM Thinkpad A 462.1

1 year forward* -257.0

B. Additional Information

Median Markup (�) 76.4

Median (p-mc)/p 0.078

Corr(markup, price) 0.912

Corr(ξ, ω) 0.820

*Change in willingness to pay over one year, see text

Table 7: Fixed Cost Parameters λ

(a) (b)

Parameter Lower Bound Upper Bound Lower Bound Upper Bound

Constant 1,165,999 1,506,040 980,000 1,500,000

Big Notebook Producer 0 1,290,000

Per-configuration fixed cost (Vdλ) $

Big Producers 1,170,000 2,270,000

Other Producers 980,000 1,500,000

Confidence intervals not yet provided. Results obtained using information from notebook product offerings in 2004Q2 (see text).
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Table 8: The Effect of Intel’s Pentium M on 2004Q2 Outcomes

Lower bound Upper bound

Total Notebook Sales +10.9% +18.9%

Total Desktop Sales -2.6% -1.6%

Mean Notebook price* (�) +32 +44

Impact on number of PC configurations (top 5 brands)**

# P3 1.5-1.99 -4 -2

# C 1.5-1.99 +1 +3

# C 2-2.99 +1 +1

# P4 1.5-1.99 +2 +2

# P4 2-2.99 -1 +2

# P4 3-3.99 -3 -1

Impact on Pentium III’s share of total Portables sales

Share P3 (percentage points) -0.156 -0.116

Entries with a positive (negative) sign imply that the presence of the Pentium M has increased (decreased) the relevant quantitity

by the reported amount. For instance, the Pentium M increased total notebook sales by 10.9% to 18.9%.

* Sales-weighted average

** These entries describe the impact of the Pentium M on the number of configurations offered by the five top-selling notebook

brands. For example, between 2 and 4 configurations of these top-selling brands with Intel’s Pentium III chip (1.5-1.99 GHz)

were crowded out. C, P3, and P4 stand for Intel’s Celeron, Pentium III and Pentium 4 brands, respectively.

Table 9: The Effect of Intel’s Pentium M on Consumers

Absolute Effect ($ million) % Change

Lower bound Upper bound Lower bound Upper bound

Total Consumer Surplus +27.92 +41.87 +3.3% +5.1%

Price Sensitivity Quantiles

0-20% Price sensitive +25.90 +38.19 +3.80% +5.70%

20%-40% Sensitive +1.24 +2.52 +1.39% +2.87%

40%-60% Sensitive +0.53 +1.04 +0.99% +1.96%

60%-80% Sensitive +0.06 +0.09 +0.77% +1.20%

80%-100% Sensitive +0.01 +0.03 +1.65% +4.95%

See text.
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Table 10: Effect on Welfare of Adding Pentium III-based Products

Effect on consumer surplus: +8.68

Effect on PC makers’ variable profits: +2.36

Effect on PC makers’ fixed costs: [+5.66, +10.58]

Total welfare effect: [+0.46, +5.38]

All quantities in � million. Total welfare is the sum of consumer and producer surplus. See text for more details.
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Figure 1: CPU speed range shares, U.S. Home Market, over the three sample years
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Figure 3: Willingness-to-pay for an upgrade from Intel’s Celeron to its Pentium M processor (�)
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Figure 4: Willingness-to-pay for “1 year forward”(�) (see text)
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