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Abstract 

 

This paper proposes two new estimators for determining the number of factors (r) in approximate 

factor models. We exploit the well known fact that the r eigenvalues of the variance matrix of N 

response variables grow unboundedly as N increases.  Bai and Ng (2002) and Onatski (2006) 

have developed the methods by which the number of factors can be estimated by comparing the 

eigenvalues with prespecified or estimated threshold values.  One limitation of the methods is 

that they lack a practical guidance on how to choose the appropriate threshold values in finite 

samples.  Asymptotically, any scalar multiple of an appropriate threshold value is also a valid 

threshold value.  However, the finite-sample properties of the estimators critically depend on the 

choice of the thresholds.  As a treatment to this problem, we propose the estimators that do not 

require use of threshold values.  These new estimators are obtained simply by maximizing the 

ratio of two adjacent eigenvalues.  We show that the estimators are consistent under the general 

conditions of Bai and Ng (2002).  Our simulation results show that the estimators have good 

finite sample properties unless the signal-to-noise-ratio of each factor is too low.  They perform 

better than the Bai-Ng estimators do when either the number of the response variables analyzed 

or the number of time series observations, T, is small.   
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1.  Introduction 
 

Economic or econometric models often predict that a small number of latent factors drive a large 

number of response variables.  Factor analysis is a natural approach to estimate such models.  

Since the late 1970’s and the early 1980’s the factor analysis has been growingly important in the 

economic realm, especially in the area of finance following the development of the Arbitrage 

Price Theory (APT) by Ross (1976). The foundation of this theory is the exact factor structure in 

which returns on risky assets are cross-sectionally correlated only through common latent factors, 

while their idiosyncratic components are uncorrelated. Chamberlain and Rothschild (1983) have 

shown that the theory can be extended to approximate factor models in which the idiosyncratic 

components are cross-correlated.  Use of factor analysis has extended gradually to a wider range 

of economic disciplines.  Recent examples are Stock and Watson (1999, 2002a, 2002b) and 

Bernanke, Boivin, and Eliasz (2004), which propose to forecast major economic variables using 

the factor estimates from a large number of economic variables.  

Identifying the number of common factors that explain the common variations in a set of 

response variables is one of the major tasks of factor analysis.  The literature on this topic can be 

traced as far as the early 1950’s in other disciplines, such as psychology (see Cattell (1966) for 

more references).  The test most widely used to determine the number of factors has been the 

scree test of Cattell (1966).  This is a visual test based on the behaviors of the eigenvalues of the 

second-moment matrix of the response variables. More recently, Forni, Hallin, Lippi and 

Reichlin (2000) also proposed a visual test based on the behavior of the eigenvalues for 

determining the number of factors in the context of dynamic factor models.  In this paper, we 

propose three formal estimators based on the eigenvalues, which can consistently estimate the 

number of factors in approximate factor models with both large numbers of cross section units 

(N) and time series observations (T). 

While the scree test is intuitively appealing, it is essentially an eyeball test.  Recently, more 

formal statistic methods have been developed for approximate factor models.  Bai and Ng (2002, 

hereafter BN) propose to estimate the number of factors by minimizing certain model section 

criterion functions, typical form of which is the unconditional variance of the idiosyncratic 

components plus a penalty function monotonically increasing with the number of factors.  

Onatski (2006) finds that the BN estimators are linked to scree tests.  He shows that a set of the 

BN estimators are the obtained by comparing the eigenvalues of the covariance matrix and the 
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values of the chosen penalty functions.  Specifically, a typical BN estimator is equivalent to the 

number of the eigenvalues larger than a threshold value which is specified by a chosen penalty 

function.  Onatski develops an alternative estimator based on the fact that for the data with r 

latent common factors, the largest r eigenvalues of the second-moment matrix of the data grow 

without limit with N, while the rest of the eigenvalues are bounded (see Chamberlain and 

Rothschild, 1983).  A threshold value is chosen from the empirical distribution of the 

eigenvalues to differentiate the diverging ones from the bounded ones.  Onatski shows that the 

number of the eigenvalues greater than the threshold value is a consistent estimator of r, under 

the assumption that the idiosyncratic components of response variables are either serially or 

cross-sectionally uncorrelated, but not both.  His Monte Carlo experiments show that the 

estimation method has good finite-sample properties even if the idiosyncratic components are 

both serially and cross-sectionally correlated.
1
 

In this paper we propose three alternative estimators that do not require use of the threshold 

values.  One estimator is obtained simply by maximizing the ratio of two adjacent eigenvalues. 

The other estimators are obtained by a similar method.  The new estimators are computed by 

using eigenvalues only.  Our Monte Carlo experiment results indicate that the new estimators 

outperform the BN and Onatski estimators even in samples with small N and T unless the signal-

to-noise ratios are too small. 

The paper is organized as follows.  Section 2 provides the intuition for our estimators.  

Section 3 presents the assumptions consistent with approximate factor models.  These 

assumptions are essentially the same as those in Bai and Ng (2002).  Under the assumptions, we 

establish the consistency of the estimators we propose.  Section 4 reports our Monte Carlo 

experiments.  Section 5 provides an application of the two estimators to macroeconomic data and 

stock returns.  Concluding remarks are given in section 6. 

 

2.  Preliminaries and Motivation 

We begin by defining the approximate factor model of Chamberlain and Rothschild (1983). 

Suppose we have a set of panel data generated from a factor structure. We will try to use the 

same notation as Bai and Ng (BN, 2002) use as much as we can.  Let it
x be the observed value of 

                                                 
1
 Kapetanios (2004) also develops an algorithm for testing the number of factors when the idiosyncratic components 

are serially uncorrelated. Similarly to Onatski (2006), his estimation method is also based on the fact that the (r+1)th  

largest eigenvalue converges almost surely to a constant.  
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the response variable i = 1,…,N at time t = 1,…,T.  Assume that the response variables are 

generated by an r×1 vector of common factors, 1 2( , ,..., )
t t t rt

f f f f ′= : 

 
o

i i ix Fλ ε= +
i i

, (1) 

where 1 2( , ,..., )
i i i iT

x x x x ′=
i

, 1 2( , ,..., )
T

F f f f ′= , 1 2( , ,..., )o o o o

i i i irλ λ λ λ ′= is the r×1 vector of factor 

loadings for variable i, , and 1( , ..., )
i i iT

ε ε ε ′=
i

 is the vector of the idiosyncratic components 

of variable i.  The factors, factor loads, and idiosyncratic errors are not observed.  Using this 

notation, we can describe the complete panel data by 

 
oX F ′= Λ +Ε , (2) 

where 1( ,..., )
N

X x x=
i i

, oΛ  = 
1 2( , ,..., )o o o

Nλ λ λ ′ , and 1 2( , ,..., )
N

ε ε εΕ =
i i i

.  Both F  and 
o

Λ  could 

be random.  But following Bai and Ng (2002), we treat the entries in oΛ  as parameters and those 

in F  as random variables.     

 For future use, we also define 1 2( , ,..., )
t t t Nt

x x x x ′=
i

.  Notice that if the means of 
it

x  are all 

zeros, /XX N′  is a sample covariance matrix of 
t

x
i

, while /X X T′  is a sample covariance 

matrix of 
i

x
i
.  Let min( , )m N T=  and max( , )M N T= .  We use ( )

j
Aλ  to denote the j

th
 largest 

eigenvalue of a positive semidefinite matrix A.  Define  

,

1 1
NT k k kXX X X

NT NT
µ λ λ

   
′ ′≡ =   

   
� ,  

1,...,k m= .  Then, ,NT j
T µ�  ( ,NT j

Nµ� ) is the j
th

 largest eigenvalue of the sample covariance matrix 

of 
t

x
i

 (
i

x
i
).   

One of the most popular methods used to determine the number of common factors is the 

scree test developed by Cattell (1966).  The test is a visual way to find out the number of factors 

from the eigenvalues of XX ′ .  Cattell (1983) describes his method as follows: 

 

“To my delight, a very simple finding presented itself, namely, that if I plotted the 

principal components in their sizes, as a diminishing series, and then joined up the points 

all through the number of variables concerned, a relatively sharp break appeared where 

the true number of factors ended and the ‘detritus’, presumably due to error factors, 

appeared. From the analogy of the steep descent of a mountain till one comes to the scree 

of rubble at the foot of it, I decided to call this the scree test” 
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In order to visualize the relations of the scree test, BN estimators, and our estimators, we 

report here some tentative simulation results.  The data used for simulation are generated by a 

five-factor model: 

 5

1 5
it j ij jt it

x f eλ== Σ +  (3) 

where ite , ij
λ  and jt

f  are independently drawn from (0,1)N , and N = T = 500.  Figure 1 depicts 

the averages of the k
th

 eigenvalues from 1,000 simulated data sets.  When the scree rule is used, 

the estimated number of factors is the one found just before the “scree of ruble at the foot of a 

mountain”.  Thus, Figure 1 suggests presence of five common factors. 

One estimator we propose in this paper, which we call eigenvalue ratio (ER) estimator, is 

ERk�  =
 , , 1arg max ( / )

k kmax NT k NT k
µ µ≤ +
� � , where kmax is the maximum possible number of factors a 

researcher choose.  The ratios of two adjacent eigenvalues are depicted in Figure 2.  The ratio is 

clearly peaked at 5k r= = .  

The above exercise is the case in which the scree test can cleanly identify the true number of 

factors.  But the scree test result is not always as obvious as in Figure 1.  There are many other 

cases in which it is hard to identify the point where the scree starts.  As an example, we 

generated data from the same model (3), but the errors are now generated to be cross-sectionally 

and serially correlated.
2
  Figures 3.1 and 3.2 show the graphs of the eigenvalues and eigenvalue 

ratios.  In Figure 3.1, it is not obvious which scree point should be chosen to estimate the number 

of factors.  The scree estimator could be 5, 6, 7 or even 11.  In contrast, the eigenvalue ratio is 

clearly maximized at 5k r= = . Once again, the ER estimation successfully picks up the correct 

number of factors r. 

Formal consistent estimation methods have been proposed recently by Bai and Ng (BN, 2002) 

and Onatski (2006).  The estimation method by Onatski (2006) is readily related to the scree test.  

The Onatski estimator, 
ONk� , equals the number of the eigenvalues of XX ′  greater than a 

threshold value ĉ : ,
ˆarg max { | / }ON k kmax NT kk k c Nµ≤= >� � .  The threshold value is estimated from 

the empirical distribution of the eigenvalues and the maximum value of k, kmax. Under the 

assumption that the idiosyncratic errors are not both cross-sectionally and serially correlated, 

                                                 
2
 The data generating process we use for Figures 3.1 and 3.2 are explained in section 3. 
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ONk�  is a consistent estimator of the true number of factors, r.  This method is similar to the scree 

test in the sense that it uses the eigenvalues of the estimated second moment matrix of 
t

x
i

.  

Figure 4 depicts the average of the Onatski threshold values from the same generated data from 

model (3) with i.i.d. errors.  Again the true number of factors is r = 5. 

As Onatski has shown, one set of the BN estimators have the form similar to his estimator.   

The typical form of the criterion functions used by BN is the mean of the squared residuals from 

the regressions of response variables on estimated principal component factors plus a penalty 

function.  To be specific, let kF�  be the T×k matrix of the eigenvectors corresponding to the 

largest k eigenvalues of XX ′ , normalized so that /
k k

kF F T I′ =� � .  Let ( , )k
V k F�  be the sum of 

squared residuals from the regressions of i
x
i
 on 

k
F� .  Then, it is straightforward to show: 

 

( )1 1 ,

1
( , ) ( ) ,

k N k T

i i i i i j k NT jV k F x x x P F x
NT

µ= = +
′ ′= Σ − = Σ
i i i i

� � �  (4) 

where the last equality is due to Onatski (2006).  Let kmax be the maximum value of k to 

estimate the true number of factors, r; and define 
2σ̂  = ( )kmax

V kmax,F�  = 
1 ,

T

j kmax+ NT jµ=Σ � .   Then, 

the criterion functions used by BN are given: 

 
2

1 , 1 ,
ˆ( ) ( , ) ( , ) ( , )

k T T

j k NT j j kmax NT jPC k V k F kg N T kg N Tσ µ µ= + = += + = Σ + Σ� � � ; (5) 

 ( ) ( )1 ,
( ) ln ( , ) ( , ) ln ( , )k T

j k NT j
IC k V k F kg N T kg N Tµ= += + = Σ +� � , (6) 

where ( , )g N T  is a penalty function such that ( , ) 0g N T →  and ( , )g N T m → ∞  as ,N T →∞ .  

A BN estimator is obtained by minimizing one of the two functions.  One of the penalty function 

suggested by BN is 

 ( , ) ln
N T NT

g N T
NT N T

+   
=    

+   
. (7) 

 Let min ( )PC k kmaxk PC k≤=�  and min ( )IC k kmaxk IC k≤=� .  Then, using (4) and the monotonicity 

of the eigenvalues, we can show that 2

,
ˆmax { | ( , )}PC k kmax NT kk k g N Tµ σ≤= ≥� �  (see Onatski, 2006).  

Thus, the PC estimation can be viewed as a scree test using 
2ˆ ( , )g N Tσ  as a threshold value.  

Conversely, the Onatski estimator can be viewed as a PC estimator using an estimated threshold 

value as a substitute for a prespecified penalty function. 
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The IC estimator 
ICk�  has a similar property, although Onatski does not consider.  Observe 

that as the number of factors used for estimation increases from k to k+1, the value of ( )
p

IC k  

changes by 
*

, 1
( , ) ln( )

NT k
g N T µ +− � , where ( )*

, , 1 ,( ) /T T

NT k j k NT j j k NT j
µ µ µ= = += Σ Σ� � � .  For 

ICk�  to minimize 

( )
p

IC k , the value of ( )
p

IC k  should increase (decrease) as k increases from 
ICk�  ( 1ICk −� ) to 

1ICk +�  (
ICk� ).  Thus, 

ICk�  must satisfy the following condition 

 * *

1
ln( ) ( , ) ln( )

IC ICk k
g N Tµ µ

+
< <

� �
� �  (8)  

However, this condition is a necessary, but not a sufficient condition, because *

,NT kµ�  is no longer 

a monotonic function of k. That is, * *

, , ,arg max { | ln( ) ( , )}
IC IC M k kmax NT k NT k

k k g N Tµ µ≤≠ = >� � � � , 

although the equality held often in our Monte Carlo simulations.
3
 

Figures 5.1 and 5.2 show the shapes of ( , )k
V k F�  and ( )PC k  with the penalty function (7).  

The figures are obtained using the data generated from model (3) with i.i.d. errors.  From Figure 

5.1, we can observe a kink in the curve of ( , )k
V k F� at 5k r= = .  The value of ( , )k

V k F�  

decreases at slower rate after the kink point.  In Figure 5.2, we consider three PC estimators.  

PC1 represents the PC function with the penalty function (7), while PC2 uses a different penalty 

function introduced in the next section.  As we point out above, the Onatski estimator can be 

viewed as a PC estimator using his estimated threshold value as a penalty function.  ON 

represents the PC criterion function corresponding to the Onatski estimator.  Observe that all of 

the PC criterion function values rise after the kink point.  Thus, the minimum value of each 

criterion function is achieved at the correct number of factors. 

Figure 5.2 suggests a possible pitfall of the ( )PC k  criterion function, as well as ( )IC k .  That 

is, the value of the function does not rise after the kink point as sharply as it falls before the kink 

point. It appears that the function (7) is somewhat generous in penalizing large k.  The Onatski 

threshold value seems to be also generous for large k.  In contrast, as we have seen from Figures 

2.2 and 3.2, the eigenvalue ratio is sharply peaked at the true number of factors.  

                                                 
3
 In unreported simulation experiments, we found that ,IC M

k� had slightly better finite-sample properties than IC
k� , 

when they are different. 
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Another potential problem in using the BN and Onatski estimators is that they require a 

choice of kmax.  In asymptotics, the choice does not matter as long as kmax r> .  But, for small 

samples, the estimate of r could be sensitive to the choice of kmax. 

  To see how the PC estimators are related to the ER (eigenvalue ratio) estimator, observe that 

 

1
,

1

, 1

( 1, ) ( , )
( )

( , ) ( 1, )

k k
NT k

k k

NT k

V k F V k F
ER k

V k F V k F

µ

µ

−

+
+

− −
≡ =

− +

� ��

� ��
. (9) 

Thus, the ER estimator can be viewed as the value of k that maximizes the ratio of the changes in 

the sum of squared residuals at k-1 and k.   

As we formally present in the later section, another way to estimate the number of factors is 

to maximize the ratio of the growth rates of ( , )k
V k F�  at k-1 and k.  Specifically, we define the 

following criterion function: 

 

*1
,

1 *

, 1

ln( )ln[ ( 1, ) / ( , )]
( ) ,

ln[ ( , ) / ( 1, )] ln( )

k k
NT k

k k

NT k

V k F V k F
GR k

V k F V k F

µ

µ

−

+
+

−
= =

+

� � �

� � �
 

 (10) 

where k kmax≤ .  Figure 6, which is obtain from the data generated by model (3) with i.i.d. 

errors, shows that ( )GR k  achieves a maximum when k = 5 = r.  Similarly to the case of 

eigenvalue ratios, the ( )GR k  function is almost symmetric around the true number of factors.  

We call the value of k maximizing ( )GR k  “growth ratio” estimator, 
GRk� .  

It is important to note that the growth ratio, as well as the eigenvalue ratio, may not be singly 

peaked.  For example, we found that when factors have different signal-to-noise ratios, the ratios 

are likely to have multiple peaks.  Figure 7 shows the locus of eigenvalue ratios for the case 

where data are generated from model (3), but with two factors being generated from N(0,2) and 

the other three factors being generated from N(0,0.33). The figure also demonstrates that the first 

peak point is not necessarily the maximum point.  

In the next section we formalize the two new criteria presented and we also add a third one 

that is consistent under more restrictive assumptions.

 
 

3.  Assumptions and Asymptotic Results 

In this section, we denote a norm of a matrix A  as 1/2[ ( )]A trace AA′= .  We also use 1c  and 2c  

to denote generic positive constants.  For any real number z, [z] denotes the integer part of z.   

 The followings are the assumptions we made. 
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Assumption A: Let 
,1 ,2 ,.. 0NT NT NT rµ µ µ≥ ≥ ≥ >  be the eigenvalues of ( / )( / )o o N F F T′ ′Λ Λ .  

Then, 
,limm NT j jp µ µ→∞ = , where min( , )m N T= , and 0 jµ< < ∞ . 

Assumption B: 
4

1
o

t
E cF <  and 1

o

i
cλ <  for all i and t.  

Assumption C: ( )2
1/2

1
o

i it i
E cN ε λ− <Σ  for all t, and ( )2

1 1/2

1 1

N T

i t it t
E N T fε− −

= =Σ Σ  = 

( )2
1 1 oE N T F− − ′Ε  < 

1
c . 

Assumption D:  Let 
1/2 1/2[ ]it N T T NR UGε ×Ε = = , where [ ]

it N T
U u ×

′ = , 
T

R  and 
N

G  are T T×  and 

N N×  matrices, respectively, and 1/2

TR  and 
1/2

NG  are their symmetric square roots.  (i) The it
u  

are independently and identically distributed random variables with uniformly bounded moments 

up to the 4
th

 order, and (ii) 1 1( )
T

R cλ <  and 1 1( )
N

G cλ < , uniformly in T and N, respectively. 

Assumption E:  Let lim /my m M→∞= , where max( , )M N T= .  Then, 0 1y< ≤ . 

Assumption F:  There exists a real number * (0,1]d ∈  such that ( )*[ ]
lim / 0

m d m
p Mλ→∞

′ΕΕ > . 

 

 Assumption A assumes that the common factors are stationary.  The methods of BN and 

Onatski can allow both non-stationary and stationary factors.  So, Assumption A is somewhat 

restrictive.  However, when some factors are suspected to be nonstationary, we can use the 

difference data to estimated number of factors (see Bai and Ng, 2004). 

 Assumption A could be relaxed.  What we need is the assumption that the r eigenvalues 

,1 ,
...

NT NT r
µ µ≥ ≥  have the convergence rates so that 

, 1 ,
/

NT j NT j
µ µ−  = ( )pO m

φ  for j  = 2,..., r  

where 0 1φ≤ < .  This condition would be satisfied if all common factors are I(1), or if 

/o o
N

φ′Λ Λ converges to a finite positive definite matrix where 0 1φ< ≤ .  The latter condition is 

compatible to the assumption in Onatski that o o′Λ Λ → ∞  as N → ∞ .  Because the Onatski 

method does not require /o o
N′Λ Λ  to converge to a finite matrix, it would be able to capture the 

weak factors whose explanatory power does not proportionally increase with N.   
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 As an alternative to Assumption E(i), we may assume that the 
it

u are independently (but not 

necessarily identically) distributed and their moments are uniformly bounded up to the 7
th

 order.  

(See Bai and Ng, 2006). 

 Assumption C allows limited dependence between the factors and the idiosyncratic errors.  

Assumption D allows the idiosyncratic errors to be weakly correlated over time and individual 

units.  Thus, the assumption is consistent with the approximate factor model of Chamberlain and 

Rothschild (1983).  Onatski (2006, hereafter, ON) assumes that either 
T

R  or 
N

G  are identity 

matrices.  So, Assumption D is more general than his. Assumption E rules out the cases in which 

/N T  or /T N  diverge to infinity.  However, most of the panel data with both large N and T 

would satisfy the assumption.  Assumption E is also made in Bai and Ng (2006) and Onatski 

(2006). 

 Assumption F is the one that neither BN nor ON use.  However, the assumption should hold 

in the general cases in which the factors fail to explain any of the response variables perfectly or 

near perfectly.  To see why, suppose that 
T T

R I= .  Then, var( )
N t

G ε=
i

.  If the common factors 

t
f  do not perfectly explain none of the response variables, we can expect that the smallest 

eigenvalue of 
N

G  would be bounded away from zero.  For such cases, we can show that 

Assumption F holds.  Stated formally: 

 

Proposition 1:  Suppose that 
2

( )
N N

G cλ > , and 
2

( )
T T

R cλ > , for any N  and T.  Then, if 1y = , 

Assumption F holds for any * (0,1)d ∈ .  If 1y < , the assumption holds for any * (0,1]d ∈  

 

The proof of Proposition 1 is given in the appendix.  In the proposition, we assume that both the 

smallest eigenvalues of 
N

G  and 
T

R  are bounded away from zero.  We could obtain the same 

result even if the smallest eigenvalues converges to zero. The result under a relaxed assumption 

is available from the authors upon request. 

 In Onatski, kmax/N → 0 as N → ∞.  BN also choose a fixed kmax.  As we show below, when 

Assumption F holds, any integer between r + 1 and *[ ]d m  can be used as kmax.  Note that *[ ]d m  

increases proportionally with min( , )m T N= .   
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We now state our major finding: 

 

Proposition 2:  Let kmax = *[ ] 2 1d m r− − .  Then, under Assumptions A – F and 1r ≥ ,  

, ,lim Pr[ ] lim Pr[ ]N T ER N T GRk r k r→∞ →∞= = =� �  = 1. 

 

 In general, *[ ]d m  is unknown.  However, *[ ]d m  increases with the sample size.  Any fixed 

integer greater than r  could serve as kmax.  In addition, because of this property, we could 

expect that the ER and GR estimators would not be overly sensitive to the choice of kmax.  

 Notice that Proposition 2 holds for 1r ≥ .  For the cases in which the possibility of zero 

factors cannot be ruled out, one would wish to estimate the number of factors allowing 0r = .  

For such cases, we may define an artificial eigenvalue , ( , )
NT o

w N Tµ =�  such that ( , ) 0w N T →  

and  ( , )w N T m → ∞  as ,N T → ∞ .  Then, we obtain the following result: 

 

 Proposition 3:  Redefine 
ERk�  and 

GRk�  including , ,1/
NT o NT

µ µ� � .  Then, under Assumptions A – F  

and 0r ≥ ,  lim Pr[ ] lim Pr[ ] 1m ER m GRk r k r→∞ →∞= = = =� � . 

 

 Finally, we consider another estimator that does not require Assumption F.  In particular, one 

may wish to have an estimator that does not require kmax.  In fact, there are many possible such 

estimators.  The one that we introduce here is what we call a “log-ratio” estimator: 

( )
( )

1

,

1

, 1

ln 1
max

ln 1

NT k

LR k m

NT k

m
k aug

m

µ

µ

−

≤ −
+

+ +
=

+ +

�
�

�

. 

 

Proposition 4:  Under Assumptions A – E and 1r ≥ , lim Pr[ ] 1m LRk r→∞ = =� . 

 

 While 
LR

k�  is attractive in that it does not require to specify kmax, its pitfall is that any 

estimator replacing 1
m

−  by a multiple of 1
m

−  (say, 1
am

− ) is also consistent.  The finite sample 

property of 
LR

k�  would crucially depend on the choice of a .  We leave the optimal choice of the 

multiple to future study.   
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4.  Simulation Results 

4.1.  Simulation Setup 

The foundation of our simulation exercises is the following factor model 

 
2

1 2

1
;

1 2

r

it j ij jt it it it
x f u u e

J

ρ
λ θ

β
=

−
= Σ + =

+
, (11) 

where 1 min( , )

, 1 max( ,1) 1

i i J N

it i t it h i J ht h i hte e v v vρ β β− +
− = − = += + + Σ + Σ , and the 

itv  (i ≥ 1) are drawn from 

(0,1)N .  This data generating process has been used by Bai and Ng (2002) and Onatski (2005), 

except that the error terms itu  are normalized so that their variances are equal to one for most of 

the cross-section units (more, specifically, 1J i N J+ ≤ ≤ − ).  We use this normalization to 

control for the ratios of factor and error variances.   

The factors and factor loadings jt
f  and 

ijλ  are also drawn from (0,1)N . The true factors (F), 

the factor loadings (λ) and the idiosyncratic errors (v) are generated as standard-normal and i.i.d. 

random variables. The control parameter θ  is the inverse of the signal to noise ratio (SNR) of 

each factor, that is, 1 / var( ) / var( )
jt it

f uθ θ= .  The magnitude of the time-series correlation is 

specified by the control parameter ρ . The cross-sectional correlation is governed by two 

parameters: β specifies the magnitude of the cross sectional correlation and J, the number of 

cross-section units correlated.  For example, J = 8 means that for 1J i N J+ ≤ ≤ − , each cross-

section unit is correlated with the 16 (= 2J) adjacent cross-section units.  

 Before we present our Monte Carlo experiment results, we briefly discuss the importance of 

the signal to noise ratio (SNR) of each factor in the finite-sample properties of the estimators.  

When N and T are not sufficiently large, the accuracy of the estimators would be affected by 

SNR of each factor.  As an example, Figure 8 shows the average value of the eigenvalues from 

1,000 simulated data sets from model (11) with i.i.d. errors.  We can clearly see that the “scree” 

pattern becomes more obscure as SNR decreases.  Figure 9 shows the average value of 
ERk�  for 

the data used for Figure 8.  It shows that the maximum value of the eigenvalue ratios increases 

monotonically as SNR increases.  Any method for estimating the number of factors would 

underestimate the true number of factors when the SNRs are low as shown in the weak factor 

section. 
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4.2  Basic Results 

We compare the ER and GR estimators with the ones recommended by BN (IC1, IC2, PC1, 

PC2), and the one proposed by Onatski (2006).  These estimators are given   

( )1 arg min ln ( , ) lnk

IC k kmax

N T NT
k V k F k

NT N T
≤

 +    
= +     +    

� � ;  

( )2 arg min ln ( , ) ln( )k

IC k kmax

N T
k V k F k m

NT
≤

 +  
= +   

  

� � ; 

2

1
ˆarg min ( , ) lnk

PC k kmax

N T NT
k V k F k

NT N T
σ≤

 +    
= +     +    

� � ; 

2

2
ˆarg min ( , ) ln( )k

PC k

N T
k V k F k m

NT
σ

 +  
= +   

  

� � ; 

,
ˆarg max { | (1 ) / }ON k kmax NT kk k u Nµ δ≤= > +� � , 

where 
2σ̂  = ( )kmax

V kmax,F� .  We use kmax = 8.  As in Onatski (2006), we choose 
1/3

Nδ −= .  

For the formal definition of û , see Onatski (2006).   For the comparison with the results from BN 

and Onatski, we first investigate the estimation results obtained ruling out the possibility of 

0r = .  Later, we consider the performances of the tests allowing the possibility of 0r = .   

 Before reporting our simulation results, we want to stress an attractive finite-sample property 

of the ER and GR estimators, which we do not report here to save space.  As we conjecture in 

section 3, the estimators are robust to the selection of the maximum number (kmax) of factors to 

test.  For example, in samples with N = T = 100, we obtain the same numerical results whether 

we use kmax = 8  or kmax = 90, except for a few cases.  This is the property that the BN and 

Onatski estimators do not share when N or T is small. For example, we found from unreported 

results that these estimators are sensitive to the choice of {6, 7,8,9}kmax ∈  when 3r = .  This 

sensitivity is not surprising because for the estimators, the threshold values directly depend on 

the chosen kmax, except for the ICk� ’s.  

Table 1 shows the case where the idiosyncratic errors are i.i.d. ( 0Jβ ρ= = = ).  The table is 

the benchmark table reported in both BN and Onatski (2006).  In Table 1, most of the estimators 

perform well.  Notice that for the setup of the simulations used for the table, SNR of each factor 
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decreases with r .  The GR estimator slightly performs better than the ER estimator when N is 

relatively small (N ≤ 20).  The BN estimators overestimate the true number of factors when N = 

10.  For the cases with 40N ≥ , the ER, GR and Onatski estimators outperform the BN 

estimators in a marginal scale.  The former three estimators perform equally well, although the 

GR estimator tends to produce more reliable results when SNR is low. 

 Tables 2.1-2.3 report the results obtained from the data with autocorrelated errors, but 

without cross-section correlation ( 0, 1J SNRβ = = = ).  In Table 2.1, the Onatski (ON), ER and 

GR estimators clearly outperform the IC and PC estimators.  For the cases with 0.5ρ = , the IC 

estimators perform well with , 50N T ≥ , the PC estimators require larger sample sizes for more 

accurate estimation results.  As ρ  increases to 0.7 or 0.9, the performances of the IC estimators 

get worse.  In particular, Tables 5.2 shows that the performances of the IC and PC estimators 

improve as T increases, but not necessarily as N increases.  Data with more than 100  time series 

observations are needed for the IC and PC estimators to obtain accurate estimation results.  With 

100T ≤ , both IC and PC estimators perform worse as N increases.  In contrast, the ER and GR 

estimators perform well even if N or T is small and the degree of autocorrelation is high.  The 

performance of the ON estimator is compatible with those of the ER and GR estimators for cases 

with 0.7ρ ≤ , but we can observe that the ON estimator does not perform well unless both N and 

T are sufficiently large.   

Table 3.1 reports the finite-sample performances of the estimators when the errors are cross 

correlated with no autocorrelation ( 0ρ = ).  Once again, the ON, ER and GR estimators perform 

better than the IC and PC estimators for most of the cases considered.  When 0.2β =  and 8J = , 

the ER and GR estimators pick up the correct number of factors quite accurately even for the 

cases with relatively small N and T ( 50 , 100N T≤ ≤ ).  The performance of the ON estimator 

becomes compatible to those of the two estimators when , 100N T ≥ .   

The number of cross section units should be substantially large for the IC and PC estimators 

to produce more reliable statistic inferences.  In unreported experiments, we found that the IC 

and PC estimators perform as well as the ER and GR estimators when 0.05β ≤ .  In general, the 

IC and PC estimators tend to overestimate the correct factor numbers unless the cross 

correlations are sufficiently weak.  In addition, the larger number of time series observations 
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does not necessarily improve the performances of the two estimators: for example, see the cases 

with ( , ) (1000,50)N T =  and ( , ) (1000,500)N T = .   

For the cases with 20J = , the ER and GR estimators pick up the correct number of factors 

quite accurately for the cases with 200N ≥  and 100T ≥ .  For the data with 200N ≤  and 

100T ≤ , the ER and GR estimators dominate the ON estimators.  The IC and PC estimators tend 

to overestimate the number of factors even if N is substantially large. 

Tables 3.2-3.3 compare the performances of the seven estimators when the degree of cross 

correlation is higher.  The ER and GR estimators still perform well as long as 200N ≥  and 

100T ≥ .  The ON estimator dominates the IC and PC estimators perform for the data with any 

size. 

Table 4.1 summarizes the results from the data with both cross-correlated and autocorrelated 

errors.  The true number of factors is three, and the auto- and cross-correlation parameters are 

fixed at 0.5ρ = , 0.2β =  and 8J = .  High SNR ( 1/ 3θ = , and SNR = 3) is used to generate 

factors.  The ER and GR estimators perform well and clearly dominate the other estimators even 

if , 50N T ≤ .  The ON estimator also performs reasonably well for the cases with , 100N T ≥ .  

Tables 4.2-4.3 are designed to investigate how sensitive the seven estimators are to SNR of 

factors.  Clearly, all estimators perform worse for the data with low-SNR factors.  However, the 

ER and GR estimators dominate all other estimators for the data with , 100N T ≤ .  For the data 

with , 100N T ≥ , the ON estimators perform as well as the ER and GR estimators.  This is an 

interesting result, because the ON estimator is motivated under the assumption of only one-side 

correlation among errors (auto- or cross-correlations).  As Onatski found from his Monte Carlo 

experiments, his estimator performs reasonably well even if both correlations exist.   

Tables 5.1-5.2 consider the cases where factors have different SNRs.  We fix the sum of the 

SNRs of individual factors constant. The data used for Table 5.1 are generated from a three-

factor model.  Two factors with high SNRs are generated from N(0,1.5) and the other factor from 

N(0,0.75).  The data used for Table 8.2 are generated from a five-factor model with two factors 

of high SNRs from N(0,1.2) and three factors from N(0,0.70).  In Table 5.1, the ER and GR 

estimators outperform the rest of the estimators.  In Table 5.2, for the cases with 100N ≥  and 

50T ≥ , the performance of the ON estimator is compatible to those of the ER and GR estimators.  
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For most of other cases with , 100N T ≤ , however, the ER and GR estimator dominates the ON 

estimator.  

Table 6 considers the estimation of the number factors when data is generated with no 

common factors. We only consider the ER estimator obtained following Proposition 3.  We 

denote the estimator by ER* in Table 6.  We do not consider the BN estimators because they are 

designed only for the cases where 1r ≥ .  The ER* and ON criteria performs similarly except in 

the cases of (N,T) = (100,100) and (N,T) = (1000,60) where the ER* criterion outperforms the 

ON criterion. In summary, the reported simulation results provide strong evidence that the ER, 

GR and ER* estimators have better finite-sample properties that the IC, PC and ON estimators.  

The performances of the ER and GR estimators are especially robust to the degrees of 

autocorrelation and cross-correlation in the absence of weak factors.  

 

4.3.  Weak Factors 

The Onatski estimator was designed to capture weak factors.  More specifically, his estimator 

allows factors with ( )1 / ( ) (1)r o o

j j p
F F NT Oλ=

′ ′Σ Λ Λ < .  In this subsection, we compare the power 

of the ON, ER and GR estimators to detect weak factors. 

ER and GR may fail to capture weak factors in finite samples when the ratios of the SNRs of 

the weak and strong factors differ substantially.  To see this possibility, we first generated 100 

different samples, in each of which  ( , )N T  = (1,000,1,000).  For each sample, the response 

variables generated by 4 common factors of 4 different SNRs (1, .5, .25 and .125) and the 

idiosyncratic errors generated with 0.5β = , 0.5ρ =  and 20J = .  From each of the samples, we 

draw subsamples of ( , )N T  = (110,110), (120,120), and so on, up to (1,000,1,000), subsequently.  

Then, for each subsample, we calculate the ER, GR, ON estimators and regress the true factors 

on the first four principal component estimators of factors.  The motivation of the latter exercise 

is to see if the four principal component estimators are consistent estimators of the true factors. 

Figure 10 shows the mean results for the ER(k) values over 100 simulations.  As we can 

observe, the only value of ER(k) that grows unbounded with N and T is the one corresponding to 

the fourth factor (ER4).  From the figure, we can observe that when the sample is not large 

enough, ER4 may not be larger than the rest of the ratios resulting in underestimation.  
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Figure 11 shows the averages of the estimated number of factors by individual estimators at 

different sample sizes.
4
  This pictures shows that ON overestimates the number of factors in  

small samples.  But in general, ON is able to correctly capture the weak factors in smaller 

samples than ER and GR.  It also shows that the underestimation problem in the presence of 

weak factors is less severe for GR than for ER.  

Figure 12 shows the patterns of the R
2
’s from the regressions of the actual factors on 

estimated factors. The first and second factors are highly correlated with actual first and second 

factors.  However, the estimated fourth factor starts to explain 50% or more of the actual factor 

when , 400N T ≥ . If we compare figures 10 and 11, we can observe that ER(4) is above the rest 

of ratios and picks the 4
th

 factor at a sample size of N = T = 730, where the estimated 4
th

 factor 

explains slightly more than 90% of the actual 4
th

 factor.  An interesting observation here is that 

when the ER estimator underestimates the true number of factors, the higher-order principal 

component factors only have low correlations with the actual factors not captured by the 

estimator. 

To be more specific, we conduct an additional simulation exercise.  We generate three factors 

from N(0,1), N(0,.5), and N(0,SNR),  where SNR equals .1, .2, .35 and .45.  1,000 different data 

are generated.  Each simulation uses N = 1,000, T = 60, J = 50 (5% of the idiosyncratic errors are 

cross-correlated), β = .2 and ρ = .5.  The results are reported in Table 7. 

When the third factor’s SNR is 0.1, the ER and GR estimators fail to capture it while the ON 

estimator captures the third factor 47.4% of the time.  Thus, as we expected, the ON estimator 

appears to have better power to detect weak factors.  However, as shown in the last row of Table 

7, only for 26% of the time the third principal component factor is the one most correlated with 

the real third factor. In fact, for 44% of the times the principal component factors most correlated 

with the real third factor corresponds to the one corresponding to the 5
th

 eigenvalue, while for 

28% of the time the 4
th

 principal component factor is the most highly correlated with the actual 

third factor.  This means that even if the number of factors is correctly estimated, the chances 

that the 3
rd

 factor is correctly estimated are only 26%.  In contrast, the first and second principal 

component factors always correspond to the first and second strong factors.  

As the SNR of the third factor increases, ER and GR start picking the number of factors 

correctly.  In addition, the chance that the third principal component factor is the one most 

                                                 
4
 The results by the BN estimators are not shown because they always choose kmax in the simulation setup. 
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correlated with the actual third factor also increases. When the SNR of the third factor is .45, the 

GR estimator picks the third factor 95% of the time and the first three principal component 

factors explain the three actual factors 100% of the time.  In contrast, for the same case, the ON 

estimator criteria picks up three factors only 65% of the time and the other times overestimate 

the number of factors. 

Figures 10 and 11 and Table 7 indicate that the ER and GR estimators would miss weak 

factors, although the latter estimator has better power to capture them.  In our simulations, the 

ER or GR estimators fail to capture the factors with SNR less than 0.2 ( var( ) / var( ) 0.2f ε < ).  

So, we define the factors with SNR less than 0.2 as weak factors.  The ON estimator has better 

power to detect weak factors.  However, our simulation results provide some practical guidance.  

When the estimated number of factors by ER or GR is smaller than the estimate by ON, it would 

indicate presence of weak factors.  But when the ER or GR estimators fail to capture the weak 

factor, the principal component factors of higher orders may not be correct estimates of actual 

factors.  For example, when the ER and GR estimators fail to capture the third factor, the third 

principal component factor may not be a consistent estimator of the factor.  In contrast, the 

principal components corresponding to ER or GR appear to be reliable estimators of the actual 

factors in most of the cases we have considered for simulations.  

 

5.  Application 

5.1 Factor-Augmented VAR (FAVAR) application 

The use of factors extracted from a large panel of data as explanatory variables in a VAR has 

been proved very useful in several recent works (for a comprehensive analysis and review of the 

literature see Bernanke, Boivin and Eliaz (2005), from now on BBE).  In this section we estimate 

the number of common factors in the panel data used by BBE (2005) and investigate the possible 

consequences of using the incorrect number of factors in the FAVAR-based forecasting. 

The data set we use here is retrieved from Jean Boivin’s webpage.  It contains 120 monthly 

macroeconomic variables with 511 time series observations (February 1959-August 2001). The 

data set has been transformed to be stationary (for detailed information about the data see 

appendix 1 of BBE).  In order to remove time effects from data, we use time-demeaned variables  
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Table 8 shows the result of the estimated numbers of factors by different estimators.  When 

we use the maximum number of factors of 15 (kmax = 15), the ER and GR estimators find 5 

factors while the IC1 estimator finds 15 and the ON estimator finds 13.   

To see how robust each estimator is to the choice of kmax, we estimate the number of factors 

with many different values of kmax.  Among the BN estimators, we consider only the IC1 

estimator.  Figure 13 shows that ER and GR find 5 factors using any value of kmax from 7 to 30. 

In contrast, the ON estimator seems to be extremely sensitive to the choice of kmax.  As kmax 

increases, so does the estimated number of factors. The IC1 estimator shows the same pattern.  

We now analyze how the number of factors used in VAR influences the forecasting ability of 

the FAVAR model.  BBE analyzed the effect on impulse-response functions of adding factors to 

a VAR model.  They have shown that using either one or five factors lead to similar results. 

Stock and Watson (2002a, 2002b) also have shown the benefits of using factors calculated 

through principal components in macroeconomic forecasting.  

In this subsection, we do a simple exercise to investigate the effects of using 1, 3, 5, 7, 10 or 13 

factors in a FAVAR-based forecasting.  We choose to forecast industrial production (IP), CPI 

(PUNEW in the BBE dataset).  We first do 12 month-ahead forecasts for January 1992 using the 

data up to January 1991.  Then, we make 12 month-ahead forecasts for February 1992 using the 

data up to Feb.1991.  We continue this exercise to obtain 120 forecasts for each of IP and CPI.  

The federal funds rate, IP and CPI are used in every forecast. We add to those variables the 

factors extracted from the database in the exact same way as BBE did. In each forecast we 

construct a FAVAR with 7 lags.  BBE used 13 lags but they claimed that the results were similar 

with 7 lags.  We choose to use 7 lags because we add up to 13 factors to the VAR. 

Figure 14 shows the correlations between the 120 forecasted values and actual data 

values. We can clearly see that the most correlated series are the ones forecasted using a FAVAR 

model with 5 factors, which are suggested by the ER and GR estimators. Figure 15 shows the 

mean square errors (MSE) of the forecasted variables.  The forecasted values from the FAVAR 

models with either 1 or 5 factors have similar MSE.  However, MSE increases monotonically 

after the 5
th

 factor, suggesting that using more factors in a FAVAR model than what is suggested 

by ER and GR can reduce the accuracy of the forecasts.  

 

5.2 Application to the Stock Market 
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In the finance literature, factor models have been widely used to estimate the common factors 

which drive stock returns. In this section, we use estimate the number of latent common factors 

in the U.S. stock market.  The literature of estimating the number of latent factors in the US 

stock market is extremely rich and the number of factors proposed ranges from one to five or 

sometimes even more
5
. 

We used excess returns (including dividends) over the risk free rate on individual stocks 

downloaded from CRSP. The risk free rate is the one-month Treasury bill rate downloaded from 

Kenneth French webpage. We exclude REITs (Real Estate Investment Trusts), ADRs (American 

Depositary Receipts) and the stocks that do not have information for every month during a 

period. Every dataset contains monthly returns. We also exclude stocks that show more than a 

300% excess return in a given month since we are trying to capture common variation and that is 

most probably due to idiosyncratic risk. 

The time span included in the analysis is 1970-2006. We have divided the entire sample into 

two subsamples (1970-1987 and 1988-2006), three subsamples (1970-78, 1979-92 and 1993-06) 

and also into seven subsamples (1970-74, 1975-79, 1980-84, 1985-89, 1990-94, 1995-99 and 

2000-06). We do so to allow for longer time series (at the expense of cross-sectional 

observations) and also for a larger number of stocks to be chosen. 

Table 9 presents the results obtained from the data.  We show the results obtained from the 

time-demeaned data. Brown (1989) found that when factor loadings have nonzero means, the 

scree test often predicts one factor in the US stock return data.  Demeaning returns eliminates the 

nonzero means of factor loadings.   

An intriguing result from Table 9 is that both the ER and GR estimators capture one common 

factor in every dataset except for the period 1985-89. The other estimators (ON, PC and IC) 

capture from one to five factors depending the sample used. However, one factor is the most 

frequent estimate.  Given our simulation results, we can conclude that there is strong evidence 

for one common factor. 

 

6.  Conclusion 

In this paper we developed three new estimators, ER, GR and LR, for estimating the number of 

common factors in approximate factor models.  None of them do not require prespecified penalty 

                                                 
5
 See for example Shukla and Trzcinka (1990), Chan et al. (1998) and Ferson and Korajczyk (1995). 
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functions or estimated threshold values. The ER and GR estimators are designed to be flexible in 

choosing the maximum number of factors to be tested.  The LR estimator does not require the 

choice of the maximum number.  However, we recommend use of ER or GR, because the LR 

estimator can have infinitely many possible alternatives.  In addition, in unreported simulation 

experiments, the finite-sample performances of the three estimators were compatible, although 

GR appears to have better power to detect weak factors.  We have shown that the three 

estimators produce consistent estimators under the same assumptions of Bai and Ng (2002).  The 

new estimators only use the eigenvalues of sample covariance matrices of response variables. 

They can be viewed as a formalization of Cattell’s scree test.  We also have linked the new 

estimators to the Bai-Ng and Onatski estimators.  Our simulation results indicate that the new 

estimators outperform the Bai-Ng and Onatski estimators, especially when (i) both N and T are 

small, or (ii) the signal-to-noise-ratios of individual factors are equally low, or (iii) the 

idiosyncratic errors are both cross-sectionally and serially correlated. We also have shown how 

to test for zero factor.  While the Onatski estimator sometimes has better power to capture weak 

factors, the principal component factors corresponding to the eigenvalues suggested by the 

estimator may not provide accurate factor estimates.  While the ER or GR estimator may fail to 

capture weak factors, the principal component factors suggested by them are the accurate factor 

estimates in most cases. 
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Appendix 

The following lemmas are useful to prove Proposition 1: 

 

Lemma 1: Under Assumptions D and E, 

( )
2

1

1
lim 1mp UU y

M
λ→∞

 
′ = + 

 
; ( )

2

m

1
lim 1

m
p UU y

M
λ→∞

 
′ = − 

 
. 

Proof:  See Bai and Yin (1983) or Bai and Silverstein (1999) 

 

Corollary 1:  If y =1, ( ) ( )1

m
/ ( )

p
UU NT o mλ −′ = .   If 1y < , ( ) ( )1/ ( )

m p
UU NT O mλ −′ = . 

 

Lemma 2: A Sturmian Separation Thoerem 

Let 
n

W  be an n n×  symmetric matrix and 
1n

W −  be an ( 1) ( 1)n n− × −  major submatrix of 
n

W .  

Then,  
1 1
( ) ( ) ( )

k n k n k n
W W Wλ λ λ+ −≤ ≤ , for all 1,..., 1k n= −  

Proof:  See p. 64 of Rao (1973).  

 

Lemma 3: Let 
n

W  be an n n×  symmetric matrix and 
n pW −  be an ( ) ( )n p n p− × −  major 

submatrix of 
n

W .  Then, ( ) ( )n p n n p n pW Wλ λ− − −≥ . 

Proof:  By Lemma 2, 
2 1( ) ( ) ( )n p n p n p n p n p n pW W Wλ λ λ− − + − − + − −≥ ≥ . 

 

Lemma 4: Suppose that two matrices A  and B are p p×  positive definite and positive 

semidefinite matrices, respectively.  Then, for any 1j k i+ − ≤ , 
1 1 1( ) ( ) ( )p j p k p iA B ABλ λ λ− + − + − +≤ . 

Proof:  Theorem 2.2 of Anderson and Dasgupta (1963). 

 

Lemma 5:  Under Assumption D and E, 

1

1
lim

m
p

M
λ→∞

 
′ΕΕ < ∞ 

 
. 

Proof:  By Lemma 4, 

1 1

1 1 1 1 1

( / ) ( / )

( / ) ( ) ( / ) ( ) ( ).

N T

N T N T

M UG U R M

UG U M R UU M G R

λ λ

λ λ λ λ λ

′ ′ΕΕ =

′ ′≤ ≤
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Thus, the result is obtained by Lemma 1 and Assumption D(ii).  

 

Corollary 2:  Under Assumptions D – E, 

1

1 1
pO

TN m
λ
   

′ΕΕ =   
   

. 

 

Proof of Proposition 1:  Suppose that 1y = .  For simplicity, assume that T N= .  Choose any 

* (0,1)d ∈ . 

* * *

*

1/2 1/2

[ ] [ ] [ ]

[ ]

1 1 1
( )

1
( ) ( )

T N T N T N T Td m d m d m

N N T Td m

R UG U R UG U R UG U R
M M M

UU G R
M

λ λ λ λ

λ λ λ

     ′ ′ ′= ≥     
     

 ′≥  
 

 

where the inequalities are due to Lemma 4.  Let *[ ]d m
U  be the *[ ]d m N× main submatrix U .  

Then, by Lemmas 3 and 1, we have 

( )* * * *

2
*

[ ] [ ] [ ] [ ]

1 1
lim lim 1m md m d m d m d m

p UU p U U d
M M

λ λ→∞ →∞

   
′ ′≥ = −   

   
. 

Thus, ( )*

1/2 1/2

[ ]
lim / 0

m T N Td m
p R UG U R Mλ→∞

′ > .  Similarly, we can show that the limit is positive 

for any * (0,1]d ∈ , if 1y < . 

 

 The following lemmas are useful to prove Proposition 2.  

 

Lemma 6: Suppose that two matrices A and B are symmetric of order p.  Then, 

1( ) ( ) ( )
j k j k

A B A Bλ λ λ+ − + ≤ + , 1j k p+ ≤ + . 

Proof:  See Onaski (2006) or Rao (1973, p. 68). 

 

Lemma 7:  Suppose that two matrices A and B are positive semidefinite of order p.  Then, 

( ) ( )
j j

A A Bλ λ≤ + , 1,...,j p= . 

Proof:  First, consider the case of 1j = .  Let 1

A
ξ  be the eigenvector corresponding to 1( )Aλ .  

Then,  
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1 1 1 1

1 1
1 1 1 1

( )
( ) ( )A A A A

A A A A

A A B
A A B

ξ ξ ξ ξ
λ λ

ξ ξ ξ ξ

′ ′ +
= ≤ ≤ +

′ ′
, 

where the first inequality is due to B being positive semidefinite.  We now consider the cases 

with 1j > .  Let 1j−Ξ  be the matrix of the orthonormal eigenvectors corresponding to the first 

( 1)j −  largest eigenvalues of A B+ .  Let z  be a p×1 nonzero vector.  Then,  

1 10 0

( )
( ) sup sup ( )

j jj jz z

z Az z A B z
A A B

z z z z
λ λ

− −′ ′Ξ = Ξ =

′ ′ +
≤ ≤ = +

′ ′
, 

where the first inequality comes from Rao (p. 62). 

 

Lemma 8:  Let 1( ) ( )o o o o o

N
Q I

−′ ′Λ = − Λ Λ Λ Λ .  Then, under Assumptions D – F, 

1
0 lim ( )o

m jp Q
M

λ→∞

 
′< Ε Λ Ε < ∞ 

 
, for *1,...,[ ]j d m r= − . 

Proof:   Let ( ) ( )o o

N
P I QΛ = − Λ .  Then, 

1 1 1
( ) ( )o o

Q P
NT NT NT

′ ′ ′ΕΕ = Ε Λ Ε + Ε Λ Ε . 

Thus, by Lemma 6, 

1

1 1 1 1
( ) ( ) ( )o o o

j r j r jQ P Q
NT NT NT NT

λ λ λ λ+ +

       
′ ′ ′ ′ΕΕ ≤ Ε Λ Ε + Ε Λ Ε = Ε Λ Ε       

       
, 

since ( )( )orank P r′Ε Λ Ε = .    By Lemma 7, 

1 1 1 1
( ) ( ) ( )o o o

j j jQ Q P
NT NT NT NT

λ λ λ
     

′ ′ ′ ′Ε Λ Ε ≤ Ε Λ Ε + Ε Λ Ε = ΕΕ     
     

. 

Thus we have 

 
1 1 1

( )o

j r j jQ
NT NT NT

λ λ λ+

     
′ ′ ′ΕΕ ≤ Ε Λ Ε ≤ ΕΕ     

     
, 1,...,j T r= − . (A.1) 

By Lemma 5 and Assumption F, 

 
1

0 limm jp
M

λ→∞

 
′< ΕΕ < ∞ 

 
, (A.2) 

for  *1,...,[ ]j d m= .  Thus,  by (A.1) and (A.2), 

1 1 1
0 lim lim ( ) limo

m j r m j m jp p Q p
M M M

λ λ λ→∞ + →∞ →∞

     
′ ′ ′< ΕΕ ≤ Ε Λ Ε ≤ ΕΕ < ∞     

     
, 
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for all *1,...,[ ]j d m r= − .  

 

Lemma 9:  Under Assumptions A – E, 

,

1 1
NT r j r j pXX O

NT m
µ λ+ +

   
′= =   

   
� , for 1,...,j m r= − . 

Let kmax = *[ ] 2 1d m r− − .  Then, 

,

, 1

(1)
NT r j

p

NT r j

O
µ

µ
+

+ +

=
�

�
, for 1,...,j = kmax. 

Proof:  Define * 1( )o o oF F −′= + ΕΛ Λ Λ .  Then, it is straightforward to show  

2 2 2 2 2

* *

2 2

1 1 1 1 1

1 1
( )

o o o o

o o o

XX F F F F
NT NT NT NT NT

F F Q
NT NT

′ ′′ ′ ′ ′ ′= Λ Λ + Λ Ε + ΕΛ + ΕΕ

′ ′ ′= Λ Λ + Ε Λ Ε

 

Observe  

 
1 1 1

( ) ( )o o

j r j r jQ XX Q
NT NT NT

λ λ λ+ +

     
′ ′ ′Ε Λ Ε ≤ ≤ Ε Λ Ε     

     
, for 1,...,j T r= − , (A.3) 

where the first inequality is due to Lemma 7.  The second inequality is due to Lemma 6 because 

* *

1

1 1 1 1
( ) ( )o o o o

j r j r jXX Q F F Q
NT NT NT NT

λ λ λ λ+ +

       ′ ′′ ′ ′≤ Ε Λ Ε + Λ Λ = Ε Λ Ε       
       

. 

By (A.3) and Lemma 8,  

1 1

1 1 1 1
/ ( ) / ( ) (1)o o

r j r j j j r pXX XX Q Q O
NT NT NT NT

λ λ λ λ+ + + + +

       
′ ′ ′ ′≤ Ε Λ Ε Ε Λ Ε =       

       
, 

for 1,...,j = kmax. 

 

Lemma 10: Under Assumptions D – F, 

( ) ( )1( ) / ( ) (1)o o

j j p
Q E Q E Oλ λ +

′ ′Ε Λ Ε Λ = , for *1,...,[ ] 1j d m r= − − . 

Proof:  By Lemma 8. 

 

Lemma 11:  Under Assumptions B-C, for any 
1( ,..., )T p pA a a× =  such that p

A A TI′ = ,  
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1/2

2

1
( ) ( )o

ptr A F A O N
T N

−′′ ′Λ Ε = ; 

1

2

1
( ) ( )o

ptr A P A O N
NT

− 
′ ′Ε Λ Ε = 

 
. 

Proof:  Observe that 

2
( )o o o

i i i
tr A F A AA F A F λ ε′ ′ ′′ ′ ′ ′Λ Ε ≤ Λ Ε ≤ Σ

i
. 

In addition, 

( )( )( ) ( )

( )( )( ) ( )

1/2 1/2

,

1/2 1/2
2

o o o o o

i i i i i i i i i i j t i it jt j

o o o

t i i it j jt j t i i it

tr tr

tr

λ ε λ ε ε λ λ ε ε λ

λ ε ε λ λ ε

′ ′′ ′Σ ≤ Σ Σ = Σ Σ

′= Σ Σ Σ = Σ Σ

i i i

 

Thus, we have 

1/2
22

1/2

2

1 1 1 1 1 1
( ) ( )o o

t i i it p
tr A F A A F O N

NT TN T T N
λ ε −

 
′ ′ ′Λ Ε ≤ Σ Σ = 

 
 

. 

Similarly, 

 

1

2

22

1

1 1
( )

1
(1) ( )

o o o o
o

o

p p

A A
tr A P A tr

NT N NT NT NT T

A
O O N

N T NT

−

−

  ′ ′′ ′ΕΛ Λ Λ Λ Ε   ′ ′Ε Λ Ε =          

ΕΛ
≤ =

 

 

Lemma 12:  Under Assumptions A-E,  for 1,...,j r= , 

 * * 1/21 1
( )o o o o

j j pF F F F O N
NT NT

λ λ −   ′ ′ ′ ′Λ Λ = Λ Λ +   
   

; (A.4) 

 * *1 1 1o o

j j pXX F F O
NT NT m

λ λ
     ′ ′′ = Λ Λ +     
     

; (A.5) 

 
1 1 1 1o o

j j p p
XX F F O O

NT NT mN
λ λ

      ′′ ′= Λ Λ + +      
      

. (A.6) 

Proof:  Observe that 

* * ( )o o o o o o oF F F F F F P′ ′ ′ ′ ′ ′ ′Λ Λ = Λ Λ + ΕΛ + Λ Ε + Ε Λ Ε . 
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Let *

kΞ  be the matrix of the eigenvectors corresponding to the first ( )k r≤  largest eigenvalues of 

* * /o o
F F NT′ ′Λ Λ , normalized such that * *

k k

k
F F TI′ =� � .  Similarly, define kΞ and kF�  for the 

eigenvectors of / ( )o oF F NT′ ′Λ Λ  and / ( )XX NT′ , respectively.  By Lemma 11, 

 

* *

1 * *2

* * * *2 2

1/2 1

2

1/2

1

1 1

1 1
2 ( )

1
( ) ( )

1
( ),

k o o k o o k

j j

k o k k o k

k o o k

p

k o o

j j p

F F tr F F
NT NT

tr F tr P
NT NT

tr F F N O N
NT

F F O N
NT

λ

λ

=

− −

−
=

   ′ ′ ′ ′Σ Λ Λ = Ξ Λ Λ Ξ   
   

   ′ ′ ′ ′ ′+ Ξ Λ Ε Ξ + Ξ Ε Λ Ε Ξ   
   

 ′ ′ ′≤ Ξ Λ Λ Ξ + + 
 

 ′ ′= Σ Λ Λ + 
 

 (A.7) 

Similarly,    

 

* * * *

1 2

2

2 2

1/2 1

1

1

1 1

1

1 1
2 ( )

1
( ) ( )

1

k o o k o o k

j j

k o o k

k o k k o k

k o o

j j p p

k o o

j j

F F tr F F
NT NT

tr F F
NT

tr F tr P
NT NT

F F O N O N
NT

F F
NT

λ

λ

λ

=

− −
=

=

   ′ ′ ′ ′ ′Σ Λ Λ ≥ Ξ Λ Λ Ξ   
   

 ′ ′ ′= Ξ Λ Λ Ξ 
 

   ′ ′ ′ ′ ′+ Ξ Λ Ε Ξ + Ξ Ε Λ Ε Ξ   
   

 ′ ′= Σ Λ Λ + + 
 

 ′ ′= Σ Λ Λ + 
 

1/2( )
p

O N −

 (A.8) 

(A.7) and (A.8) imply (A.4) because they hold for all 1,...,k r= . 

 We now show (A.5).  By Lemmas 6 and 8, 

 

* *

1

* *

1 1 1
( )

1 1

o o o

j j

o o

j p

XX F F Q
NT NT NT

F F O
NT m

λ λ λ

λ

     ′ ′′ ′≤ Λ Λ + Ε Λ Ε     
     

   ′ ′= Λ Λ +   
   

 (A.9) 

Also, for any 1,...,k r= , 

 

* *

1 * * * *2 2

* *

1

1 1 1
( )

1 1
.

k k o o k k o k

j j

k o o

j j p

XX tr F F Q
NT NT NT

F F O
NT m

λ

λ

=

=

   ′ ′ ′ ′′ ′Σ ≥ Ξ Λ Λ Ξ + Ξ Ε Λ Ε Ξ   
   

   ′ ′≥ Σ Λ Λ +   
   

 (A.10) 
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Thus, by (A.9) and (A.10), we have (A.5).  Then, (A.4) and (A.5) imply (A.6). 

 

Proof of Proposition 2:  We first show the consistency of the ER estimator.  By Lemmas 9 and 

12,   

,

, 1

(1)
NT k

p

NT k

O
µ

µ +

=
�

�
, 1,2,..., 1, 1,...k r r= − + , kmax-1; 

,

1

, 1

(1)
( )

( )

pNT r

p p

NT r p

O
O m

O m

µ

µ −
+

= = → ∞
�

�
. 

Thus, lim Pr( ) 1
m ER

k r→∞ = =� .  Now consider the GR estimator.  Observe that: 

, ,

*

, ,

*
, 1, 1 , 1

, 1

ln 1
ln( ) ( , ) ( , )

ln( ) ( , )
ln

( , )( , )

NT k NT k

k k
NT k NT k

k
NT kNT k NT k

kk

NT k

V k F V k F

V k F

V k FV k F

µ µ

µ µ

µµ µ

µ

++ +

+

   
+   

   = < =
   
    −   

� �

� �� �

��� �

�� �

. 

Thus,  

*

*

1

ln( )
(1)

ln( )

k
p

k

O
µ

µ +

= , for 1,2,..., 1, 1,...k r r= − + , kmax-1. 

Finally, 

,

, ,
* 1

, ,

* 1
, 1 , 1, 1 ,

1 1

( , )

ln 1 1
ln( ) ( , ) ( 1, )( , )

( ) (1)
ln( ) ( 1, )

ln 1
( 1, ) ( 1, )

NT r

r

NT r NT r

r rr
NT r NT r

p pr
NT r NT rNT r NT r

r r

V r F

V r F V r FV r F
O m O

V r F

V r F V r F

µ

µ µ

µ µ

µ µµ µ

+

−
+ ++

+ +

 
+ + 

+ = ≥ = =
−   

+   + +   

�

�

� �

� ��� �

�� �� �

� �

 

Thus, we have lim Pr( ) 1
m GR

k r→∞ = =� . 

 

Proof of Proposition 3:  It is sufficient to show that ,0 ,1/
NT NT p

µ µ → ∞� �  if 0r = , and ,0 ,1/
NT NT

µ µ� �  

p
→ ∞ , if 0r > .   Suppose that 0r = .  Then, , , 1/ (1)

NT j NT j p
Oµ µ + =� �  for all 1,...,j =  kmax.  But 

1

,0 ,1/ ( , ) / ( ) ( , ) ( )NT NT p p pw N T O m w N T O mµ µ −= = → ∞� � .  Now suppose that 0r > .  Then,  

,0 ,1/
NT NT

µ µ� �   = ( , ) / (1) ( , ) (1) 0
p p p

w N T O w N T O= → .  
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Proof of Proposition 4:  For 1,2,..., 1,k r= −  

 

1 1 1

, , , 1

, 111 1

, 1, 1 , 1

1

, 1

ln(1 )
(1 ) (1)

ln(1 )

1

NT k NT k NT k

NT k p

NT kNT k NT k

NT k

m m m
m O

mm m

m

µ µ µ
µ

µµ µ

µ

− − −

−
+−− −

++ +

−
+

+ + + +
≤ = + + =

++ + +

+ +

� � �
�

�� �

�

. (A.11) 

For 1,...,k r m= + , even if 1

, ( )NT k pO mµ −<� , 1 1

, ( )NT k pm O mµ− −+ =� .  Thus, (A.11) still holds.  

Finally, 

1

,

1 1

, ,

1 1 1

, 1 , 1

(1)ln(1 ) 1
( )

ln(1 ) ( )

NT r

pNT r NT r

p p

NT r NT r p

m

Om m
O m

m m O m

µ

µ µ

µ µ

−

− −

− − −
+ +

+

+ + + +
> = = → ∞

+ + +

�

� �

� �
. 
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Table 1: Cases with I.I.D. Errors 

3, , 0r r Jθ ρ β= = = = =  
 

N T IC1 IC2 PC1 PC2 ON ER GR 
r = 1 (SNR = 1) 

10 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

N/A 
1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

20 100 
1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

4.65 
(0.72) 

[0,0,1000] 

3.87 
(0.71) 

[0,0,1000] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

40 100 
1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.01 
(0.03) 

[10,990,0] 

1.00 

(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

60 100 
1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

100 100 
1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

1.00 
(0.00) 

[0,1000,0] 

r = 3 (SNR = 1/3) 

10 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

N/A 
1.92 
(0.81) 

[721,277,2] 

2.18 
(0.79) 

[576,424,0] 

20 100 
2.95 
(0.21) 

[47,953,0] 

2.92 
(0.27) 

[74,926,0] 

5.16 
(0.67) 

[0,2,998] 

4.50 
(0.67) 

[0,0,1000] 

2.90 
(0.30) 

[97,903,0] 

2.66 
(0.64) 

[245,755,0] 

2.83 
(0.46) 

[137,863,0] 

40 100 
3.00 
(0.00) 

[0,1000,0] 

2.99 
(0.03) 

[1,999,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

2.99 
(0.08) 

[7,993,0] 

2.99 
(0.05) 

[3,997,0] 

60 100 
3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

100 100 
3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

r = 5 (SNR = 1/5) 

10 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

N/A 
2.14 
(1.18) 

[968,23,9] 

2.22 
(1.10) 

[980,20,0] 

20 100 
4.11 
(0.85) 

[627,373,0] 

3.69 
(0.99) 

[781,219,0] 

5.88 
(0.57) 

[0,233,767] 

5.40 
(0.50) 

[6,592,402] 

3.34 
(0.66) 

[977,23,0] 

3.21 
(1.47) 

[731,269,0] 

3.68 
(1.40) 

[602,398,0] 

40 100 
4.88 
(0.33) 

[117,883,0] 

4.68 
(0.53) 

[291,709,0] 

4.99 
(0.04) 

[2,998,0] 

4.98 
(0.11) 

[13,987,0] 

4.74 
(0.45) 

[251,749,0] 

4.78 
(0.71) 

[115,885,0] 

4.90 
(0.46) 

[64,936,0] 

60 100 
4.99 
(0.07) 

[9,994,0] 

4.93 
(0.25) 

[65,935,0] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

4.99 
(0.09) 

[8,992,0] 

4.98 
(0.14) 

[14,986,0] 

4.99 
(0.05) 

[4,996,0] 

100 100 
5.00 
(0.00) 

[0,1000,0] 

4.99 
(0.03) 

[1,999,0] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 2.1: Cases with Autocorrelated Errors 

3, 1 ( 1), 0r SNRθ β= = = =   

N T IC1 IC2 PC1 PC2 ON ER GR 

0.5ρ =  

30 50 
3.39 
(0.75) 

[0,720,280] 

3.03 
(0.16) 

[0,971,29] 

7.01 
(0.62) 

[0,0,1000] 

5.94 
(0.67) 

[0,0,1000] 

3.01 
(0.09) 

[0,992,8] 

2.98 
(0.18) 

[20,980,0] 

2.98 
(0.12) 

[12,988,0] 

50 50 
3.21 
(0.52) 

[0,830,170] 

3.001 
(0.03) 

[0,999,1] 

6.42 
(0.65) 

[0,0,1000] 

4.92 
(0.63) 

[0,2,998] 

3.00 
(0.04) 

[0,998,2] 

2.99 
(0.05) 

[3,997,0] 

2.99 
(0.04) 

[2,998,0] 

100 50 
3.11 
(0.35) 

[0,894,106] 

3.004 
(0.06) 

[0,996,4] 

6.09 
(0.64) 

[0,0,1000] 

5.08 
(0.63) 

[0,1,999] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

50 30 
5.65 
(1.72) 

[0,153,847] 

3.27 
(0.60) 

[0,788,212] 

7.71 
(0.48) 

[0,0,1000] 

6.86 
(0.62) 

[0,0,1000] 

3.06 
(0.26) 

[0,936,64] 

2.96 
(0.22) 

[40,960,0] 

2.98 
(0.23) 

[17,983,0] 

50 100 
3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

4.00 
(0.60) 

[0,172.828] 

3.28 
(0.45) 

[0,726,274] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

100 100 
3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.35 
(0.50) 

[0,656,344] 

3.002 
(0.04) 

[0,998,2] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 
The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 2.2: Cases with Autocorrelated Errors 

3, 1 ( 1), 0r SNRθ β= = = =  

N T IC1 IC2 PC1 PC2 ON ER GR 

0.7ρ =  

30 50 
7.78 
(0.60) 

[0,0,1000] 

5.96 
(1.61) 

[0,83,917] 

7.98 
(0.14) 

[0,0,1000] 

7.69 
(0.48) 

[0,0,1000] 

3.32 
(0.51) 

[0,700,300] 

2.92 
(0.31) 

[68,932,0] 

2.98 
(0.18) 

[24,973,3] 

50 50 
7.94 
(0.26) 

[0,0,1000] 

5.84 
(1.52) 

[0,70,930] 

7.99 
(0.06) 

[0,0,1000] 

7.57 
(0.51) 

[0,0,1000] 

3.17 
(0.39) 

[0,830,170] 

2.98 
(0.15) 

[17,983,0] 

2.99 
(0.06) 

[4,996,0] 

100 50 
8.00 
(0.00) 

[0,0,1000] 

7.94 
(0.28) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.08) 

[0,0,1000] 

3.06 
(0.24) 

[0,943,57] 

2.99 
(0.03) 

[1,999,0] 

3.00 
(0.00) 

[0,1000,0] 

50 30 
7.99 
(0.05) 

[0,0,1000] 

7.82 
(0.47) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.97 
(0.16) 

[0,0,1000] 

4.23 
(0.69) 

[0,129,871] 

2.90 
(0.40) 

[95,900,5] 

2.98 
(0.35) 

[45,933,22] 

50 100 
4.83 
(1.47) 

[0,211,789] 

3.30 
(0.57) 

[0,757,243] 

7.34 
(0.61) 

[0,0,1000] 

6.41 
(0.64) 

[0,0,1000] 

3.01 
(0.05) 

[0,997,3] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

100 100 
7.22 
(1.14) 

[0,4,996] 

3.37 
(0.66) 

[0,720,280] 

7.86 
(0.34) 

[0,0,1000] 

6.43 
(067) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

50 1000 
3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 50 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

500 1000 
3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.03 
(0.17) 

[0,970,30] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 2.3: Cases with Autocorrelated Errors 

3, 1 ( 1), 0r SNRθ β= = = =   

N T IC1 IC2 PC1 PC2 ON ER GR 

0.9ρ =  

30 50 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.51 
(0.57) 

[0,0,1000] 

3.06 
(0.85) 

[131,720,149] 

3.67 
(1.30) 

[52,604,344] 

50 50 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.63 
(0.54) 

[0,0,1000] 

3.04 
(0.56) 

[50,872,78] 

3.50 
(1.10) 

[26,724,250] 

100 50 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.75 
(0.47) 

[0,0,1000] 

3.01 
(0.37) 

[25,947,28] 

3.30 
(0.90) 

[8,857,135] 

50 30 
8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.05) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.96 
(0.46) 

[0,0,1000] 

3.21 
(0.84) 

[92,687,221] 

4.09 
(1.40) 

[34,438,528] 

50 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

4.26 
(0.68) 

[0,114,886] 

2.99 
(0.12) 

[12,987,1] 

3.00 
(0.19) 

[8,984,8] 

100 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

4.26 
(0.68) 

[0,110,890] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

50 1000 
3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.58 
(0.59) 

[0,465,535] 

3.41 
(0.57) 

[0,542,458] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 50 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.98 
(0.13) 

[0,0,1000] 

2.99 
(0.08) 

[6,994,0] 

3.02 
(0.23) 

[1,989,10] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 3.1: Cases with Cross-Correlated Errors 

3, 1 ( 1), 0, .2r SNRθ ρ β= = = = =   

N T IC1 IC2 PC1 PC2 ON ER GR 
J=8

 

50 100 
6.93 
(0.26) 

[0,0,1000] 

6.69 
(0.00) 

[0,0,1000] 

7.01 
(0.37) 

[0,0,1000] 

6.95 
(0.00) 

[0,0,1000] 

6.58 
(0.22) 

[0,0,1000] 

2.99 
(0.18) 

[14,984,2] 

3.12 
(0.62) 

[4,954,42] 

100 50 
7.98 
(0.12) 

[0,0,1000] 

7.81 
(0.44) 

[0,0,1000] 

7.99 
(0.08) 

[0,0,1000] 

7.94 
(0.24) 

[0,0,1000] 

3.43 
(0.57) 

[0,610,390] 

2.99 
(0.05) 

[3,997,0] 

3.00 
(0.00) 

[0,1000,0] 

100 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.05 
(0.22) 

[0,951,49] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

200 100 
8.00 
(0.00) 

[0,0,1000] 

7.98 
(0.14) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

50 1000 
7.99 
(0.03) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

7.00 
(0.05) 

[0,0,1000] 

2.99 
(0.04) 

[2,998,0] 

3.10 
(0.62) 

[0,975,25] 

1000 50 
3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
4.21 
(0.91) 

[0,220,280] 

3.02 
(0.13) 

[0,983,17] 

6.22 
(0.67) 

[0,0,1000] 

4.09 
(0.58) 

[0,120,880] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

J=20
 

50 100 
5.04 
(0.21) 

[0,0,1000] 

4.99 
(0.07) 

[0,0,1000] 

5.82 
(0.53) 

[0,0,1000] 

5.29 
(0.46) 

[0,0,1000] 

5.00 
(0.04) 

[0,610,390] 

3.22 
(0.42) 

[1,769,230] 

3.75 
(0.55) 

[0,311,689] 

100 50 
6.35 
(0.48) 

[0,0,1000] 

6.10 
(0.32) 

[0,0,1000] 

6.76 
(0.48) 

[0,0,1000] 

6.44 
(0.50) 

[0,0,1000] 

6.72 
(0.45) 

[0,0,1000] 

3.55 
(0.99) 

[8,725,267] 

4.69 
(1.21) 

[0,300,700] 

100 100 
7.16 
(0.36) 

[0,0,1000] 

7.00 
(0.08) 

[0,0,1000] 

7.28 
(0.44) 

[0,0,1000] 

7.02 
(0.14) 

[0,0,1000] 

6.97 
(0.16) 

[0,0,1000] 

3.36 
(0.86) 

[0,846,154] 

4.87 
(1.24) 

[0,278,722] 

200 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

4.34 
(0.76) 

[0,118,882] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

50 1000 
5.80 
(0.40) 

[0,0,1000] 

5.74 
(0.44) 

[0,0,1000] 

6.06 
(0.25) 

[0,0,1000] 

6.04 
(0.20) 

[0,0,1000] 

5.01 
(0.09) 

[0,0,1000] 

3.10 
(0.30) 

[0,899,101] 

3.83 
(0.47) 

[0,207,793] 

1000 50 
3.92 
(1.08) 

[0,439,561] 

3.71 
(0.92) 

[0,56,484] 

6.91 
(0.64) 

[0,0,1000] 

6.76 
(0.64) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 3.2: Cases with Cross-Correlated Errors 

3, 1 ( 1), 0, .5r SNRθ ρ β= = = = =  

N T IC1 IC2 PC1 PC2 ON ER GR 
J = 8

 

50 100 
7.99 
(0.07) 

[0,0,1000] 

7.90 
(0.29) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

7.98 
(0.11) 

[0,0,1000] 

7.41 
(0.49) 

[0,0,1000] 

5.49 
(1.90) 

[6,354,540] 

6.89 
(0.58) 

[0,20,980] 

100 50 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.63 
(0.64) 

[0,451,549] 

2.98 
(0.17) 

[18,981,1] 

3.01 
(0.21) 

[6,989,5] 

100 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.10 
(0.30) 

[0,896,104] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

200 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

50 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.97 
(0.17) 

[0,0,1000] 

6.40 
(1.43) 

[0,150,850] 

7.00 
(0.00) 

[0,0,1000] 

1000 50 
3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.70 
(0.60) 

[0,369,631] 

3.59 
(0.58) 

[0,458,542] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

J = 20
 

50 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.01 
(0.07) 

[0,0,1000] 

3.79 
(0.73) 

[0,388,612] 

4.82 
(0.38) 

[0,0,1000] 

100 50 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

6.94 
(0.22) 

[0,0,1000] 

4.78 
(1.16) 

[3,251,746] 

5.63 
(0.72) 

[0,37,963] 

100 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

6.99 
(0.03) 

[0,0,1000] 

4.79 
(1.21) 

[0,286,714] 

5.77 
(0.55) 

[0,18,982] 

200 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

4.73 
(0.74) 

[0,39,961] 

3.00 
(0.00) 

[0,1000,0] 

3.01 
(0.13) 

[0,998,2] 

50 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.00 
(0.00) 

[0,0,1000] 

3.85 
(0.85) 

[0,442,558] 

4.99 
(0.06) 

[0,0,1000] 

1000 50 
7.99 
(0.03) 

[0,0,1000] 

7.99 
(0.05) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 3.3: Cases with Cross-Correlated Errors 

3, 1 ( 1), 0, .9r SNRθ ρ β= = = = =  

N T IC1 IC2 PC1 PC2 ON ER GR 
J = 8

 

50 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.01 
(0.11) 

[0,0,1000] 

4.60 
(1.79) 

[9,520,471] 

6.39 
(1.24) 

[1,104,895] 

100 50 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.83 
(0.69) 

[0,327,673] 

2.99 
(0.30) 

[18,978,4] 

3.06 
(0.30) 

[10,983,7] 

100 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.18 
(0.41) 

[0,823,177] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

200 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

50 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.00 
(0.00) 

[0,0,1000] 

4.32 
(1.86) 

[0,661,339] 

6.88 
(0.67) 

[0,28,972] 

1000 50 
3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

4.04 
(0.63) 

[0,173,827] 

3.90 
(0.62) 

[0,241,759] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

J = 20
 

50 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.17 
(0.39) 

[0,0,1000] 

3.53 
(0.52) 

[0,481,519] 

4.38 
(0.71) 

[0,40,960] 

100 50 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

6.83 
(0.37) 

[0,0,1000] 

4.65 
(1.11) 

[3,266,731] 

5.50 
(0.75) 

[0,44,956] 

100 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

6.91 
(0.27) 

[0,0,1000] 

4.73 
(1.13) 

[0,270,730] 

5.68 
(0.57) 

[0,17,983] 

200 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

4.91 
(0.73) 

[0,23,977] 

3.00 
(0.00) 

[0,1000,0] 

3.01 
(0.13) 

[0,998,2] 

50 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.01 
(0.06) 

[0,0,1000] 

3.46 
(0.50) 

[0,538,462] 

4.27 
(0.50) 

[0,5,995] 

1000 50 
8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 4.1: Cases with Both Autocorrelated and Cross-Correlated Errors  

3, .5, .2, 8r Jρ β= = = =  

N T IC1 IC2 PC1 PC2 ON ER GR 

1/ 3θ =  (SNR = 3) 

30 50 
7.72 
(0.58) 

[0,0,1000] 

6.64 
(0.82) 

[0,0,1000] 

7.95 
(0.22) 

[0,0,1000] 

7.54 
(0.54) 

[0,0,1000] 

5.14 
(0.41) 

[0,0,1000] 

2.99 
(0.10) 

[6,989,5] 

3.29 
(0.74) 

[3,843,154] 

50 50 
7.94 
(0.23) 

[0,0,1000] 

7.39 
(0.61) 

[0,0,1000] 

7.99 
(0.09) 

[0,0,1000] 

7.68 
(0.46) 

[0,0,1000] 

5.57 
(0.58) 

[0,0,1000] 

2.99 
(0.03) 

[1,999,0] 

3.00 
(0.07) 

[1,998,1] 

100 50 
8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.09) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

3.89 
(0.68) 

[0,284,716] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

50 30 
8.00 
(0.12) 

[0,0,1000] 

7.71 
(0.55) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.04) 

[0,0,1000] 

5.22 
(0.62) 

[0,1,999] 

2.99 
(0.09) 

[6,992,2] 

3.02 
(0.18) 

[0,986,14] 

50 100 
7.92 
(0.26) 

[0,0,1000] 

7.70 
(0.46) 

[0,0,1000] 

7.97 
(0.16) 

[0,0,1000] 

7.83 
(0.37) 

[0,0,1000] 

6.12 
(0.49) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

100 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.33 
(0.52) 

[0,696,304] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

50 1000 
7.99 
(0.03) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.00 
(0.03) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 50 
5.15 
(1.66) 

[0,190,810] 

4.67 
(1.65) 

[0,280,720] 

7.52 
(0.55) 

[0,0,1000] 

7.38 
(0.59) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 4.2: Cases with Both Autocorrelated and Cross-Correlated Errors  

3, .5, .2, 8r Jρ β= = = =  

N T IC1 IC2 PC1 PC2 ON ER GR 

1θ =  (SNR = 1) 

30 50 
7.72 
(0.59) 

[0,0,1000] 

6.62 
(0.83) 

[0,0,1000] 

7.95 
(0.21) 

[0,0,1000] 

7.54 
(0.54) 

[0,0,1000] 

5.13 
(0.41) 

[0,0,1000] 

3.16 
(0.67) 

[65,746,189] 

4.50 
(1.17) 

[23,249,728] 

50 50 
7.94 
(0.24) 

[0,0,1000] 

7.38 
(0.61) 

[0,0,1000] 

7.99 
(0.10) 

[0,0,1000] 

7.68 
(0.47) 

[0,0,1000] 

5.55 
(0.59) 

[0,0,1000] 

3.02 
(0.44) 

[38,911,51] 

3.59 
(1.32) 

[35,727,238] 

100 50 
8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.10) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

3.88 
(0.68) 

[0,289,711] 

2.99 
(0.11) 

[8,990,2] 

3.00 
(0.08) 

[1,996,3] 

50 30 
7.99 
(0.12) 

[0,0,1000] 

7.71 
(0.55) 

[0,0,1000] 

7.99 
(0.04) 

[0,0,1000] 

7.93 
(0.25) 

[0,0,1000] 

5.19 
(0.62) 

[0,1,999] 

2.99 
(0.04) 

[2,998,0] 

3.52 
(0.87) 

[36,738,226] 

50 100 
7.92 
(0.27) 

[0,0,1000] 

7.70 
(0.46) 

[0,0,1000] 

7.97 
(0.16) 

[0,0,1000] 

7.83 
(0.37) 

[0,0,1000] 

6.10 
(0.49) 

[0,0,1000] 

3.02 
(0.68) 

[108,788,104] 

3.15 
(0.65) 

[5,927,68] 

100 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.32 
(0.51) 

[0,700,300] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,999,1] 

50 1000 
7.99 
(0.03) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.00 
(0.03) 

[0,0,1000] 

3.01 
(0.29) 

[16,968,16] 

3.06 
(0.50) 

[0,984,16] 

1000 50 
5.14 
(1.65) 

[0,195,805] 

4.66 
(1.53) 

[0,279,721] 

7.51 
(0.55) 

[0,0,1000] 

7.39 
(0.58) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 4.3: Cases with Both Autocorrelated and Cross-Correlated Errors  

3, .5, .2, 8r Jρ β= = = =   

N T IC1 IC2 PC1 PC2 ON ER GR 

3θ =  (SNR = 1/3) 

30 50 
7.71 
(0.60) 

[0,0,1000] 

6.57 
(0.83) 

[0,0,1000] 

7.95 
(0.21) 

[0,0,1000] 

7.53 
(0.55) 

[0,0,1000] 

5.04 
(0.44) 

[0,1,999] 

3.65 
(1.26) 

[188,188,624] 

4.97 
(1.18) 

[56,52,892] 

50 50 
7.93 
(0.24) 

[0,0,1000] 

7.34 
(0.63) 

[0,0,1000] 

7.98 
(0.11) 

[0,0,1000] 

7.67 
(0.47) 

[0,0,1000] 

5.04 
(0.43) 

[0,0,1000] 

3.89 
(1.62) 

[194,246,560] 

5.31 
(1.77) 

[95,87,818] 

100 50 
8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.10) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.80 
(0.66) 

[1,333,666] 

2.89 
(1.03) 

[257,605,138] 

3.20 
(1.28) 

[214,527,259] 

50 30 
7.98 
(0.13) 

[0,0,1000] 

7.67 
(0.59) 

[0,0,1000] 

7.99 
(0.04) 

[0,0,1000] 

7.92 
(0.26) 

[0,0,1000] 

5.03 
(0.65) 

[0,7,993] 

3.42 
(1.65) 

[316,206,478] 

4.03 
(1.65) 

[198,165,637] 

50 100 
7.92 
(0.27) 

[0,0,1000] 

7.69 
(0.46) 

[0,0,1000] 

7.97 
(0.16) 

[0,0,1000] 

7.82 
(0.38) 

[0,0,1000] 

6.05 
(0.50) 

[0,0,1000] 

4.49 
(1.60) 

[103,222,675] 

5.33 
(1.39) 

[31,114,955] 

100 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.29 
(0.50) 

[2,727,271] 

2.93 
(0.58) 

[96,864,40] 

2.99 
(0.68) 

[95,827,78] 

200 200 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

50 1000 
7.99 
(0.03) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.00 
(0.04) 

[0,0,1000] 

6.21 
(1.47) 

[21,115,864] 

6.86 
(0.51) 

[1,7,992] 

1000 50 
5.07 
(1.64) 

[0,205,795] 

4.62 
(1.53) 

[0,291,709] 

7.49 
(0.55) 

[0,0,1000] 

7.37 
(0.59) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

2.99 
(0.06) 

[4,996,0] 

2.99 
(0.05) 

[3,997,0] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 5.1: Cases with One Strong and Two Weak Factors 

1θ = , 0.5ρ = , 0.2β =  and 8J =  

N T IC1 IC2 PC1 PC2 ON ER GR 

r = 3, 
1 2, ~ (0, .75)f f N  and 

3 ~ (0,1.5)f N  

30 50 
7.71 
(0.57) 

[0,0,1000] 

6.62 
(0.82) 

[0,0,1000] 

7.95 
(0.21) 

[0,0,1000] 

7.53 
(0.53) 

[0,0,1000] 

5.14 
(0.42) 

[0,0,1000] 

2.95 
(0.98) 

[207,581,212] 

3.60 
(0.96) 

[57,484,459] 

50 50 
7.94 
(0.24) 

[0,0,1000] 

7.38 
(0.60) 

[0,0,1000] 

7.99 
(0.09) 

[0,0,1000] 

7.67 
(0.47) 

[0,0,1000] 

5.56 
(0.60) 

[0,0,1000] 

2.83 
(0.80) 

[158,782,60] 

3.32 
(1.04) 

[56,746,198] 

100 50 
8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.07) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.04) 

[0,0,1000] 

3.85 
(0.66) 

[0,304,696] 

2.91 
(0.39) 

[53,945,2] 

2.99 
(0.18) 

[10,983,7] 

50 30 
7.99 
(0.09) 

[0,0,1000] 

7.69 
(0.56) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.95 
(0.22) 

[0,0,1000] 

5.17 
(0.64) 

[0,3,997] 

2.77 
(0.89) 

[228,686,86] 

3.33 
(1.08) 

[96,644,260] 

50 100 
7.93 
(0.26) 

[0,0,1000] 

7.71 
(0.46) 

[0,0,1000] 

7.97 
(0.17) 

[0,0,1000] 

7.83 
(0.37) 

[0,0,1000] 

6.11 
(0.51) 

[0,0,1000] 

2.92 
(0.59) 

[80,894,26] 

3.30 
(0.94) 

[22,844,134] 

100 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.31 
(0.51) 

[0,707,293] 

2.99 
(0.10) 

[3,997,0] 

3.00 
(0.03) 

[0,999,1] 

200 200 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.33 
(1.10) 

[2,915,83] 

50 1000 
7.99 
(0.03) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.00 
(0.03) 

[0,0,1000] 

2.97 
(0.22) 

[21,979,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 50 
5.03 
(1.60) 

[0,191,809] 

4.64 
(1.51) 

[0,272,728] 

7.51 
(0.54) 

[0,0,1000] 

7.39 
(0.56) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

1000 500 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

3.00 
(0.00) 

[0,1000,0] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 5.2: Cases with Three Strong and Two Weak Factors 

1θ = , 0.5ρ = , 0.2β =  and 8J =  

N T IC1 IC2 PC1 PC2 ON ER GR 

r = 5, 
1 2 3, , ~ (0,1.2)f f f N  and 

4 5, ~ (0, .7)f f N  

30 50 
7.99 
(0.03) 

[0,0,1000] 

7.96 
(0.20) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.07) 

[0,0,1000] 

6.47 
(0.54) 

[0,17,983] 

5.20 
(1.08) 

[140,528,332] 

5.74 
(1.00) 

[51,394,555] 

50 50 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.71 
(0.66) 

[5,387,608] 

4.95 
(0.88) 

[134,741,125] 

5.28 
(0.84) 

[64,693,243] 

100 50 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.03 
(0.19) 

[3,961,36] 

4.96 
(0.32) 

[36,958,6] 

5.01 
(0.22) 

[16,965,19] 

50 30 
8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.09) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

7.99 
(0.03) 

[0,0,1000] 

5.70 
(0.64) 

[6,379,615] 

4.79 
(1.22) 

[229,590,181] 

5.24 
(1.13) 

[114,569,317] 

50 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.64 
(0.62) 

[2,429,569] 

5.01 
(0.49) 

[45,904,51] 

5.24 
(0.66) 

[17,829,154] 

100 100 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.00 
(0.00) 

[0,1000,0] 

4.99 
(0.03) 

[0,999,1] 

5.00 
(0.03) 

[0,999,1] 

200 200 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

50 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.31 
(0.48) 

[0,700,300] 

4.99 
(0.14) 

[10,988,2] 

5.03 
(0.25) 

[3,981,16] 

1000 50 
7.01 

(0.1.06) 

[0,122,878] 

6.76 
(1.11) 

[0,176,824] 

7.82 
(0.38) 

[0,0,1000] 

7.74 
(0.45) 

[0,0,1000] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

500 1000 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

1000 500 
8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

8.00 
(0.00) 

[0,0,1000] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

5.00 
(0.00) 

[0,1000,0] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 6: No Common Factor 

0, 1, 8r Jθ= = =  

N T 
ON ER* ON ER* ON ER* 

0.25, 0.1ρ β= =
 

0.5, 0.2ρ β= =
 

0.5, 0.5ρ β= =
 

100 100 

2.11 

(0.73) 

[10,178,812] 

0.73 

(1.47) 

[730,95,175] 

4.29 

(0.81) 

[0,0,1000] 

2.55 

(2.39) 

[364,90,546] 

5.78 

(0.72) 

[0,0,1000] 

1.70 

(2.50) 

[659,20,321] 

1000 60 

0.00 

(0.00) 

[1000,0,0] 

0.001 

(0.03) 

[999,1,0] 

0.04 

(0.20) 

[955,45,0] 

0.02 

(0.17) 

[982,14,4] 

0.34 

(0.53) 

[687,287,26] 

0.07 

(0.43) 

[956,26,15] 

1000 250 

0.00 

(0.00) 

[1000,0,0] 

0.00 

(0.00) 

[1000,0,0] 

0.00 

(0.00) 

[1000,0,0] 

0.00 

(0.00) 

[1000,0,0] 

0.001 

(0.03) 

[999,1,0] 

0.00 

(0.00) 

[1000,0,0] 

150 500 

0.00 

(0.00) 

[1000,0,0] 

0.00 

(0.00) 

[1000,0,0] 

0.001 

(0.03) 

[999,1,0] 

0.00 

(0.00) 

[1000,0,0] 

0.005 

(0.07) 

[995,5,0] 

0.00 

(0.00) 

[1000,0,0] 

40 150 

2.71 

(0.45) 

[0,0,1000] 

2.64 

(0.59) 

[0,3,997] 

3.64 

(0.48) 

[0,0,1000] 

3.28 

(0.68) 

[0,0,1000] 

4.01 

(0.7) 

[0,0,1000] 

4.32 

(1.13) 

[0,0,1000] 

500 150 

0.001 

(0.03) 

[999,1,0] 

0.006 

(0.08) 

[994,6,0] 

0.02 

(0.12) 

[984,16,0] 

0.04 

(0.21) 

[962,35,3] 

0.06 

(0.25) 

[942,55,3] 

0.05 

(0.26) 

[955,40,5] 

The maximum number of factors tested in simulations is eight (kmax=8). The values in the parenthesis are the 

standard deviations of the estimates. The values in brackets provide information on the frequencies of the estimated 

numbers of factors.  The first value indicates the frequency of underestimation out of 1,000 times.  The second value 

is the frequency of correct estimation, while the third is that of overestimation:  [0 , , ]k r k r r k kmax< < = < ≤� � � . 
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Table 7: Weak Factors 

1 ~ (0,1)f N , 2 ~ (0,.5)f N  and 3 ~ (0, )f N SNR  

 SNR=.10 SNR=.20 SNR=.35 SNR=.45 

ER 
1.87 

[127,872,1,0] 
1.71 

[345,597,58,0] 
2.44 

[246,67,686,1,0] 
2.78 

[98,16,886,0] 

GR 
1.97 

[30,967,3,0] 
2.03 

[148,676,172,4] 
2.83 

[75,35,877,12] 
2.95 

[24,8,958,10] 

Onatski 
2.73 

[0,397,474,129] 
3.31 

[0,18,669,313] 
3.36 

[0,0,660,340] 
4.20 

[0,0,658,342] 

PC estimator of 1
st
 Factor 

1.006 
[994,6,0,0] 

1.006 
[994,6,0,0] 

1.006 
[944,6,0,0] 

1.007 
[993,7,0,0] 

PC estimator of 2
nd

 Factor 
1.99 

[11,989,0,0] 
1.99 

[10,988,2,0] 
2.05 

[13,922,65,0] 
2.28 

[15,688,297,0] 

PC estimator of 3
rd

 Factor 
4.58 

[1,0,267,732] 
3.06 

[1,3,943,53] 
2.88 

[0,116,884,0] 
2.60 

[3,393,604,0] 

The maximum number of factors tested in every simulation is eight (kmax=8). The values in brackets provide 

information on the frequencies of the estimated numbers of factors in the case of the criteria. In the case of the “PC 

estimator of the Factor”, the values in brackets provide the frequency of the factor extracted through principal 

components most correlated with the real factor.  The first value indicates the frequency of estimation of 1 factor in 

the case of the criteria and in the case of the “PC estimator of the Factor” indicates the number of times the first PC 

is most correlated with the real factor analyzed.  The frequencies analyzed are [0,1,2,3, 4]≥ . 
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Table 8: Estimated Number of Factors in Monthly Macroeconomic Variables 

 

N T IC1 IC2 PC1 PC2 ON ER GR 

BBE dataset 120 511 15 14 15 15 13 5 5 
The estimates are obtained using  kmax=15 and time-demeaned data. 

 

 

Table 9: Estimated Number of Latent Factors in the U.S. Stock Market 

N T IC1 IC2 PC1 PC2 ON ER GR 

January 1970- December 2006 313 444 4 3 4 4 2 1 1 

January 1970- December 1987 816 216 3 3 3 3 3 1 1 

January 1988- December 2006 1288 228 2 1 2 2 3 1 1 

January 1970- December 1978 1384 108 1 1 3 3 3 1 1 

January 1979- December 1992 1640 168 1 1 2 2 3 1 1 

January 1993- December 2006 1855 168 1 1 2 2 3 1 1 

January 1970- December 1974 1859 60 1 1 3 3 3 1 1 

January 1975- December 1979 3087 60 1 1 2 1 1 1 1 

January 1980- December 1984 3091 60 1 1 1 1 2 1 1 

January 1985- December 1989 3401 60 1 1 1 1 1 3 3 

January 1990- December 1994 3858 60 1 1 1 1 2 1 1 

January 1995- December 1999 4142 60 1 1 1 1 1 1 1 

January 2000- December 2006 3436 84 2 2 3 3 3 1 1 
The estimates are obtained using  kmax=15 and time-demeaned data. 
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Figure 1: Scree Test (Locus of ,NT k
NT µ� ) 

 

 

 

Figure 2 
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Figure 3.1 

 

Figure 3.2 

 

 



47 

 

 

Figure 4 
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Figure 5.1 

( , )kV k F�  

 

Figure 5.2 

PC Functions of BN and ON 
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Figure 6 
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Figure 8 
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Figure 10 

Evolution of ER(k) in the Presence of Weak Factors  
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Figure 11 

Evolution of GR, ER and ON Criterion Functions in the Presence of Weak Factors 
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Figure 12 

Evolution of R
2
 in the Presence of Weak Factors  
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Figure 14 
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