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Abstract

The assumption of rationality is used to infer preferences from observed choices, but

classic economic theory provides scant guidance when choice data has error. Methods

to estimate preferences from noisy data inevitably invoke additional assumptions on

those very preferences. This paper presents a procedure to detect and measure error

in an individual’s observed choice data when the individual has an underlying rational

choice process that has been contaminated with random implementation errors. Using a

single individual’s choices over many menus, I construct an observed revealed preference

relation, and prove it is a random graph whose acyclicity is equivalent to rationality.

Exploiting the structure in the graph produced by the contaminating errors, I devise a

classifier able to detect which observations are errors and an estimator to measure the

rate at which errors occur. These two methods can be applied to any dataset in which

an individual makes constrained choices from a sequence of overlapping non-identical

menus, regardless of the choice environment. I apply the method to a benchmark

dataset of choices observed in the lab (Choi et al. 2007) and show that most individuals

have error rates between 5% and 14.5% (interquartile range). I show that three existing

measures of goodness-of-fit for rationality, which are often used as proxies for error

estimates, are not robust, not identified, or biased when choices are observed with

error.

2



Introduction

The defining feature of economic choice models is that they make use of observed choices,

and any available alternatives that were not chosen. Repeated observations of choices and

unchosen alternatives can be reconciled as long as certain consistency conditions hold. The

decision-maker is then called rational, and preferences can be inferred from their observed

choices. Most modern economic theory is built on a foundation of rational choice, and

rationality drives results in a number of other fields including industrial organization, finance,

and welfare analysis.

Yet, in both lab and field studies, many individuals are observed making choices that

fail the necessary conditions for rationality (Choi et al. 2007b; Halevy et al. 2018; Dean and

Martin 2016; Echenique et al. 2011). This is unsurprising since the classic test for ratio-

nal choice treats observations as deterministic, and does not account for the random error

inherent in empirical data. Observed failures of individual rationality are interpreted as em-

pirical error, and economists continue to apply economic choice models, often by appending

an error term to some parametric choice function. There is certainly a practicality to this

approach, despite the sometimes shaky theoretical groundings. Perhaps more problematic

is that a parametric model is not suitable when the set of available alternatives cannot be

summarized in an obvious way such as by prices or by characteristics. In these situations

a nonparametric method like the revealed preference relation is better for incorporating the

set of available but unchosen alternatives into the model of choice.

In this paper I use revealed preference relations to separate errors from rational choices for

an individual choosing from generic menus of alternatives. The revealed preference relation

assumes that by making a choice the individual declares that option to be weakly preferred

to all other available options. When the researcher observes an individual’s choices from a

sequence of overlapping (non-identical) menus, the researcher can create a binary relation

to capture this notion of preference. I develop a classifier based on the revealed preference

relation to recover a subset of observed choices that are rational and that can be used to

infer preferences. The classifier also flags possible errors; these can be tested for correlation

with other observables from the time of the decision that may affect behavior. I also develop

an estimator for how much error is needed to explain observed deviations from rationality in

the choice data. This measure is interpretable and can be used to assess the quality of the

choice data more generally. It can be compared across individuals and correlated with other

traits, or it can be compared across choice contexts for the same individual to test behavioral

hypotheses. The methods I develop are designed to be easily implemented in generic choice

environments including choices over discrete menus.
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The direct revealed preference relation was first introduced by Samuelson (1938) in the

context of consumption bundles chosen under a price-restricted budget constraint. A large

literature has developed conditions necessary for choice data to be rational under a variety of

settings and assumptions.1 I use the consistency condition from Nishimura, Ok, and Quah

(2017) which allows my method to be applied to a general choice environment with minimal

restrictions on the observed data.

In keeping with all classic papers on the topic, Nishimura et al. (2017) take the choice data

as given, and do not address random error in empirical data. A number of papers incorporate

error as an index measuring how far observed data is from rational choice (see Apesteguia

and Ballester (2015); Halevy et al. (2018) for summaries). Inherent in this approach is the

assumption that minimizing a distance measure to a rational dataset is meaningful, but this

lacks a statistical foundation. I show that three of the most commonly used indices (Afriat

1972; Houtman and Maks 1985; Varian 1990) do not satisfy basic statistical robustness and

consistency properties.2 There is a small literature that incorporates a statistical foundation

by explicitly modeling random error in the data (Epstein and Yatchew 1985; Varian 1985;

Gross 1995; Fleissig and Whitney 2005; Echenique, Lee, and Shum 2011; Hjertstrand 2013).

These papers all assume the data takes the form of consumption bundles chosen from budget

constraints defined by prices. However, the error structure underpinning the statistical

results is either additive in the consumption space or multiplicative in prices, and therefore

cannot be extended to generic choice spaces.

I extend the framework of general choice data to explicitly have errors in choices. The

researcher observes a choice drawn from a random distribution characterized by a measure of

dispersion. The individual has a deterministic true choice, which is observed by the researcher

if dispersion is zero. When choices are observed with error and the menus vary, an observation

is a single draw from one of a sequence of non-identical distributions.3 To relate these

distributions I impose structure on the true choices by assuming only that they are rational.

1There are two strands in the literature; one focuses on finite consumption data (Houthakker 1950; Gale
1960; Afriat 1967; Hanoch and Rothschild 1972; Diewert 1973; Varian 1983), and the other looks at choices
in abstract settings with restrictive assumptions on the dataset (Uzawa 1956; Arrow 1959; Richter 1966; Sen
1971). Chambers and Echenique (2016) provide an excellent review of the literature.

2When errors are baked in to the choices, I show that (i) Afriat’s efficiency index is not robust to outliers,
(ii) Varian’s index is not well-identified, and (iii) the Houtman-Maks index is biased and underestimates the
error.

3In contrast, stochastic choice models use a representative agent with random utility which captures the
population heterogeneity in preferences. Empirical estimation requires the empirical distribution of choices
to be observed (McFadden 2005; Kitamura and Stoye 2018). This is also unlike the related recent literature
on consideration sets in which the menus considered by the individual are not necessarily those observed
by the researcher(Manzini and Mariotti 2014; Abaluck and Adams 2018). In both contexts the choices are
observed without error. An exception is Aguiar and Kashaev (2018) who develop a test of rationality with
measurement error, which requires pooling across individuals and is only applicable to consumption data.
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Additionally, I assume the choice distribution follows a contaminated data model (Huber

1964; Horowitz and Manski 1995); with probability π the observed choice is a randomly

distributed error, and with probability 1− π it is the true choice.4 The contaminated data

model is well suited for situations where error is thought to occur sporadically. While I

remain agnostic as to the source of these mistakes, some types of errors persist for the

duration of an experiment and are not well described by the contamination model. These

include underreporting, Hawthorne effects, and rounding errors. The contaminated data

model works well for implementation mistakes on the part of the individual, or mis-recording

of observations on the part of the researcher or experiment. The model puts a probability

point mass on the true rational choice, and distributes the remaining probability freely on

the menu. It can be used in general choice settings since the error distribution can take any

form, including discrete probabilities on finite unordered sets.

An observed revealed preference relation is a data construct, so it will inherit the random

error present in the data. Coupling the contaminated data model with rationality of the true

choices produces a random graph with a specific structure called the stochastic block model

(Snijders and Nowicki 1997). A random graph is a collection of vertices and a set of edges

connecting pairs of vertices. In the context of this paper, each observation is a vertex and it

connects to another observation if they violate a pairwise consistency condition. From the

contaminated data model there are two types of observations, either “error” (with probability

π) or “error-free” (with probability 1 − π). The probability of two observations forming a

violation depends on their types. The researcher does not observe any observation’s type,

only a realization of the graph. Correctly classifying the observations into types recovers the

true revealed preference relation, and an estimate for the error rate π. I show that the way a

revealed preference relation is constructed causes it to have a unique dependency structure.

Most existing estimation methods in the networks literature rely on independence and are

therefore not applicable to this setting.5

I develop a classifier that leverages this dependency structure to uncover a subset of the

error observations. I also develop an estimator for the error rate π which requires additional

assumptions on the distribution of errors. The methods I develop operate on the observed

revealed relation and so do not suffer from dimensionality or computational complexity

issues. I show through monte carlo simulations that as the number of observations increase

the methods perform better.

4A version of the contaminated data model has been used in empirical work testing expected utility in
choices over lotteries (Hey and Orme 1994).

5Existing methods to recover the classifications rely on either a known labeling probability, known same-
type and cross-type edge probabilities, or independence (Bickel and Chen 2009; Rohe et al. 2011; Channarond
et al. 2012; Zhao et al. 2012; Fishkind et al. 2013).
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My paper uses consumption choices over two goods as its running example, but the

methods are designed to work in generic choice settings. I apply the classifier and estimator

to a benchmark dataset of choice data on risky assets collected in the lab (Choi, Fisman,

Gale, and Kariv 2007a). Among the 47 subjects I find that most have error rates between

5% and 14.5%.

This paper is divided into three parts (1 Theory, 2 Model, and 3 Estimation) which can

be read separately, with minimal referencing. In Section 1, I outline the framework for the

choice data and observed revealed preference relation. I prove that acyclicity of the observed

revealed preference relation is equivalent to rationality (under certain sampling properties of

the menus). I also prove that when the choice distribution has a positive dispersion, as the

number of observations increases data will violate acyclicity almost surely. Related to this

are negative results on existing indices of rationality (Afriat 1972; Houtman and Maks 1985;

Varian 1990), which can be found in Appendix A.

Section 2 defines the contaminated data model in the context of individual choice data.

I prove that the observed revealed preference relation is identified by the true choice and

the error rate π, for a given error distribution. I show how the observed revealed preference

relation can be used to construct a graph with identifiable partitions. I provide monte carlo

simulations and examples to illustrate the properties of this random graph.

Section 3 presents the classifier and estimator. I use monte carlo results to demonstrate

the performance of these methods. Section 4 contains the empirical results of applying the

classifier and estimator to data from Choi et al. (2007a).6 Images and tables are interspersed

throughout, but proofs are in Appendix B. Related literature is discussed as it arises. For

the unfamiliar reader, an overview of graph notation used in this paper can be found in

Appendix D.

A note on transparency: all results and images are reproducible, please contact the

author for code files. Simulations were run in R version 3.5.3 using the Mersenne-Twister

pseuso-random number generator with arbitrary seeds based on astronomical distances. The

running example in the paper uses a seed of 252088, the distance in miles from the earth to

the moon at its furthest point.

Regarding font style and notation: in this paper x denotes a number or element in a

set and v denotes a column vector of length n. Each vector consists of an ordered list of

numbers v = (v1, v2, ..., vn)>. The dot product of two vectors is v · x =
∑

i vixi with the

transpose operator > implied. The object X denotes a matrix of size n× n unless otherwise

6As of this draft only one empirical example is provided. Future drafts will include examples of discrete
choices, high-dimensional basket data, and mixed menu-types Hey and Orme (1994); Echenique et al. (2011);
Halevy et al. (2018).
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specified. A matrix may be written as an ordered list of column vectors X = [x1,x2, ...xn].

An arbitrary collection of objects is denoted X, which may or may not be indexed. A

collection of collections is X. A distribution function F is often specified by a subscript

clarifying the random variable it generates. I have attempted to use standard notation, but

occasionally context may dictate the meaning of a symbol.

1 Theory

In this section I incorporate stochastic elements into existing theory. I begin by defining

the dataset of a single individual’s choices from a sequence of budget sets. I formalize the

notion that this individual’s choices are observed with random error, and further that they

are drawn from a distribution with some measure of dispersion. When the dispersion is zero,

the researcher observes classic deterministic rational choices (Section 1.1). I define what is

meant by rationality for generic choice settings in Section 1.2.

The main result of this section is Proposition 2 in Section 1.4. It states that when

dispersion is positive there is a probability, which is less than 1, of observing a rational

dataset. Furthermore, as the number of observations increases, this probability converges to

0.

I introduces a number of assumptions that add restrictions on the choice space, the budget

set sampling procedure, or the choice distribution. These are largely technical in nature, but

are necessary for the theory to be applicable. Additional independence assumptions are used

in the proofs, but it is possible with some effort future researchers may be able to relax these

them. Lastly, in section 1.5 I introduce the random graph notation for the observed reveald

preferenec relation. This will carry over into the remainder of the paper.

1.1 The observed dataset

We begin with the choice space X, a universal set of alternatives. An individual’s choice is an

element x from some budget set B, a subset of the choice space . An experiment consists of

n (≥ 2) budget sets indexed i = 1, ..., n forming the collection Bn = {Bi}ni=1. The researcher

records the individual’s observed choice from each budget set, xi ∈ Bi. The observed dataset

is therefore Dn = {Bi, xi}ni=1, which we sometimes write as the union {xi}ni=1 ∪ Bn where

matching indices are retained. Each budget set is sampled randomly from a probability

space on the power set 2X with a probability measure FB.7

7The probability space consists of a triplet: the sample space 2X, the event space which is a σ-algebra on
the collection of sets in 2X, and a probability measure on the event space (a countably additive set function
which integrates to 1)
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In addition to sampling variation in the budget sets, we also introduce the notion of

random error in the observed choices. To do so, we distinguish between the observed choice

xi, and what would have been observed had there been no error.

Assumption 1. The true choice, x∗i , is a deterministic function of the menu of alternatives

in the budget set Bi.

When there is random error, we can think of each observed choice xi as a draw from

a probability distribution F over the available alternatives in Bi. In a given experiment

two budget sets will not necessarily be identical (due to sampling variation in FB). So each

observed choice is distributed xi ∼ F (·|Bi), according to the conditional choice distribution.

If choice is observed without error, then the researcher should observe the true choice. To

explicitly parameterize the classical error-free case, we use the choice distribution’s measure

of dispersion.

Assumption 2. Let the choice distribution be parameterized by the true choice x∗i and some

measure of dispersion σ. Conditional on the budget set Bi, the choice xi ∼ F (·;x∗i , σ|Bi).

When the dispersion is equal to 0, xi = x∗i .
8

The assumption above is intentionally vague so researchers have the flexibility to use

context-appropriate choice distributions. Depending on the type of distribution, the choice

space, and the nature of budget sets, the dispersion could be a parameter, or it could be

an aggregate function of a multi-dimensional parameter. Here are two common examples to

help illustrate how a researcher could choose an appropriate measure of dispersion for their

setting.

Example 1. The researcher observes choices, by the same individual, from a sequence of

budget sets. The researcher expects the true choice to occur with high frequency, and

for errors to occur infrequently but at the same rate for all budget sets. In this case the

probability of an error is a measure of dispersion satisfying Assumption 2. J

Example 2. Suppose choices are made over bundles of L goods from a sequence of budget

planes defined by randomly generated prices. The researcher expects each observed choice to

fall close to the individual’s true choice, and for further-away errors to be less likely. Suppose

the choices are distributed as a truncated normal distribution with mean on the true choice.

Then the standard deviation (averaged across all L dimensions) is a measure of dispersion

satisfying Assumption 2. J

8The distribution need not be identified by the measure of dispersion; it is possible for σ to a be a function
of other parameters of the choice distribution.
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The following independence assumptions are used in the proof of Proposition 2 as well

as the negative results in Appendix A.

Assumption 3. The budget sets are sampled independently and identically such that Bi ∼iid
FB for all i.

Assumption 4. Conditional on any Bi,Bj, the choice distribution F is such that

1. for any i 6= j, xi ⊥ xj, and

2. if Bi = Bj, then xi
d
= xj.

The first independence assumption requires that the budget sets in an experiment be sampled

independently and identically (Assumption 3 is on FB). The second requires that observed

choices be independent and identically distributed conditional on the budget sets (Assump-

tion 4 is on F ). In Section 2 we will replace the assumptions on the choice distribution with

a semi-parametric model.

1.2 Rationality in generic choice environments

Rationality means there is some underlying weak order on the choice space that the individual

uses in order to select a most preferred option from a set. In practice we often require that

this order be consistent with an objective ordering on the choice space.9

To that end, we assume the choice space X is governed by an exogenous and objective

dominance relation D, which is a partial order.10 Choices are D-rationalizable, or rational,

if there is some % preference relation that is consistent with (extends) D, and each choice xi

belongs to the subset of Bi that is maximal according to %.11 Formally xi ∈ max(Bi,%) =

{x ∈ Bi : x % y ∀y ∈ Bi}.
It is difficult to check D-rationalizability directly, since it would require searching over

all possible preference relations (binary relations that are complete and transitive). So we

instead use an equivalent and testable criteria that searches for sequences of choices which

violate transitivity by forming cycles. For example, suppose xi B xj, and that xi is chosen

from Bi when xj is available, but that xj is chosen from Bj when xi is available. Any

rationalizing preference relation must have xi indifferent to xj, but this would be inconsistent

with D.

9There are a few different ways to formalize rationality in choices; this paper presents a framework which
is designed for use in generic, possibly non-Euclidean, choice spaces (based on Nishimura, Ok, and Quah
(2017)).

10A partial order is a binary relation that is reflexive (x D x), transitive (x D y and y D z implies x D z),
and has the property that if x D y and y D x then y = x. Nishimura, Ok, and Quah (2017) use the slightly
weaker preorder D requirement, however for most applications a partial order is easier to work with.

11A complete preorder % on X extends D if (i) x % y whenever x D y and (ii) x � y whenever x B y.
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In a dataset with n finite observations, this idea is extended to sequences of length k ≥ 2.

Each budget set has a decreasing closure with respect to the partial order of X, called the

interior B
↓
i = {x ∈ X : y D x for some y ∈ Bi}. The budget set’s exterior is the budget

set excluding its strict interior ∂B↑i = Bi \ B�i .The strict decreasing closure is the strict

interior, defined as B
�
i = {x ∈ X : y B x for some y ∈ Bi}.

Definition. Formally, a finite dataset satisfies cyclical D-consistency, or consistency, if for

any sequence of k ≥ 2 budget sets, B(1), ...B(k) ⊆ Bn, whenever

x(1) ∈ B
↓
(2), . . . , x(k−1) ∈ B

↓
(k), x(k) ∈ B

↓
(1), (1)

then

x(1) ∈ ∂B↑(2), . . . , x(k−1) ∈ ∂B↑(k), x(k) ∈ ∂B↑(1). (2)

When choices are consistent, they do not create strict cycles with themselves and they

do not contradict the objective ordering on the choice space. From Theorem 1 in Nishimura

et al. (2017), the cyclical D-consistency is equivalent to D-rationalizability.12 We will refer

to a dataset satisfying cyclical D-consistency as rational or rationalizable interchangeably.

It is possible for the experiment to be generated in a way that satisfies cyclical D-

consistency trivially. If budget sets never intersect then (1) holds tautologically. Similarly,

if budget sets are always contained entirely in each others’ interiors, then sequences of over-

lapping budget sets can exist, but cycles can never form. We eliminate these two scenarios

through assumptions on the experiment sampling distribution.

Assumption 5. The experiment is generated such that for any i 6= j:

1. PB(Bi ∩B
↓
j 6= ∅) > 0, and

2. PB(Bi ∩B
↓
j 6= Bi) > 0.

The first part of Assumption 5 requires budget sets and interiors to intersect with positive

probability. The second part requires there to be enough variation in the way budget sets are

generated so part of the budget set might lie outside an overlapping budget set’s interior.13

12If the choice space is continuous then it is possible to apply Theorem 2 in Nishimura et al. (2017) and
further state that this preference relation is continuous.

13Part 1. is a technicality, while Part 2. omits, for example, certain yearly panel datasets of household
consumption where wealth increases far outstrip price variation. For a discussion of how to address the
problem of demand prediction in such cases see the literature related to Blundell, Browning, and Crawford
(2003).
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1.3 The observed revealed preference relation

To check consistency, we construct the observed revealed preference relation. The choice xi

is revealed preferred to xj whenever xi is chosen even though xj ∈ B
↓
i . We write this as

xiQ
0
nxj, where Q0

n is a binary relation over {xi}ni=1 × {xi}ni=1.14

Definition. A cycle of length k (also called a k-cycle) is a sequence of observations

(1), . . . , (k) such that:

x(2)Q
0
nx(1), ..., x(k)Q

0
nx(k−1), x(1)Q

0
nx(k)

When the relation Q0
n has no cycles of any length, we say it is acyclic.

Cycles in the observed revealed preference relation are equivalent to cycles as in (1).

We would like to equate acyclicity of Q0
n with rationality, but Q0

n does not check whether

(2) holds. Formally, we add an assumption to the experiment sampling procedure which

eliminates the existence of cycles as in (2).15

Assumption 6. Furthermore, for any i 6= j:

1. PB(Bi = Bj) = 0, and

2. PBj(∂B
↑
j ∩ xi = ∅|xi,Bi) = 1.

We can think of Assumption 6 as placing a restriction on the relative sizes of the choice

space X and the budget sets. Implicitly, we assume X is sufficiently large such that there

exists a sampling distribution FB satisfying the above conditions. The first part requires the

support of FB to be large enough that the chance of drawing the same budget set twice is

effectively zero. In particular this rules out the case that, with sufficient observations, the

researcher could observe all possible subsets of X.16 The second condition of Assumption 6

is more subtle and should be approached with caution in the context of discrete choice space

X.17 It effectively says that, conditional on observing (xi,Bi), there is zero probability of

drawing a budget set j whose exterior intersects xi. The second part automatically holds in

Euclidean space whenever B’s probability measure has a density, because the exterior of a

budget set is always one dimension less than the maximal dimension of the budget set.

14There are different flavors of revealed preference relations that can be constructed from a finite dataset
Dn. This paper uses an observed direct revealed preference relation. More standard is the direct revealed
preference relation R0 which is defined as xiR

0y if y ∈ Bi. Whenever y ∈ B
�
i , we would write xiP

0y, which
defines the strict directly revealed preference relation. Most existing revealed preference literature works with
both P 0, and the transitive closure of R0.

15An alternative to Assumption 6 is to pair Q0
n with a strict version, however this is a computationally

cumbersome approach which we do not pursue in this paper.
16It is both a necessary and sufficient condition for B’s probability measure to be non-atomic. A probability

measure is non-atomic if no single element in the sample space 2X has probability greater than 0.
17For example, suppose choices were made from binary menus in L-dimensional Euclidean space with D=≥.

If each menu consists of two random draws from {0, 1}L, then the experiment does not satisfy Assumption 6.
If however, each menu is two random draws [0, 1]L, then the assumption does hold.
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We now define a version of cyclical D-consistency which can be checked with only the

observed revealed preference relation Q0
n.

Proposition 1. Under Assumption 6, acyclicity of Q0
n is equivalent to rationality of the

observed choices Dn.

Under Assumption 6, the event described in (2) occurs with probability zero. Coupled

with the definition for D-cyclicity and Theorem 1 from Nishimura, Ok, and Quah (2017) we

are done.

1.4 Dispersion of the choice distribution and rationality

There are two sources of randomness in the choice data, which both contribute to stochastic-

ity in the observed revealed preference relation. The first source is the sampling distribution

of the budget sets. Then, conditional on the sample of budget sets, an additional source

of randomness comes from the choice distribution. We would like to link the probability of

observing a rationalizable dataset with the dispersion in the choice distribution. To do so, we

first assume the true choices are rational. The following assumption replaces Assumption 1:

Assumption 7. There is some true preference relation %∗, that extends D, and for which

x∗i = max(Bi,%∗) for all observations i.

Under this assumption, any observed deviations from rationality must be driven by the

introduction of error in the choices. In the case without dispersion, the researcher observes

the true choices. The budget sets are sampled randomly from X so the revealed preference

relation Q0
n is a random sample of %∗.18

We must also require that non-zero dispersion in the choice distribution leads to some

probability of observing a cycle. The following assumption strengthens Assumption 2.

Assumption 8. When the dispersion of the choice distribution is greater than zero,

Pxi(xi ∈ B
↓
j ∩Bi|Bi,Bj) > 0 for any i 6= j where Bi ∩B

↓
j 6= ∅.

Conditional on Bi, the choice distribution has large enough support that xi falls inside

some randomly drawn Bj’s interior with positive probability.

We now have enough structure to present the main result of this section. Let P(Dn is rational)

be the probability of observing a rational dataset of size n. It is a joint probability of choices

and budget sets.

18In the error-free case, the intersection Q0
n∩ %∗ depends on n and the sampling properties of FB. For a

related discussion on the transitive closures of samples of %∗, see Chambers et al. (2018).
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Proposition 2. Under Assumptions 1 to 8 the following are true:

1. If dispersion is exactly 0, then P(Dn is rational) = 1

2. If dispersion is greater than 0, then P(Dn is rational) < 1

3. As n→∞, if dispersion is greater than 0, P(Dn is rational)→ 0.

Assumptions 1 and 2 link a zero dispersion to the true choice, which under Assumption 7

is rational. Assumptions 5 and 8 can be thought of as assumptions on falsifiability; they

guarantee that a sample of budget sets can be drawn such that cycles are feasible, and that

conditional on such a sample there is a probability of drawing choices that create cycles.

Assumptions 3 and 4 are independence assumptions that are not crucial but are convenient

for calculating joint probabilities. The full proof for Proposition 2 is in Appendix B.

Based on these results, the dispersion can be thought of as a measure for how rational is

the data. It lends itself as well to this purpose from both a statistics and economic theory

perspective as a “test” for rationality of the data.

There are existing indices of rationality, however they do not capture the dispersion.

A discussion of these negative results is included in appendix A. I show that when errors

are baked in to the choices, these measures do not appropriately separate out the error

from rational choices. I prove that Afriat’s (1975) efficiency index is not robust to outliers

and converges to a limit that depends only on the support of the choice distribution. If

two individuals have choices distributed with different dispersion but on the same support,

their efficiency indices converge to the same value. I also show that Varian’s (1990) index

is not consistent, meaning it depends on the true choice, regardless of the dispersion. If

two individuals have the same dispersion but different true choices, they will have different

Varian’s indices. I also show that when dispersion is positive, the Houtman-Maks (1985)

index is biased and will underestimate the error.

1.5 Observed revealed preference relation as a random graph

Ideally we could say something more to link a higher probability for rationality with a lower

dispersion. However, the observed revealed preference relation has certain dependencies that

make such a statement difficult to prove without additional structure on the model. For the

contaminated data model, which I present in section 2, it is the case that lower dispersion

leads to higher probability of rationality.

We will now transition to thinking of the relation Q0
n as a directed random graph (or

network). See Appendix D for an overview of the notation. The vertices are V = {1, . . . , n},
each representing a choice xi in Dn. An edge connects from k to i whenever xkQ

0
nxi. Con-

ditional on the budget set Bk, the existence of this edge depends only on the location of xi
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with relation to the interior B↓k. Therefore, conditional on the collection of all n budget sets

B, any incoming edge to i depends only on the realization of xi from its distribution. Thus,

the edges connecting to a given vertex depend on each other, but from Assumption 4 they

are independent of all other edges in the graph.

Observation 3. The observed revealed preference relation Q0
n is a directed random graph

on n vertices. Conditional on the budget sets Bn, for any i, j, k ∈ V, the edges (k, i) and

(j, i) are dependent.19 Under Assumption 4, the edges (i, k) and (i, j) are independent.

We can store the observed revealed preference relation in terms of its adjacency matrix,

R. Each element rki = 1 whenever xkQ
0
nxi, and zero otherwise. The adjacency matrix R

can also be written as a sequence of n columns, [r1, r2, ..., rn]. Observation 5 implies that the

elements within each column rji and rki are dependent. However, under Assumption 4, the

“observed revealed preferred to i” column ri is independent of any other column rk ∈ R.

2 Model

I apply the theoretical framework in Section 1 to the case when observed data is contaminated

with error (Huber 1964; Horowitz and Manski 1995). In the contaminated data model, the

researcher observes a randomly drawn mistake with probability π, or the true choice with

probability 1 − π. This model is suitable for implementation mistakes, or situations where

the researcher thinks that error in the observed choice occurs sporadically. The model itself

is agnostic on the source of the error, which could arise on the part of individuals making

mistakes, or from idiosyncratic measurement errors on the part of the researcher.

This model nests any mistake distribution and any true choice. We maintain the assump-

tion that the true choices are rational (Assumption 7), and assume only that the mistake

distribution has sufficiently broad support to create cycles (in keeping with Assumption 8).

The measure of dispersion π satisfies Assumption 2: when π = 0 the observation is the

deterministic true choice (the classic rational model); when π > 0 the observed choice is

random and selected according to an error distribution. In Section 2.1 I formally define the

model and discuss its impact on the distribution of the observed revealed preference relation.

The parameter of interest is the dispersion π, which is easily interpreted as the error

19A small caveat to this dependency is the case where the budget sets Bi and Bk are such that the edge
(k, i) either can never exist, or will always exist. In these cases the edge (k, i) is constant and is independent.
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rate.20 I present two identification results in section 2.2. The first result states that for

any contaminating distribution of mistakes R is identified by the underlying true rational

preferences and the error rate π (Proposition 4). The implication of this identification result

is that when π is unknown, a single realization of R is not enough to recover R∗. The second

result uses the presence of 2-cycles between observations, which is captured in a graph whose

adjacency matrix S is a transformation of R.

Certain properties of the degrees of S will drive the estimation strategy in Section 3. I

discuss the degree distribution of S in section 2.3 and some limiting properties in section 2.4.

2.1 Contaminated choices and revealed preference

We keep the assumption on the budget set sampling procedure from before (Assumptions 3,

5 and 6) and replace Assumptions 2 and 4 on the choice distribution with the following

assumptions.

Assumption 9. The contaminated choice is

xi =

x∗i if zi = 0

µi if zi = 1.
(3)

The mistake is µi ∼iid Fµ|Bi and the indicator of an error is zi ∈ {0, 1}.

Assumption 10. The unobserved indicators of an error are zi ∼iid Bernoulli(π)

Assumption 11. The unknown error rate π is less than 0.5.

A contaminated choice is a random choice, drawn from a distribution with a point mass

of at least 1− π on the true choice, x∗. For clarity in exposition, a mistake is an element in

the choice space µi, while an observation i is an error if zi = 1. The set of error observations

is Z = {i : zi = 1}, and the set of error-free observations is Zc = {k : zk = 0}. A sufficient

condition for conditional independence (Assumption 4) is that the contaminating mistakes

are independent, µi ⊥ µk for all i 6= k. We also maintain Assumption 7 which says that the

true choice x∗ is rational.

The predominant feature of the contaminated choice model is a point mass of 1 − π on

the true choice. We will generally assume that π � 0.5, so the deterministic true choice

20Because π is a probability, it does not depend on the units of the choice space. This is in contrast with
something like the standard deviation in a trembling hand model which is defined in units of the choice-space.
This model therefore lends itself well to within-individual analysis, as the parameter π can be estimated from
a number of different choice settings and compared across domains. It can also be used as a measure to
compare rationality across individuals.
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is emphasized in the model. This point mass is particularly useful since the model can

have a discrete support. The results of this section can be applied to any discrete choice

setting satisfying the assumptions outlined in section 1. This is a contribution over existing

indices, which can be used only when choices are made from linear budget sets. Of course

the contaminated choice model can also be used in continuous choice environments, which

is what we demonstrate in this paper. Figure 1 presents three examples of contaminated

choices. The first two panels show how different mistake distributions can contaminate the

same true choice at the same error rate. The last panel shows how the model operates in a

discrete choice setting, keeping the error rate fixed.

ℬଶ

ℬଵ
𝑥ଵ
∗

1 − 𝜋
𝜋

(i) Uniform

ℬଶ

ℬଵ𝑥ଵ
∗

1 − 𝜋

𝜋

(ii) Truncated normal

𝑥ଵ
∗

1 − 𝜋

ℬଵ

0.2𝜋

ℬଶ

(iii) Uniform discrete

Figure 1: Examples of the contaminated choice probability density. The distinguishing
feature of this distribution is a point mass of at least 1−π on the location of the true choice.
The remaining π density is distributed according to some mistake distribution whose support
can be (i-ii) continuous, or (iii) discrete.

Recall from Section 1.5 that the observed revealed preference relationQ0
n has an adjacency

matrix R = [r1, r2, ..., rn] which is a sequence of n randomly contaminated n × 1 columns.

Each “observed revealed preferred to i” column ri, is either an error-free column r∗i with

probability (1− π), or an error column ei with probability π.
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ri =

ei if zi = 1

r∗i if zi = 0
(4)

The column ei is derived directly from the mistakes µi, and its distribution is derived

from Fµ|Bi . The probability of observing a given error column, conditional on the budget

sets is an integral over the mistake distribution taken over regions of the budget set exterior.

For a discussion of this discretization process, see Kitamura and Stoye (2018). Let R∗ be

a matrix of the n error-free columns and E be composed of the n randomly drawn error

columns. It is helpful to think of R as a matrix composed of columns selected randomly

from either R∗ or E according to {zi}ni=1.

2.2 Identification

For this subsection we condition on a collection of n budget sets, Bn which overlap enough

that cycles are feasible. The observed revealed preference relation R is a semiparametric

model whose distribution is governed by three objects: {R∗, π, Fµ|B}. We are interested in

recovering the parameter π while allowing R∗ to be as flexible as possible. That end, we

turn our attention to understanding the identification of this model, specifically under the

assumptions outlined in Section 1.

The first identification result states that for any Fµ|B , R is identified by θ = {R∗, π}
(Proposition 4). The implication of this result is that when π is unknown, a single realization

of R is not enough to recover R∗. This result is true for any R∗, including ones with cycles.

The second identification result uses the presence of 2-cycles between observations, which

is captured in an matrix S and is a transformation of R. The S has a structure that exposes

the rationality of R∗ (Observation 5). This structure drives the estimation strategy in

Section 3.

For the first result, we use the moment of R because the elements within each column of

ri are dependent. The first moment is an n×n matrix whose elements are each in the range

[0, 1]

Eθ,Fµ|B [R] = (1− π)R∗ + π Eµ|B[E].

Since zi ∼iid Bernoulli(π) (Assumption 10), the moment of R is a mixture between the

discrete R∗ and an expectation over the random mistakes.21 The identification relies on the

fact that R∗ has elements that are either 0 or 1, coupled with the following identification

assumption on the mistakes µi. Each (i, j) element of Eµ|B[E] is written ēij, and is the

21It is possible to generalize Assumption 10 to allow for a probability P(zi = 1) = πi as long as the
probability πi ∼iid Fπ. In this case the model is identified by the expected error rate E[πi].
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probability that µi ∈ B
↓
j ∩Bi governed by Fµ|Bi . The assumption below eliminates the case

where the distribution Fµ|Bi is a point mass for every budget set Bi ∈ Bn. We can think of

this as an extension to the power assumption Assumption 8.

Assumption 12. Conditional on Bn, there is at least one (j, k) such that ējk 6∈ {0, 1}.

Proposition 4. Let θ̃ = {R̃∗, π̃;Fµ|B} and θ = {R∗, π;Fµ|B} where Fµ|B is some fixed

mistake distribution. Under Assumptions 9 to 12,

Eθ[R] 6= Eθ̃[R] if and only if θ̃ 6= θ.

A detailed proof is in Appendix B, and an illustrative example can be found in Appendix C.

Importantly the proof of Proposition 4 does not use rationality of R∗.

From Proposition 1, R∗ is rational when it is acyclic. We know that R has an acyclic

induced subgraph on the error-free observations Zc. There is also an induced subgraph on Z

which is completely random according to Fµ|BZ
. These insights are captured in Observation 5,

which uses the graph of 2-cycles constructed from R.22 The adjacency matrix of this graph

is S. Each element sik = rikrki indicates the existence of a cycle between i and k. By

construction, S is a symmetric adjacency matrix and its graph is undirected. Figure 2 shows

the adjacency matrices R and S for simulated data.

Observation 5. Define the count of 2-cycles between i and j as sji = rijrji for any i, j ∈
{1, . . . , n}. Conditional Bn and the errors Z, the following are true:

1. If j, l 6∈ Z then sjl = 0.

2. If k, i ∈ Z then ski is identified by the marginal probabilities ēki and ēki.

Observation 5 highlights two nice properties of the 2-cycle graph S. The induced subgraph

on the error-free vertices, S [Zc], has no edges, since the true choices are rational. Meanwhile,

the induced subgraph on the errors, S [Z] captures the way any two errors create a 2-cycle

with each other. Neither subgraph depends on the underlying true preferences. As shown

in the second panel of figure 2, the adjacency matrix S is a block matrix with one block of

all 0 and another block with some random distribution.

The off-block elements of S are the 2-cycles that occur between an error-free choice and

an error. All we know about R∗ is that it is acyclic, which is not particularly informative.

Take as fixed the edges drawn for the errors. If R∗ has a total of K edges, then there are at

least K cyclic graphs that are equal to R∗ with one added edge. So the off-diagonal block,

when R∗ is acyclic could be identical, or with only a difference of one edge, when R∗ is not

22In some settings, cycles of length K are more informative than 2-cycles. One interesting direction of
future research is to define S for longer cycles. Each element sij counts the number of K-cycles between i
and j and the first part of Observation 5 still holds.
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acyclic. This is to say that we do not generally know, or have a good way of characterizing,

how the off diagonal elements behave.

(i) R

error-free

error

error-free error

(ii) S

error-free

error

error-free error

Figure 2: Simulated adjacency matrices for (i) the observed revealed preference relation
and (ii) the graph of two-cycles. Here the observations have been ordered according to their
latent classification Z. The experiment consists of 200 budget lines on two continuous goods,
selected randomly with intercepts between 10 and 100, with one at least 50. The error-free
choices are perfect complements, and the error distribution is uniformly distributed on the
exterior of budget set as in figure 1(i). The error rate π = 30%.

2.3 The distribution of degrees on S

The structure produced by the contaminated choice model will be used in the classifier of

Section 3.1 which will operate on the degree of S. Recall that the degree is d̄i = 1
n

∑
j sji.

There is a large empty induced subgraph on the error-free observations, so intuitively it

might seem that the degrees for error-free observations should be smaller than those for the

errors. After all, the error-free observations can only be involved in cycles with errors, while

the errors can create cycles with both types of observations. In the simulated example from

before, it seems the observations with high degree, those involved in many cycles, are all

error observations. Figure 3 shows the histogram for degrees separated by type.

Formally defining the properties of the degree distribution of S with respect to the dif-

ferent types of observations is complicated by the unknown nature of R∗. The two examples

that follow illustrate how the degree distribution might change depending on the true pref-

erences. Note that both examples 3 and 4 are ruled out by Assumption 5, but they provide
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Figure 3: The degree distribution is notably different for error and error-free observations
in S. The graph shows the degree distribution for the same 200 simulated observations as
before, see caption of figure 2.

useful thought experiments.

Example 3. The true preference relation is devoid of information, so R∗ is all 0. Any

2-cycles must necessarily involve two errors, and the off-diagonal blocks of S are all 0. The

distribution of degrees has a point mass of at least n − |Z| on degree 0 from the error-free

observations. the spread of the degree distribution is driven entirely by edges in the error

induced subgraph S [Z]. Any observation with degree above zero must be to an error. J

Example 4. Suppose R∗ is such that all errors are revealed preferred to all true choices,

meaning x∗i ∈ ∂B
↑
j when j ∈ Z and i ∈ Zc. Also suppose the mistakes µj are drawn in way

that all the true choices are revealed preferred to the errors, so µj ∈ ∂B↑i ∀j ∈ Z, ∀i ∈ Zc

. Every unique pair of error and error-free observations forms a 2-cycle and the off-diagonal

blocks in S are all 1’s. The error-free observations have degree exactly |Z|
n

, and the errors

have degree at least n−|Z|
n

. When |Z| < n
2

the degree distribution of S perfectly separates the

error-free and the error distributions. J

One can think of other examples of random graphs that have variation in the degrees.

For example the classic stochastic block model has edges drawn randomly and independently

according to a fixed probability. The cross-type and same-type probabilities differ leading

overlapping but non-identical degree distributions for the types. These models have the

property of degree concentration; as the number of observations increases, the degree of

each observation converges to the expected degree. Existing methods for detecting latent

classifications in networks rely on degree concentration to separate out the types, however

it is important to emphasize that neither R nor S have this property.
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Another property that is commonly leveraged is independence (or weak dependence) in

degrees. Unfortunately this too does not hold for S. For any j 6= i 6= k, the edges sij 6⊥ skj,

due to the dependence of elements within a column in R (Observation 3). These two edges

appear in the degrees d̄i and d̄k respectively, because S is symmetric. Thus d̄i 6⊥ d̄k. Less

critically for large enough n, both degrees d̄i and d̄k have the term sik in their sum. This

goes to show that even if the observed choices are iid, the degree distribution of S has a

complicated dependency structure.

The implication of this dependency is that the degree distributions of error and error-free

observations overlap. We may be interested in how much the degree distributions overlap.

Unfortunately, this depends on the true preferences R∗ and the distribution of mistakes

Fµ|B . Figure 4 has simulated data for three different underlying true preferences: (i) perfect

substitutes, (ii) Cobbs-Douglas demand with α = 0.75, and (iii) randomly generated choices

that satisfy consistency. These were contaminated with the same errors, for the same 200

budgets, and with the same error Z classification. The panels on the left show the choices

and the panels on the right show the degree distribution, this time stacked. Both the error

and error-free degrees move when the true preferences are changed. This serves to highlight

the dependency in S.
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(ii) Asymmetric, Cobbs-Douglas 0.75

0

25

50

75

100

0 25 50 75
X

Y

0

30

60

90

0.00 0.05 0.10 0.15 0.20 0.25
d̄i

d
en

si
ty

(iii) Randomly generated rational
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Figure 4: The degree distribution of S changes under different true preferences. Figure 4(i)
has X and Y perfect substitutes. For figure 4(ii) choices were made using a Cobbs-Douglas
utility function with α = 0.75. A random iterative procedure generated the choices in
figure 4(iii), which are in fact rational. The left-hand plots show the true choices. The right-
hand plots are stacked degree density plots of error (green) and error-free (gold) degree.
Across all three simulations the experiment B, indicators {zi}, and errors {µi} were kept
the same; only the true choices {x∗i } were varied.
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2.4 Convergence of the degrees on the error subgraph

Insights from this section motivate the estimator presented in section 3.3. Recall from

Observation 5 the induced subgraph on the errors is a random graph whose distribution is

determined entirely by Fµ|B . We define the degrees on the errors for any i in Z as

d̄Zi =
1

|Z|
∑
j∈Z

sji.

This error degree is derived from two things. First, the realized mistake µi interacts with

the sampled budget sets which are associated with the other errors. The second is the other

realized mistakes interacting with i’s budget set Bi. There is high variance in d̄Zi when the

error subgraph is small, which can happen for small π or n. We therefore look at the limit

of d̄Zi as |Z| increases.

Conditional on a realized mistake µi and its budget set Bi, as we increase the number of

observations the error degree d̄Zi converges to a limiting degree Di. This is the probability that

a realized µi is involved in a 2-cycle with another randomly drawn mistake from a randomly

sampled budget set. Formally this is the joint probability of sampling some budget Bt such

that µi ∈ Bt, and then drawing from that budget a mistake µt in the interior B
↓
i .

Proposition 6. Conditional on (µi,Bi) the error degree d̄Zi converges almost surely to Di

as |Z| → ∞, where

Di =

∫
Pµ(µt ∈ B

↓
i |Bt,Bi)I{µi ∈ B

↓
t}dFB(Bt). (5)

Convergence follows from the strong law of large numbers, see Appendix B for a short proof.23

It is often the case that solving (5) analytically for Di is computationally intractable,

so instead we can simulate it. To do so sample a large number m � n budge sets and

from each of those draw a mistake according to Fµ|B ; denote the set of simulated errors as

M. For an error i ∈ Z the simulated limiting error degree is DM
i . This is the number of

2-cycles formed between µi and the M simulated mistakes, normalized by m. Figure 5 shows

how ten different error observations have error degrees d̄Zi that converge to their simulated

limiting degree DM
i as the size of the induced subgraph |Z| increases. The same arguments in

Proposition 6 apply to DM
i which also converges almost surely to Di conditional on (µi,Bi).

23Although it is not relevant to this paper, it is possible to use the central limit theorem to determine the
rate of convergence.
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Figure 5: A sample of 10 uniformly drawn mistakes is observed. The size of the error
subgraph |Z| is increased by uniformly drawing more mistakes and appending them to the
dataset. The degree of the error subgraph d̄Zi , normalized by |Z|, converges to i’s limiting
degree Di conditional on (µi,Bi). We simulate the limiting degree for each observation by
drawing m = 5000 mistakes and budget sets and counting the percent of 2-cycles formed
between i’s observed values (µi,Bi) and the M simulated mistakes.

Consider now the set of Di for all errors i ∈ Z. Sampling variation in the budget sets

Bi and µi creates variation in {Di}i∈Z. In fact, {Di}i∈Z is a sample from a distribution

the limiting degrees which does not concentrate on its mean E[Di]. We can simulate this

distribution using the simulated mistakes from before. If we construct the observed revealed

preference relation on M then we can derive M, the graph of 2-cycles for the m simulated

mistakes. The degree on this graph is DM
j for any simulated mistake j ∈M. The distribution

of the limiting degrees is shown in Figure 6, where m = 5000.

The implication of these results is that the sample average of 2-cycles in the error-free

subgraph will often be far from the mean of the limiting degree distribution. Furthermore,

the sample degree d̄Zi is also far from its own limit DM
i .
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Figure 6: The distribution for the limiting degree Di is simulated by drawing m = 5000
mistakes and budget sets. Using the observed revealed preference relation created for these
M simulated mistakes, the degree of the graph on 2-cycles is DM

j for each j ∈ M. The
variation in the distribution arises from variation in the realized values of (µj,Bj). For the
set of errors in the observed data {DM

i }i∈Z is an sample drawn from this distribution.

3 Estimation

The estimation problem we face is two-fold: classification and point-estimation. We would

like to classify the observations as either errors or error-free, and to estimate the error rate

π. Unfortunately, because of the overlap in degrees, it is not possible to fully differentiate

all the errors.

I propose an estimation strategy that first separates out the high-degree observations,

identifying them as errors. This is done using an iterative algorithm. If the error distribution

is unknown to the researcher here is where we must stop. The output is a partial recovery of

the observations made with error. We can also use the number of errors to estimate a lower

bound on π.

If the researcher knows the distribution from which the errors are drawn, then we can

simulate the limiting distribution for the degrees of the error subgraph. We can also simulate

the limiting degrees for the specific observations that were classified as errors. Comparing

the upper tail of the limiting distribution with the observed sample produces an estimate

for the error rate. This procedure is unable to label the remaining errors because they are

indistinguishable from the error-free observations.
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3.1 Classification

To recover a subset of the error observations I propose algorithm A, based on a k-core peeling

algorithm, in which the largest degree is iteratively removed. After each removal, the degrees

for the remaining subgraph are recalculated, and the maximal degree is removed again. This

continues until the maximal degree is zero, meaning we are left with an induced subgraph

without 2-cycles. The observations that are removed are labeled as “errors”. There are

however, a number of low degree errors “disguised” as error-free which remain in the graph.

As a result we have only recovered a subset of error observations.

Algorithm A: iterative removal of observation with largest degree

input : an adjacency matrix S indicating 2-cycles

output: a set ẐA of indices categorized as errors

1 Initialize Ẑc = {1, . . . , n}
2 for t = 0 . . . n do

3 Find S(t) the induced subgraph on Ẑc

4 Calculate the degrees for all i ∈ Ẑc using S(t), normalized by n− t
5 Find k, the index of the maximal degree

6 if degree at k is 0 then

7 return Ẑ ≡ {1, . . . , n} \ Ẑc

8 else

9 Remove {k} from the set Ẑc

To understand why algorithm A works, it is helpful to consider a simplified model that

mimics the characteristic of the random revealed preference relation. A formal analysis of

the performance of algorithm A in this simplified model is part of a forthcoming project.

Example 5. As before there are n vertices classified as either Z or Zc, where the number of

vertices in Z is much less than half of n. For each vertex in Z draw a degree d̄i from a degree

distribution Fd. Suppose that Fd allows for low degrees; figure 6 is an example. Match the

nd̄i edges for each vertex i in Z randomly to different vertices in the graph. The vertices in

Zc do not have any edges drawn for them directly, rather they are only connected through

edges matched to them from Z. So by construction there is an empty induced subgraph

on Zc. Edges between two vertices in Z are matched iteratively to ensure the degree d̄i for

each vertex is retained. The result of this process is a graph with dependent edges, and

overlapping degree distributions for vertices in Zc and Z. The limiting degree distribution

on the subgraph Z is, by construction, Fd which does not converge to its mean. The model
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for random revealed preferences shares these features although it has more dependencies and

is less analytically clean.24

To see how algorithm A works in the simplified model, first observe that the maximal

degree of the graph will alway be a vertex in Z. The degree of a vertex in Zc is a sum over

|Z| elements, while the degree in Z is a sum over |Zc| and |Z| elements. Because the edges

are uniformly matched, it is very unlikely that a vertex in Zc has a high degree which can

be confused for a vertex in Z. Put in terms of the adjacency matrix: the degrees of Z are

uniformly distributed along each column so the degrees of Zc are uniformly distributed along

each row. Since degrees are column sums, for there to be a high-degree vertex in Zc, the

edges from a number of vertices in Z would need to bunch together.

In the first step of algorithm A, removing the maximal-degree vertex removes all its

edges. Since this includes edges connected to vertices in Zc, those vertices will also have a

lower degree. In general, many high-degree vertices in the graph will belong to Z, although

the exact proportion depends on the degree distribution Fd. As we continue to remove high-

degree vertices, we shrink the number of vertices from Z in the remaining subgraph, and

thereby lower its overall maximum degree. Eventually, vertices in Z with low degree, and

whose edges are mostly connected to other vertices in Zc will not be distinguishable from

vertices in Zc. This will result in a small number of removed vertices that are from Zc. It will

also result in a number of vertices from Z remaining in the subgraph the end of algorithm

A. An analytical proof of the above discussion is not possible for our original model, since

R∗ is unknown. J

To show how this operates in practice, we run algorithm A on the simulated data from

before. The initial degree distribution can be seen in figure 3, while figure 7 shows the degree

distribution at subsequent iterations of the algorithm. For this dataset, the algorithm ends

after 39 observations have been removed. Each iteration results in a lower maximal degree

the remaining graph. Importantly, the difference between the error observations’ maximal

degree and the error-free observations’ maximal degree also shrinks, which is what leads to

a small amount of misclassification.

24In the literature on random graphs, this is type of graph is called a configuration model CITE.
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Figure 7: The degree distribution at different iterations of algorithm A. A total of 37
observations are removed until all remaining degrees are 0. Note the changing y-axis which
indicates more observations with lower degrees as the algorithm progressively removes
high-degree observations.
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For this particular example, 39 observations are removed by the algorithm and classified

as errors. Of these, 36 are true positives (correctly classified errors), and the remaining 3

are false positives since they are in actually error-free. The remaining 161 observations were

not removed by the algorithm, but 18 of them are false negatives since they are errors.

precision =
# true positives

# true positives + # false positives

recall =
# true positives

# true positives + # false negatives

There are two statistics we use to assess the performance of the algorithm: precision and

recall, defined above. The precision measures how many of the classified errors are actually

errors. So conditional on being in the set ẐA, how likely is an observation to be an error with

z = 1. The recall tells us how many of the errors we were able to recover. Recall tells us

how likely an error is to be in ẐA. The higher both numbers are, the better the algorithm’s

performance.

Table 1 measures the precision and recall of the classifier under a variety of parametric

specifications. Both the mean and standard deviation are reported for 100 replications of the

simulations. In general the precision is higher and the recall is lower. Differences in the true

preferences do not affect the algorithm’s performance. Randomly generated true preferences

are somewhat of an exception. These are choices selected from a uniform distribution on the

budget set in an iterative way so they satisfy GARP. It is therefore not surprising that the

algorithm is less able to identify uniform mistakes from this type of true choice, since they

are quite similar.

When we change the contaminating error distribution we see a change in the recall but

not the precision. When the mistake is likely to be indistinguishable from the true choice,

the recall drops. This can happen through a restriction on the distribution’s support, or

when it has a lower dispersion around the true choice. In the column FOSD, mistakes are

drawn uniformly from the region of the exterior below the 45-degree line (on the cheaper

asset). Since true choices rarely fall in this range, the mistakes are easily picked up and the

recall is better than when mistakes are drawn uniformly from the full budget set exterior.

When mistakes are drawn normally around the true choice with standard deviation of 15 (or

15% of the budget set exterior), recall is even lower. The mistakes are so similar to the true

choices that they are indistinguishable.
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Performance of Algorithm A Classification in Simulations

True Preferences
substitute complement asymmetric random

precision 90.55 90.48 90.99 83.96
(5.84) (5.33) (4.6) (6.92)

recall 62.21 62.69 56 50.1
(6.21) (6.66) (6.02) (5.89)

Error Distribution
Uniform FOSD N(σ2 = 15) N(σ2

i = 15%)

precision 90.48 95.77 90.04 87.19
(5.33) (3.03) (5.14) (5.71)

recall 62.69 88.31 59.1 55.55
(6.66) (4.31) (6.59) (6.68)

Sample Size n
25 50 100 200 400 800

precision 74.27 81.64 86.36 90.48 92.29 94.48
(29.76) (15.7) (9.05) (5.33) (3.18) (1.94)

recall 27.6 41.31 52.87 62.69 72.6 79.6
(18.01) (13.56) (9.39) (6.66) (4.29) (2.4)

Error Rate π
π = 0.05 π = 0.1 π = 0.2 π = 0.3 π = 0.4

precision 90.87 91.91 90.56 90.48 86.83
(12.28) (7.42) (6.61) (5.33) (5.77)

recall 66.54 66.06 66.03 62.69 59.79
(16.45) (10.83) (7.87) (6.66) (5.36)

Table 1: The mean precision and mean recall from 100 replications are reported in units
of percent. The standard deviation across replications is below in parentheses. Unless
otherwise stated, in each replication the sample size is n = 200, true preferences are perfect
complements, the error rate π is 0.3, and the contaminating error is uniformly distributed on
the exterior of the budget set. Budget lines are generated randomly as in Choi et al. (2007a)
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The discrete nature of the classification means the number of errors |Z| can cause small-

sample variability in performance. The number of errors is small when n = 200 and the

error rate π is small, or when π = 0.3 and the sample size n is small. Increasing the overall

sample size is the best way to improve both precision and recall. Keeping the sample size

fixed, the higher the error rate, the more errors there are with lower degree, so there are

more opportunities for the algorithm to mis-classify an error and an error-free observation,

resulting in lower precision and recall. However higher error rate π also yields, in expectation,

a larger sized subgraph Z which is why the variability drops.

3.2 Set estimation with unknown distribution of mistakes

The number of errors |Z| is a sufficient statistic to estimate π. Recall that the zi are Bernoulli

random variables, and the sum of n Bernoulli random variables is a Binomial(n, π) random

variable. So the sample statistic |Z|/n converges to π as the sample size n increases. If

algorithm A were a perfect classifier, then π̂A ≡ |ẐA|/n could estimate π. Even with mis-

classification, if the true positives canceled out the true negatives, π̂A could still estimate π

consistently. Unfortunately, the simulation results in table 1 show that recall is systemat-

ically lower than precision, even as the sample size increases. This means there are more

false negatives than false positives, especially at the small sample sizes we often observe. So

the researcher cannot with confidence use π̂A as an estimator for π.

This systematic difference suggests that |ẐA| can estimate a lower bound for |Z|. In

every simulation run so far |Z| ≥ |ẐA| holds. An analytic proof of this result is beyond the

scope of this paper. Instead we can gain some insight as to why this might be true with a

small divergence. Consider the smallest set of observations A which, when removed, results

in an empty subgraph. The size of A will always be a lower bound for |Z| since S [Zc] is

empty. So either Z is the minimizing set, or there is a smaller set of observations which

result in an empty subgraph when removed. If some errors are not involved in any cycles,

then the minimizing set will be smaller than |Z|. The problem of finding the minimal set A

is known as the minimal vertex cover problem, and is famously NP-hard. To get around this

computational complexity, various approximation algorithms have been proposed over the

years, including Algorithm 2 in Gross and Kaiser (1996) which is equivalent to algorithm A

with an added step removing non-unique maxima. It is therefore not entirely surprising that
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algorithm A yields a lower bound for |Z| since |ẐA| is a reasonable approximation of A.25

As a lower bound, π̂A gets closer to π as the sample size increases. Table 1 shows the lower

bound estimate π̂A and the bias from |Z|/n in simulations. When the error rate increases, the

lower bound also increases although the bias, as a fraction of π increases slightly.

Performance of π̂A as a Lower Bound for π in Simulations

Sample Size n
25 50 100 200 400 800

lower bound 0.112 0.145 0.185 0.207 0.236 0.254
(0.06) (0.05) (0.04) (0.03) (0.02) (0.01)

bias 0.193 0.142 0.117 0.092 0.064 0.047
(0.08) (0.05) (0.03) (0.02) (0.01) (0.01)

Error Rate π
π = 0.05 π = 0.1 π = 0.2 π = 0.3 π = 0.4

lower bound 0.036 0.072 0.145 0.207 0.275
(0.01) (0.02) (0.03) (0.03) (0.03)

bias 0.013 0.028 0.054 0.092 0.124
(0.01) (0.01) (0.02) (0.02) (0.02)

Table 2: The mean lower bound π̂A and mean bias |Z|/n − π̂A from 100 replications. The
standard deviation across replications is below in parentheses. Unless otherwise stated, in
each replication the sample size is n = 200, true preferences are perfect complements, the
error rate π is 0.3, and the contaminating error is uniformly distributed on the exterior of
the budget set. Budget lines are generated randomly as in Choi et al. (2007a)

3.3 Point estimation with a known distribution of mistakes

The problem of correcting for the bias in π̂A is a matter of recovering how many errors are

missing from the initial classification ẐA. If the distribution of mistakes Fµ|Bi is known,

then for any observed choice and budget set (xi,Bi) we can derive the expected frequency of

2-cycles that i is involved in with other errors, conditional on the i being an error. This value

is defined in Section 2.4, and is i’s limiting degree on the error-subgraph. We calculate it

using a simulated graph M of 2-cycles between m errors. For any error j ∈ Z, the simulated

25It is possible to construct a counter-example graph in which |ẐA| > |Z|, meaning algorithm A does not
result in a lower bound. Consider for example figure 8 in Gross and Kaiser (1996) with Z = {a, b, c, d}. It
is my conjecture that the degree distributions observed in practice make such an instance unlikely, based on
the results of the simulations in this paper (and Comment 1 in GK(1996)). The concerned researcher can
estimate a more conservative lower bound using a different approximating algorithm for |A|, such the one
provided by Halevy et al. (2018).
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limiting degree DM
j is an independent random draw from a distribution, which captures the

joint variation in FB and Fµ|Bj . Figure 8 shows the simulated limiting degree density, and a

histogram-density of the iid sample of limiting degrees {DM
i }i∈Z for the errors in Z.
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Figure 8: Histogram of the simulated limiting degrees for the sample of 54 errors in Z scaled
as a density. Overlaid on top is the simulated density of DM

i .

We do not observe Z, but we do have a candidate classification ẐA from Algorithm A.

The estimation strategy compares the sample of simulated limiting degrees {DM
i }i∈ẐA against

the distribution with the goal of estimating how many are missing. This problem is related

to a missing data problem, however we do not want to estimate the degrees of the missing

observations only their count. To that end we use what we know about distribution and

what we know about the missing observations.

By its design Algorithm A has trouble finding errors with low limiting degrees DM
i .

Figure 9 shows the order in which Algorithm A classifies each observation as an error. The

vertical ticks along the top represent errors that were not included in ẐA (false negatives);

these tend to have lower limiting degree values. We can therefore think of the set {DM
i }i∈ẐA

as if it is a censored sample of {DM
j }j∈Z. The presence of error-free observations in ẐA

(false-positives) cause the estimate of π to be biased down.

We focus our attention on right tails of the sample and distribution. For any threshold

θ define the number of observations in ẐA that have DM
i above the threshold as

h
ẐA

(θ) =
∑
i∈ẐA

I{DM
i ≥ θ}. (6)

This count is the shaded region to the right of θ in the top panel of Figure 10. In the

bottom panel the area above θ shows the expected proportion of observations in a random
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Figure 9: Comparing the limiting degree DM
i to the iteration of Algorithm A at which i

is classified as an error belonging to ẐA. Later iterations remove low degrees and begin
to introduce false positives (error-free observations misclassified as errors). False negatives

(errors that are missing from ẐA) generally have low degree. The set {DM
i }i∈ẐA is a randomly

censored sample of {DM
j }j∈Z.

sample that have DM
i above θ. This probability is the complementary cumulative distribution

function (CCDF), which we denote as G(θ).26

For a sufficiently high threshold, there is no censoring and the observed count in ẐA

is exactly equal to the count in the uncensored sample. In this range of limiting degrees,

normalizing by the true size |Z| of the sample returns the empirical CCDF. For lower thresh-

olds, the censoring kicks in, and the count we observe is smaller than what would have been

observed without censoring. For a sufficiently low threshold (often 0) dividing by the true

size yields the |ẐA|/|Z|.

The function h
ẐA

(θ)/Z converges to a censored version of the limiting CCDF. Different

types of censoring lead to different shapes of Ḡ. We will assume there is some fixed censoring

threshold, below which Algorithm A censors. The CCDF is then G(θ) until that threshold,

after which it reaches its maximum value of |ẐA|/|Z|. From Figure 10 we know that the type

of censoring we observe is not fixed, but rather random. This strong assumption introduces

bias in our estimates, but given that we do not know the exact nature of the censoring, it

yields reasonable estimation results.

We replace |Z| with a candidate sample size k. Our estimation will find the k ∈
{|ẐA| . . . n/2} that minimizes the loss between the empirical censored CCDF, h

ẐA
(θ)/k, and

the expected censored CCDF Ḡ(θ; k) = min{G(θ), |ẐA|/k}. Figure 11 shows the empirical

26The CCDF is also referred to as the tail distribution or exeedance. As its name suggests, it is the
complement of the more common cumulative distribution function (CDF).
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Figure 10: Comparison between the tail above a threshold θ in the observed censored sample
(top) and limiting density (bottom). The shaded density above θ is G(θ), and the shaded
count above θ is h

ẐA
(θ). The gray bars in the bottom panel show the uncensored sample Z.

When θ is low the censoring kicks in and the censored sample count is less than hZ(θ).

and expected censored CCDFs at different values of k. Each point corresponds to a different

threshold θ; higher thresholds are on the right and result in lower values of both the CCDFs.

At the leftmost point, θ = 0, so Ḡ(0) is the normalized sample count |ẐA|/k, which shrinks as

k increases from |ẐA|. The top panel shows the minimal possible value of k = |ẐA|, and the

bottom panel is the largest possible value k = 0.5n. In between is the graph for k = |Z| the

true value, and k̂B, the estimated value that minimizes the loss.

We use the least absolute deviation loss function. For a sequence of thresholds Θ, the

LAD finds k that minimizes the sum of the absolute value of deviations for each θ ∈ Θ.

Each deviation is defined as the difference between the empirical censored CCDF at θ and
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hẐA(θ)/k

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20 0.25
Threshold θ (DM

i )

ce
n
so

re
d

C
C

D
F

k = 0.5n
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hẐA(θ)/k

Figure 11: The empirical and expected censored complementary cumulative distribution

functions (CCDF) at different candidate sample sizes. The empirical censored CCDF
h
ẐA

(θ)

k

counts how many observations in the censored sample are above the threshold θ and normal-
izes it by k. The expected censored CCDF is Ḡ(θ; k) = min{G(θ), |ẐA|/k}. The top panels

shows the minimal possible k = |ẐA|, while the bottom panel shows the maximum value

0.5n. The second panel shows the estimated k = k̂B and the third panel shows the true
sample size |Z|.
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the expected censored CCDF.

k̂B = arg min
k∈{|ẐA|,...,n/2}

1√
|Θ|

∑
θ∈Θ

∣∣∣∣hẐA(θ)

k
− Ḡ(θ; k)

∣∣∣∣ (7)

Typically Θ is the order statistics of {Di}i∈ẐA . However, when these limiting degrees are

derived through simulation, the values of DM
i are discrete. For this reason, we use the

non-repeating values in the same set. The normalization constant 1/
√
|Θ| ensures efficient

convergence of the estimator.27

Figure 12 shows the minimized function of the estimator at different values of k sec-

tion 3.3. The function has a unique global minimum over the range of possible k, although

in this instance the estimated k̂B = 48 is less than the true |Z| = 54.
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Figure 12: The least absolute deviations loss for different candidate values of k. The leftmost
dashed line corresponds to k = |ẐA|, and the rightmost one is k = 0.5n. The solid line in

the middle corresponds to the estimated k̂B which minimizes the loss. The dashed line in
the middle corresponds to the truce size of the uncensored sample |Z|.

Table 3 shows the results of monte carlo simulations for the estimator from Algorithm B.

We do not see a significant difference in performance for different true preferences or dif-

ferent error rates. The performance for different error distributions changes owing to the

bias introduced by the the censoring assumption. Note that we cannot calculate truncated

normals if they are centered around the true choices. Importantly, increasing the sample size

does not change the performance of the estimator; the bias remains fairly constant.

27Proof forthcoming.
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Performance of Algorithm B Estimation in Simulations

True Preferences
substitute complement asymmetric random

estimate 0.24 0.266 0.228 0.254
(0.05) (0.04) (0.05) (0.05)

bias -0.199 -0.115 -0.239 -0.152
(0.18) (0.15) (0.15) (0.17)

Error Distribution
Uniform FOSD N(σ2 = 15) N(σ2

i = 15%)

estimate 0.266 0.312 NA NA
(0.04) (0.04) (NA) (NA)

bias -0.115 0.04 NA NA
(0.15) (0.14) (NA) (NA)

Sample Size n
25 50 100 200 400 800

estimate 0.266 0.26 0.278 0.266 0.269 0.279
(0.15) (0.12) (0.08) (0.04) (0.04) (0.02)

bias -0.113 -0.134 -0.072 -0.115 -0.103 -0.071
(0.49) (0.41) (0.28) (0.15) (0.14) (0.07)

Error Rate π
π = 0.05 π = 0.1 π = 0.2 π = 0.3 π = 0.4

estimate 0.049 0.09 0.186 0.266 0.353
(0.02) (0.03) (0.04) (0.04) (0.05)

bias -0.023 -0.098 -0.068 -0.115 -0.118
(0.47) (0.28) (0.2) (0.15) (0.13)

Table 3: The estimate and bias averaged over 100 replications are reported. The standard
deviation across replications is below in parentheses. Unless otherwise stated, in each repli-
cation the sample size is n = 200, true preferences are perfect complements, the error rate
π is 0.3, and the contaminating error is uniformly distributed on the exterior of the budget
set. The simulating graph is of size m = 1500. Budget lines are generated randomly as in
Choi et al. (2007a)
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Algorithm B: Estimation of π̂B

Simulate Limiting Error Degree Distribution
inputs : experiment generating function, error distribution

1 for j = 1 . . .m (very large) do
2 Generate an experiment Bj

3 Simulate a mistake µj from Bj

4 Create the graph M, indicating 2-cycles in the simulated errors M

5 Calculate degrees for each j using M, normalized by m
6 return limiting degree distribution{DM

j }j∈M; simulated mistakes {(µj,Bj)}

Simulate Limiting Degrees for ẐA

inputs : observed choices in ẐA, and the simulated errors

7 for i in ẐA do
8 Find how many 2-cycles i forms in (xi,Bi) ∪ {(µj,Bj)}j∈M
9 save the error degree DM

i , normalized by m+ 1

10 return the sample of error degrees {DM
i }i∈ẐA

Derive CCDF

Define Θ, the unique values of {DM
i }i∈ẐA

for θ ∈ Θ do
find G(θ) = 1

m

∑m
j=1 I{DM

j ≥ θ}
find h

ẐA
(θ) =

∑
i∈ẐA I{D

M
i ≥ θ}

return the CCDF G(·) and the empirical count h
ẐA

(·)

Estimate π̂

for k ∈ {|ẐA| . . . n/2} do
find the loss at k per section 3.3

Find k̂ the argument that minimizes the loss return the estimated π = k̂
n
.
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4 Empirics

Now that we have presented the methods, we can apply them to a number of datasets. As

of the writing of this draft I have results for a dataset of individual choices over risky assets

collected in the lab (Choi, Fisman, Gale, and Kariv 2007a). This is the benchmark dataset

which can be used to compare existing indices against results from the estimation procedure

described in section 3.

4.1 Choi, Fisman, Gale, and Kariv (2007a)

In their paper on preferences over uncertainty, Choi et al. collect a rich dataset in the lab

of 47 individuals’ choices. During the experiment each individual participated in 50 decision

rounds. In each round the participant allocated tokens between two arrow securities, X and

Y , each of which had an equal probability of paying out. The allocation was constrained by

a linear budget set, which was generated randomly for each round.

At the end of the experiment one of the rounds was chosen, and the winning arrow

security paid out to the participant at a rate of 2 tokens for every dollar. The budget lines

were chosen to have intercepts between 10 and 100 tokens, with at least one between 50 and

100.28 The variation in slopes captures the trade-off between efficiency and risk; investing

everything in the cheapest security maximizes expected payout; investing equal amounts in

both goods minimizes variance in payout. The steeper the slope, the higher the maximum

expected payout. Since the arrow securities had an equal probability of paying out, the

labels of the arrow securities were arbitrary. In additional to the original 50 observations,

the X and Y labels were swapped and added to the choice dataset, making a total of 100

observations. Details of how this was done can be found in the replication code.

The top panel of figure 13 shows the result of the estimation procedure described in

previous sections. The estimation of π̂B assumes a uniform error distribution on the choices.

The bottom panel shows estimates of Afriat’s CCEI for the subjects in the experiment

(left). The second distribution is what wold have been observed if the choices were drawn

completely uniformly random from the budget set (e.g. with π = 1). In general we find that

most people have error rates between 5% and 14 %.

28Some prices were recalculated to correct rounding errors in the raw data file.
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Min. 1st Qu. Median Mean 3rd Qu. Max. St.
Dev.

π̂A 0.00 0.04 0.08 0.09 0.13 0.42 0.08

π̂B 0.00 0.05 0.10 0.12 0.14 0.50 0.11

Table 4: Summary statistics for the distribution of error rates estimtaed from the Choi et al.
(2007b) data.
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Figure 13: The top panel shows the distribution of estimated error rates across the 47
individuals in Choi et al. (2007a). π̂A is the lower bound from the classifier and π̂B is the
result of the estimator when mistakes are drawn uniformly from the budget set exterior. The
bottom panel shows the distribution on the same individuals for Afriat’s CCEI (left). The
distribution on the bottom right is what would have been observed in terms of the CCEI
had the error rate been 100%.
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Summary and Concluding Remarks

In this paper I address the question of how to separate preferences from error when the

researcher observes a single individual make choices from a sequence of overlapping but non-

identical menus. I develop the observed revealed preference relation, which incorporate error

in choices and sampling variation.

Acyclicity of this relation is equivalent to rationality under certain conditions on the

sampling distribution of the budget sets. I nest the model of classical (deterministic) ra-

tional choice through a dispersion parameter in the choice distribution; when dispersion is

zero the researcher always observes the true choice which is rational. When dispersion is

non-zero, I prove that the probability of observing a rational dataset shrinks to zero with

more observations. I show that the observed revealed preference relation, by nature of its

construction, is a random graph that has a specific dependency structure.

I use the contaminated data model to impose more structure on this graph. This turns

the nonparametric revealed preference relation into a semi-parametric model. I prove that

when the distribution of mistakes is known, this model is identified by the true preferences

and a parameter of error rate π. This π is related to the Houtman-Maks index, which is

a lower-bound estimate. I also show that under models such as this, where choices are

observed with error, Varian’s Index is not robust to differences in preferences, and Afriat’s

index converges to an uninformative lower bound.

In the case of the contaminated data model, I provide a classifier that partially recalls

the errors. I also provide an estimator of π that can correct for the missing errors, as

long as the researcher knows the contaminating error distribution. Taking these methods

to a benchmark dataset of choices over risky assets collected in the lab, I find that most

individuals have an error rate of between 5 and 14%.

There are of course limitations to these methods. Many of the theoretical results rely

on independence of the choice distribution and budget set sampling distribution. They also

take a philosophical stance that the errors affect the choices but not the budget sets. This

assumption is reasonable in the context of lab experiments, but should be applied cautiously

when using observational datasets. There are also some theoretical gaps in this approach.

More investigation is required to prove exactly how and when the classifier works. This

would also help the main limitation of the estimator, namely its bias.

As long as the assumptions on the choice space, budget sampling distribution, and choice

distribution or met, this method can be applied to a variety of large datasets measuring indi-

vidual choices from different menus of alternatives. Unlike other approaches, the methods of

this paper can be applied to discrete and continuous menus of alternatives, opening up the
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potential applications of empirical revealed preference techniques. The classifier is especially

unique in its ability to recover (partially) the errors. These can be correlated with other ob-

servables at the time of the decision, or used to prune the dataset from noise. The estimators

are also interesting in their own right; unlike existing indices they are easily interpretable

and can be compared both across individuals and across choice settings. Further work is

needed to develop statistical properties for these approaches.

More broadly, this project speaks to a deep connection between the theory of revealed

preferences, random graphs, and models of choice with error. The dependency structure

inherent in the observed revealed preference relation carries over as more observations are

collected. With enough observations, it may be possible to construct a limiting graph (or

graphon) on these observations. An interesting line of research naturally follows, asking how

we can we more fully connect between the limiting behavior of an ordering and a utility

function.
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A Negative Results on Existing Goodness-of-Fit In-

dices

A number of existing indices seek to measure “how far” a given dataset is from satisfying

rationality. When choices are drawn from a distribution with dispersion around some rational

true choice, it becomes clear that these indices suffer from a number of undesirable properties.

The following section applies only to the case of choices from linear budget sets in RL
+, since

the most commonly used indices are defined only on this space. As before, the choices have

any distributional form xi ∼ F (·; θ|Bi) where θ are the parameters for the distribution. The

budget sets are defined by normalized price vectors such that Bi = {x ∈ RL
+ : pi · x ≤ 1}.

We will refer only to the price vectors pi moving forward.

Define v to be a vector of length n, where each element vi ∈ [0, 1] captures the amount

by which each budget set i is shifted inwards. We can define R0
v, the perturbed revealed

preference relation, as xiR
0
vxj whenever vipi · xi ≥ pi · xj. When the inequality is strict we

say that xiP
0
vxj.

Definition (GARP v). A dataset Dn satisfies GARP v if there does not exist a sequence

k ∈ (1), ...(K) such that x(1)R
0
vx(2), x(2)R

0
vx(3),..., x(K−1)R

0
vx(K) and x(K)R

0
vx(1), where at

least one of R0
v is strict P 0

v .

The standard definition of GARP (the generalized axiom of revealed preferences) is equiv-

alent to GARP1 and cyclical D-consistency on the Euclidean space with ≥ ordering. As in

Halevy et al. (2018), the most common existing indices can be written as solving for the

maximum of a function of v subject to the data satisfying GARPv. We turn our atten-

tion to three such indices, Afriat’s CCEI (Afriat 1967), Varian’s Index (Varian 1983), and

Houtman-Maks (Houtman and Maks 1985).

All proofs are in appendix B.

A.1 Afriat’s Index

Afriat’s index measures the largest uniform shift necessary such that all observations satisfy

GARPv.

Definition (Afriat’s Index). IA(Dn) = maxv∈[0,1] v such that Dn satisfies GARP v, where v

is a vector of v, of length n.

We are interested in the limiting behavior of Afriat’s index. The first thing to notice is

that additional observations to the dataset can only decrease or maintain the index’s value.
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Lemma 7. Consider a sequence of datasets {Dn}n where each Dn ⊂ Dn+1. Afriat’s index

is weakly decreasing in this sequence, IA(Dn) ≥ IA(Dn+1).

Applying the monotone convergence theorem, we could show that for any sequence of

datasets (incrementally increasing in observations), Afriat’s index converges to a limit. But

we are interested in the nature of this limit when the sequence of datasets is drawn randomly.

It is possible to imagine a very unlucky draw from the budget sampling and choice

distributions which creates a large violation that requires a very small v to break all the

cycles. Because Afriat’s index is a maximum, it is not robust to these potentially rare

events. The worst of these events can be calculated using only the support of F (·, θ|B)

and FB.29 Holding FB fixed, consider two different distributions for choice F . Even if they

have very different dispersion, as long as they are distributed on the same support F , their

Afriat’s index will converge to the same value. This implies that Afriat’s index does not tell

us anything meaningful beyond the support of the distribution F . At the limit, the Afriat’s

index from any choice distribution with equal support will converge to the same value as if

the choices were selected uniformly on the same support.30

Proposition 8. Suppose xi ∼iid F (·, θ|Bi), where F is a generic distribution function with

closed support SF (B). Let the budget sets be generated iid according to a distribution with

closed support SB. Then there exists a Λ < 1 such that IA(Dn) → Λ as n → ∞ almost

surely, where Λ is a function only of the supports SF and SB.

For the proofs in this section we use the fact that each observation (Bi, xi) in Dn is

conditionally independent and identically distributed. This means that each observation is

interchangeable, and the order of observations does not matter.

A.2 Varian’s Index

Unlike Afriat’s index, Varian’s index finds a value vi for each observation and maximizes an

aggregation of all the vi.

Definition (Varian’s Index). IV (Dn) = maxv∈[0,1]n f(v) such that Dn satisfies GARP v,

where f(·) is a normalized aggregator function such as 1
n

∑n
k=1 vk.

Varian’s index is normalized by n and so it does not suffer from the same sensitivity to

outliers as Afriat’s.31 However, Varian’s index does rely on the interaction between the choice

29By support we mean essential support- the largest closed set such that every open set in the complement
has probability zero.

30Equal support of distributions is a sufficient but not necessary condition for the limit to be the same.
In fact, as long as one “end” of the support is identical the limiting value will be the same.

31One common critique of Varian’s index is that for moderate sized datasets it is impossible to calculate
exactly, only approximations exist.

49



distribution’s central tendency and the budget sets’ data generating function. So two choice

distributions can have the same spread (amount of irationality) but different centrality and

they will converge to different values of Varian’s index.

Example 6. Suppose we have two observations, and for ease of exposition suppose there

are two goods L = 2. Fix the two budget sets defined by p and q and let the price vectors

be normalized so p1x1 +p2x2 = 1 and q1y1 + q2y2 = 1 . Define the intersection between these

two as w, not on the 45-degree line. We observe a dataset {(p,x), (q,y)}. If the choices are

such that both py < 1 and qx < 1 hold, then there is a violation of GARP and IV (x,y) =

max{py,qx}. Since choices will always be on the budget exterior set we can rewrite the index

in terms of x1 and y1. IV (x1, y1) = max{
(
p1y1 + p2

q2
(1− q1y1)

)
,
(
q1x1 + q2

p2
(1− p1x1)

)
}

Fixing the price vectors, consider the choices as drawn from a contaminated choice distri-

bution. Let there be a point mass of probability 1−π on the true choices, with a probability

mass π distributed on the budget set exterior ∂B↑p = {x : p·x = 1} and ∂B↑q = {y : q·y = 1}.

𝐱஼
𝐲஼

ℬ୯

ℬ୮

1 − 𝜋

𝜋 𝜋

1 − 𝜋

𝐱ௌ

𝐲ௌ

ℬ୯

ℬ୮

Consider two different underlying preferences: the individual C prefers equal amounts

of both goods (perfect complements), and the individual S prefers only the cheapest good

(perfect substitutes). The figure illustrates the distribution of choices under each of these

two “true” preferences. If we were to compare the expected value of IV , conditioning on p

and q, the difference ES[IV (x1, y1)|p,q]− EC [IV (x1, y1)|p,q] is not zero. In fact, it depends

in magnitude on the underlying preferences C relative to the intersection point w.

The expected value of S is written out below. The first term is the probability that

“there are no GARP violations”; the index in this event is 1. The second term integrates

the index for all combinations of choices that do result in a GARP violation, multiplied by

the probability of such a combination occurring.
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ℬ୯

ℬ୮

𝐱஼
𝛿𝜋

𝛾𝜋

𝑤ଵ

ES[IV (x1, y1)|p,q] =
(
1− δγπ2

)
+

w1∫
x1=0

1/q1∫
y1=w1

δγπ2IV (x1, y1)dy1dx1

The relevant difference between to two distributions is that under C, the location of the

point mass on xC is in the interior of the budget set defined by p. In this case, the probability

of “no GARP violations” decreases by δπ(1 − π), and the expected value when there is a

violation has an additional term owing to the point mass. With some algebra we have

ES[IV (x1, y1)|p,q]− EC [IV (x1, y1)|p,q] = δπ(1− π)

1−
1/q1∫

y1=w1

IV (xC1 , y1)dy1


Since the integral is over points that are involved in a GARP violation, the integral will

be less than 1, so the difference in expected values is strictly positive. Furthermore, the

magnitude of the difference depends explicitly on the location of xC relative to w1. J

Generally, the expected value of Varian’s index, conditional on the collection of price

vectors Pn, is

EF [IV (Dn)|Pn] =

∫
∂B↑

1

∫
∂B↑

2

· · ·
∫
∂B↑

n

IV ({xi}ni=1,Pn)dFxn . . . dFx2dFx1.

Consider an arbitrary observation i, which for ease of notation we will take to be the first

observation i = 1. The exterior of i’s budget can be divided into subsets Xk
1, where each

subset is overlapped by a different collection of budget sets. Holding the distribution of all

other observations 2, . . . , n fixed, and applying the law of iterated expectation, the expected

value of Varian’s index is
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EF [IV (Dn)|Pn] =
∑
k

PF1(x1 ∈ Xk
1)

∫
Xk1

ĨV (x1,Pn)dF|Xk1x1.

The function F|Xk1 is the distribution of x1 conditional on being in subset k. The function

ĨV is the conditional expectation over all other budget sets

ĨV (x1,Pn) =

∫
∂B↑

2

· · ·
∫
∂B↑

n

IV ({x1 ∪ xi}ni=2,Pn)dFxn . . . dFx2.

Assuming the prices are normalized, the value of Varian’s index is always pi · xj ∈ [0, 1]

for some i and j. This means that for all x1 ∈ Xk
1, ĨV (x1,Pn) is either constant in x1, or

a linear combination of the elements of x1. By definition, all x1 ∈ Xk
1 will have the same

function value ĨV (x1,Pn), meaning it will be integrable over the region Xk
1.

Now consider two different distributions of choice, F and G, that are otherwise the same

except for on budget set 1, where they have the same measure of dispersion, but different

centrality. Then there is some k such that PF1(x1 ∈ Xk
1) > PG1(x1 ∈ Xk

1) and there is some

j where the sign is reversed.

EF [IV (Dn)|Pn]− EG[IV (Dn)|Pn] =
∑
k

PF1(x1 ∈ Xk
1)

∫
Xk1

ĨV (x1,Pn)dF|Xk1x1−

PG1(x1 ∈ Xk
1)

∫
Xk1

ĨV (x1,Pn)dG|Xk1x1

A.3 Houtman-Maks Index

The Houtman-Maks Index finds the fewest number of observations that need to be removed

in order to leave an acyclic graph. Under Assumption 5 there is some probability of cycles

between two errors in which case the Houtman-Maks will be a lower-bound for the amount

of error in a contaminated choice model. See discussion of estimation with an unknown error

distribution in Section 3.2.

B Proofs

Proposition 2

Proof. 1. If dispersion is 0, then P(Dn is rational) = 1.
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From Assumption 2 if dispersion is 0, the observed choice is the deterministic true choice.

From Assumption 7, the true choice is rationalizable by some true preference relation %∗

which extends D. By construction Q0
n satisfies D-consistency and we can apply Theorem 1

from Nishimura, Ok, and Quah (2017) to get rationality.

2. If dispersion is greater than 0, then P(Dn is rational) < 1.

Consider the event of generating a sequence of k ≥ 2 budget sets Bk = {B1, . . . ,Bk} for

which the following hold: B1 ∩ B
↓
2 6∈ {∅,B1}, . . . ,Bk ∩ B

↓
1 6∈ {∅,Bk}. Call the probability

of such a sequence PB(Bk). From Assumption 5 we have that PB(Bk) > 0. Define the

conditional probability Pxi(xi ∈ Bi ∩ B
↓
j |Bi,Bj) = pij. From Assumption 8, conditional on

the k budget sets, pij ∈ (0, 1) for all i, j ∈ {1, . . . , k}.
By conditional independence of the observed choices (Assumption 4), the probability of

a cycle in Q0
n on Bk is a product of probabilities, so P(Q0

n has cycle on Bk|Bk) = p12 · · · pk1.

By the law of iterated probability, and independence of the budget sets (Assumption 3),

P(Q0
n has cycle on Bk) = p12 · · · pk1 · PB(Bk). Since all component probabilities are greater

than 0, and a cycle on Bk is just one type of many, P(Q0
n not acyclic) > 0. Using Assump-

tion 6 we can apply Proposition 1, and get that P(Dnis rational) < 1.

3. As n→∞, if dispersion is greater than 0, then P(Dn is rational)→ 0.

Without loss of generality, suppose n = 2K for some integer K. We can partition any

dataset of size n into K partitions of datasets with 2 observations, which we index with

k as Dn =
⋃K
k=1 D

k
2. We construct an observed revealed preference relation for the k-

th dataset of two observations, which we denote Qk
2. Note that if Q0

n is acyclic then it

has no cycles of length 2, so we can bound the probability from above P(Q0
n acyclic) ≤

P(Q0
n has no cycles of length 2). If there are no 2-cycles in Q0

n then every Qk
2 is acyclic. Let

a2 ≡ P(Q0
2 is acyclic). Then by independence we have that

P(Q0
n acyclic) ≤ (a2)K . (8)

From item 2. above, when dispersion is not zero, a2 < 1. Taking the limit as n → ∞, we

get that (a2)K → 0, so we have that P(Q0
n acyclic) → 0. Applying Proposition 1, we have

that P(Dnis rational)→ 0.

Proposition 4

Proof. Take θ = (R∗, π) and θ̃ = (R̃∗, π̃). The contrapositive of “only if” follows from the

definition of the first moment: if θ = θ̃ then Eθ,Fµ|B [R] = Eθ̃,Fµ|B [R].
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We prove “if” by contradiction. Suppose θ 6= θ̃ and Eθ,Fµ|B [R] = Eθ̃,Fµ|B [R]. Assumptions 9

and 10 and the equality of expectations imply

(1− π)R∗ + π Eµ|B[E] = (1− π̃)R̃∗ + π̃ Eµ|B[E]. (9)

(i) R∗ = R̃∗. In this case, (9) implies (π− π̃)R∗ = (π− π̃)Eµ|B[E]. Since θ 6= θ̃ but R∗ = R̃∗,

it must be that π 6= π̃. Since π − π̃ is therefore not equal to 0, we have that R∗ = Eµ|B[E].

From Assumption 12, there is a pair (k, l) such that ēkl 6∈ {0, 1}. Since r∗kl is an element of

{0, 1}, then r∗kl 6= ēkl, and we have a contradiction.

.

(ii) R∗ 6= R̃∗. Then ∃i, j such that r∗ij 6= r̃∗ij. Note that this is not necessarily the same (k, l)

from above. Equation (9) implies that

(1− π)r∗ij + π ēij = (1− π̃)r̃∗ij + π̃ ēij.

Both R∗ and R̃∗ are {0, 1}-valued matrices. Suppose without loss of generality that r∗ij = 0

and therefore that r̃∗ij = 1. Then the above equation implies that π ēij = 1 − π̃(1 − ēij). If

the marginal probability ēij = 1, then π = 1, which contradicts Assumption 11. If ēij = 0,

then π̃ = 1 which is also a contradiction. Otherwise, ēij ∈ (0, 1) and

π̃ =
1− π ēij
1− ēij

.

Since π, π̃ are both probabilities, the equality above implies that π = π̃ = 1 which is a

contradiction.

Proposition 6

Proof. The error degree d̄Zi is an average of |Z| indicators sji of a 2-cycle between i and j

for any j ∈ Z. Conditional on a realized pair (µi,Bi), sji ⊥ ski for any j 6= k 6= i ∈ Z.

Also conditional on (µi,Bi), the probability of an indicator sji being 1 is exactly Di. We

can apply the strong law of large numbers to get almost sure convergence of d̄Zi to Di as

|Z| → ∞.
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Lemma 7

Proof. Consider the dataset of size n where each choice was made from a linear budget set

defined by a price vector p; Dn = {(pi,xi)}ni=1. Let v∗ ∈ arg maxv∈[0,1] v s.t. Dn satisfies

GARP v. Now suppose we have another observation, yielding Dn+1 = {Dn; (pn+1,xn+1)}.
Let w∗ ∈ arg maxw∈[0,1]w s.t. Dn+1 satisfies GARPw. Consider w′, a vector of n elements

each with value w∗. The original dataset Dn satisfies GARPw′ . Thus, by definition of v∗ as

a maximizer, it must be the case that v∗ ≥ w∗. This means that IA(Dn) ≥ IA(Dn+1).

Proposition 8

Proof. Define SF (p) as the support of the choice distribution F conditional on a budget set

defined by p. Throughout this proof we will use m as a fixed sample size and n as the sample

size which will increase to infinity. Given the set of prices vectors supported by SB, pick the

combination of prices and choices that yield a dataset D∗m of size m with the lowest possible

index value which we call λm:

λm = min
{pi∈SB}mi=1

min
{yi∈SF (pi)}mi=1

IA ({yi,pi})

For any sample size m the maximum cycle is of length m, so it is possible that different

sample sizes have different minima. We will first show that the sequence of values of λm is

weakly decreasing and convergent. We will then use this convergence to prove almost sure

convergence of IA(Dn) to the same limit. Note that λm is a function only of the supports

SF and SB.

(I) ∃Λ ∈ [0, 1) such that λn → Λ. Consider the dataset D∗m that is the minimizer yielding

λm, and the minimizer D∗m+1 yielding λm+1. If D∗m ⊂ D∗m+1 then λm+1 ≤ λm by Lemma 7.

If D∗m 6⊂ D∗m+1 then it must be the case that λm+1 ≤ λm. Else one could construct a dataset

D
′
m+1 = D∗m ∪ (pi,xi) where (pi,xi) ∈ D∗m. By construction IA(D

′
m+1) = λm, so λm < λm+1

violates D∗m+1 being a minimizer. Therefore λn is monotonically decreasing.

By the monotone convergence theorem, there exists a Λ ∈ [0, 1] such that λn → Λ. By

Assumptions 5 and 8, there is a large enough n such that λn < 1 so Λ ∈ [0, 1). Since λn is a

function only of the supports SF and SB, Λ is also a function only of the supports.

(II) Λ ≤ lim infn→∞ IA(Dn). By construction, λn ≤ IA(Dn) for all n and any Dn. Therefore

limn→∞ λn ≤ lim infn→∞ IA(Dn). From convergence of λn, limn→∞ λn = Λ.
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(III) lim supn→∞ IA(Dn) ≤ Λ almost surely. Fix some m. For any choice of a sequence of

dataset Dm, with iid drawn observations, let the probability of the index falling ε > 0 away

from the minimum λm be

P (IA(Dm) ≥ λm + ε) = 1− α (10)

where α is some function of ε.

Now consider n = Km where K is an integer much larger than 1. Let Dk
m be one

of K randomly selected (without replacement) subsets of Dn of size m. The value vm =

mink IA(Dk
m) will break cycles of length at most m. Either Dn satisfies GARPvm or there are

additional cycles in Dn that require a lower value of v to break, meaning that by Lemma 7,

IA(Dn) ≤ mink IA(Dk
m). By definition, P

(
mink IA(Dk

m) ≥ b
)

= P
(
∀k, IA(Dk

m) ≥ b
)
. The

set of Dk
m can be thought of as k independent draws of size m, since observations are iid

(Assumptions 3 and 4) and each dataset k is sampled randomly without replacement. So

the probability that a dataset of size n falls ε away from λm can be bounded from above by

(P(IA(Dm) ≥ λm + ε))K .

P (IA(Dn) ≥ λm + ε) ≤ (1− α)K

This means that summing over all possible sample sizes

∞∑
n=2

P (IA(Dn) ≥ λm + ε) ≤
∞∑
n=2

(1− α)bn/mc

The sum on the right hand side is finite, so we apply the Borel-Cantelli lemma. The event

where ‘{IA(Dn) ≥ λm + ε} occurs finitely many times’ thus has probability of 1. This means

that with a large enough sample size n0, for any n ≥ n0 it will be the case IA(Dn) ≤ λm + ε.

This applies for any εn = 1
n
, of which there are countably many. Taking the limit in n, the

sequence εn converges to zero and we have

lim sup
n→∞

IA(Dn) ≤ λm a.s.

Then by (I), if we take the limit as m→∞, since m only appears on the RHS,

lim sup
n→∞

IA(Dn) ≤ lim
m→∞

λm = Λ a.s.

(II) and (III) imply that IA(Dn)
a.s.→ Λ.
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C Identification Example

This section contains an example with n = 2 that illustrates how the distribution of R is

identified by θ = (R∗, π).

Example 7. Consider the case of n = 2. The deterministic R∗ belongs to a feasible set

F =

{[
1 1

1 1

]
,

[
1 0

1 1

]
,

[
1 1

0 1

]
,

[
1 0

0 1

]}
.

The marginal probabilities of the error columns ei are derived from a known error distribu-

tion. They are constants and denoted Pµ1 (e21 = 1) = a, Pµ2 (e12) = b. The expected value

of the completely random graph E is

E[E] =

[
1 b

a 1

]
.

Conditional on θ = (R∗, π), applying Assumptions 9 and 10 gives the first moment of R.

Eθ[R] = (1− π)

[
1 r∗12

r∗21 1

]
+ π

[
1 b

a 1

]

=

[
1 (1− π)r∗12 + πb12

(1− π)r∗21 + πb21 1

]
.

Now take any θ̃ = (R̃∗, π̃) such that θ 6= θ̃. What conditions are necessary for Eθ[R] = Eθ̃[R]?

The two cases outlined in the proof are: (i) R̃∗ = R∗, and (ii) R̃∗ 6= R∗. Working through

both of these will result in the cases that are eliminated by Assumptions 11 and 12. Note

that in this example Assumption 12 implies that at least one of a or b are in (0, 1).
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D Review of Graph Notation

A graph G = (V,E) is a collection of vertices V and edges E. In a directed graph an edge

is an ordered pair (k, i), where k, i ∈ V. For convenience we label the vertices with integers

{1, . . . , N} where N = |V|. The graph G can also be represented as an adjacency matrix A

where an element aki is equal to 1 whenever the edge (k, i) belongs to the graph. If the edge

(k, i) doesn’t belong to the graph then adjacency matrix stores aki = 0. In an undirected

graph, the edge pair is unordered and A is a symmetric adjacency matrix.

An induced subgraph of G on a set of vertices W is denoted G [W]. It is the graph on

vertices W with edges {(k, i) ∈ E : k, i ∈W}. The induced subgraph excludes any edges that

connect to vertices outside of W. If G’s adjacency matrix is A, then A [W] is the adjacency

matrix of the induced subgraph which includes only the rows and columns corresponding to

vertices W.

In an undirected graph, the (normalized) degree of a vertex i is the number of edges to

which it is connected, normalized by the number of vertices in the graph. This is usually

referred to as the normalized degree, but since we only use the normalized version in this

paper it will simplify exposition to refer to it simply as the degree. It can be calculated by

taking the sum on the i-th column of the adjacency matrix and dividing by N .

d̄i =
1

N

N∑
k=1

aki.

Note that the degree d̄i is always a number in [0, 1]. The degree on the induced subgraph of

W is called the degree on W. It is denoted for any i ∈W by

d̄Wi =
1

|W|
∑
k∈W

aki.

A graph is acyclic if there does not exist a sequence of edges {(1), (2), . . . , (k)}. Acyclicity

of the adjacency matrix A means there is no sequence of indices {(1), (2), . . . , (k)} such that

a(1)(2) = 1; a(2)(3) = 1; . . . ; a(k)(1) = 1. Any induced subgraph of an acyclic graph is also

acyclic.
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