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Abstract

The behavior of dynamically consistent agents who follow through

with any ex ante optimal plan cannot be distinguished from the be-

havior of Bayesians. The notion of dynamic semi-consistency allows

for models in which different ambiguity attitudes generate different

predictions while at the same time keeping the normatively appealing

tenet that agents follow through with ex ante optimal pure strategies.

Semi-consistent agents do, however, not follow through with all ex ante

optimal mixed strategies, as they do not update their preferences upon

learning independent randomization outcomes. If players are dynami-

cally semi-consistent, the equilibria of games with different ambiguity

attitudes may differ substantially. If we complement the assumption

of ambiguity aversion with the assumption of dynamic consistency, the

equilibrium sets of games with ambiguity averse agents coincide with

the equilibrium sets of Bayesian games. While the standard revela-

tion principle for mechanism design applies in full force if agents are

dynamically consistent a modification is required for semi-consistent

agents.
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1 Introduction

Do models with different assumptions on ambiguity attitudes generate dif-

ferent predictions? An event is ambiguous for an agent he does not know

its probability. To describe the agent’s ambiguity attitude fix a set of in-

different bets on such ambiguous events. The agent is ambiguity neutral if

he is indifferent between all objective mixtures over the bets in this set. He

exhibits ambiguity aversion if he strictly prefers to hedge over some of these

bets. Conversely he exhibits a liking of ambiguity if he strictly prefers the

original bets to some of mixture over them.

If agents are dynamically consistent in the sense that they follow through

with all their ex ante optimal plans then ambiguity attitudes are irrelevant.

Fix prediction of a model with dynamically consistent agents, who may show

any attitude towards ambiguity. Then this prediction can be replicated by an

alternative model with expected utility maximizing agents that is otherwise

identical to the original model. All dynamically consistent behavior looks

like that of expected utility maximizers.

However, dynamic consistency without ambiguity neutrality only holds

if the agent overturns his preferences upon learning some outcomes of the

randomization device. So dynamic consistency clashes with the assump-

tion that the randomization device is independent. Typically learning some

event E does not affect an agent’s preferences over acts that are conditioned

on events which are independent on E. In line with this interpretation of

the independence of the randomization device, dynamically semi-consistent

agents never overturn their original preferences upon learning independent

randomization events. Except for this difference dynamic consistency and

semi-consistency impose the same requirement that agents follow through

with their plans. I show that and how different ambiguity attitudes generate

different predictions if agents are semi-consistent.

Agents learn signals and set out plans a that specify and action for each

signal. Agents may, in addition, use independent and objective randomiza-

tion devices to decide which plan to adopt. A complete plan (c-plan) maps

any outcome of his randomization device to a plan that then maps signals to

actions. With these two layers of uncertainty the agent faces two opportu-
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nities to deviate from his c-plan. At any randomization outcome the agent

has to decide whether to stick with the plan set out by his c-plan for the

given randomization outcome. Upon learning his signal the agent then has

to decide whether to choose the action his c-plan foresees for the given signal

and randomization outcome.

Preferences govern all of the agent’s choices. The agent’s ex ante prefer-

ences guide his choice of a c-plan. Upon learning the randomization outcome

E the agent chooses an optimal plan a according to this E-conditional pref-

erences. His conditional preferences given E and his signal determine which

action to choose.

Different normative principles imply different relations between ex ante

and conditional preferences. The principle of dynamic consistency requires

that agents follows through with ex ante optimal plans. The agent is dynami-

cally consistent if the prescription of an ex ante optimal c-plan for some event

is optimal according to the agents conditional preferences for that event. I

impose throughout that agents are dynamically consistent with respect to

the signals they learn. However there is a second appealing normative prin-

ciple for conditional preferences given outcomes of the randomization device:

independence. The independence of the randomization device of all pay-

off relevant events (including the agent’s signals) entails a different relation

between ex ante and conditional preferences. Learning the outcome of the

independent randomization device should not overturn the agent’s ex ante

preference over any two plans (that may in turn be conditioned on his sig-

nals).

If the agent is Bayesian the two principles do not conflict. In fact both

generate the same conditional preferences for randomization events: there is

no outcome of the (independent) randomization device for which the agent’s

prior on all payoff relevant events differs from his posterior. If the agent

is not a Bayesian the two principles may generate two different families of

conditional preferences. To see this consider the Ellsberg paradox. An agent

may bet on the color of a ball drawn from an urn that contains 10 red and

black balls in unknown proportion. The agent wins 1 if a ball of the named

color is drawn, otherwise he gets nothing. The Ellsberg paradox consists in

the agent’s strict preference for a lottery m according to which he wins 1− ε
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with probability one half and otherwise gets nothing. No expected utility

maximizer would make this choice. Raiffa [16] then argues that we should

not see anyone make this choice. Instead of choosing m any agent should use

a fair coin to decide which of the two bets to play. By doing the agent wins

1 with probability of one half - no matter the proportion of black and red

balls in the urn.

In terms of the present terminology Raiffa [16] suggests that the c-plan

for which the agent chooses to bet on black (b) if the coin comes up heads

(H) and to bet on red (r) if the coin comes of tails (T ) is ex ante optimal

in the set of all lotteries on m, b, and r. To follow through with his ex

ante optimal c-plan, b needs to be ranked (weakly) above m according to the

agent’s conditional preference given heads. So dynamic consistency requires

the agent’s ex ante preference of m over b to be overturned upon learning

heads. The independence of the coin, in contrast, requires that the agent

keeps his ex ante preferences over m, b, and r.

To define the notion of dynamic semi-consistency we need to consider

updating with respect to randomization events. To facilitate this analysis

the agent’s randomization devices have to be modelled via an algebra on the

state space. Modelling the agent’s choice space as a set of Anscombe-Aumann

that use objective randomization devices would impose by fiat that agent’s

may commit to any randomization. In Theorem ?? I show that the choices

of a dynamically semi-consistent agent can be represented as the optimal

choice from a subset of all Anscome Aumann acts. This subset is such that

the agent only assings positive probability to optimal pure plans. Theorem

?? shows how to represent the choices of dynamically semi-consistent agents

via restricted choices sets of Anscombe-Aumann acts.

The second part of the paper shows how the behavior of dynamically

semi-consistent agents differs from that of Bayesians. Following Theorem ??

I represent the

Theorems 2 shows that the behavior of dynamically consistent agent can-

not be distinguished that of a Bayesian. this observational equivalence does

not apply to the case of weakly dynamically consistent agents. and 3 Section

8 embeds Theorems 2 and 3 into a game theoretic context. Games with in-

complete information are observationally equivalent to Bayesian games with
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non-common priors if all players are strongly dynamically consistent (Theo-

rem 4). Conversely, the game theoretic context may amplify the substantial

difference between the behavior of weakly dynamically consistent agents and

expected utility maximizers. Considering mechanism design I compare the

outcomes that are implementable with dynamically consistent agents and

with expected utility maximizers. I first show (Theorem 6) that the intro-

duction of ambiguous communication into standard mechanism design prob-

lems, keeping all else fixed, does not change the set of implementable social

choice functions. The preceding result holds for strong as well as for weakly

dynamically consistent behavior. If we additionally modify the standard

setup to allow for social choice functions that not only depend on the agent’s

types but also on the outcomes of ambiguous randomization devices, then

ambiguity aversion makes a difference. Theorem 7 shows that ambiguous

communication can in this case be used to increase the set of implementable

choice functions if agents are weakly dynamically consistent.

The examples that demonstrate an observational difference between weakly

dynamically consistent agents that are or are not ambiguity neutral all involve

the most well-studied model of preferences in which agents violate ambigu-

ity neutrality. All claimed observational differences hold for the case that

the agent has a maxmin expected utility representation following Gilboa and

Schmeidler [6].

The results contrast sharply with the existing literature on applied game

theoretic models involving ambiguous signals or ambiguous communication

which often draws surprising an interesting conclusions from the assumption

of dynamic inconsistencies. In the context of mechanism design Bose and

Renou [3] show that the use of ambiguous communication devices vastly in-

creases the set of implementable choice functions when the agents responses

to such communication are dynamically inconsistent. Ellis [7] shows that

dynamically inconsistent choices in Condorcet model with ambiguity averse

citizens may overturn the classical result that information aggregates cor-

rectly in the limit. Kellner and Le Quemet [10] show that strict Pareto

improvements can be obtained in cheap talk games if the receiver’s responses

to the sender’s messages are dynamically inconsistent. In contrast I show

that even the assumption of dynamically consistent ambiguity averse agents
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may lead to novel predictions in games with incomplete information and in

mechanism design.

2 Decision Problems

There is a finite set of outcomes X and state space Ω which is endowed with

an algebra Σ. The agent’s preference, defined over Σ-measurable Anscombe-

Aumann acts F : Ω→ ∆X,1 can be decomposed into two parts: an expected

utility preference over constant acts and a preference % over utility valued

acts. The agent weakly prefers the act F : Ω → ∆X to the act F ′ : Ω →
∆X if u ◦ F % u ◦ F ′, where the expected utility u : ∆X → R represents

the agent’s preferences over constant acts. To save on notation, I directly

consider utility valued Σ-measurable acts f : Ω → R with f : = u ◦ F for

some F : Ω → ∆X. The agent’s preference % is transitive, complete and

monotonic in the sense that f � f ′ implies f � f ′ for any two utility valued

acts f, f , where f � f ′ holds if and only if f(ω) > f ′(ω) for all ω ∈ Ω.2 If %
satisfies some further axioms3, it has an expected utility representation with

U(f) =
∫
ω∈Ω

f(ω)dπ(ω) where π is a Σ-measurable probability on Ω. In this

case the agent is a Bayesian with prior π.

The agent has to choose an action a from a finite action set A. The

function G : A×Ω→ ∆X maps any action together with a state to a lottery

over outcomes. The corresponding utility valued function is g : = u ◦ G :

A × Ω → R with g(a, ω) = u(G(a, ω)) for all (a, ω) ∈ A × Ω. Any action

1The set ∆S is the set of all lotteries on the finite set S.
2A preference R on acts F : Ω → ∆X can represented via such a % on utility valued

acts if R is complete, transitive, monotonic, risk independent, and risk continuous. The

preference R is monotonic if F (ω)RF ′(ω) for all ω ∈ Ω implies FRF ′ for any F, F ′ : Ω→
∆X. It is risk independent if pRq implies αp + (1 − α)rRαq + (1 − α)r for all α ∈ (0, 1)

and all constant acts p, q, r ∈ ∆X. It is risk continuous if for any sequences (pn)∞n=1 and

(qn)∞n=1 of constant acts in ∆X with lim pn = p and lim qn = q and pnRqn for all n we

have pRq. Since R is transitive, complete, risk independent and risk continuous, then the

restriction of R to constant acts ∆X has by the von-Neumann-Morgenstern Theorem an

expected utility representation u : ∆X → R. Since R is monotone there exists a preference

% on the set of all utility valued acts such that FRF ′ holds if and only if u ◦ F % u ◦ F ′.
3Anscombe and Aumann [] show that the preference has an expected utility represen-

tation if the preference is in addition assumed to be continuous and independent.
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a induces a R-measurable act g(a, ·) : Ω → R, where R ⊂ Σ is the finite

partition of payoff relevant events on Ω. So g(a, ·) maps two states ω, ω′

in the same event σ ∈ R to g(a, ω) = g(a, ω′) : = g(a, σ).4

The agent may condition his choice of an action a on his information

which is described by a finite information partition Q ⊂ Σ on Ω. At

state ω the agent learns the signal (type) θ with ω ∈ θ ∈ Q. Letting his

action depend on his information, the agent chooses a Q-measurable plan

a : Ω → A. The set of all such (pure) plans is A. Since A and Q are

both finite, the set of plans A is finite as well. Any plan a ∈ A induces a

Q ∧ R-measurable act g(a(·), ·) : Ω → R that maps any ω to g(a(θ), σ) for

ω ∈ θ ∩ σ.

The agent may also condition his choice on the outcome of an objective,

rich, and independent universal randomization device which is modelled

via the algebra Σr ⊂ Σ. This randomization device is objective in the sense

that restricted to Σr-measurable acts the agent’s preference has an expected

utility representation with prior πr. It is rich in the sense that any lottery p

on the set of all possible plans A can be represented via a set of sets {E(a) |
a ∈ A} ⊂ Σr with πr(E(a)) = p(a) for all a ∈ A and {E(a) | E(a) 6= ∅} a

partition of Ω.

By choosing a subset of pure plans A ⊂ A and a partition Pp : = {E(a) |
a ∈ A} ⊂ Σr the agent induces a Σr×Q-measurable complete plan (c-plan)

p : Ω → A with p(ω) = a(ω) for ω ∈ E(a) for all ω ∈ Ω. In this case Pp

is the (particular) randomization device used the generate the c-plan p,

which in turn induces a Σr ∧Q ∧R-measurable act g(p(·), ·) : Ω→ A.

The universal randomization device Σr is weakly independent in the

sense that for any c-pan p the act g(p(·), ·) : Ω→ A is indifferent to theQ∧R-

measurable act f : Ω → R with f(ω) : =
∑

E(a)∈Pp πr(E(a))g(a(ω), ω) for

4If F (ω) = F (ω′) holds for all ω, ω′ in some event E, then F (E) denotes F (ω) for

ω ∈ E. Any function that maps the entire domain to the same constant x and any lottery

that assigns probability 1 to the outcome x are denoted x. A partition Q′ is finer than

another partition Q if any event Q is the union of some events in Q′, in this case Q is

coarser than Q′. The meet Q ∧ Q′ of two partitions Q and Q′ is the coarsest partition

that is finer than both Q and Q′.
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all ω ∈ Ω (where Pp is the partition associated with p).5 This condition

reflects the indifference between a compound act that determines the plan

a to be followed in the event E(a) and a compound act which maps any

event θ∩σ ∈ Q∧R to the expectation of g(a(θ), σ) given that a occurs with

probability πr(E(a)). This indifference holds if no event E(a) is correlated

with any signal θ or payoff relevant event σ. Weak independence also entails

(a form of) continuity: the agent is indifferent between g(p(·), ·) and g(p′(·), ·)
if the randomization devices Pp and Pp′ used to generate these acts only differ

on events that have zero probability according to πr.

If the agent is a Bayesian then πr is the Σr-marginal of his prior π and

the randomization device is weakly independent if and only if any two events

E ∈ Σr and θ ∩ σ ∈ Q ∧R are independent according π

To maximally avoid the issue of conditional preferences and plans given

null events, I assume that the agent only uses randomization devices Pp that

contain no null events. So E(a) ∈ Pp implies πr(E(a)) > 0; the agent either

never adopts a or he adopts it with positive probability. The set of all c-plans

that satisfy this criterion isR(A). This restriction is without loss of generality

in the sense that for any partition Pp : = {E(a) | a ∈ A} with πr(E(a)) = 0

for some a ∈ A there exists another partition Pp′ : = {E ′(a) | a ∈ A′} such

that πr(E ′(a)) > 0 for all a ∈ A′ and g(p(·), ·) ∼ g(p′(·), ·).6 To further

restrict the scope of null events, assume that the agent is not indifferent

between two Q-measurable acts f, f ′ : Ω → R with f(θ∗) 6= f ′(θ∗) for some

θ∗ ∈ Q and f(θ) = f ′(θ) for all other θ ∈ Q. So the agent considers it

possible that any of the signals θ ∈ Q may arise.

5Recall that acts f are derived from more basic acts F that map to lotteries ∆X. The

agent is an expected utility maximizer with ∆X. In the present case we can calculate the

utility of the compound lottery in which G(a(·), ·) is played with probability πr(E(a)) as

the expectation of the utility g(a(·), ·) = u(G(a(·), ·)) given that the probability of each

g(a(·), ·) is πr(E(a)).
6To see this fix some a∗ for which πr(E(a∗)) > 0, define E′(a∗) as the union of E(a∗)

and all E(a) with πr(E(a)) = 0. For all a 6= a∗ with πr(E(a)) > 0 let E′(a) : = E(a). Note

that the set of all such E′(a) partitions Ω. The acts g(p′(·), ·) and g(p(·), ·) are respectively

indifferent to the Q∧R-measurable plans f and f ′ with f(ω) =
∑

a∈A π
r(E(a))g(a(ω), ω)

and f ′(ω) =
∑

a∈A π
r(E′(a))g(a(ω), ω) for all ω ∈ Ω. Since πr(E(a)) = πr(E′(a)) holds

for each a ∈ A, the acts f and f∗ are identical. By transitivity g(p′(·), ·) and g(p(·), ·) are

indifferent.
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Before learning the agent chooses a randomization device Pp to generate

a c-plan p ∈ R(A). Observing the randomization outcome E the adopts

a plan a ∈ A. Upon learning his type θ the agent then chooses an action

a ∈ A. The agent is sophisticated in the sense that he correctly predicts his

own conditional preferences and choices. Having observed his signal θ and

the randomization outcome E the agent chooses an action a that is optimal

with respect to his conditional preferences given θ∩E. Knowing the outcome

of the randomization device but before learning θ the agent chooses a plan a.

Being sophisticated the agent will only consider the set of plans a that set out

actions a that he will indeed adopt upon learning θ. The agent will choose

a plan in this set that is optimal according to his E-conditional preferences.

Before learning anything the agent chooses an optimal c-plan. For p to be

an optimal c-plan it has to be a %-best c-plan among all c-plans p that set

out plans p(E) and actions p(E ∩ θ) that the agent will indeed adopt upon

learning the randomization outcome E and the signal θ.

3 Semi-Consistency

The agent is dynamically consistent if all his conditional preferences prescribe

for him to stay with any ex ante optimal c-plan p ∈ R(A). For a dynamically

semi-consistent agent this condition only applies to pure plans: all his con-

ditional preferences prescribe for him to stay with an ex ante optimal pure

plan a ∈ A. However, a dynamically semi-consistent agent’s preferences over

pure plans A do not change with with his observation of any randomization

outcome E ∈ Σr. The present article only refers to one type of consistency:

dynamic consistency. I therefore drop the modifier “dynamic” in the sequel.

To explicitly define consistent conditional preferences one has to be care-

ful to leave room for different ambiguity attitudes. Machina [14] and Mc-

Clennen [15] showed that dynamic consistency implies ambiguity neutrality

if conditional preferences are defined for all possible events and if conditional

preferences only depend on the conditioning events. There are two paths out

of this dilemma. One is to let conditional preferences not only depend on

the conditioning event but also on the ex ante plan. The other is to require

dynamic consistency only on particular families of events. To allow for both,
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I only define conditional preferences for the events the agent may learn and

let these conditional preferences depend on the agent’s ex ante plan. The

agent’s conditional preference given E ∩ θ and given that he set out with

the plan p is denoted %p
E∩θ. Conditional preferences are defined for all events

E ∩ θ with E ∈ Σr and θ ∈ Q.

Fix any ex ante optimal p ∈ R(A) together with the corresponding par-

ticular randomization device Pp. The conditional preferences of a consistent

agent are then such that p remains optimal upon learning any E(a) ∈ Pp:

g(p(·), ·) % g(p(·), ·) for all p ∈ R(A) and some p ∈ R(A)⇒
g(a(·), ·) %p

E(a) g(a(·), ·) for all E(a) ∈ Pp and all a ∈ A

Conversely a dynamically semi-consistent agent does not update his con-

ditional preferences over pure acts A upon learning any outcome of the ran-

domization device:

g(a(·), ·) % g(a(·), ·) for some a and all a ∈ A ⇔
g(a(·), ·) %p

E g(a(·), ·) for all E ∈ Σr with πr(E) > 0 and all p ∈ R(A)

Consistent and semi-consistent agents both follow through with any op-

timal plan a they adopt upon learning the outcome of the randomization

device.

g(a(·), ·) %p
E(a) g(a(·), ·) for some E(a) ∈ Pp and all a ∈ A ⇒

g(a(θ), ·) %p
E(a)∩θ g(a, ·) for all θ ∈ Q and all a ∈ A.

This condition states that if a is optimal according to the agent’s conditional

preference given the agent’s ex ante c-plan a and the event E(a) that this

c-plan prescribes the choice of a, then the agent prefers the action a(θ) ∈ A
to all other actions a ∈ A upon learning θ.

The order of the resolution of uncertainty does not matter: if p is an

optimal c-plan for a semi-consistent agent who learns the outcome of the
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randomization device and his signal in one order, then p is an optimal choice

for a semi-consistent agent who learns in the other order. To see this consider

an optimal c-plan p for a semi-consistent agent who learns his signal θ before

the outcome of the randomization device. The agent must then be willing

to follow through with p and he must be %-prefer g(p(·), ·) to all g(p(·), ·)
that are induced by a c-plan p he is willing to carry out. Since the agent

is consistent with respect to θ he in turn follows through with any c-plan

p that only prescribes actions p(ω) with g(p(θ ∩ E(a)), ·) %p
θ g(a, ·) for all

a ∈ A, θ ∈ Q and E(a) ∈ Pp. The latter statement holds since any c-plan p

that foresees for a given θ actions that are optimal according the the agent’s

conditional preference %p
θ will be followed through given that learning E(a)

entails no further updating of the agent’s preference. In sum p must be %-

optimal among all acts p with g(p(θ∩E(a)), ·) %p
θ g(a, ·) for all a ∈ A, θ ∈ Q

and E(a) ∈ Pp.

But the same condition holds for a semi-consistent agent who first learns

the outcome of the randomization device and then his signal. We saw above

that g(p(θ ∩ E(a)), ·) %p
θ∩E(a) g(a, ·) must hold for all a ∈ A, θ ∈ Q and

E(a) ∈ Pp for any c-plan p such an agent chooses. Since %p
θ∩E(a) and %p

θ

describe the same preference, the same necessary condition has to hold for p

to be an optimal choice for a semi-consistent agent. For both orders a semi-

consistent agent may choose the %-best plan that satisfies this condition.

4 A simplified representation

Universal objective randomization devices are typically not modelled via a

partition Σr but rather as set of lotteries ∆A over pure plans A. A lottery q

the induces theQ∧R-measurable utility valued act
∑

a∈A q(a)g(a(·), ·) : Ω→
R. A lottery q ∈ ∆A is equivalent to a c-plan p ∈ R(A) if q(a) = πr(E(a))

holds for all E(a) ∈ Pp, the particular randomization device associated with

p. The lottery q is ex ante optimal in some set S if
∑

a∈A q(a)g(a(·), ·) %∑
a∈A q(a)g(a(·), ·) holds for all q ∈ S.

Theorem 1 shows that the choice set R(A) can without loss of generality

be replaced with ∆A if the agent consistent. The definition of ∆A also leads

to a simpler representation of the choice problem of a semi consistent agent.
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A weakly consistent agent chooses the best lottery in ∆A that only has ex

ante optimal pure plans in its support.

Theorem 1 a) A c-plan p ∈ R(A) is optimal for a consistent agent if and

only if it is equivalent to an ex ante optimal lottery q in ∆A.

b) A plan p ∈ R(A) is optimal for a semi-consistent agent if and only if

it is equivalent to an ex ante optimal lottery q in ∆A, where A ⊂ A is the

set of all acts a with g(a(·), ·) % g(a(·), ·) for all a ∈ A.

Proof First note that the weak independence of Σr implies that g(p(·), ·) is

indifferent to
∑

a∈A q(a)g(a(·), ·) : Ω→ R if p is equivalent to q. The richness

of Σr implies there is an equivalent p ∈ R(A) for every q ∈ ∆A.

a) Fix any ex ante optimal plan p ∈ R(A), so g(p(·), ·) % g(p(·), ·) holds

for all p ∈ R(A). Since the agent is consistent, we have g(a(·), ·) %p
E(a)

g(a(·), ·) and g(a(θ), ·) %p
E(a)∩θ g(a, ·) for all E(a) ∈ Pa, all a ∈ A, all θ ∈ Q

and all a ∈ A. So the agent is willing to carry out all choices prescribed by

p. As a sophisticated agent he knows this, and p ∈ R(A) is optimal for the

consistent agent if and only if it is ex ante optimal. Now let q ∈ ∆A be

equivalent to p. To see that q is an ex ante optimal lottery suppose there

was another q ∈ ∆A that induced a strictly preferred act
∑

a∈A q(a)g(a(·), ·).
Letting p be equivalent to q we then obtain the contradiction

g(p(·), ·) ∼
∑
a∈A

q(a)g(a(·), ·) �
∑
a∈A

q(a)g(a(·), ·) ∼ g(p(·), ·).

b) Let p ∈ R(A) be an optimal choice for a semi-consistent agent. Let

q ∈ ∆A be equivalent to p. Since πr(E(a)) > 0 implies that g(a(·), ·) %
g(a(·), ·) for all a ∈ A and since q(a) = πr(E(a)) holds for all a ∈ A, we

have q ∈ ∆A. To see that q is ex ante optimal in ∆A suppose it was not, so

suppose that there exists a q ∈ ∆A such that
∑

a∈A q(a)g(a(·), ·) is strictly

preferred to
∑

a∈A q(a)g(a(·), ·). For p equivalent to q we obtain

g(p(·), ·) ∼
∑
a∈A

q(a)g(a(·), ·) �∑
a∈A

q(a)g(a(·), ·) ∼ g(p(·), ·).
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Since q ∈ ∆A πr(E(a)) = q(a) > 0 only holds for a ∈ A. Therefore p is

among the possible choices for a semi-consistent agent and we obtain a con-

tradiction. The proof that any ex ante optimal lottery q ∈ ∆A is equivalent

to the optimal choice p of a semi-consistent agent is very similar and therefore

omitted. �

Theorem 1 shows that modelling the agent’s choice set as ∆A is not

without loss of generality. The assumption that the agent may choose any

lottery over actions upon learning his type θ hides an assumption of dynamic

consistency. To excavate this assumption, I did model the agents choice set

as R(A) which describes the universal randomization device as an explicit

partition Σr. In part b) of Theorem 1 I show that one can model the choice

set of a semi-consistent agent as a subset of ∆A that depends on the agent’s

preferences over pure acts A. By the arguments in the preceding section

Theorem 1 applies whether the agent learns his signal before or after he

learns the outcome of the randomization device.

5 Consistency and Observational Equivalence

Bayesian behavior is indistinguishable from any other type of consistent be-

havior. In Theorem 2 I fix an arbitrary decision problem and show that any

optimal c-plan of a consistent agent is optimal for some Bayesian with the

same utility u for constant acts.

Theorem 2 Let q ∈ ∆A be an optimal lottery for a consistent agent, then

q is optimal for some Baysian with the same utility u over constant acts.

Proof Since the partitions Q and R are both finite we can represent any

act
∑

a∈A q(a)g(a(·), ·) as the vector
(∑

a∈A q(a)g(a(θ), σ)
)
θ∈Q,σ∈R in Rm with

m : =| Q | × | R |. The set S : = {
∑

a∈A q(a)g(a(·), ·) : q ∈ ∆A} is convex

hull of all vectors {g(a(θ), σ)}θ∈Q,σ∈R. Therefore S is convex and compact.

Let f : =
∑

a∈A q(a)g(a(·), ·). The set {f | f � f} is convex and has

f is on its boundary. The monotonicity of % implies that {f | f � f} is

disjoint from S. Since f is also on the boundary of S there exists a separating

hyperplane C : = {f | fπ = fπ∗} with f ′π∗ ≤ fπ∗ < fπ∗ for all f ′ ∈ S

13



and all f � f . Since C ∩ {f | f � f} = ∅, π∗(θ ∩ σ) ≥ 0 holds for all

θ ∩ σ ∈ Q ∧ R and π∗(θ∗ ∩ σ∗) > 0 for some θ∗ ∩ σ∗ ∈ Q ∧ R and π∗ can

be normalized to be a Q∧R-measurable probability. A Bayesian with prior

π∗ assigns the expected utility fπ∗ to the utility valued act f ∈ S and is

maxmizing his expected utility by choosing q. �

Theorem 2 extends the Raiffa [16] critique of the Ellsberg paradox to

the case in which agents may learn some information before taking actions.

The separating hyperplane argument is, of course, not new. Most recently

Kuzmics [13] extended this argument to a wide range of decision problems

involving ambiguity. Kuzmics [13] reviews the long pedigree of this type of

argument.

6 Maxmin expected utilities

All of the upcoming constructive results on semi-consistent behavior are

couched in the most widely used decision theoretic model of ambiguity averse

preferences. A representation U of % with U(f) = minπ∈C
∑

ω∈Ω f(ω)π(ω)

for C some convex and compact set of Σ-measurable priors π on Ω is a

maxmin expected utility (MMEU) following Gilboa and Schmeidler [6]. Re-

calling that % is defined over utility valued acts andy MMEU preference is

summarized by a set of beliefs C. Preferences% with a MMEU representation

are ambiguity averse in the sense that f % f ′ implies αf + (1− α)f ′ % f ′

for any two Σ-measurable acts f, f ′ : Ω→ R and all α ∈ (0, 1). A preference

% with a MMEU representation is Bayesian if C is a singleton. This case

obtains if and only if % is ambiguity neutral which in turns holds if f ∼ f ′

implies αf + (1−α)f ′ ∼ f ′ for any two Σ-measurable acts f, f ′ : Ω→ R and

all α ∈ (0, 1).

The conflict between ambiguity aversion and the existence of consistent

conditional preferences that only depend on conditioning events for all possi-

ble events, that was discussed in Section 3 is relevant for MMEU preferences:

If C represents %, and if consistent conditional preferences %E are defined

for all non-null E ∈ Σ, then C must be a singleton {π}. Epstein and Schnei-

der [5] mapped a first path out of this dilemma. They showed that MMEU
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preferences % permit a set of consistent conditional preferences {%E}E∈P for

all E in some partition P if C is rectangular with respect to P . This latter

condition in turn holds if C can be represented as

C = {π : π |P∈ C |P and π(· | E) ∈ C(· | E) for all E ∈ P}

where C |P is the set of all of P-marginals π |P of some prior in C (C |P : =

{π |P | π ∈ C}) and a for each E ∈ P C(· | E) is the set of E-updates π(· | E)

for some π ∈ C (C(· | E) : = {π(· | E) | π ∈ C}). In that case full Bayesian

updating of C yields a family of consistent conditional preferences, where

each of these preferences %E has a maxmin expected utility representation

with C(· | E) the set of all Bayesian updates of C with respect to E as the

set of beliefs.

Hanany and Klibanoff [8] laid out the second path out of the dilemma.

Letting conditional preferences%p
E not only depend on the conditioning event

E but also on the ex ante choice p, they defined families of consistent condi-

tional maxmin expected utility-preferences%p
E for all non-null events E ∈ Σ.7

The assumption that the agent is not indifferent between twoQ-measurable

acts f, f ′ : Ω→ R with f(θ∗) 6= f ′(θ∗) for some θ∗ ∈ Q and f(θ) = f ′(θ) for

all other θ ∈ Q, made in Section 2, translates to 0 < π(θ) for all θ ∈ Q and

all π ∈ C the set of beliefs defining the MMEU representation of %.

7 Semi-Consistency: Observational Difference

We already know from the discussion of the Raiffa critique in the Introduc-

tion, that semi-consistent behavior of ambiguity averse agents differs from

consistent behavior. In Theorem 3 I show that the integration of semi-

consistent behavior into models where agents may indeed learn something

(Q not a singleton) requires no mathematical acrobatics. Even in simple de-

cision problems with learning the semi-consistent behavior is observationally

different from consistent behavior, which is in turn by Theorem ?? indistin-

guishable from that of Bayesians.

7In Hanany and Klibanoff [8] the conditional updates also depend on the agent’s ex

ante choice set. Since this choice set is fixed here, I omit this dependence here.
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A decision problem is simple if it has the following three features. The

agent has a MMEU preference, ambiguity only enters the decision problem

via the agent’s signals and his dynamically consistent preferences for all pos-

sible signals depend only on his signals. So the decision problem is simple

if % is represented by a set of beliefs C. All priors π ∈ C share the same

R-marginal π∗ |R. The agent knows the probability distribution π∗ |R of

all payoff relevant events, without any information he is an expected util-

ity maximizer. Finally C is rectangular with respect to Q. The family of

consistent conditional preferences (%θ)θ∈Q can be derived via full Bayesian

updating of C.

Theorem 3 The set of optimal choices of a semi-consistent agent in a sim-

ple decision problem may be disjoint from the set of optimal choices of a

consistent agent.

Example 1 proves Theorem 3.

Example 1 Fix a state space Ω∗. Say R = {λ, ρ} is the partition of pay-

off relevant events, Q = {L,M,R} is the information partition and A : =

{l,m, r} the set of actions. Define the set of beliefs C∗ : = {π | π(λ ∩ L) =

.5−α, π(λ∩M) = α, π(ρ∩M) = .3−α, π(ρ∩R) = .2 +α, α ∈ [.1, .2]}. and

note that π(λ) = π(ρ) = 1
2

and π(M) = .3 hold for each π ∈ C∗. The follow-

ing three tables represent the set of beliefs C∗ as parametrised by α ∈ [.1, .2]

and the agent’s utility g(a, σ) for all a ∈ {l,m, r} and σ ∈ {λ, ρ}.

L M R

λ .5− α α 0

ρ 0 .3− α .2 + α

the set of priors C∗

l m r

λ 21 10 0

ρ 0 10 21

utilities u(g(a, ω))

Note that C∗ is rectangular with respect to Q: we can represent C∗ as

{π | π |Q∈ C∗ |Q and π(· | θ) ∈ C∗(· | θ) for all θ ∈ Q} with C∗ |Q=

{(.5 − α, .3, .2 + α) | α ∈ [.1, .3]} where the three components of any vector

(.5 − α, .3, .2 + α) stand for the probabilities of the events L, M , and R,

C∗(· | L) = {1}, C∗(· | M) = [1
3
, 2

3
], and C∗(· | R) = {0} as the sets of
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conditional probabilities of λ given the signal θ ∈ {L,M,R}. A unique plan

in A maximizes minπ∈C
∑

θ∈Q,σ∈R π(θ ∩ σ)g(a(θ), σ):

max
a∈A

min
π∈C

∑
θ∈Q,σ∈R

π(θ ∩ σ)g(a(θ), σ) =

max
a(M)∈A

min
α∈[.1,.2]

(
(.5− α)g(l, λ) + αg(a(M), λ) +

(.3− α)g(a(M), ρ) + (.2 + α)g(r, ρ)
)

=

.7× 21 + .3
(

max
a(M)∈A

min
β∈[ 1

3
, 2
3

]
(βg(a(M), λ) + (1− β)g(a(M), ρ)

)
=

.7× 21 + .3
(

min
β∈[ 1

3
, 2
3

]
(βg(m,λ) + (1− β)g(m, ρ)

)
.

The first equality follows from the definition of C∗ together with the

optimality of l and respectively r in the events L and R (no matter which

action is chosen in the event M). The second equality recognizes that the

agent obtains utility 21 = g(l, λ) = g(r, ρ) if either L or R occurs which

happens with probability .7 = .5 − α + .2 + α. With the complementary

probability .3 the agent faces a basic Ellsberg urn type problem, where β =
α

α+.3−α . In this problem the agent is best off choosing m which yields the

same utility in the two payoff relevant events. So a with a(L) = l, a(M) = m,

and a(R) = r is the agent’s unique most preferred pure plan and we have

A = {a}. The lottery that assigns probability 1 to a is consequently the

unique optimal lottery in ∆A. In sum a is the unique optimal choice of a

semi-consistent agent.

However, for any Bayesian with the same utility over constant acts ∆X

either a′ or a′′ with a′(M) = l, a′′(M) = r, and a′(θ) = a′′(θ) = a(θ) for

θ ∈ {L,R} is strictly preferred to a.

8 Games with incomplete information

There is a set of n players N . As above there is a state space Ω endowed with

an algebra Σ and a set outcomes is X. All players preferences are defined

over Σ-measurable act F : Ω → R. Each player has an expected utility
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ui : ∆X → R for constant acts and complete, transitive, and monotonic

preference %i over utility valued acts ui ◦ F : Ω→ R. Since different players

i and j may derive different utilities ui(p) and uj(p) from the same lottery

p ∈ ∆X over outcomes, I do not directly consider utility valued acts in this

section. Instead each agent’s preference over acts F : Ω→ ∆X is represented

as a tuple (ui,%i).
The action set of player i is Ai. The function G : A × Ω → ∆X maps

action profiles a ∈ A : = A1 × · · · × An and states to lotteries over out-

comes. Each action profile a induces a R-measurable act G(a, ·) : Ω→ ∆X,

where R ⊂ Σ is the finite partition of payoff relevant events. Player i may

condition his choice of an action ai ∈ Ai on his signal which is modelled

via player i’s information partition Qi. The meet of all players’ information

partitions is Q : = Q1 ∧ · · · ∧ Qn. A pure strategy ai : Ω → Ai for player

i is a Qi-measurable function that determines an action ai for each possible

type of player i. The set of player i’s pure strategies is Ai. The set of all

pure strategy profiles a is A. The players may also condition their choices

on the outcomes of objective, rich and independent universal randomization

devices. Following Theorem 1 player i’s set of mixed strategies is repre-

sented as ∆Ai. A profile of mixed strategies q = (q1, . . . , qn) induces the act∑
a∈A q(a)G(a(·), ·) where q(a) = q1(a1)× . . . qn(an) for all a ∈ A.8

To summarize a game Γ: =
(
(Qi, Ai, ui,%i)i∈N , G

)
consists of a set of

players N , an information partition Qi, and a set of actions Ai for each player

i ∈ N . Player i’s preferences (ui,%i) are defined over acts F : Ω → ∆X.

The function G : A×Ω→ ∆X maps action profiles a ∈ A and states ω ∈ Ω

8To extend Theorem 1 to games we need to additionally assume that the player’s

universal randomization devices are independent of each other. Say the algebra Σr
i ⊂ Σ

models player i’s rich, weakly independent, and objective universal randomization device

and say agents may choose Σr
i ∧ Qi-measurable acts pi : Ω → Ai associated with the

particular randomization devices Ppi ⊂ Σr
i . A profile of such strategies p : = (p1, . . . , pn)

induces the act G(p(·), ·) : Ω→ ∆X. If we complement the assumptions made in Theorem

1 by the assumption that the agent’s randomization devices are independent of each other,

this act is indifferent to the act
∑

a∈A q(a)G(a(·), ·) with qi being equivalent to Ppi for

each i. Given that all players’ randomization devices are objective, all players share the

same prior πr on all randomization device events. The players’ randomization devices are

the independent of each other if πr(E1 ∩ · · · ∩En) = πr(E1)× · · · × πr(En) holds for any

collection of events Ei ∈ Σr
i .
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to lotteries over outcomes ∆X.

A strategy profile q is a consistent equilibrium if for each agent i qi is

consistent optimal choice given q−i, so∑
a∈A

q(a)ui(G(a(·), ·)) %i
∑
a∈A

q′i(ai)q−i(a−i)ui(G(a(·), ·))

for all qi ∈ ∆Ai and all i ∈ N . The notions of games Γ and of consistent

equilibrium proposed here are identical to the notions proposed by Azrieli

and Teper [2]. The existence result of Azrieli and Teper [2] therefore applies

to consistent equilibria: If each preference %i over Q ∧ R-measurable util-

ity valued acts is continuous and ambiguity averse then Γ has a consistent

equilibrium.

Similarly the profile q is a semi-consistent equilibrium if for each agent

i qi is a semi-consistent optimal choice given q−i. For any q∗−i define Ai ⊂ Ai
as the set of optimal pure best replies for agent i, so ai ∈ Ai if and only if∑
a−i∈A−i

q−i(a−i)ui(G((ai, a−i)(·), ·)) %i
∑

a−i∈A−i

q−i(a−i)ui(G((ai, a−i)(·), ·))

holds for all ai ∈ Ai. Then qi is a semi-consistent optimal plan given q−i if

qi ∈ ∆Ai and if∑
a∈A

q(a)ui(G(a(·), ·)) %i
∑
a∈A

q′i(ai)q−i(a−i)ui(G(a(·), ·))

holds for all q′i ∈ ∆Ai.
If all players are Bayesians then Γ =

(
(Qi, Ai, ui,%i)i∈N , G

)
is a Bayesian

game. Taking into account the agent’s priors πi a Bayesian game Γ is denoted(
(Qi, Ai, ui, πi)i∈N , G

)
. If in addition all players have the same prior πi = π

for all i and some π, then Γ is a Bayesian game with a common prior.

Since a mixed strategy qi is best reply for a Bayesian if and only if each pure

strategy in its support is a best reply, the sets sets of consistent and semi-

consistent equilibria in any Bayesian game coincide. Any such equilibrium is

a Bayes Nash equilibrium - whether the players share a common prior or

not.
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Theorem 4 Fix a game Γ =
(
(Qi, Ai, ui,%i)i∈N , G

)
If q is a consistent equi-

librium in Γ, then q is a Bayes Nash equilibrium in some
(
(Qi, Ai, ui, πi)i∈N , G

)
.

Let q, q∗ be two consistent equilibria, then there may be no
(
(Qi, Ai, ui, πi)i∈N , G

)
Bayesian game in which both q and q∗ are equilibria.

Proof Fix a consistent equilibrium q and an agent i∗ ∈ N . Consider agent

the decision problem of agent i∗ given by his action set Ai∗ , his information

partition Qi∗ his preferences %i∗ over utility valued acts and the function

g : Ai×Ω→ R and g(ai, ω) : =
∑

a−i∈A−i
ui(G((ai, a−i(ω)), ω)) for all ω ∈ Ω.

Since q is a consistent equilibrium qi is an optimal choice for a consistent agent

in the problem P . By Theorem 2 there exists a Σ-measurable prior πi∗ on Ω

such that qi∗ ∈ ∆Ai∗ is an optimal choice for i∗. Since agent i∗ was chosen

arbitrarily we can construct such a prior πi for every agent i and q is a Bayes

Nash equilibrium of the game
(
(Qi, Ai, ui, πi)i∈N , G

)
.

Now consider the game Γ =
(
(Qi, Ai, ui, C)i∈N , G

)
with N = {1, 2},

A1 = {t, b}, A2 = {l, r}, Q1 = Q2 the trivial partition. There are two payoff

relevant λ and ρ. Players are maxmin expected utility maximizers. Both hold

the same set [.1, .9] of beliefs that that λ occurs. The payoffs ui(G(a, σ)) are

given as follows:

l r

t 2, 2 0, 5

b 5, 0 2, 2

states ω ∈ λ

l r

t 2, 2 5, 0

b 0, 5 2, 2

states in ω ∈ ρ

To see that (t, l) and (b, r) are both consistent equilibria of Γ, note that

either agent obtains a utility of 2 in either one of these profiles. If agent 1

deviates from t to q1 with q1(t) < 1 while agent 2 plays l agent 1 obtains

the utility minπ(λ)∈[.1,.9] q1(t)2 + (1 − q1(t))(π(λ) × 5 + (1 − π(λ)) × 0) < 2.

By symmetric arguments neither player has a profitable deviation in neither

one of the two profiles. Now suppose (t, l) and (b, r) were also equilibria in

some Bayesian game
(
(Qi, Ai, ui, πi)i∈N , G

)
(which may not have a common

prior). For (t, l) to be an equilibrium π1(λ) cannot exceed 2
5

But for (b, r) to

be an equilibrium π1(λ) must be at least 3
5
, a contradiction. �

While Theorem 2 shows that any consistent equilibrium q of some game

is observationally equivalent to an equilibrium of a Bayesian game (with
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non-common priors) that is otherwise identical to the original game, the

stronger result that q is the Bayes Nash equilibrium of a Bayesian game

with a common prior does not hold. In fact this stronger result would im-

ply that any Bayes Nash equilibrium of a game with non-common priors is

the equilibrium of a Bayesian game with a common prior. Aumann’s [1]

Example 2.3 shows that this implication does not hold: Consider the game

Γ =
(
(Qi, Ai, ui, πi)i∈{1,2}, G

)
where R = {ρ, λ}, N = {1, 2}, neither player

obtains any information (Q1 = Q2 = {Ω}), A1 = {t, b}, and A2 = {l, r},
agents 1 and 2 respectively assign probabilities 1

4
and 3

4
to state λ (π1(λ) = 1

4

and π2(λ) = 3
4
) and payoffs ui(G(a, ω)) are given by the following table.

l r

t 0, 8 3, 3

b 1, 1 0, 0

states ω ∈ λ

l r

t 0, 0 3, 3

b 1, 1 8, 0

states in ω ∈ ρ
Aumann [1] shows that while (t, r) is an equilibrium in G there exists no

game
(
(Qi, Ai, ui, π)i∈{1,2}, G

)
that is identical to Γ, except for the common

prior π in which (t, r) is an equilibrium.9

Since the single agent decision problems studied in Section 5 can be in-

terpreted as games with only one agent | N |= 1, Theorem 3 immediately

yields the following corollary pertaining to the observational difference be-

tween semi-consistent equilibria and Bayes Nash equilibria.

Corollary 1 Fix a game
(
(Qi, Ai, ui,%i)i∈N , G

)
together with a semi-consistent

equilibrium q. Then q need not be a Bayes Nash equilibrium in any game(
(Qi, Ai, ui, πi)i∈N , G

)
.

To see how a strategic context may amplify the observational difference

between Bayesians and semi-consistent agents consider the following Example

2 which incorporates the decision problem defined in Example 1 into a game

with more than 1 player.

9Interestingly there are games
(
(Qi, Ai, ui, C)i∈{1,2}, G

)
in which all are maxmin ex-

pected utility maximizers with the same set of beliefs C that have (t, r) as a (strongly and

weakly consistent) equilibrium: C : = [ 14 ,
3
4 ] is an example.
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Example 2 Building on Example 1 define a game Γ =
(
(Qi, Ai, ui, C∗)i∈N , G

)
with N = {1, 2}, R = Q1 : = {λ, ρ}, and Q2 : = {L,M,R}. Both agents

hold the set of beliefs C∗. Let A1 = {t, b, Safe} and A2 = {l,m, r}. The

player’s utilities ui(G(a, λ)) and ui(G(a, ρ)) for all a ∈ A and the two payoff

relevant events λ and ρ are as follows.

l m r

t 1, 21 10, 10 1, 0

b 0, 0 10, 10 0, 21

Safe 2, 0 2, 0 2, 0

states ω ∈ λ

l m r

t 0, 21 10, 10 0, 0

b 1, 0 10, 10 1, 21

Safe 2, 0 2, 0 2, 0

states ω ∈ ρ

The pure strategy profile a with a1(λ) = t, a1(ρ) = b, a2(L) = l, a2(M) =

m, and a2(R) = r is a semi-consistent equilibrium. Given a1 player 2’s

optimization problem is identical to the one studied in Example 1, and a2 is

a semi-consistent best reply to a1.

To see that a1 is a best reply to a2 first note that agent 1 obtains the

utility 3.7 for the given strategy profile:

min
α∈[.1,.2]

(
u1((t, l), λ)(.5− α) + u1((t,m), λ)α +

u1((b,m), ρ)(.3− α) + u1((b, r), ρ)(.2 + α)
)

=

min
α∈[.1,.2]

(
1(.5− α) + 10α + 10(.3− α) + 1(.2 + α)

)
= 3.7

If agent 1 plays Safe when he sees the signal λ his utility is at most minα∈[.1,.2] 2(.5−
α) + 2α+ 10(.3−α) + 1(.2 +α) = 2.4 given that his payoff u1((Safe, a2), σ)

equals 2 and given that 10 and 1 are his maximal payoffs when agent 2 re-

spectively plays m and r. So agent 1 should not play Safe if he is of type λ,

by symmetry he should not play Safe if he is of type ρ either. Fix a strategy

a′1 with a′1(ω) 6= Safe for all ω. Given that u1((a1,m), ω) = 10 holds if

a1 ∈ {t, b} agent 1’s maxmin utility at the profile (a′1, a2) can be calculated

as

min
α∈[.1,.2]

(
u1((a1(λ), l), λ)(.5− α) + 10× .3 + u1((a′1(ρ), r), ρ)(.2 + α)

)
=

min
α∈[.1,.2]

u1

(
((a1(λ), l), λ)(.5− α) + 3 + u1((a′1(ρ), r), ρ)(.2 + α)

)
.
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Since u1((t, l), λ) = u1((b, r), ρ) = 1 > u1((b, l), λ) = u1((t, r), ρ) = 0 this

expression is uniquely maximized at a1. Since a1 and a2 are unique pure best

replies against each other, a is a semi-consistent equilibrium.

To see that a is not a Bayes Nash equilibrium in any
(
(Qi, Ai, ui, πi)i∈N , G

)
consider player 2’s action a2(M) = m in the case that he observes M . If

π2(λ | M) ≥ 1
2

he is better off playing l; If π2(λ | M) ≤ 1
2

he is better off

playing r. So there is no prior π2 for which a2 is a best reply to a1.

The above example uses the strategic context to amplify the impact of

ambiguity aversion already identified Example 1. Player 1 is happiest if

player 2 chooses m while he himself chooses t or b. If player 1, does not

go for his safe option, but instead plays the the only other undominated

actions given his signals, then player 2 faces the decision problem defined in

Example 1. Given his ambiguity aversion and semi-conistency he sometimes

chooses m, the action which levels out all ambiguity. If it is not sufficiently

likely for player 2 to choose m then player 1 withdraws to his safe action.

The ambiguity levelling choice m has no appeal to player 2 if he is Bayesian.

Given that a Bayesian player 2 will never play m, Safe is player 1’s unique

best reply to any optimal action of a Bayesian player 2. While players 1 and

2 respectively obtain maxmin utilities of 3.7 and .7 × 21 + .3 × 10 = 14.7

under q in
(
(Qi, Ai, ui, C∗)i∈N , G

)
, they do obtain the utilities (2, 0) in any

equilibrium of any Bayesian game
(
(Qi, Ai, ui, πi)i∈N , G

)
.

9 Mechanism Design

Keeping the state space Ω, the algebra Σ, the partition of payoff relevant

events R, and X fixed, a mechanism design problem D is defined as a

collection
(
(Qi, ui,%i)i∈N , H

)
. As in the definition of a game, there is a set

N of agents. Agent i has the information partition Qi on Ω and a preference

(ui,%i) on Σ-measurable acts F : Ω → ∆X. There is a finite set of social

choices Y and the function H : Y × Ω → ∆X maps each social choice

y and state ω to a lottery H(y, ω) over outcomes X. The social choice y

induces the R-measurable act H(y, ·) : Ω→ ∆X. A social choice yb is very

bad if each agent prefers H(y(·), ·) to H(yb, ·). A social choice function
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scf : Ω → ∆Y maps the state space Ω to the set of all lotteries over social

choices. The social choice function is deterministic if it maps each ω to a

social choice y (degenerate lottery).

A mechanism M : A×Ω→ ∆Y sets out an action set Ai for each agent

and maps any action profile a ∈ A and state ω ∈ Ω to a lottery over social

choices M(a, ω) ∈ ∆Y . The design problem D and the mechanism M induce

the game Γ = ((Qi, Ai, ui,%i)i∈N , G) where the function G : A × Ω → ∆X

is defined such that G(a, ω) =
∑

y∈Y (M(a, ω)(y))H(y, ω). So G(a, ω)(x) the

probability of outcome x at state ω at the strategy profile a is the expected

probability of H(y, ω)(x) given that the social choice y is drawn from the

distribution M(a, ω).

The mixed strategy profile q ∈ ∆A induces the social choice function

scf : Ω → ∆Y with scf(ω) =
∑

a∈A q(a)M(a(ω), ω) for all ω ∈ Ω. The

mechanism M consistently (semi-consistently) implements the social

choice function scf in D if the game has a consistent (semi-consistent) equi-

librium q that induces scf . A mechanism M̂ : B × Ω → ∆Y is a direct

revelation mechanism if Bi is the set Qi of agent i’s types. Pure strategies

in the game induced by M̂ in D are denoted b ∈ B, the set of mixed strate-

gies is ∆B. The truthtelling strategy ti ∈ ∆Bi assigns probability 1 to the

pure truthtelling strategy θi ∈ B that maps any ω to the agents type θi at

ω (so θi(ω) = θi if ω ∈ θi). The revelation principle, which states that a

social choice function is implementable if and only if it is implementable via

a direct revelation mechanism only holds with some modifications:

Theorem 5 Fix a mechanism design problem D =
(
(Qi, ui,%i)i∈N , H

)
and

a social choice function scf : Ω→ ∆Y .

a) If scf is consistently implementable, then scf is consistently imple-

mentable via a direct revelation mechanism.

b) If scf is semi-consistently implementable, then scf need not be semi-

consistently implementable via a direct revelation mechanism.

c) If a pure strategy profile semi-consistently implements scf , then scf is

semi-consistently implementable via a direct revelation mechanism.

The proof of parts a) and c) adapts the from the proof for the revelation

principle with expected utility maximizers to the case that does not require
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ambiguity neutrality. This part of the proof is in the Appendix. Part b) is

shown by the following variation of the Ellsberg paradox.

Example 3 Let X = {w, l}, where w stands for winning and l for loosing,

let Y = {b, r,mid} representing the choices of betting on black, red or a

known odds bet. Let there be just one agent, so the design problem with

a maxmin expected utility can be represented as D : = (Q, u, C,H). Let

Q : = {ν, β} describe the agent’s information and let there be two payoff

relevant events so R = {B,R} where B and R respectively stand for a black

and a red ball being drawn. The agent’s set of beliefs C : = {(1
4
, 1

4
, 1

4
−

α, 1
4

+ α) | α ∈ [.1, .2]}, where any vector of probabilities π ∈ C stands for

(π(ν ∩ B), π(ν ∩ R), π(β ∩ L), π(β ∩ R)). So under C the agent of type ν

assigns probability 1
2

to B and R. The agent of type β is not sure with which

probability B ad R occur. The agent’s utility over lotteries over winning and

loosing (∆X) is such that u(w) = 1 and u(l) = 0 and I represent any p ∈ ∆X

by p(w) ∈ [0, 1]. The function H : Y × Ω → ∆X is such that H(b, B) = 1,

H(r, R) = 1, H(b, R) = 0, H(r, B) = 0, and H(mid, ω) = .49 for all ω ∈ Ω.

Denoting the elements of ∆Y as two component vectors, with the un-

derstanding that these two components represent the probability of b and

r, the scf : Ω → ∆Y with scf(ν) = (1
2
, 1

2
) and scf(β) = (0, 0) is weakly

consistently implementable in D. To see this consider the mechanism M :

A×Ω→ ∆Y that directly lets the agent choose from the set Y , so A : = Y

and M(y, ω) = y for all ω. The game induced by M in D amounts to a classi-

cal Ellsberg decision problem: the agent can choose any lottery over b, r, and

mid. The numbers are chosen such that the agent of the ambiguity neutral

type ν is happy to choose the lottery (1
2
, 1

2
) over b and r, whereas the ambi-

guity averse type β has (0, 0) as his only weakly consistent optimal choice.

So scf which coincides with this plan a is semi-consistently implementable

in the mechanism.

Now suppose that scf was semi-consistently implementable via any truth-

telling mechanism ({ν, β}, M̂). Note first that M̂ : {ν, β} × Ω → ∆Y must

be such that M̂(ν, ω) = (1
2
, 1

2
) and M̂(β, ω) = (0, 0) for scf to be induced

by the truth-telling strategy profile in the game induced by ({ν, β}, M̂) in

D. But the agent of type β then prefers to announce ν, and scf is not

implementable.
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The logic that underlies the standard revelation principle goes as follows:

Suppose some social choice function scf is implemented by some mechanism.

Then we may construct another mechanism in which the agents directly re-

port their types to the designer who then executes the equilibrium strategies

for the agents in the old mechanism. Telling the truth then is optimal given

that all other agents tell the truth, since the situation in which all agents

tell the truth is equivalent to the situation in which all agents follow the

equilibrium strategies. This equivalence however depends on the fact that

agents choose lotteries if and only if each of the pure choices they randomize

over is an optimal choice. The crux is that this equivalence need not hold

for a semi-consistent agent.

In the example the semi-consistent agent of type β is ambiguity averse:

he would like to choose a 50/50 mixture over b and r. But, being only semi-

consistent, he is not able to choose this lottery. He knows that he would

not follow through with it, given that mid is also available. So he has to

resign himself to the lottery mid. However, any direct revelation mechanism

implementing a social choice function in which the agent of type ν obtains a

50/50 lottery on b and r has to map the announcement of ν to that lottery.

Such a mechanism then eliminates type β’s commitment problem. If the

agent of type β announces that he is of type ν he receives his most preferred

lottery on {r, b,mid} and the social choice function cannot be implemented.

While a mechanism ((Ai)i∈N ,M) may induce an extensive form game in

which agents sequentially take actions, Lemma ?? shows that any strongly

consistently implementable choice function is also strongly consistently im-

plementable in a mechanism in which agents simultaneously choose their

actions. It is moreover without loss of generality to identify these action

spaces with the agents information partitions.

Can ambiguous mechanisms make a difference? To address this questions

I impose some further conditions to align the present model as closely as

possible with the standard model. Ambiguity then only appears as a feature

of the function M : A× Ω→ ∆Y .

In the next result I show that the introduction of ambiguous information

alone does not change the set of of implementable social choice functions.

For this result I adopt the standard assumptions that all agents are expected
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utility maximizers with respect to Q∧R-measurable acts and that the social

choice function to be implemented isQ-measurable. So ambiguity only enters

as a feature of the mechanism via the feature of the function M : A × Ω →
∆Y . The only difference between the present setup and that of Bose and

Renou [3] is that the agents in Theorem 6 are consistent or semi-consistent.

The agents in Bose and Renou [3] are inconsistent.

Theorem 6 Fix a mechanism design problem D = ((Qi, ui,%i)i∈N , H) such

that the restriction of any (ui,%i) to the set of Q-measurable acts has an

expected utility representation. Either assume that π(θ) > 0 holds for all

θ ∈ Q or that there exists a very bad social choice yb. Consider the set of

Q-measurable social choice functions. Such a social choice function scf is

(consistently or semi-consistently) implementable in D if and only if it is

implementable in some D′ = ((Qi, ui, πi)i∈N , H) where (ui, πi) coincides with

(ui,%i) on the set of all Q∧R-measurable acts.

Proof to be written �

We furthermore obtain a corollary to Theorem ?? the result on observa-

tional equivalence.

Corollary 2 Fix a mechanism design problem D = ((Qi, ui,%i)i∈N , H) if

the social choice function scf is consistently implementable in D then it is

implementable in some D′ = ((Qi, ui, πi)i∈N , H).

The next result shows that ambiguous communication can make a differ-

ence if we do not only consider Q-measurable social choice functions but

also such social choice functions that let the outcomes depend on some

(possibly ambiguous) randomization device. Such a social choice function

scf : Ω→ ∆Y is then Q′-measurable where Q′ is strictly finer than Q.

Theorem 7 Fix a mechanism design problem D = ((Qi, ui,%i)i∈N , H) and

a social choice function scf : Ω→ ∆Y . Say all agents share a prior π∗ on Q.

a) If scf : Ω→ ∆Y is weakly consistently implementable in D, then scf need

not be implementable in any D′ = ((Qi, ui, πi)i∈N , H) where each πi has π∗ as

its Q-marginal. b) If scf : Ω → ∆X is strongly consistently implementable
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in D, then scf is implementable in some D′ = ((Qi, ui, πi)i∈N , H) where each

πi has π∗ as its Q-marginal.

Proof Define a mechanism design problem D =
(
(Qi, ui, C∗∗))i∈{1,2}, h

)
with Q1 : = {λ, ρ} and Q2 : = {λ∗, no, ρ∗} where λ∗ ⊂ λ and ρ∗ ⊂ ρ. The

set of social choices is Y = {l,m, r}, the partition of payoff relevant events

is R = {λ, ρ}. Payoffs ui(H(y, ω)) are given by the following table

l m r

λ 1, 21 10, 10 0, 0

ρ 0, 0 10, 10 1, 21

payoffs ui(H(y, ω))

With respect to Q-measurable acts F : Ω → ∆X the two agents are

expected utility maximizers; all priors π ∈ C∗∗ agree on any θ ∈ Q and we

have π(λ) = π(ρ) = 1
2

and π(λ∗) = π(ρ∗) = .1.

Fix a Q-measurable social choice function scf : Ω → {l,m, r} with

scf(λ∗) = l and scf(ρ∗) = r. I next show that scf can only be weakly

consistently implementable in D if scf(ω) 6= m for all ω ∈ Ω. Suppose not.

By Lemma ?? scf would have to be implementable with a direct revelation

mechanism. First consider the case that scf(no) = m. If agent 2 tells the

truth his ex ante utility is .1× 21 + (.4 + .4)× 10 + .1× 21.

π(λ∗)u2(H(scf(λ∗), λ))) + π(no)u2((H(scf(no), ·))) + π(ρ∗)u2(H(scfρ∗, ρ)) =

.1× 21 + .8× 10 + .1× 21

If agent 2 deviates to the strategy according to which he truthfully reports

λ∗ and ρ∗, but declares λ∗ when he receives the signal no he increases his

utility to

π(λ∗)u2(H(scf(λ∗), λ))) + π(λ ∩ no)(H(scf(λ∗), λ))) +

π(ρ ∩ no)u2(H(scf(λ∗ ∩ ρ), ρ) + π(ρ∗)u2(H(scf(ρ∗), ρ)) ≥
.1× 21 + .4× 21 + .4× 0 + .1× 21.

The inequality follows from the fact that u2(scf(λ∗ ∩ ρ), ρ) cannot be below

0, as the mechanism must choose l, r, or m - even when it is clear that at

least one agent lies.
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If scf(no ∩ λ) = m while scf(no ∩ ρ) 6= m then agent 1 obtains at most

π(λ∗)u1(H(scf(λ∗), λ))) + π(no ∩ λ)u1((H(scf(no ∩ λ), λ))) +

π(no ∩ ρ)u1((H(scf(no ∩ ρ), ρ))) + π(ρ∗)u1(H(scfρ∗, ρ)) =

.1× 1 + .4× 10 + .4× u1((H(scf(no ∩ ρ), ρ))) + .1× 1 ≤
.1× 1 + .4× 10 + .4× 1 + .1× 1

where the inequality follows from u1((H(scf(no∩ ρ), ρ))) being at most 1 as

scf(no∩ρ) 6= m. If agent always claims he observed λ he increases his utility

to

π(λ∗)u1(H(scf(λ∗), λ))) + π(no ∩ λ)u1((H(scf(no ∩ λ), λ))) +

π(no ∩ ρ)u1((H(scf(no ∩ λ), ρ))) + π(ρ∗)u1(H(scfρ∗ ∩ λ, ρ)) =

.1× 1 + .4× 10 + .4× 10 + .1× u1(H(scfρ∗ ∩ λ, ρ) ≥
.1× 1 + .4× 10 + .4× 1 + .1× 0

where the inequality follows from 0 being a lower bound on u1(H(scfρ∗ ∩ λ, ρ).

Mutatis mutandis agent 1 is better off always claiming his signal was ρ if

scf(no∩ρ) = m and scf(no∩λ) 6= m. Since we only consider Q-measurable

social choice functions scf here, this is an exhaustive list of cases.

Now consider the mechanism M =
(
(Qi)i∈N ,M

)
in which the designer

may partition any event in Q more finely. Say he designer has access to

another partition D = {L,M,R}. Assume that the agents’ set of beliefs on

{L,M,R} is as in Example 1. Let the set of beliefs be given by α ∈ [.1, .2]

and the following matrix

L M R

λ∗ .1 0 0

λ .4− α α 0

ρ 0 .3− α .1 + α

ρ∗ 0 0 .1

the set of priors C∗∗

TheQ∧D-measurable social choice function scf ∗ : Ω→ Y with scf ∗(λ∗) =

scf ∗(L) = l, scf ∗(ρ∗) = scf ∗(R) = r, and scf ∗(M) = m is implementable.
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The mechanism M ′ does not assume any extraneous knowledge by the

designer. Loosely following Bose and Renou [3] we can think of the following

process. First the agents truthfully report their types. The designer then

knows the partition Q = {λ∗, no ∩ λ, no ∩ ρ, ρ∗}. The designer then uses an

ambiguous randomization device to partition the events no ∩ λ and no ∩ ρ.

The designer could for example draw a ball from an urn filled with red and

black balls in unknown proportion. The draw of a black ball is mapped to

L if the agents reported no and λ. The draw of a red ball is mapped to R if

the agents reported no and ρ. The remaining draws are mapped to the event

M if no was reported. Given that agent 1 truthfully reports his information

agent 2’s decision problem is very similar to the problem studied in Example

1. He now has an incentive to truthfully reveal no. Now only M is mapped

to m, but the ambiguity in the mechanism was constructed such that in the

event M agent 2 faces enough ambiguity to prefer the insurance option m to

l and r. �

A Appendix

Proof of parts a) and c) of Theorem 5

Fix a mechanism M : A × Ω → ∆Y and consider the induced game

Γ =
(
(Qi, Ai, ui,%i)i∈N , G

)
with G(a, ω) =

∑
y∈Y

(
M(a, ω)(y)

)
H(y, ω) for

all (a, ω) ∈ A× Ω.

a) Say Γ has a consistent equilibrium q∗ that induces scf . We therefore

have scf(ω) =
∑

a∈A q
∗(a)M

(
a(ω), ω

)
for all ω ∈ Ω. Define the direct revela-

tion mechanism M̂ : B×Ω→ ∆Y such that M̂(b, ω) =
∑

a∈A q
∗(a)M(a(b), ω)

for all (b, ω) ∈ B × Ω. The strategy profile q ∈ ∆B in the direct revelation

mechanism induces the social choice function that maps any ω to∑
b∈B

q(b)M̂(b(ω), ω) =
∑
b∈B

q(b)
∑
a∈A

q∗(a)M(a(b(ω)), ω)

The truth-telling strategy profile t ∈ ∆B in M̂ induces the social choice
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functions scf in D: we have∑
b∈B

t(b)M̂(b(ω), ω) = M̂(θ(ω), ω) =
∑
a∈A

q∗(a)M(a(ω), ω)

where the first equality follows from t assigning probability 1 to θ and the

second follows from the definition of M̂ .

If an agent i deviates to q′i in the new mechanism while all other agents

follow the truth-telling strategy he induces the social choice function that

maps each ω to

∑
b∈B

q′i(bi)t−i(b−i)M̂
(
b(ω), ω

)
=∑

b∈B

q′i(bi)t−i(b−i)
∑
a∈A

q∗(a)M
(
a((b(ω)), ω

)
=∑

bi∈Bi

q′i(bi)
∑
a∈A

q∗i (ai)q
∗
−i(a−i)M

(
(ai(bi(ω)), a−i(ω)), ω

)
=∑

ai∈Ai

q′′i (ai)
∑

a−i∈Ai

q∗−i(ai)M
(
(a(ω)), ω

)
=

∑
a∈A

q′′i (ai)q
∗
−i(ai)M

(
a(ω), ω

)
where

q′′i (ai) =
∑

(a′i,bi)∈S(ai)

q′i(bi)q
∗(a′i)

and where S(a′i) : = {(a′i, bi) : ai(ω) = a′i(bi(ω) for all ω ∈ Ω} is the set of

all combinations of strategies a′i ∈ A and bi ∈ Bi for which the concatenation

a′i ◦ bi that appears in the above expression equals ai.

Since q is a consistent equilibrium we have:

ui
(∑
a∈A

q∗(a)
∑
y∈Y

M((a(·), ·))(y)H(y, ·)
)
%i

ui
(∑
a∈A

q′i(ai)q
∗
−i(ai)

∑
y∈Y

M((a(·), ·)(y))H(y, ·)
)
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and agent i prefers the truth-telling strategy ti to all other strategies q′i
under the direct revelation mechanism given that the other agents follow the

truthtelling strategy.

c) Say Γ has a consistent equilibrium a∗ that induces scf . We therefore

have scf(ω) = M
(
a∗(ω), ω

)
for all ω ∈ Ω. Define the direct revelation

mechanism M̂ : B×Ω→ ∆Y such that M̂(b, ω) = M(a∗(b), ω) for all (b, ω) ∈
B × Ω. The strategy profile q ∈ ∆B in the direct revelation mechanism

induces the social choice function that maps any ω to∑
b∈B

q(b)M̂(b(ω), ω) =
∑
b∈B

q(b)M(a∗(b(ω)), ω)

The truth-telling strategy profile t ∈ ∆B in M̂ induces the social choice

functions scf in D: we have∑
b∈B

t(b)M̂(b(ω), ω) = M̂(θ(ω), ω) = M(a∗(ω), ω)

where the first equality follows from t assigning probability 1 to θ and the

second follows from the definition of M̂ .

If an agent i deviates to qi in the new mechanism while all other agents

follow the truth-telling strategy he induces the social choice function that

maps each ω to

∑
b∈B

qi(bi)t−i(b−i)M̂
(
b(ω), ω

)
=∑

b∈B

qi(bi)t−i(b−i) M
(
a∗(b(ω)), ω

)
=∑

bi∈Bi

qi(bi)M
(
(a∗i (bi(ω)), a∗−i(ω)), ω

)
=∑

ai∈Ai

qi(bi | ai = a∗i ◦ bi)M
(
(ai(ω), a∗−i(ω)), ω

)
If qi assigns probability 1 to some strategy bi then the social choice func-

tion M
(
(a∗i (biω), a∗−i(ω)), ω

)
is induced. Since a∗ is a semi-consistent equi-
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librium we have:

ui
(∑
y∈Y

M((a∗(·), ·))(y)H(y, ·)
)
%i

ui
(∑
y∈Y

M((ai(·), a∗−i(·)), ·)(y))H(y, ·)
)

for any ai ∈ Ai, in particular ass ai that arise as the composition a∗i ◦ bi.
Consequently the truthtelling is among the best pure strategies given that

everyone else tells the truth.

To see that

that only assign positive probability to optimal pure strategies ai. We in

particular obtain that

still not yet there
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