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Abstract

Gambles and securities are two types of risky assets: while the
returns of a gamble are absolute, the returns of a security are relative,
i.e., proportional to the investment amount. Following Aumann and
Serrano (2008) who characterize an index of riskiness of gambles by
axioms, we characterize an index of riskiness of securities by similar
axioms. It is important to emphasize that the two indices are not
equivalent but relate to two different aspects of risk, namely, absolute
and relative risk.
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1 Introduction

In many situations of decision making under risk, individuals take a deci-
sion in relation to some risky assets.1 We distinguish between two types of
risky assets: assets whose returns are absolute (“gambles”) and assets whose
returns are relative (“securities”). To clarify this distinction, note that ac-
cepting a gamble g at initial wealth w causes the wealth to be distributed as
w+ g, and investing w in a security r causes the wealth to be distributed as
wr. We call the riskiness of gambles absolute riskiness and that of securities
relative riskiness.2

In their seminal work Aumann and Serrano (2008) characterize an index
of riskiness of gambles by two axioms; chief among them is a duality ax-
iom that, roughly speaking, asserts that less absolute risk-averse individuals
accept riskier gambles. Since the the Aumann–Serrano index is defined on
gambles we call it an index of absolute riskiness. In the present paper we
characterize an index of riskiness defined on securities by translating the Au-
mann and Serrano’s axioms to relative terms. Since our index is defined on
securities we call it an index of relative riskiness.

Although the two indices of riskiness are defined on two different ob-
jects, namely, gambles and securities, both of them can be used to measure
the riskiness of the same investment. In this context, an investment is the
possibility of exchanging an initial level of wealth for a wealth level that is
distributed randomly. The mechanism behind an investment can be either
a gamble or a security. We define the absolute riskiness of an investment as
the riskiness of that gamble, measured by the Aumann–Serrano index, and
its relative riskiness as the riskiness of that security, measured by our index
of relative riskiness.

It is important to emphasize that the indices are not ordinally equiv-
alent, i.e., they induce a different order of riskiness on the set of investments.
In other words, given two investments, one investment may be riskier in abso-
lute terms but less risky in relative terms, and vice versa. The fact that there
exist two different orders of riskiness fits well with the idea of Arrow–Pratt
who introduce two different orders of risk aversion (absolute and relative).

1Such decisions might be accepting or rejecting a gamble or the classic asset allocation
problem.

2Our discussion deals with assets whose distribution is known. Michaeli (2012) is a
related paper that deals with measuring the risk of situations in which the distributions
of the random variables are unknown.
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Indeed, the absolute riskiness relates to absolute risk aversion and the relative
riskiness relates to relative risk aversion.

Among its many properties are some that make the index of relative
riskiness an appropriate tool for measuring the riskiness of securities and
portfolios. For instance, unlike the (inverse) Sharp ratio and the variance-
mean ratio, our index is compatible with the stochastic-dominance order. In
addition, on log-normal distribution, our index coincides with the variance-
mean ratio.

The Aumann-Serrano index can be characterized in different ways. For
instance, Hart (2011) extends the well-known stochastic-dominance order,3

which is basically an incomplete order, in two different ways, one of them
being equivalent to the order induced by the Aumman-Serrano index. An-
other approach is taken by Foster and Hart (2011) who suggest an alternative
axiomatic characterization of the index. In addition, as Meilijson (2009) in-
dicates, the reciprocal of the value of the Aumann-Serrano index was known
in the insurance risk literature as the “adjustment coefficient” which has to
do with the risk of going bankruptcy. This suggests another way of charac-
terizing the Aumann-Serrano index. In the present paper we show that all
these three approaches lead to our index of relative riskiness when applied
to securities instead of gambles.

It is interesting to note that Aumann and Serrano (2008) themselves
suggest that the riskiness of securities be measured in a different way from
what we suggest here. Their order of riskiness of securities, despite its virtues,
is incompatible with the principle of duality between risk and risk aversion,
while ours is not. But even more important, their measure of riskiness of
securities and their measure of riskiness of gambles induce exactly the same
order of risk when applied to investments. By contrast, our order of riskiness
of securities represents a new aspect of risk, namely, relative risk.

The paper is organized as follows. Section 2 is devoted to the basic
axiomatic definition of the index of relative riskiness and its numerical char-
acterization. In order to emphasize the similarities as well as the differences
between the indices of absolute riskiness and relative riskiness, the Aumann–
Serrano index is presented together with the new index. Section 3 sets forth
some desirable properties of the index of relative riskiness. Section 4 defines
the concept of investment opportunities. In particular, it shows how to apply

3For stochastic-dominance see Hadar and Russell (1969), Levy and Hanoch (1969), and
Rothschild and Stiglitz (1970).
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both indices to measure the risk that arises from general investments. One
of the important ideas of Section 4 is that the two indices induce two differ-
ent orders on the set of investment opportunities. Section 5 presents three
alternative approaches towards risk that lead to the Aumann–Serrano index.
It is shown that all these approaches lead to our index of riskiness when they
are applied to securities instead of gambles. Section 6 concludes. The proofs
are relegated to Appendix C. In addition, Appendix A shows that the two
indices have a special role when measuring small risks. Appendix B deals
with the Foster–Hart measure of riskiness in the setup of securities (instead
of gambles).

2 Axiomatic Characterization

In this section we characterize our index of relative riskiness by two axioms
which are extensions of the axioms that are used by Aumann and Serrano
(2008) to define their index of riskiness. For convenience, we present the
characterization of the Aumman-Serrano index together with the characteri-
zation of our index. The letters (AS) in the end of a statement indicate that
the statement is taken from Aumann and Serrano (2008).

2.1 The Indices

Throughout this paper, a utility function is a von Neumann–Morgenstern
utility function for money; it is strictly monotonic, strictly concave, and
twice continuously differentiable.

We consider two types of risky assets, namely, gambles and securities. A
gamble g is a random variable with finitely many real values—interpreted as
dollar amounts—some of which are negative and that has positive expecta-
tion. Say that an agent with utility function u accepts a gamble g at wealth
w if Eu(w + g) > u(w) (E stands for expectation), that is, if she prefers
taking the gamble at w to refusing it. Otherwise, she rejects it.

A security r = [x1, p1;x2, p2; ... xn, pn] is a random variable with finitely
many positive real values x1, x2, ... xn, with respective probabilities p1, p2, ... pn.
The values of r are interpreted as (gross) returns, some of which are less than
one, while its weighted geometric mean is greater than one, i.e., Πxpii > 1.4

4If the geometric mean of a security is less than one, we consider the riskiness of the
security as infinity because investing repetitively in the security leads to bankruptcy with
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We say that an investor with utility function u accepts (invests in) a security
r at wealth w if Eu(wr) > u(w), i.e., if she prefers investing all her wealth w
in r to refusing the investment.5

We emphasize the distinction between the effect of gambles and securities
on the wealth of agents who accept them. If an agent has an initial wealth
w, accepting a gamble g causes the wealth to be distributed as w + g and
accepting a security r causes the wealth to be distributed as wr. Although
gambles and securities are basically random variables they have different
properties that make the set of gambles and the set of securities disjoint sets
(recall that the values that a security can take are all positive. By contrast,
any gamble takes at least one negative value with a positive probability).

Following Aumann and Serrano (2008) who define an (incomplete) order
relation on the set of agents based on accepting or rejecting gambles, we
define another (incomplete) order relation based on accepting or rejecting
securities. The orders are defined as follows:

Definition 2.1.

1. Agent i is uniformly no less absolute-risk averse than agent j, written
i �A j, if whenever i accepts a gamble at some wealth, j accepts that
gamble at any wealth. (AS)

2. Agent i is uniformly no less relative-risk averse than agent j, written
i �R j, if whenever i accepts a security at some wealth, j accepts that
security at any wealth.

We call agent i uniformly more absolute- (relative-) risk averse than j,
denoted by i �A j (i �R j), if i �A j (i �R j) but not j �A i (j �R i).

Define an index as a positive real-valued function on risky assets (to be
thought of as measuring riskiness). Given an index Q, we say that asset
si is riskier than asset sj if Q(si) > Q(sj). Aumann and Serrano (2008)
characterize Q by two axioms that relate to gambles. Here, we extend the
definition of these axioms to include securities as well.

Let QA and QR be indices of riskiness of gambles and securities, respec-
tively. Let g and h be two gambles and let r and k be two securities. The

probability one; see Foster and Hart (2009).
5In Section 4 we consider the case where there exists a risk-free alternative in the

economy. In this case, the condition for investing w in r is Eu(wr) > u(wrf ), where rf
indicates the risk-free interest rate.
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first axiom posits a kind of duality between riskiness and risk aversion, such
that less risk-averse agents accept riskier assets.

Axiom of Duality .

1. If i �A j, i accepts g at w, and if QA(g) > QA(h), then j accepts h at
w. (AS)

2. If i �R j, i accepts r at w, and if QR(r) > QR(k), then j accepts k at
w.

Axiom of Scaling .

1. QA(tg) = tQA(g) for all positive numbers t. (AS)

2. QR(rt) = tQR(r) for all positive numbers t.

As Aumann and Serrano (2008) explain, duality means that if the more
risk-averse of two agents accepts the riskier of two assets, then a fortiori the
less risk-averse agent accepts the less risky asset. The scaling axiom embodies
the cardinal nature of riskiness. Accepting a risky asset twice is twice as risky
as accepting it only once. If the asset is a gamble, say g, accepting g twice
(dependently) gives absolute returns of 2g. On the other hand, if the asset
is a security, say r, accepting r twice (dependently) in a row gives relative
returns of r2. The axiom asserts that the riskiness of 2g is twice the riskiness
of g, and the riskiness of r2 is twice the riskiness of r.

We define now the two indices of riskiness. The first is the Aumman–
Serrano index of absolute riskiness and the second is our proposed index of
relative riskiness. If g is a gamble, R(g) denotes the absolute riskiness of g,
and if r is a security, S(r) is the relative riskiness of r. R(g) and S(r) are
defined implicitly as follows:

Ee−g/R(g) = 1. (1)

E r−1/S(r) = 1. (2)

Although R and S are basically real-valued functions of random variables, R
is not well defined on securities and S is not well defined on gambles.

The following theorem asserts that the indices just defined satisfy the two
axioms.
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Theorem 2.2.

1. For each gamble g, there is a unique positive number R that solves for
(1). R satisfies duality and scaling, and any index of gambles satisfying
these two axioms is a positive multiple of R. (AS)

2. For each security r, there is a unique positive number S that solves
for (2). S satisfies duality and scaling, and any index of securities
satisfying these two axioms is a positive multiple of S.

As Aumann and Serrano (2008) note in relation to R, duality and scaling
are both essential: omitting either one of them results in admitting indices
that are not positive multiples of R. But duality is the more central: to-
gether with certain weak conditions of continuity and monotonicity—but
not scaling—it already implies that the index is ordinally equivalent to R.
The same statement is correct in relation to S.

2.2 Log Returns

The indices R and S have different domains. While the domain set of R is
the set of random variables that have the properties of gambles, the domain
set of S is the set of random variables that have the properties of securities.
R is not well defined on securities and S is not well defined on gambles. If
one wants to use R for measuring the riskiness of securities, a transformation
from the set of securities to the set of gambles is needed.

Aumann and Serrano (2008) define the riskiness of a security r, which we
denote by SAS(r), as

SAS(r) ≡ R(r − 1).

Note that if r is a security r − 1 is a gamble and hence SAS is well defined.
As an index of riskiness of securities, SAS does not satisfy the duality axiom,
which means that SAS and S are not ordinally equivalent; i.e., they induce
two different orders. As we will see in the next section, R and SAS induce
exactly the same order on investments. By contrast, our index S induces a
different order.

Our approach for defining the riskiness of securities is quite different from
that of Aumann and Serrano (2008). We started by characterizing an index
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of riskiness of securities, S, by the duality axiom. As a result, we derive the
following relationship between R and S:

S(r) = R(log r). (3)

Indeed, if r is a security, log r is a gamble and hence S is well defined. It is
easy to see that (3) follows from (1) and (2).

It is quite common in the finance literature to use the log returns of
securities rather than the raw returns. In general, the reasons are tractability
and simplification of algorithm complexity. By contrast, in our case we have
an axiomatic justification for using the log returns.

In this context, it is interesting to examine how other measures of riskiness
defined on gambles are applied to securities. For instance, the measure of
riskiness of Foster and Hart (2009), denoted by RFH , is basically defined on
gambles. In their paper, Foster and Hart (2009) extend the domain of RFH

to securities by defining the riskiness of a security r as RFH(r − 1). Indeed,
Foster and Hart (2009) take the approach of Aumann and Serrano (2008)
(but not ours) by defining the riskiness of a security to be the riskiness of
the gamble that has exactly the same returns of the security minus one.

2.3 Risk Aversion and Duality

To understand the concept of uniform comparative risk aversion that un-
derlies this treatment, recall first that Arrow (1965) and Pratt (1964) de-
fine two coefficients of risk aversion, one for absolute risk aversion (ARA)
ρi(w) ≡ ρ(w, ui) ≡ −u′′i (w)/u′i(w), and one for relative risk aversion (RRA)
%i(w) ≡ %(w, ui) ≡ −wρ(w, ui). As the following lemma asserts, there is
a straightforward connection between the incomplete orders of uniform risk
aversion defined above (Section 2.1) and the familiar notions of risk aversion
of Arrow and Pratt.

Lemma 2.3.

1. i is uniformly no less absolute-risk averse than j if and only if ρi(wi) ≥
ρj(wj) for all wi and wj. (AS)

2. i is uniformly no less relative-risk averse than j if and only if %i(wi) ≥
%j(wj) for all wi and wj.
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As Aumann and Serrano (2008) show, the Arrow–Pratt concept of ab-
solute and relative risk aversion is a “local” concept in that it concerns i’s
attitude toward infinitesimally small risky assets at a specified wealth only.
In contrast, the concepts of being uniformly no less absolute-risk averse and
uniformly no less relative-risk averse are “global” in two senses: (1) they
apply to risky assets of an arbitrary, finite size, which (2) may be taken at
any wealth. However, these are only partial orders, whereas Arrow and Pratt
define a numerical index (and hence a total order).

2.4 CARA and CRRA

An agent i is said to have constant absolute risk aversion (CARA) if her
ARA is a constant α that does not depend on her wealth. In that case, i is
called a CARA agent and her utility u a CARA utility, both with parameter
α. There is an essentially unique CARA utility with parameter α, given by
u(w) = −e−αw.

Similarly, an agent i is said to have constant relative risk aversion (CRRA)
if the value of %i(w) is constant for all w. CRRA expresses the idea that
wealthier people are less risk averse. Here, wealth is assumed to be positive.
There is an essentially unique6 CRRA utility with parameter α, given by

uα(x) =

{
(x1−α−1)

1−α if α 6= 1

log(x) if α = 1

While defined in terms of a local concept of risk aversion, CARA and
CRRA may in fact be characterized in global terms, as follows.

Lemma 2.4.

1. An agent i has CARA if and only if for any gamble g and any two
wealth levels, i either accepts g at both levels or rejects g at both levels.
(AS)

2. An agent i has CRRA if and only if for any security r and any two
wealth levels, i either accepts r at both levels or rejects r at both levels.

6Up to additive and positive multiplicative constants.
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Just as CARA agents do not base their decision whether to accept or
reject a gamble on their wealth level, CRRA agents do not base their decision
whether to accept or reject a security on their wealth level. The independence
of the wealth level enables us to use the parameter of the CARA agents for
ranking riskiness of gambles and to use the parameter of CRRA agents for
measuring the riskiness of securities.

Lemma 2.5.

1. If a CARA agent accepts a gamble, then any CARA agent with a
smaller parameter of CARA also accepts the gamble. Equivalently, if
a CARA agent rejects a gamble, then any CARA agent with a larger
parameter also rejects the gamble. (AS)

2. If a CRRA agent accepts a security, then any CRRA agent with a
smaller parameter of CRRA also accepts the security. Equivalently, if
a CRRA agent rejects a security, then any CRRA agent with a larger
parameter also rejects the security.

From Lemma 2.5 it follows that for each gamble g (security r), there is
precisely one “cutoff” value of the parameter, such that g (r) is accepted
by CARA (CRRA) agents with a smaller parameter and rejected by CARA
(CRRA) agents with a larger parameter. The larger the parameter, the more
absolute- (relative-) risk averse the agent, and so the duality axiom indicates
that this cutoff might be a good inverse measure of absolute (relative) riski-
ness. And, indeed, we have the following theorem:

Theorem 2.6.

1. The riskiness R(g) of a gamble g is the reciprocal of the number α such
that a CARA person with parameter α is indifferent between taking and
not taking the gamble. (AS)

2. The riskiness S(r) of a security r is the reciprocal of the number α −
1 such that a CRRA person with parameter α is indifferent between
investing and not investing in the security.

Proof. Follows from (1) and (2) and the form of CARA and CRRA utilities.
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Lemma 2.7.

1. If ρi(x) < 1/R(g) for all x between w + min g and w + max g, then i
accepts g at w; if ρi(x) > 1/R(g) for all such x, then i rejects g at w.
(AS)

2. If %i(x) < 1/S(r) + 1 for all x between w ·min r and w ·max r, then i
accepts r at w; if %i(x) > 1/S(r) + 1 for all such x, then i rejects r at
w.

3 Properties

We focus here on the properties of relative riskiness. For the properties of
absolute riskiness, see Aumann and Serrano (2008).

3.1 The Risk-Free Alternative

Our definition of relative riskiness implies that the relative riskiness of se-
curity r depends only on the distribution of r. A more general definition
of riskiness might take into account the risk-free alternative available for in-
vestors. Let rf ≥ 1 be the risk-free (gross) return available for investors,
such that investing w in rf gives wrf at the end of the investment period.

Given rf , we define the relative riskiness of security r as7

Sf (rf , r) = S(r/rf ). (4)

It is easy to see that if rf = 1 we return to the original setup and Sf (rf , r) =
S(r). For any value of rf , Sf satisfies the duality axiom.

It is reasonable to expect that a higher risk-free interest rate makes secu-
rities riskier. Let r be a security. In the range of values of rf in which r/rf
still has the properties that characterize securities, we get the following:

Lemma 3.1. Sf (rf , r) increases with rf .

Proof. If rf1 > rf2, then r/rf2 stochastically dominates r/rf1, which implies
that the riskiness of r/rf2 is lower.

We proceed now to study the properties of S.

7Assuming that r/rf still has the properties that characterize securities, i.e., a geometric
mean greater than one, and takes values less than one with positive probability.
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3.2 Investing Only a Fraction of Wealth

If α < 1, the investment of only αw in security r is less risky than investing
w in r. Formally, let r(α) = 1 + α(r − 1). Obviously, investing w in r(α) is
equivalent to investing only wα in r.

Lemma 3.2. S(r(α)) < S(r) for 0 < α < 1.

Another interesting result shows the connection between the two types of
riskiness. As the fraction of wealth that is invested in the security goes to
zero, the value of the relative riskiness goes to the value of absolute riskiness:

Lemma 3.3. limα→0 S(r(α))/α = R(r − 1).

The lemma follows directly from (3).

3.3 Log-Normal Securities

If the security r has a log-normal distribution8 with parameters µ and σ,
then S(r) = σ2/2µ, where σ2 is the variance of log r and µ is the expectation
of log r. Indeed, the density of r’s distribution is e(lnx−µ)

2/2σ2
/xσ
√

2π, so

Er−1/(σ
2/2µ) =

1

σ
√

2π

∫ ∞
0

x−1e−(lnx−µ)
2/2σ2

x−1/(σ
2/2µ)dx.

By substituting y = lnx we get

=
1

σ
√

2π

∫ ∞
−∞

e−(y−µ)
2/2σ2

e−y/(σ
2/2µ)dy

=
1

σ
√

2π

∫ ∞
−∞

e−(y+µ)
2/2σ2

dy = 1.

3.4 Repeated Investments

Investing repeatedly in independent identically distributed (i.i.d.) securities
is just as risky as investing once in one of these securities.

Lemma 3.4. If r1, r2, ... , rn are i.i.d. securities with riskiness s, then Πri
also has riskiness s.

8By our earlier definition, a security has only finitely many values and so its distribution
cannot be log-normal. We therefore redefine a security as a random variable r for which
S is well defined.
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Lemma 3.5. If r and k are independent, then the riskiness of rk lies between
the riskiness of r and the riskiness of k.

Even without independence, we still have subadditivity:

Lemma 3.6. S(rh) ≤ S(r) + S(h) for any security r and h.

Recall that for a security r, S(r) = R(log r). Defining two gambles, g =
ln r and h = ln k, the proofs of Lemmas 3.4, 3.5, and 3.6 follow immediately
from Section 4.H. in Aumann and Serrano (2008); see there.

To summarize: if two securities are identically distributed and hence have
the same riskiness s, then if the securities are “totally” positively correlated
(i.e., equal), the product security has riskiness 2s. If they are independent,
the product has the same riskiness s as each of the securities separately.
When they are “totally” negatively correlated, the risk is minimal but need
not vanish.

3.5 Sensitivity to High Moments

As Kadan and Liu (2011) show, the absolute riskiness of a gamble decreases
with its odd-numbered moments and increases with its even-numbered mo-
ments. It follows from (3) that the relative riskiness of a security decreases
with the odd-numbered moments of its log return and increases with the
even-numbered moments of its log return.

3.6 A Benchmark

A security that results in the lowest return rmin with probability p where
rmin = p and a “very large” return with the remaining probability has riski-
ness 1. Moreover, if rmin = pα (α > 0), then the riskiness is α. For instance,
if r = [0.5, 0.5; 100, 0.5], then S(r) ∼= 1 and if r = [0.25, 0.5; 100, 0.5], then
S(r) ∼= 2. Formally, let rx = [rm, p;x, 1− p]. Then,

lim
x→∞

S(rx) = logp(rm).

3.7 Other Properties

Many other properties of our index, such as monotonicity in first- and second-
order stochastic-dominance and continuity, can be derived directly from the
equivalent properties of the index of absolute riskiness by using (3) or through
similar proofs; see Aumann and Serrano (2008).
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4 Investments

From the agents’ perspective, the distinction between gambles and securities
is quite artificial. Consider an agent whose initial wealth is $100. Obviously,
the agent is indifferent between accepting the gamble [−$10, 0.5; $20, 0.5] or
investing her initial wealth in the security [0.9, 0.5; 1.2, 0.5]. In both cases,
she ends up with a wealth distributed as [$90, 0.5; $120, 0.5]. Since the agent
cares only about her wealth, the decision whether to accept or reject an
investment does not depend on whether it is a gamble or a security. In this
section we measure the riskiness of such investments, regardless of whether
the mechanism behind the investment is a gamble or a security.

Formally, an investment is a pair of elements (w, w̃), where w is a real
number, interpreted as an initial level of wealth, and w̃ is a finite ran-
dom variable whose values are interpreted also as levels of wealth. We say
that an agent accepts the investment (w, w̃) if she prefers w̃ to w, i.e., if
ui(w̃) > ui(w). It is easy to see that for an investor whose initial wealth is w,
exchanging w for w̃ is equivalent to accepting the gamble g = w̃ − w, and it
is also equivalent to investing w in the security r = w̃/w.9 It is only natural
to define the absolute riskiness of (w, w̃) as R(g) and the relative riskiness of
(w, w̃) as S(r). Thus, any investment runs two kinds of risks, absolute risk
and relative risk. Note that unlike the riskiness of gambles and securities, the
riskiness of an investment depends on the initial wealth level of the decision
maker (but not on her utility function).

4.1 Ordinal difference

When applied to investments, R and S are not ordinally equivalent. In other
words, given two investments, one investment might be absolutely riskier but
relatively less risky.

Consider the following example: let (w, w̃1) and (w, w̃2) be two invest-
ments, where w = $100, w̃1 = [$90, 0.5; $120, 0.5] and w̃2 = [$75, 0.25; $135, 0.75].
By definition, the absolute riskiness of (w, w̃1) equals R(g1), where g1 =
[−$10, 0.5; $20, 0.5], and the relative riskiness of (w, w̃1) equals S(r1), where
r1 = [0.9, 0.5; 1.2, 0.5]. Similarly, the absolute riskiness of (w, w̃2) equals

9we assume here that for a given investment (w, w̃), the random variable w̃/w has the
properties of a security, i.e., its geometric mean is greater than one, and it takes at least
one value that is less than one, with some positive probability. Note that this assumption
implies that the random variable w̃ − w has the properties of a gamble.
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R(g2), where g2 = [−$25, 0.25; $35, 0.75], and the relative riskiness of (w, w̃2)
equals S(r2), where r2 = [0.75, 0.25; 1.35, 0.75]. Calculating the values of the
riskiness of each of them results in the following “contradictory orders” of
riskiness: R(g1) > R(g2) and S(r1) < S(r2).

One should not be surprised by the existence of two different orders of
riskiness as we already know that there are two different orders of risk aver-
sion (see Arrow (1965) and Pratt (1964)): absolute risk aversion and relative
risk aversion. Since, according to our approach, riskiness is dual to risk aver-
sion, the existence of two types of risk aversion implies the existence of two
types of riskiness.

4.2 Absolute vs. Relative

The values of the absolute riskiness and the relative riskiness of an investment
are connected in some mathematical way.10

If (w, w̃) is an investment, we denote by w̃M and w̃m the maximal value
and the minimal value that w̃ takes, respectively.

Theorem 4.1. Let (w, w̃) be an investment such that g ≡ w̃−w is a gamble
and r ≡ w̃/w is a security. Then,

w̃m ≤
R(g)

Ŝ(r)
≤ w̃M , (5)

where Ŝ(r) = S(r)/(S(r) + 1).

Ŝ(r) is a monotonic function of S(r), taking values between zero and one.

The value of Ŝ(r) is itself significant. Recall that the value of S(r) is the
reciprocal of minus one plus the value of the parameter of the CRRA agent
who is indifferent between accepting and rejecting r. By contrast, the value
of Ŝ(r) is exactly the reciprocal of the value of this parameter. Thus, Ŝ(r)
satisfies the duality axiom but not the scaling axiom.

10Two investments may have the same absolute riskiness but different values of relative
riskiness. Similarly, they may have the same relative riskiness but different values of
absolute riskiness. That means that one type of riskiness cannot be presented as a function
of the other type of riskiness.
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4.3 Riskiness and Rejection

Even if an investment is riskier in both absolute and relative terms, it does
not imply that any decision maker who rejects the less risky investment will
reject also the riskier one.11 Here we show that if one investment is not
only riskier but “much riskier” than another investment, there is quite a
large set of utilities such that for each one of them, a rejection of the less
risky investment implies the rejection of the riskier investment. This set of
utilities, which Hart (2011) calls “regular utilities”, includes all utilities whose
absolute risk aversion (weakly) decreases with wealth (DARA), and whose
relative risk aversion (weakly) increases with wealth (IRRA). We denote this
set of utilities by U∗.

Recall that for a given investment (w, w̃), we denote by w̃M and w̃m the
maximal value and the minimal value that w̃i takes. In addition, recall that
Ŝ(r) = S(r)/(S(r) + 1). We have the following result:

Theorem 4.2. Let (w, w̃1) and (w, w̃2) be two investment opportunities and
assume that gi ≡ w̃i − w is a gamble and that ri ≡ w̃i/w is a security, for
i = 1, 2. If either

R(g1)

R(g2)
>
w̃M1

w̃m2

(6)

or

Ŝ(r1)

Ŝ(r2)
>
w̃M1

w̃m2

, (7)

then, for every utility u ∈ U∗, if u rejects (w, w̃1) then u rejects also (w, w̃2).

5 Alternative Characterizations

In Section 2, we followed Aumann and Serrano (2008) and characterized
the absolute riskiness and the relative riskiness by an axiom which asserts
that the concept of riskiness and the concept of risk aversion should stand
in a kind of dual relationship. In this section, we present three alternative
approaches, all of which lead to the same orders of riskiness as R and S.

11It does imply that any CARA agent and any CRRA agent who rejects the less risky
one will reject also the riskier investment.

16



5.1 Operational Characterization

The Aumman-Serrano index is the inverse of the “adjustment coefficient” of
the insurance risk literature. Here, we characterize an order of riskiness of
financial assets which relates to the concept of the adjustment coefficient.

Let g be a gamble and let {gi}∞i=1 be a sequence of i.i.d. gambles, dis-
tributed as g. Similarly, let r be a security and let {ri}∞i=1 be a sequence of
i.i.d. securities, distributed as r.

Definition 5.1.

1. Gamble g is riskier than gamble h with respect to bankruptcy, denoted
by g �B h, if there exists B such that for all b < B,

P (∃n s.t. Σn
i=1gi < b) < P (∃n s.t. Σn

i=1hi < b).

2. Security r is riskier than security k with respect to bankruptcy, denoted
by r �B k, if there exists B such that for all b < B,

P (∃n s.t. Πn
i=1ri < b) < P (∃n s.t. Πn

i=1ki < b).

Going below some threshold can be interpreted as going bankruptcy (see
Foster and Hart 2009).

Theorem 5.2.

1. g �B h iff R(g) > R(h).

2. r �B k iff S(r) > S(k).

The first part of Theorem 5.2 is a variant of Theorem 1 of Meilijson
(2009). The second part of the theorem follows directly from its first part
plus (3).

5.2 Wealth Uniform Dominance

Hart (2011) defines an order of riskiness of gambles that he calls wealth
uniform dominance. He shows that wealth uniform dominance is equivalent
to the order induced by the Aumann–Serrano index. Here, we define a similar
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order in relation to securities instead of gambles and show its equivalency to
the order induced by our index of relative riskiness.

In defining wealth uniform dominance, Hart (2011) relates to a specific set
of utilities, U∗, which he calls “regular utilities”. The properties of utilities
in U∗ that are relevant to our discussion are that their absolute risk aversion
decreases (weakly) with wealth (DARA) and that their relative risk aversion
increases (weakly) with wealth (IRRA). The wealth uniform dominance order
is defined as follows.

Definition 5.3. A gamble g wealth uniformly dominates a gamble h, denoted
g ≥WU h, whenever:

if g is rejected by u at all w > 0

then h is rejected by u at all w > 0,

for every utility u ∈ U∗.

Similarly, we define the stochastic order of wealth-uniform dominance in
the setup of securities as follows.

Definition 5.4. A security r wealth uniformly dominates a security h, de-
noted r ≥WU h, whenever:

if r is rejected by u at all w > 0

then h is rejected by u at all w > 0,

for every utility u ∈ U∗.

The following theorem cites the result of Hart (2011) in relation to gam-
bles and adds the equivalent result in relation to securities:

Theorem 5.5.

1. For any two gambles g and h, g ≥WU h if and only if R(g) ≤ R(h).
(Hart 2011)

2. For any two securities r and k, r ≥WU k if and only if S(r) ≤ S(k).
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Note that the second part of the theorem cannot be derived directly from
(3) in a trivial way.

Although absolute riskiness and relative riskiness are equivalent concepts,
not every characterization of absolute riskiness can be translated directly to
a reasonable characterization of relative riskiness. To demonstrate this, let
us consider the following definition of absolute riskiness: one gamble is riskier
than another gamble if there is a certain level of wealth such that for any
decision maker whose wealth is above this threshold, if she rejects the less
risky gamble she rejects also the riskier gamble. Formally:

Definition 5.6. Gamble g is riskier than gamble h if there exists w0, such
that for all wealth levels w > w0 and for all u ∈ U∗, if u rejects h at w, u
rejects g at w.

Theorem 5.7. Gamble g is riskier than gamble h (according to 5.6) iff
R(g) > R(h).

Unfortunately, we did not find any equivalent definition in relation to
securities that would lead to S. Yet, we did find a similar characterization
that leads to SAS which is not the same as S.12 As we denoted above, given
a security r and a real number α, r(α) ≡ 1 + α(r − 1), where 0 < α < 1.
Investing w in r(α) is equivalent to investing only αw in r. It can be shown
that for any two securities r and k, SAS(r) > SAS(k) if and only if there is
a number α∗ such that for every α < α∗ and for every u ∈ U∗, a rejection
of k(α) implies the rejection of r(α). The proof of this statement is given in
the Appendix, together with the proof of Theorem 5.7.

5.3 The Four Axioms Approach

Foster and Hart (2011) provide axiomatic characterizations of two measures
of riskiness of gambles: one is the Aumann–Serrano index of absolute riski-
ness and the other is the Foster-Hart measure of riskiness (Foster and Hart
2009). Here, we show that translating the axiomatic characterization of the
Aumann–Serrano index from absolute terms (gambles) to relative terms (se-
curities) leads to our index of riskiness. For each axiom, we present the
original axiom followed by our translation to relative terms. Let g and h be

12Recall that SAS(r) ≡ R(r − 1) is the index of securities defined by Aumann and
Serrano.
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two gambles and let r and k be two securities. We denote by QA an index
of riskiness of gambles and by QR an index of riskiness of securities.

Axiom of Distribution.

1. If g and h have the same distribution then QA(g) = QA(h).

2. If r and k have the same distribution then QR(r) = QR(k).

Axiom of Scaling.

1. QA(λg) = λQ(g)A for every α > 0.

2. QR(rλ) = λQR(r) for every α > 0.

Axiom of Monotonicity.

1. If g ≥ h and r 6= h then QA(g) < QA(h).

2. If r ≥ k and r 6= h then QR(r) < QR(k).

Axiom of Wealth Independent Compound Asset.

1. Let f = g+ 1Ah be a compound gamble, where A is an event such that
g is constant on A, i.e., g|A ≡ s for some x and h is independent of A.
If QA(h) = QA(g) then QA(f) = QA(g).

2. Let f = r × (1 + 1A(k − 1)) be a compound security, where A is an
event such that r is constant on A, i.e., r|A ≡ x for some x, and k is
independent of A. If QR(k) = QR(r) then QR(f) = QR(r).

Theorem 5.8.

1. A function of gambles QA satisfies the four axioms if and only if it is
a positive multiplication of R. (Foster and Hart 2011)

2. A function of securities QR satisfies the four axioms if and only if it is
a positive multiplication of S.

The proof of the theorem in relation to R appears in Foster and Hart
(2011). The proof in relation to relative terms is based on the simple obser-
vation of (3), which says that for any security r, S(r) = R(log(r)).
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6 Conclusions

In this paper we introduced an index of riskiness which, like the Aumann-
Serrano index, characterized by the dual relationship between risk and risk
aversion. While the Aumann-Serrano index is defined on gambles and relates
to absolute risk aversion, our index is defined on securities and relates to rel-
ative risk aversion. Although the two indices are defined on different objects,
namely, gambles and securities, both can be used for measuring the risk that
arises from the same investment. We showed that the orders induced by the
two indices are not equivalent.

The two indices of riskiness reflect two different approaches towards mea-
suring risk. Given an initial wealth w0, there is a one-to-one mapping between
the set of gambles and securities (i.e., g ↔ r, s.t. w0 + g = w0r).

13 However,
following Aumann and Serrano (2008), Foster and Hart (2009) and Hart
(2011), we consider riskiness as something that is uniform in wealth, i.e.,
does not depend on a wealth level. This uniformity breaks the correspon-
dence between gambles and securities: if a gamble g and a security r satisfy
w0 + g = w0r for a wealth level w0 > 0, the set of final outcomes obtained
from varying the wealth and keeping the gamble fixed is very different from
the set obtained by varying the wealth and keeping the security fixed. This
explains why the approaches of Aumann and Serrano (2008) and that of the
current paper are conceptually different. In fact, it might not be clear which
one of the instances fits better than the other.

Appendix

A Riskiness in the Small

The measures of absolute and relative risk aversion of Pratt and Arrow are
local indices based on the first and second derivatives of utility at a specific
level of wealth. As such, they are applicable only to infinitesimal risks–those
for which differential calculus is a suitable analytical tool. The same holds
for absolute and relative indices of riskiness. Indeed, Schreiber (2012) shows
that if the indices are used to measure the riskiness of financial assets whose

13In order for this mapping to take place, one should redefine a security as a random
variable whose mean (rather than its geometric mean) is greater than one.
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prices follow continuous-time random processes, the decision whether to ac-
cept or reject an asset depends only on the riskiness of the asset, for all
utilities. Moreover, he shows that absolute and relative riskiness of invest-
ments coincide in that framework.14

Even if assets have small —but not infinitisimaly small— returns, the
indices can be characterized by the decisions of a large set of utilities, U∗,
the set of “regular utilities”.

Definition A.1. Gamble g is riskier than gamble h, if for every w > 0 there
exists δ∗ > 0, such that, for every 0 < δ < δ∗,

if u rejects δh at w then u rejects δg at w,

for every u ∈ U∗.

Definition A.2. Security r is riskier than security k, if there exists λ∗ > 0,
such that, for every 0 < λ < λ∗,

if u rejects rλ at w then u rejects kλ at w,

for every u ∈ U∗ and for every w > 0.

This yields the following Theorem:

Theorem A.3.

1. Gamble g is riskier than gamble h (according to definition A.1) if and
only if R(g) > R(h).

2. Security r is riskier than security k (according to definition A.2) if and
only if S(r) > S(k).

B Uniform Dominance

Foster and Hart (2009) propose another measure of riskiness of gambles,
based on the critical wealth level below which it becomes “risky” to accept
the gamble. Accepting gambles when the wealth is below the critical wealth

14Shorrer (2011) used a different method to show a similar idea.
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level might lead to bankruptcy. According to Foster and Hart (2009), the
riskiness of gamble g, denoted by RFH(g), is defined implicitly by the formula

E

[
log

(
1 +

1

RFH(g)
g

)]
= 0. (8)

Hart (2011) defines two orders of riskiness of gambles, called “wealth uni-
form dominance” and “utility uniform dominance”. He shows that wealth
uniform dominance is equivalent to the order induced by the Aumann–
Serrano index of riskiness R, and that utility uniform dominance is equivalent
to the order induced by the Foster–Hart index of riskiness RFH .

Recall that if r is a security, the riskiness of r according to Aumann and
Serrano is defined by

SAS(r) ≡ R(r − 1),

and the riskiness of r according to Foster and Hart is defined by

SFH(r) ≡ RFH(r − 1).

Needless to say, SAS, SFH , and our index of relative riskiness S induce three
different orders on the set of securities.

In this section we give an alternative characterization of SFH . In the
spirit of the analysis of Hart (2011), our characterization uses a specific set
of utilities. In Section 4, “regular utilities” referred to all utilities whose abso-
lute risk aversion weakly decreases (DARA) and whose relative risk aversion
weakly increases (IRRA). Here, we add the assumption that as the value of
the wealth goes to zero, the utility of the agent goes to minus infinity. For-
mally, the last assumption asserts that limw→0 u(w) = −∞. We will denote
by U∗∗ the resulting class of utilities; i.e., U∗∗ is the class of utilities that are
both DARA and IRRA and satisfy the last assumption.

Given a security r, we define a new security r(α) = 1 + α(r − 1), for
0 < α < 1. As we said above, investing only αw in security r is equivalent
to investing w in r.

Theorem B.1.
SFH(k) > SFH(r)

iff
for every fraction of wealth, α > 0, and for every wealth level w > 0:

if r(α) is rejected by all u ∈ U∗∗ at w

then k(α) is rejected by all u ∈ U∗∗ at w
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C Proofs

Many of the theorems in the present paper, especially in Section 2, have
two statements, one in relation to absolute riskiness and one in relation to
relative riskiness. Part of the statements in relation to absolute riskiness
appear in Aumann and Serrano (2008). In this case we added the letters
(AS) at the end of the statement, and the proof of the statement can be
found in Aumann and Serrano (2008). Here we prove mostly the claims
regarding relative riskiness.

In this section, investors i and j have utility functions ui and uj and
Arrow–Pratt coefficients %i and %j of relative risk aversion. Since utilities
may be modified by additive and positive multiplicative constants, we assume
throughout that

ui(1) = uj(1) = 0 and u′i(1) = u′j(1) = 1. (9)

Note that any CRRA utility function satisfies (9).

Lemma C.1. For some δ > 1, suppose that %i(w) > %j(w) at each w with
1/δ < w < δ. Then ui(w) < uj(w) whenever 1/δ < w < δ and w 6= 1.

Proof. Let 1/δ < y < δ. If y > 1 then by (9),

log u′i(y) = log u′i(y)− log u′i(1) =

∫ y

1

[log u′i(z)]′dz =

∫ y

1

u′′i (z)

u′(z)
dz

=

∫ y

1

−(%i(z)/z)dz <

∫ y

1

−(%j(z)/z)dz = log u′j(y);

if y < 1 the reasoning is similar but the inequality is reversed. So if w > 1,
then by (9),

ui(w) =

∫ w

1

u′i(y)dy <

∫ w

1

u′j(y)dy = uj(w);

and if w < 1, then

ui(w) =

∫ 1

w

u′i(y)dy <

∫ 1

w

u′j(y)dy = uj(w).
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Corollary C.2. If %i(w) ≤ %j(w) for all w > 0, then ui(w) ≥ uj(w) for all
w > 0.

Lemma C.3. If r is a security, its riskiness S(r) is well defined.

Proof. Given r, we define the function fr as follows:

fr(β) ≡ E rβ = Σpir
β
i , (10)

where β is a real number. The first and second derivatives of fr are

f ′r(β) = Σpir
β
i log ri, (11)

f ′′r (β) = Σpir
β
i (log ri)

2. (12)

Since by definition at least one of the values of r is greater than one and at
least one of the values is less than one,

lim
β→±∞

fr(β) =∞. (13)

In addition, since f ′′r is positive for all β, f ′r increases with β, which implies
that fr has a single minimum point. It follows from (10) that fr(0) = 1. If
f ′r(0) 6= 0, there should be another value of β, for which fr(β) = 1. Based on
this insight, we define β∗ as follows:

1. If f ′r(0) > 0 , then there is only one additional value of β, β = β∗, in
which fr(β

∗) = 1 and β∗ < 0.

2. If f ′r(0) < 0 , then there is only one additional value of β, β = β∗, in
which fr(β

∗) = 1 and β∗ > 0.

3. If f ′r(0) = 0 , then there is no other value of β, β 6= 0, in which
fr(β) = 1. In this case we set β∗ = 0.

Since we assumed that the weighted geometric mean of any security is greater
than one, f ′r(0) = Σpi log ri > 0 and we are in the first case where β∗ < 0.
Defining S(r) = −1/β∗ shows the existence of S(r) and shows also that
S(r) > 0. This completes the proof.

Lemma C.4. For any two portfolios r and k,

S(k) > S(r)⇔ fr(−1/S(k)) < 1.
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Proof. The lemma follows from the proof of (C.3). Since f ′r(0) > 0, β∗ =
−1/S(r) < 0 and the minimum point of fr is between β∗ < 0 and 0 (scenario
1 in the proof of (C.3)). This, together with the continuity of fr, implies
that for any β∗ < β < 0, fr(β) < 1. Since β∗ < −1/S(k) < 0, defining
β = −1/S(k) completes the proof.

Lemma C.5. For any utility function uα and value of δ > 1 there is a
security r = r(α, δ), such that uα(r) = 0 and ∀i, 1/δ < ri < δ, where ris are
the values r takes.

Proof. Let f(ε) be defined as f(ε) = εuα(
√

1/δ) + (1− ε)uα(
√
δ). It is easy

to see that if ε = 0, then f(ε) > 0, and if ε = 1, then f(ε) < 0. Since f is
continuous in ε, f(ε∗) = 0 for some ε∗ between zero and one. The desired
security is r(α, δ) = [ε∗, 1− ε∗;

√
1/δ,
√
δ].

The following lemma is equivalent to Lemma 4 in Aumann and Serrano
(2008); however, another proof is needed.

Lemma C.6. If %i(wi) > %j(wj), then there is a security r that j accepts at
wj and i rejects at wi.

Proof. Without loss of generality, wi = wj = 1,and so %i(1) > %j(1).15 Let %
be a number between %i(w) and %j(w), %i(w) > % > %j(w). Since ui and uj
are twice continuously differentiable, it follows that there is a number h > 1
such that %i(w) > % > %j(w) at each w with 1/h < w < h. By Lemma (C.5),
there is a security r(%, h) such that u% is indifferent between accepting or
rejecting it. Therefore, by Lemma (C.1),

ui(w) < u%(w) < uj(w) whenever 1/δ < w < δ and w 6= 1, (14)

implies that ui(r(%, h)) < 0 < uj(r(%, h)). Hence i rejects the security but j
accepts it.

Proof of Lemma 2.3. We have to show that %i(w) ≥ %j(w) for all wealth
levels w if and only if i is no less relative-risk averse than j.
“If”: Assume that there is a w with %i(w) < %j(w). By Lemma (C.6), there

15For arbitrary wi and wj , define u∗i (x) = [ui(xwi)−ui(wi)]/(wiu
′
i(wi)) and u∗j similarly,

and apply the current reasoning to u∗i and u∗j . u∗i and u∗j accept or reject securities at
x = 1, just as ui and uj accept or reject securities at wi and wj , respectively. In addition,
u∗i (1) = u∗j (1) = 0 and u∗i

′(1) = u∗j
′(1) = 1.
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is a security that i accepts at w and j rejects at w, thereby contradicting i
being less relative-risk averse than j.

“Only if”: Assuming that %i(w) ≥ %j(w) for all wealth levels w, we must
show that for each wealth level w and security r, if i accepts r at w, then j
accepts r at w. Without loss of generality, w = 1, and so we must show that

if i accepts r at 1, then j accepts r at 1.

From Corollary (C.2) (with i and j reversed), we conclude that uj(w) ≥ ui(w)
for each w, and so Euj(r) ≥ Eui(r), which yields the above claim.

Proof of Theorem 2.2. For α > 0, let uα(x) be the CRRA utility function
with parameter α. The functions uα satisfy (9), and so by Lemma C.1 (with
δ arbitrarily large) their graphs are nested; that is,

if α > β, then uα(x) < uβ(x) for all x > 0, x 6= 1. (15)

The existence of S(r) is proved in Lemma C.3.
To see that S satisfies the duality axiom, let i, j, r, h, and w be as in

the hypothesis of that axiom; without loss of generality, w = 1. Set γ ≡
1 + 1/S(r),η ≡ 1 + 1/S(h), αi = inf %i and αj = sup %j. Thus

Euγ(r) = 0 and Euη(h) = 0. (16)

By hypothesis, S(r) > S(h), so η > γ. By Corollary C.2,

ui(x) ≤ uαi(x) and uαj(x) ≤ uj(x) for all x. (17)

Now assume Eui(r) > 0; we must prove that Euj(h) > 0. From Eui(r) > 0
and (17), it follows that Euαi(r) > 0. So by (16), Eγ(r) = 0 < Euαi(r).
So by (15), γ > αi. By Lemma 2.3 αi ≥ αj so η > γ yields αj < η. Since
(16),(15) and (17) yield 0 < Euη(h) < Euαj(h) < Euj(h), it follows that S
satisfies the duality axiom.

That S satisfies the scaling axiom is immediate, and so, indeed, S satisfies
the two axioms.

In the opposite direction, let Q be an index that satisfies the axioms. We
first show that

Q is ordinally equivalent to S. (18)
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If this is not true, then there must exist r and h that are ordered differently
by Q and R. This means either that the respective orderings are reversed,
that is,

Q(r) > Q(h) and S(r) < S(h), (19)

or that the equality holds for exactly one of the two indices, that is,

Q(r) > Q(h) and S(r) = S(h) (20)

or

Q(r) = Q(h) and S(r) > S(h). (21)

If either (20) or (21) holds, then by the scaling axiom, replacing r by rδ for
sufficiently small δ > 1 leads to reversed inequalities. So without loss of
generality we may assume (19).

Now let γ ≡ 1 + 1/S(r) and η ≡ 1 + 1/S(h); then (16) holds. By
(19), γ > η. Choose µ and ν so that γ > µ > ν > η. Then uγ(x) <
uµ(x) < uν(x) < uη(x) for all x 6= 0. So by (16) Euµ(r) > Euγ(r) = 0
and Euν(h) < Euη(h) = 0. So if i and j have utility functions uµ and uν ,
respectively, then i accepts r and j rejects h. But from µ > ν and Lemma
(2.3), it follows that i � j, contradicting the duality axiom for Q. So (18) is
proved.

To see that Q is a positive multiple of R, let r0 be an arbitrary but fixed
security and set λ ≡ Q(r0)/S(r0). If r is any security and t ≡ Q(r)/Q(r0),
then Q(rt0) = tQ(r0) = Q(r), and so tS(r0) = S(rt0) = S(r) by the ordi-
nal equivalence between Q and S, and S(r)/S(r0) = t = Q(r)/Q(r0), and
Q(r)/S(r) = Q(r0)/S(r0) = λ, and Q(r) = λS(r). This completes the proof
of Theorem A.

Needless to say, both duality and scaling are essential to Theorem A.
Thus the mean log E log r satisfies scaling but violates duality, while the
index [S(r)], where [x] denotes the integer part of x, satisfies duality but
violates scaling. Neither E log r nor [S(r)] is even ordinally equivalent to S.

Proof of Lemma 2.4. Recall that all CRRA utility functions have the
form

uα(x) =

{
(x1−α−1)

1−α if α 6= 1

log(x) if α = 1
(22)
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for α > 0.
“Only if”: Let uα(x) be a CRRA utility with parameter α. uα accepts r

at w if and only if Euα(wr) > uα(w), that is, if and only if Euα(r) > uα(1).
“If”: It follows from Lemma C.6; just take j = i.

Proof of Lemma 2.5. Given a CRRA parameter α, we present the func-
tion uα as follows:

uα(r) =
fr(β)− 1

β
,

where fr is the function defined in (10), β = 1 − α, and β∗ = 1 − α∗. It
follows from the analysis of the behavior of fr(β) in the proof of Lemma C.3,
that if α > α∗ then uα(r) < 1, which means rejecting the investment, and if
α < α∗ then uα(r) > 1, which means accepting the investment.

Proof of Lemma 2.7. Let ui be i’s utility and assume that %i(x) < 1/S(r)+
1 for all x between wmin r and wmax r. Define a utility uj as follows:
when x is between wmin r and wmax r, define uj(x) ≡ ui(x); when x ≤
wmin r, define uj(x) to equal a CRRA utility with parameter %i(wmin r)
and uj(wmin r) = ui(wmin r) and u′j(wmin r) = u′i(wmin r); when x ≥
wmax r, define uj(x) to equal a CRRA utility with parameter %i(wmax r)
and uj(wmax r) = ui(wmax r) and u′j(wmax r) = u′i(wmax r). Let uk be a
CRRA utility with parameter [1/S(r) + 1]− ε. Then

min
x
%k(x) > max

x
%j(x)

for positive ε sufficiently small. By Theorem 2.6, a CRRA person with pa-
rameter [1/S(r)+1] is indifferent between taking and not taking g. Therefore,
k, who is less risk averse, accepts g, and so by (2.5), j also accepts r. But
between the minimum and maximum of wr, the utilities of i and j are the
same. So i accepts r at w. The proof of the second part of Lemma (2.7) is
similar.

Proof of Lemma 3.2. Let r = [x1, p1;x2, p2; ...;xn, pn] be a security. For
simplicity, we denote εi = xi − 1. Recall that S(r) is defined implicitly by
Σpi(1+εi)

−1/S(r) = 1 and S(r(α)) is defined implicitly by Σpi(1+αε)−1/S(r(α)) =
1. We must show that for any 0 < α < 1, S(r) > S(r(α)). Define a new
function

Kr(α) = Σpi(1 + αεi)
−1/S(r),
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whose first and second derivatives are

K ′r(α) = −1/S(r)Σpi(1 + αεi)
−(1/S(r)+1)εi

K ′′r (α) = (1/S(r))((1/S(r) + 1)Σpi(1 + αεi)
−(1/S(r)+2)ε2i .

Note that Kr(0) = 1 and Kr(1) = 1. Since the second derivative is positive
for any 0 < α < 1, it follows that for any 0 < α < 1, Kr(α) < 1. Since
Kr(α) = fr(α)(−1/S(r)) < 1, it follows from (C.4) that S(r) > S(r(α)) .

Proof of Theorem 4.1. Denote r = w̃/w and g = w̃ − w. The theorem
says that

min(w̃) <
R(g)

Ŝ(r)
< max(w̃).

Assuming by contradiction that 1/(min(w̃)Ŝ(r)) < 1/R(g), consider a CARA

agent i whose parameter ρ satisfies 1/(min(w̃)Ŝ(r)) < ρi < 1/R(g). From
Lemma 2.7 we get: i rejects g since ρi < 1/R(g), but i accepts r since

min(w̃)ρi > 1/Ŝ(r), a contradiction. If 1/(max(w̃)Ŝ(r)) > 1/R(g), the rea-
soning is similar.

Theorem (4.1) implies two corollaries:

Corollary C.7. Let g be a gamble and let the value of w be such that 1+g/w
has the properties of securities. Then

w + min(g) ≤ R(g)

Ŝ(1 + g/w)
≤ w + max(g). (23)

Corollary C.8. Let r be a security. Then

min(r) ≤ R(r − 1)

Ŝ(r)
≤ max(r). (24)

In Corollary C.8 we used the scaling axiom for gambles.

Proof of Theorem 4.2. If

R(g1)

R(g2)
>
w̃M1

w̃m2

, (25)
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then

w̃m2

R(g2)
>

w̃M1

R(g1)
. (26)

Now assume an agent who accepts (w, w̃1) but rejects (w, w̃2). From Lemma
2.7 it follows that

ρi(w̃M1) < 1/R(g1)⇒ %i(w̃M1) < w̃M1/R(g1) (27)

and

ρi(w̃m2) ≥ 1/R(g2)⇒ %i(w̃m2) ≥ w̃m2/R(g2). (28)

Since we assumed IRRA, %i(w̃M1) ≥ %i(w̃m2). Hence, from (27) and (28)
it follows that w̃M1/R(g1) ≥ w̃m2/R(g2), in contradiction to (26). A similar
reasoning holds for the second part of the theorem.

The theorem we just proved implies the following.

Corollary C.9. Given two securities, r and k, if either

Ŝ(r)

Ŝ(k)
>
rmax
kmin

(29)

or

R(r − 1)

R(k − 1)
>
rmax
kmin

, (30)

then, for all w > 0 and for all ui ∈ U∗, if ui rejects k at w, ui rejects also r
at w.

To see this, for any given w, define w̃1 = rw and w̃2 = kw. Equation 29
follows from (7). Define g1 = w(r−1) and g2 = w(k−1); equation 30 follows
from (6) plus the scaling axiom.

Corollary C.10. Given two gambles, g and h, if either

R(g)

R(h)
>
w + hmax
w + gmin

(31)

or

Ŝ(1 + g/w)

Ŝ(1 + h/w)
>
w + hmax
w + gmin

, (32)

then, for all u ∈ U∗, if u rejects h at w then u rejects g at w.
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To see this, for a given w, define w̃1 = w + g and w̃2 = w + h. Equation
31 follows from (6). Define r1 = 1 + g/w and r2 = 1 + h/w; equation 32
follows from (7).

Proof of Theorem 5.5. For the proof of the first part of Theorem 5.5, see
Hart (2011). Here we prove the second part of the theorem. Let r and k
be two securities such that S(k) > S(r) and assume by contradiction that
there exists i such that r is rejected by i at all w but i accepts k at w0.
From Lemma 2.7 it follows that %(w0) < 1/S(k) + 1, but from the same
lemma it also follows that for every w > 0, %(w) ≥ 1/S(r) + 1, and in
particular %(w0) ≥ 1/S(r) + 1. So it must be that 1/S(k) > 1/S(r) but
that contradicts the assumption that S(k) > S(r). The opposite direction is
proved as following. Assume that r wealth uniformly dominates k but that
S(r) > S(k). Let x = (1/(−1 + S(r)) + 1/(−1 + S(k)))/2. According to
theorem 2.6, a CRRA agent with parameter x rejects r but accepts k at any
w > 0, a contradiction.

Proof of Theorem 5.7. Let g and h be two gambles such that R(g) >
R(h). From Corollary (C.10) it follows that for w large enough for all u ∈ U∗,
if u rejects h at w then u rejects g at w. Assume now by contradiction that
there exists w∗ > 0 such that for all w > w∗ and for all u ∈ U∗, if u rejects h
at w, then u rejects g at w but R(h) > R(g). This contradicts the first part
of the proof.

Theorem C.11. For any two securities r and k, SAS(r) > SAS(k) if and
only if there exists a number α∗ such that for every α < α∗ and for every
u ∈ U∗, if u rejects k(α) u rejects also r(α).

Proof. Let r and k be two securities such that SAS(r) > SAS(k). Recall that
SAS(r) ≡ R(r− 1). From the scaling axiom it follows that SAS(r)/SAS(k) =
SAS(r(α))/SAS(k(α)) for all α. Since as α goes to zero, the ratio r(α)max/k(α)min
goes to 1, it follows from Corollary C.9 (particularly equation 30) that for α
small enough for all u ∈ U∗, if u rejects k(α) at w then u rejects r(α) at w
as well. The other direction is trivial.

Proof of Theorem A.3. The first part follows from Corollary C.10, par-
ticularly from (31), and the scaling axiom. The second part of the theorem
follows from Corollary C.9, particularly from (29) and the scaling axiom.
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Proof of Theorem B.1. For the proof of the first part of Theorem B.1,
see Hart (2011). Here we prove the second part.

Assume r ≥UU k. Recall that r and k are securities but r−1 and k−1 are
gambles. The first step is to show that the two gambles r−1 and k−1 satisfy
(r− 1) ≥UU (k− 1). To this end, we have to show that if the gamble (r− 1)
is rejected by all u at w, then (k− 1) is also rejected by all u at w. Let w be
such a level of wealth that (r − 1) is rejected by all u at w. For any agent,
taking the gamble (r − 1) at w results in the same distribution of wealth
as investing in a security r(α), where α = 1/w. Hence, the security r(α)
is rejected by all at w. From the assumption, the security k(α) is rejected
by all at w. It follows that the gamble k − 1 is rejected by all at w, which
completes the proof that (r−1) ≥UU (k−1). But since, SFH(r) = RFH(r−1),
RFH(k − 1) ≥ RFH(r − 1)⇒ SFH(k) ≥ SFH(r).

Assume SFH(r) ≤ SFH(k). From the assumption and the definition
of SFH it follows that for any (positive) α and w, RFH(wα(r − 1)) ≤
RFH(wα(k−1)). It is easy to see that, for any α and w, the gamble wα(r−1)
is rejected by all u at w if and only if the security r(α) is rejected by all u ∈ U∗
at w. But if the gamble wα(r− 1) is rejected by all at w, it follows from the
first part of the theorem that also wα(k − 1) is rejected by all at w; hence,
k(α) is also rejected by all at w. This completes the proof.
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